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1. Introduction

Modeling lifetime (survival) data is central in reliability engineering [1–3], biomedical
research [4, 5], economics [6, 7], social sciences [8], and actuarial science [9–11], informing analyses
of system failures, disease progression, employment duration, and financial risk. Such data often
exhibit decreasing failure rates (DFR), heavy tails, and unobserved heterogeneity [12]. Recent
advances in reliability include fatigue-failure models incorporating stress spectra for mechanical
parts [13] and Weibull-based reliability assessments enhanced by the Bayesian bootstrap [14],
underscoring the demand for flexible, data-driven lifetime distributions. These developments motivate
unified models that accommodate both structural redundancy and frailty-driven heterogeneity, such as
the framework proposed here [15].

A seminal contribution in this area is the exponential-geometric (EG) distribution introduced
by [16]. This model represents the time to the first failure in a system consisting of a random number
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of components, where the system size follows a geometric distribution. The EG distribution captures
decreasing hazard rates naturally and has been widely applied in reliability studies and survival
analysis. Subsequent extensions, such as the exponential-generalized truncated geometric (EGTG)
distribution [17], generalized the EG framework to account for higher-order failures, further
enhancing its applicability in modeling complex system behaviors.

Another well-established approach to modeling heterogeneity is the use of frailty models [18–20].
Frailty introduces unobserved random effects into the hazard function, effectively capturing latent
variability among units. Among the various frailty distributions, the gamma distribution has been
particularly influential due to its mathematical tractability and ability to induce heavy-tailed
behavior [21]. For instance, applying a gamma frailty to exponential lifetimes leads to the Lomax
(Pareto Type II) distribution, which accommodates long-tailed failure times frequently observed in
reliability data [22].

Positioning and novelty. Prior research falls into three strands. (i) EG-family redundancy models
assume a random number of parallel components with exponential lifetimes; a geometric count injects
extra variability in first-failure times and yields simple likelihoods, but tail/hazard shaping is limited
without further structure [16,23]. (ii) Shared-frailty models multiply hazards by a latent random effect
(often gamma), capturing heavy tails and over-dispersion with clear inferential tools, yet they do not
encode randomness in system size; with exponential baselines, gamma frailty yields Lomax marginals
[19, 21]. (iii) Compound/mixture approaches (for example, flexible baselines and finite mixtures) fit
diverse shapes but can sacrifice mechanistic first-failure interpretation and parameter transparency [24].

Our contribution integrates (i) and (ii) in the first-failure setting. We model Y = min{X1, . . . , XN}

with N ∼ Geom(1 − η) on {1, 2, . . . } and a shared gamma frailty Z ∼ Γ(λ, λ) (mean 1), where, given Z,
X1, . . . , XN

iid
∼ Exp(θZ). Marginalizing N and Z yields a tractable geometric–Lomax mixture for Y

with three interpretable parameters ϑ = (θ, λ, η): θ sets the time scale, λ controls the frailty
concentration (tail index), and η tunes the redundancy/mixing intensity. The construction bridges EG
(λ→∞), Lomax (η→ 0), and exponential (η→ 0, λ→∞) limits, preserves a decreasing-failure-rate
hazard suited to infant-mortality/first-failure regimes, and offers greater flexibility than EG while
retaining mechanistic meaning and estimation tractability (via maximum likelihood estimation, MLE;
the expectation–maximization algorithm, EM; and its Monte Carlo variant, MCEM).

To assess practical relevance, we analyze reliability datasets and find that the unified model
competes with—and often improves on—classical alternatives by capturing both early failures and
long tails.

The remainder of the paper is organized as follows. Section 2 presents the hierarchical
construction and the marginal law of Y . Section 3 develops distributional properties (cdf, survival,
hazard, limits). Section 4 details maximum likelihood estimation and EM/MCEM procedures.
Section 5 presents a Monte Carlo simulation study conducted to assess the finite-sample performance
of the MLE for the proposed unified distribution. Section 6 reports real-data applications, and
Section 7 outlines implications and future directions.

2. Distribution derivation

Consider a system with a random number of components N ∼ Geometric(p = 1− η), where Pr(N =

n) = (1 − η)η n−1 for n ≥ 1. The component lifetimes are subject to a shared frailty Z ∼ Γ(λ, λ) with
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density fZ(z) = λλ

Γ(λ)z
λ−1e−λz, z > 0. Conditional on Z = z, let Xi | Z = z ∼ Exp(θz) independently for

i = 1, . . . ,N, and define the system failure time as Y = min{X1, . . . , XN}. This hierarchical construction
induces a marginal distribution for Y that unifies the EG and Lomax distributions. The following
theorem establishes the closed-form expression for the PDF of Y .

Theorem 1 (Marginal PDF of the first failure time). Under the hierarchical model above, the marginal
PDF of Y = X(1) is

fY(y) = θλλ+1(1 − η)
∞∑

n=1

nηn−1

(nθy + λ)λ+1 , y > 0. (2.1)

Proof. We derive the marginal PDF in two steps: first by integrating over the frailty Z and then by
summing over the random system size N.

Conditional PDF given N = n (step 1): Given N = n and Z = z, the component lifetimes are
independent and identically distributed (i.i.d.) Exp(θz), so the minimum Y = min{X1, . . . , Xn} has the
PDF:

fY |N=n,Z=z(y) = nθze−nθzy, y > 0.

The marginalization over Z ∼ Γ(λ, λ) gives:

fY |N=n(y) =

∫ ∞

0
nθze−nθzy ·

λλ

Γ(λ)
zλ−1e−λzdz =

nθλλ

Γ(λ)

∫ ∞

0
zλe−(λ+nθy)zdz.

Using the standard gamma integral∫ ∞

0
zae−bzdz =

Γ(a + 1)
ba+1 , a > −1, b > 0,

with a = λ, b = λ + nθy, we obtain:

fY |N=n(y) =
nθλλ

Γ(λ)
·

Γ(λ + 1)
(λ + nθy)λ+1 .

Since Γ(λ + 1) = λΓ(λ), this simplifies to:

fY |N=n(y) =
nθλλ+1

(λ + nθy)λ+1 .

This is the PDF of a Lomax (Pareto Type II) distribution with shape parameter λ and scale parameter
λ/(nθ).

Marginalization over N (step 2): Summing over N ∼ Geometric(1 − η) gives:

fY(y) =

∞∑
n=1

Pr(N = n) fY |N=n(y) =

∞∑
n=1

(1 − η)ηn−1 ·
nθλλ+1

(λ + nθy)λ+1 .

Factoring out constants yields:

fY(y) = θλλ+1(1 − η)
∞∑

n=1

nηn−1

(λ + nθy)λ+1 , y > 0.

�
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Corollary 2 (Geometric mixture representation). The first failure time Y follows a geometric mixture
of Lomax distributions:

Y ∼
∞∑

n=1

wn · Lomax
(
λ,

λ

nθ

)
,

where the mixing weights are wn = (1 − η)ηn−1, n = 1, 2, . . . , and each component has the PDF

fn(y) =
nθλλ+1

(λ + nθy)λ+1 , y > 0.

Proof. This follows directly from Theorem 1 and the fact that fY |N=n(y) is the PDF of a
Lomax(λ, λ/(nθ)) distribution. The marginal density is a weighted sum of these component densities
with weights Pr(N = n) = (1 − η)ηn−1, which confirms the mixture representation. �

3. Distributional properties

3.1. Shape of the PDF

Let Y = X(1) denote the first-failure time under the unified frailty model with parameters θ > 0,
λ > 0, and η ∈ [0, 1), whose PDF is given in Equation (2.1).

Theorem 3 (Mode of the unified frailty distribution). The PDF fY(y) is strictly decreasing on (0,∞),
so its global maximum occurs at the boundary

ymode = 0, fY(0) =
θ

1 − η
.

Hence, the unified frailty distribution is unimodal with a peak at the origin.

Proof. Each summand of the series representation of fY(y) is strictly decreasing. Since fY(y) is a
positive linear combination of these decreasing terms, it is strictly decreasing as well. Evaluating the
series at y = 0 gives the stated maximum.

fY(0) = θ(1 − η)
∞∑

n=1

nη n−1 = θ(1 − η) ·
1

(1 − η)2 =
θ

1 − η
.

When η = 0, this reduces to the Lomax case: fY(0) = θ. As η → 1−, fY(0) → ∞, meaning the
density at 0 explodes. �

Corollary 4 (Behavior at the origin). At y = 0, the PDF has negative slope and positive curvature:

f ′Y(0) = −
λ + 1
λ

θ2 1 + η

(1 − η)2 < 0, f ′′Y (0) =
(λ + 1)(λ + 2)

λ2 θ3 1 + 4η + η2

(1 − η)3 > 0.

Consequently, the mode at the origin is sharp and convex.

Proof. This directly follows by differentiating the series termwise and evaluating at y = 0 (see the
previous derivation for details). �
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3.2. CDF and survival function

From the mixture representation in Corollary 2, the CDF of Y is obtained by averaging the Lomax
CDF over the geometric mixing distribution:

FY(y) = (1 − η)
∞∑

n=1

η n−1

1 − (
λ

nθy + λ

)λ , y > 0.

Equivalently, the survival function (S Y(y)) can be expressed as

S Y(y) = 1 − FY(y) = (1 − η)
∞∑

n=1

η n−1
(

λ

nθy + λ

)λ
, y > 0.

These series expressions highlight the geometric-Lomax mixture structure: for fixed n, the survival
probability is inherited from a Lomax(λ, λ/(nθ)) component, and the weights (1 − η)η n−1 describe the
probability of the system having n components.

3.3. Hazard function

The hazard rate of Y is
hY(y) =

fY(y)
S Y(y)

, y > 0,

where, from Theorem 1 and Section 3,

S Y(y) = (1 − η) λλ
∞∑

n=1

η n−1

(nθy + λ)λ
, fY(y) = θ λλ+1(1 − η)

∞∑
n=1

n η n−1

(nθy + λ)λ+1 .

Hence the factors (1 − η) and λλ cancel, yielding the explicit ratio

hY(y) = θ λ

∞∑
n=1

n η n−1

(nθy + λ)λ+1

∞∑
n=1

η n−1

(nθy + λ)λ

, y > 0.

Boundary behavior. Using the above series,

lim
y↓0

S Y(y) = 1, lim
y↓0

fY(y) = θ(1 − η)
∞∑

n=1

n η n−1 =
θ

1 − η
,

so
lim
y↓0

hY(y) =
θ

1 − η
.

For large y, (nθy + λ) ∼ nθy, and

S Y(y) ∼ (1 − η)
λλ

(θy)λ

∞∑
n=1

η n−1

nλ
, fY(y) ∼ (1 − η)

θ λλ+1

(θy)λ+1

∞∑
n=1

η n−1

nλ
,

so the common series cancels in the ratio, giving the universal tail law

lim
y→∞

y hY(y) = λ =⇒ hY(y) ∼
λ

y
as y→ ∞.
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Figure 1. Hazard functions hY(y) for the unified model with θ = 1.5. Panels show λ ∈

{1, 1.5, 2, 5}; within each panel, curves vary over η ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.8}.

Shape. Using the series forms for fY and S Y above,

hY(0+) =
θ

1 − η
, hY(y) ∼

λ

y
as y→ ∞,

so the hazard starts finite and eventually decays to 0. Conditional on N = n, the component is
Lomax(λ, λ/(nθ)) with hazard hn(y) = nθ λ

λ+nθy , which is decreasing in y. For this model, the hazard can
be shown to have a DFR for all θ > 0, λ > 0, η ∈ [0, 1); in particular, hY(0+) = θ/(1 − η) and
hY(y) ≈ λ/y as y→ ∞.

3.4. Limiting and special cases

The proposed hierarchical frailty model for the time to first failure Y provides a unifying framework
that encompasses several classical lifetime distributions as special or limiting cases, highlighting its
flexibility in reliability and survival analysis. Specifically, as the frailty parameter λ→ ∞, the gamma-
distributed frailty Z ∼ Γ(λ, λ) converges in probability to 1 (since E[Z] = 1 and Var(Z) = 1/λ →
0), effectively removing the shared heterogeneity; conditionally, Y | N = n becomes Exp(nθ), and
marginalizing over N ∼ Geometric(1 − η) yields the EG distribution of Adamidis & Loukas [16],
with PDF fY(y) = θ(1 − η)e−θy[1 − ηe−θy]−2 for y > 0, CDF FY(y) = 1 − (1 − η)[1 − ηe−θy]−1e−θy, and a
monotonically decreasing hazard rate hY(y) = θ[1−ηe−θy]−1. Conversely, as η→ 0, Pr(N = 1) = 1−η→
1, reducing the model to a single component with lifetime modulated by Z, so Y follows the Lomax (or
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Pareto Type II) distribution with shape parameter λ and scale λ/θ, having PDF fY(y) = θλλ(λ + θy)−λ−1

for y > 0, survival function S Y(y) = [λ/(λ + θy)]λ, and hazard rate hY(y) = θλ/(λ + θy) that decreases
to 0 as y→ ∞. Finally, taking both limits simultaneously (η→ 0 and λ→ ∞), the Lomax degenerates
to the exponential distribution Exp(θ) with constant hazard θ, PDF fY(y) = θe−θy for y > 0, and
memoryless property Pr(Y > y + t | Y > t) = Pr(Y > y). These reductions are confirmed by direct
computation of the limiting forms of the general PDF from Theorem 1, underscoring the model’s role
as a generalization bridging light- and heavy-tailed behaviors. These limiting cases are summarized in
Figure 2.

Unified Model:
First failure time Y = X(1)

with gamma frailty Z and
N ∼ Geometric(1 − η)

Limit: λ → ∞

(No frailty)

Exponential-geometric distr.

f (y) =
θ(1 − η)e−θy

(1 − ηe−θy)2

S (y) =
(1 − η)e−θy

1 − ηe−θy

h(y) =
θ

1 − ηe−θy

Limit: η → 0
(Fixed N = 1)

Lomax (Pareto Type II) distr.

f (y) =
θλλ+1

(λ + θy)λ+1

S (y) =

(
λ

λ + θy

)λ
h(y) =

θλ

λ + θy

Joint limit:
η → 0, λ → ∞

Standard exponential distr.

f (y) = θe−θy

S (y) = e−θy

h(y) = θ

Figure 2. Special and limiting cases of the unified model for the first failure time.

Figures 3 and 4 show how η and λ shape the unified density. Larger η shifts mass toward the origin
(more weight on larger n in the geometric mixture), while larger λ concentrates frailty and moves the
model toward the EG limit. In the joint limit η→ 0, λ→ ∞, the model becomes exponential.

The Lomax case corresponds to η→ 0 with fixed λ. For any fixed λ,

fY(0+) = θ(1 − η)
∑
n≥1

nηn−1 =
θ

1 − η
, S Y(y) ∼ C(η, λ) y−λ (y→ ∞),

so, relative to the Lomax ( fL(0+) = θ), the unified density has a higher initial peak by the factor 1/(1−η)
while preserving the same tail index λ. In the figure this appears as unified curves (η > 0) lying above
the Lomax near y = 0, but running parallel in the tail (both hazards satisfy hY(y) ∼ λ/y). Smaller λ
yields heavier tails in both models; larger λ lightens the tail and moves the unified model toward the
EG limit near the origin. Overall, (θ, λ, η) provide an interpretable bridge between the classical cases:
θ sets the time scale, λ controls tail heaviness via the frailty concentration, and η tunes the early-failure
intensity via geometric mixing.

3.5. Moment generating function (MGF)

We now derive the moment generating function (MGF) of the unified frailty distribution. Recall
that if Y = X(1) denotes the first-failure time with the PDF given in Eq (2.1), then the MGF is defined
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Figure 3. Unified model densities for θ = 1.5 across η ∈ {0.1, 0.3, 0.5, 0.8}. Each panel
overlays λ ∈ {1, 2, 5, 20} and comparator curves: EG (λ→∞), Exponential (η→ 0, λ→∞),
Weibull (k = 1.5, scale = 1/θ), and Generalized Gamma (a = 2.0, b = 1.0, c = 1.2).
Increasing η shifts mass toward the origin; larger λ approaches the EG limit.

as

MY(t) = E[etY] =

∫ ∞

0
ety fY(y) dy, t < 0.

Theorem 5 (MGF of the unified frailty distribution). For t < 0, the MGF of Y is

MY(t) = θλλ+1(1 − η)
∞∑

n=1

nη n−1
∫ ∞

0

ety

(nθy + λ)λ+1 dy.

After the change of variables u = nθy + λ, this reduces to

MY(t) = (1 − η)
∞∑

n=1

η n−1
(
λ

nθ

)λ
e−

tλ
nθ

∫ ∞

λ

u−(λ+1)e
t

nθ u du.

Proof. Starting from the definition of the MGF and substituting the series representation of the PDF
yields the first expression. The substitution u = nθy + λ (with dy = du/(nθ)) transforms the

denominator into a power of u, and the exponential term into e
t

nθ (u−λ), giving the second
expression. �
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Figure 4. Unified model densities for θ = 1.5 across λ ∈ {1, 2, 5, 20}. Each panel overlays
η ∈ {0.1, 0.3, 0.5, 0.8} with the same comparators (EG, Exp., Weibull, GenGamma). Larger
λ concentrates frailty and lightens the tail; smaller λ yields heavier tails.

Corollary 6 (Expression via the incomplete gamma function). The MGF admits the representation

MY(t) = (1 − η)
∞∑

n=1

η n−1
(
λ

nθ

)λ
e−

tλ
nθ ·

1
nθ

Γ
(
−λ,− t

nθλ
)
, t < 0,

where Γ(s, x) denotes the upper incomplete gamma function.

Proof. The integral in Theorem 5 has the form of an incomplete gamma function once the substitution
z = − t

nθu is applied. Simplification then yields the stated result. �

3.6. Moments

The moments of Y are obtained from the mixture representation

Y | (N = n) ∼ Lomax(α = λ, bn = λ
nθ ), Pr(N = n) = (1 − η)η n−1, n ≥ 1.

Recall that for a Lomax(α, b) distribution the mean exists for α > 1 and the variance exists for
α > 2, with

E[Y] =
b

α − 1
, Var(Y) =

b2α

(α − 1)2(α − 2)
.
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Figure 5. Unified vs. Lomax (η → 0) densities with θ = 1.5. Panels show λ ∈ {1, 2, 5, 20};
within each panel, unified curves vary over η ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.8} and the
Lomax limit is overlaid.

Theorem 7 (Mean and variance). Assume θ > 0, λ > 0, and η ∈ [0, 1). Define the sums

S 1(η) := (1 − η)
∞∑

n=1

η n−1

n
=

1 − η
η

[
− ln(1 − η)

]
, S 2(η) := (1 − η)

∞∑
n=1

η n−1

n2 =
1 − η
η

Li2(η),

where Li2 is the dilogarithm (polylogarithm of order 2).

(i) If λ > 1 then the mean of Y exists and is

E[Y] =
λ

(λ − 1) θ
S 1(η) =

λ

(λ − 1) θ
1 − η
η

[
− ln(1 − η)

]
.

(ii) If λ > 2 then the variance of Y exists and is

Var(Y) =
(1 − η) λ3

θ2(λ − 1)2(λ − 2)

∞∑
n=1

η n−1

n2︸                            ︷︷                            ︸
E[Var(Y |N)]

+

(
λ

(λ − 1)θ

)2 {
(1 − η)

∞∑
n=1

η n−1

n2 −
[
(1 − η)

∞∑
n=1

η n−1

n

]2
}

︸                                                               ︷︷                                                               ︸
Var(E[Y |N])

=
λ3

θ2(λ − 1)2(λ − 2)
S 2(η) +

(
λ

(λ − 1)θ

)2{
S 2(η) − [S 1(η)]2}.

Proof. Conditional moments follow from the Lomax form. For N = n,

E[Y | N = n] =
bn

λ − 1
=

λ

(λ − 1)nθ
, Var(Y | N = n) =

b2
nλ

(λ − 1)2(λ − 2)
=

λ3

(λ − 1)2(λ − 2)
1

n2θ2 ,
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provided λ > 2.
Use the law of total expectation and total variance. The mean is

E[Y] = (1 − η)
∞∑

n=1

η n−1 λ

(λ − 1)nθ
=

λ

(λ − 1)θ
(1 − η)

∞∑
n=1

η n−1

n
,

which gives the formula via the identity
∑∞

n=1 η
n/n = − ln(1 − η).

Proposition 8 (Second moment). If λ > 2, then

E[Y2] =
2 λ2

(λ − 1)(λ − 2) θ2 S 2(η), S 2(η) := (1 − η)
∞∑

n=1

η n−1

n2 =
1 − η
η

Li2(η).

In the Lomax limit η→ 0, S 2(η)→ 1 and thus E[Y2]→
2 λ2

(λ − 1)(λ − 2) θ2 .

For the variance,
Var(Y) = E[Var(Y | N)] + Var(E[Y | N]),

and substituting the conditional expressions yields the first boxed representation. Recognizing the sums
(1 − η)

∑
n≥1 η

n−1n−2 =
1−η
η

Li2(η) and (1 − η)
∑

n≥1 η
n−1n−1 = S 1(η) gives the compact second form. �

Remarks. The mean exists if and only if λ > 1 and the variance exists if and only if λ > 2, mirroring
the classical Lomax moment conditions inherited by the mixture components. In the Lomax limit
η → 0, the unified model reduces to Lomax(λ, λ/θ), yielding E[Y] → λ/((λ − 1)θ) and Var(Y) →
λ3/{θ2(λ − 1)2(λ − 2)}, as expected. For weak mixing (η small), corrections to these moments admit
compact series in η via polylogarithms Lis(η), providing accurate approximations to E[Y] and Var(Y)
near the Lomax regime.

Proposition 9 (General moments for the unified model). Let Y = X(1) follow the unified frailty model
with parameters θ > 0, λ > 0, and η ∈ [0, 1). For r ≥ 0 define

S r(η) := (1 − η)
∞∑

n=1

η n−1

n r =
1 − η
η

Lir(η), S 0(η) = 1,

where Lir is the polylogarithm of order r. If λ > r, the r-th raw moment exists and

E[Y r] = Γ(r + 1)
Γ(λ − r)

Γ(λ)

(
λ

θ

)r
S r(η).

In particular, for λ > 1 and λ > 2,

E[Y] =
λ

(λ − 1) θ
S 1(η), E[Y2] =

2 λ2

(λ − 1)(λ − 2) θ2 S 2(η).

Proof. Condition on the random system size N = n. Given N = n, Y is Lomax with shape λ and scale
bn = λ/(nθ), so for λ > r,

E[Y r | N = n] = b r
n

Γ(r + 1)Γ(λ − r)
Γ(λ)

= Γ(r + 1)
Γ(λ − r)

Γ(λ)

(
λ

nθ

)r
.
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Averaging over N ∼ Geom(1 − η) on {1, 2, . . .} yields

E[Y r] = Γ(r + 1)
Γ(λ − r)

Γ(λ)

(
λ

θ

)r
(1 − η)

∞∑
n=1

η n−1

n r = Γ(r + 1)
Γ(λ − r)

Γ(λ)

(
λ

θ

)r
S r(η).

�

Remark (EG limit). As λ → ∞, the Lomax component fY |N=n(y) = nθ λλ+1(λ + nθy)−(λ+1) satisfies
(1 + nθy/λ)−(λ+1) → e−nθy, so Y | N = n⇒ Exp(nθ) and the model reduces to

Y | N = n ∼ Exp(nθ), Pr(N = n) = (1 − η)ηn−1, n ≥ 1.

Consequently, the EG limit retains the same geometric weighting and the same
S r(η) = (1 − η)

∑
n≥1 η

n−1/nr in all moment expressions.

Corollary 10 (Moments in the EG limit). Let Y follow the EG distribution with parameters θ > 0 and
η ∈ [0, 1), i.e., Y | N = n ∼ Exp(nθ) and Pr(N = n) = (1 − η)ηn−1 for n ≥ 1. Then, for every r ≥ 0,

E[Y r] = Γ(r + 1) θ−r S r(η), S r(η) =
1 − η
η

Lir(η), S 0(η) = 1.

In particular,

E[Y] =
S 1(η)
θ

, E[Y2] =
2 S 2(η)
θ2 , Var(Y) =

1
θ2

(
2S 2(η) − [S 1(η)]2

)
.

Moreover, S r(η) < ∞ for all r > 0 and S 0(η) = 1; as η→ 0, S r(η)→ 1; and as η→ 1−, S r(η)→ 0
for any fixed r > 0.

3.7. Quantiles

Let p ∈ (0, 1) and define the p-quantile qp = inf{y > 0 : FY(y) ≥ p}. From the series forms,

FY(y) = (1 − η)
∑
n≥1

η n−1

1 −( λ

λ + nθy

)λ , S Y(y) = (1 − η)
∑
n≥1

η n−1
(

λ

λ + nθy

)λ
,

so qp is the (unique) solution of FY(qp) = p. A closed form is generally unavailable, but accurate limits
and asymptotics are as follows.

Lower tail (p ↓ 0). For y ↓ 0, (
λ

λ+nθy

)λ
=

(
1 +

nθy
λ

)−λ
= 1 − nθy + o(y)

termwise, giving

FY(y) =
θ

1 − η
y + o(y), y ↓ 0.

Hence the small-p quantile is

qp =
1 − η
θ

p
(
1 + o(1)

)
, p ↓ 0,

i.e., qp ≈ p/hY(0+) since hY(0+) = θ/(1 − η).
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Upper tail (p ↑ 1). As y→ ∞, nθy + λ ∼ nθy so

S Y(y) ∼ (1 − η)
λλ

(θy)λ
∑
n≥1

η n−1

nλ
= (1 − η)

λλ

(θy)λ
C(η, λ),

where C(η, λ) :=
∑

n≥1 η
n−1n−λ = η−1 Liλ(η). Solving S Y(qp) ≈ 1 − p yields

qp =
λ

θ

(
(1 − η) C(η, λ)

1 − p

)1/λ(
1 + o(1)

)
, p ↑ 1.

Limiting closed forms.

• EG limit (λ→ ∞). With u = e−θy, S Y(y) =
(1−η)u
1−ηu . Setting S Y(qp) = 1 − p gives

qp = −
1
θ

ln
(

1 − p
1 − ηp

)
(λ→ ∞),

which reduces to qp = −θ−1 ln(1 − p) as η→ 0.
• Lomax limit (η→ 0). For η = 0, FY(y) = 1 −

( λ
λ+θy

)λ
, so

qp =
λ

θ

[
(1 − p)−1/λ − 1

]
(η = 0).

Practical note. For general (θ, λ, η), compute qp by one–dimensional root finding on FY(y) − p = 0.
Use the small-p and large-p approximations above for reliable initialization, and the closed-form EG
(λ→∞) and Lomax (η=0) expressions when those limits apply.

4. Estimation

4.1. Maximum likelihood estimation

Let Y1, . . . ,Yn be i.i.d. from the unified model with density

fY(y | θ, λ, η) = (1 − η)
∞∑

m=1

ηm−1 mθ λλ+1

(mθy + λ)λ+1 , θ > 0, λ > 0, η ∈ (0, 1).

For each observation yi > 0, define

Am,i :=
mθ λλ+1

(mθyi + λ)λ+1 , S i :=
∞∑

m=1

ηm−1Am,i, fi = (1 − η)S i,

so that the log-likelihood is

`(θ, λ, η) =

n∑
i=1

log fi =

n∑
i=1

[
log(1 − η) + log S i

]
.
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Termwise differentiation is valid on interior compacts (Appendix A), and the existence and local
uniqueness of the MLE on the interior (with boundary faces EG/Lomax included by continuity) follow
from the conditions in Appendix B. The score functions are

∂`

∂η
=

n∑
i=1

(
−

1
1 − η

+

∑
m≥1(m − 1)ηm−2Am,i

S i

)
,

∂`

∂θ
=

n∑
i=1

∑
m≥1 η

m−1 ∂θAm,i

S i
,

∂`

∂λ
=

n∑
i=1

∑
m≥1 η

m−1 ∂λAm,i

S i
,

with numerically stable multiplicative forms

∂θAm,i = Am,i

[
1
θ
−

(λ + 1) myi

mθyi + λ

]
,

∂λAm,i = Am,i

[
ln λ + 1 − ln(mθyi + λ) −

λ + 1
mθyi + λ

]
.

We maximize ` using a quasi-Newton method (e.g., L–BFGS–B) under the reparameterization
(log θ, log λ, logit η) to enforce parameter bounds. Infinite series are evaluated via adaptive truncation
using the tail bounds in Appendix A and accumulated with a log–sum–exp routine to prevent
underflow or overflow. Standard errors are computed from the observed information matrix
Jn(ϑ̂) = −∂2`/∂ϑ ∂ϑ>.

In the Lomax limit (η→ 0), only the m = 1 term remains:

fY(y | θ, λ) =
θ λλ+1

(λ + θy)λ+1 , `(θ, λ) = n ln θ + n(λ + 1) ln λ − (λ + 1)
n∑

i=1

ln(λ + θyi).

The corresponding score equations are

∂`

∂θ
=

n
θ
− (λ + 1)

n∑
i=1

yi

λ + θyi
,

∂`

∂λ
= n

(
ln λ +

λ + 1
λ

)
−

n∑
i=1

[
ln(λ + θyi) +

λ + 1
λ + θyi

]
,

which coincide with the standard MLE equations for the Lomax distribution, confirming the coherence
of the unified model’s limiting behavior. Existence of a maximizer (interior or on the EG/Lomax faces)
and local uniqueness near the true value are guaranteed under the regularity conditions in Appendix B.

4.2. EM algorithm

We treat the component counts N1, . . . ,Nn as latent. Throughout, we use the same notation as in
Section 4.1: the observed data are y1, . . . , yn > 0, the parameter is ϑ = (θ, λ, η) with θ > 0, λ > 0, and
η ∈ (0, 1), and N ∼ Geom(1 − η) on {1, 2, . . .} with Pr(N = m) = (1 − η)ηm−1.

Given Ni = m, the conditional density is

fY |N(yi | m; θ, λ) =
mθ λλ+1

(mθyi + λ)λ+1 .

Hence the complete-data log-likelihood is

`c(θ, λ, η) =

n∑
i=1

∞∑
m=1

1{Ni = m}
{
log(1 − η) + (m − 1) log η + log

[
mθ λλ+1] − (λ + 1) log(mθyi + λ)

}
.
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E-step. At iteration t, define the posterior (“responsibility”) of component count m for observation i
as

p(t)
i,m := Pr(Ni = m | Yi = yi; θ(t), λ(t), η(t)) =

(1 − η(t)) η(t) m−1 fY |N(yi | m; θ(t), λ(t))∑∞
r=1(1 − η(t)) η(t) r−1 fY |N(yi | r; θ(t), λ(t))

.

Let the posterior mean count be N̂(t)
i :=

∑
m≥1 m p(t)

i,m. The EM Q-function is

Q(θ, λ, η | θ(t), λ(t), η(t)) =

n∑
i=1

∞∑
m=1

p(t)
i,m

{
log(1 − η) + (m − 1) log η + log[mθ λλ+1] − (λ + 1) log(mθyi + λ)

}
.

M-step. Update for η. Maximizing Q w.r.t. η yields the closed form

η(t+1) =

∑n
i=1

(
N̂(t)

i − 1
)∑n

i=1 N̂(t)
i

.

Updates for θ and λ. Differentiating Q gives the (expected) score equations

∂Q
∂θ

=

n∑
i=1

∞∑
m=1

p(t)
i,m

[
1
θ
−

(λ + 1) m yi

λ + mθyi

]
= 0,

∂Q
∂λ

=

n∑
i=1

∞∑
m=1

p(t)
i,m

[
1
λ

+ log λ − log(λ + mθyi) −
λ + 1

λ + mθyi

]
= 0.

We solve these two equations numerically (e.g., Newton or quasi-Newton) to obtain (θ(t+1), λ(t+1)).
To ensure numerical stability and consistent bounds across the algorithm, we work with the

reparameterization (log θ, log λ, logit η) and evaluate the infinite sums in p(t)
i,m using the adaptive

truncation and log-sum-exp accumulation described in Appendix A.

4.3. Estimation via importance-sampling MCEM

When the geometric series in (2.1) converges slowly (e.g., η → 1 or small λ), direct MLE or a
deterministic EM can be costly. We therefore adopt a Monte Carlo EM (MCEM) scheme where the
E-step is approximated by importance sampling (IS) over the latent system size Ni, while the frailty
Zi is integrated out analytically (Rao–Blackwellization). This focuses Monte Carlo effort on a one-
dimensional latent variable and reduces variance.

Complete-data structure and Q-function. Let ϑ = (θ, λ, η) and yi > 0 for i = 1, . . . , n. Conditioning
on Ni = m and integrating out Zi yields the Lomax contribution

fY |N(yi | m;ϑ) =
mθ λλ+1

(λ + mθyi)λ+1 .

The complete-data log-likelihood contribution is

`c,i(ϑ; Ni) = log fY |N(yi | Ni;ϑ) + log(1 − η) + (Ni − 1) log η,

and the EM target is

Q(ϑ | ϑ(t)) =

n∑
i=1

ENi |yi;ϑ(t)
[
`c,i(ϑ; Ni)

]
.
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E-step via IS over N. For each i, approximate the expectation over Ni using a truncated-geometric
proposal

qN,i(m) =
(1 − η(t))

(
η(t))m−1

1 −
(
η(t))Mi

, m = 1, . . . ,Mi,

where Mi is chosen adaptively so the remainder of the monotone positive series for p(Ni = m | yi;ϑ
(t))

is below a tolerance (e.g., 10−8); the bound depends on yi via (λ(t) + mθ(t)yi)−(λ(t)+1). Draw K samples
mik ∼ qN,i. The (unnormalized) IS weight is

wik ∝
(1 − η(t))

(
η(t))mik−1 fY |N(yi | mik;ϑ

(t))
qN,i(mik)

.

Compute weights in the log domain and normalize via a log–sum–exp routine to obtain w̃ik. For any
function g, E[g(Ni) | yi;ϑ

(t)] ≈
∑K

k=1 w̃ik g(mik). Monitor ESSi = 1/
∑K

k=1 w̃2
ik and increase K or Mi until

ESSi exceeds a threshold (e.g., 200).

M-step updates. Insert the Monte Carlo expectations into Q(ϑ | ϑ(t)) and maximize over (η, θ, λ).
Update for η. From ∂Q/∂η = 0 with η ∈ (0, 1),

−
n

1 − η
+

∑n
i=1 E[Ni − 1]

η
= 0 ⇒ η(t+1) = 1 −

n∑n
i=1 E[Ni]

=

∑n
i=1

(
E[Ni] − 1

)∑n
i=1 E[Ni]

.

Updates for θ and λ. For y > 0 and N = m,

∂

∂θ
log fY |N(y | m;ϑ) =

1
θ
− (λ + 1)

my
λ + mθy

,

∂

∂λ
log fY |N(y | m;ϑ) = log λ +

λ + 1
λ
− log(λ + mθy) −

λ + 1
λ + mθy

.

Hence the MCEM M-step solves the expected score equations
n∑

i=1

E

[
1
θ
− (λ + 1)

Niyi

λ + Niθyi

]
= 0,

n∑
i=1

E

[
log λ +

λ + 1
λ
− log(λ + Niθyi) −

λ + 1
λ + Niθyi

]
= 0,

with expectations taken under Ni | yi;ϑ
(t) via the IS weights. We solve these with Newton–Raphson

and a backtracking line search, enforcing θ > 0 and λ > 0. This method efficiently handles challenging
parameter regimes, as validated by simulations in Section 5.

5. Simulation study

This section presents a Monte Carlo simulation study conducted to assess the finite-sample
performance of the MLE for the proposed unified distribution. The study includes 200 replicates for
each of two sample sizes (n = 100 and n = 500) across four distinct parameter scenarios. Key
performance metrics include bias, root mean squared error (RMSE), 95% coverage probability based
on the empirical sampling distribution, and convergence rate.

Samples were generated from the unified model with parameters (θ, λ, η) under the following
scenarios:
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• Baseline (λ = 5, η = 0.3): A balanced setting with θ = 1.0, λ = 5.0, and η = 0.3.
• Lomax-like (η = 0.01): A scenario mimicking Lomax-like behavior with θ = 1.0, λ = 5.0, and
η = 0.01.
• High Variance (λ = 1.1, η = 0.5): A high-variance case with θ = 1.0, λ = 1.1, and η = 0.5.
• EG-like (λ = 20, η = 0.4): A setting resembling the exponential-geometric subfamily with θ =

1.0, λ = 20.0, and η = 0.4.

For each scenario and sample size, MLEs were computed using the L-BFGS-B optimization
algorithm with a numerically stable log-likelihood evaluation. Coverage probabilities were estimated
using the heuristic interval ψ̂ ± 1.96 · ŝd(ψ̂), where ŝd(ψ̂) is the empirical standard deviation of the
replicate estimates. This targets the estimator’s sampling distribution rather than a single-sample
Wald confidence interval.

Table 1 provides a detailed summary of the simulation outcomes, including true parameter values,
bias, RMSE, and coverage probabilities. Convergence rates, derived from the summary data, are
reported alongside the findings for each scenario.

Table 1. Simulation study: Bias, RMSE, and coverage of MLEs (200 replicates).

Scenario n Param True Bias RMSE Coverage Converged (%)

Baseline (λ = 5, η = 0.3) 100 θ 1.00 0.146 0.303 0.927 75.0
100 λ 5.00 1.852 6.656 0.933 75.0
100 η 0.30 -0.169 0.267 0.973 75.0
500 θ 1.00 0.090 0.208 0.895 85.5
500 λ 5.00 -0.265 0.943 0.918 85.5
500 η 0.30 -0.078 0.180 1.000 85.5

Lomax-like (η = 0.01) 100 θ 1.00 -0.061 0.188 0.932 88.5
100 λ 5.00 5.569 10.544 0.842 88.5
100 η 0.01 0.054 0.168 0.910 88.5
500 θ 1.00 -0.027 0.085 0.940 92.0
500 λ 5.00 0.652 1.779 0.946 92.0
500 η 0.01 0.042 0.096 0.891 92.0

High Variance (λ = 1.1) 100 θ 1.00 -0.087 0.701 0.985 98.0
100 λ 1.10 0.592 1.158 0.883 98.0
100 η 0.50 -0.002 0.379 1.000 98.0
500 θ 1.00 0.027 0.563 0.995 98.5
500 λ 1.10 0.168 0.582 0.949 98.5
500 η 0.50 -0.062 0.310 1.000 98.5

EG-like (λ = 20, η = 0.4) 100 θ 1.00 0.375 0.446 0.707 78.5
100 λ 20.00 -7.555 12.480 1.000 78.5
100 η 0.40 -0.320 0.354 0.236 78.5
500 θ 1.00 0.405 0.421 0.055 73.0
500 λ 20.00 -13.146 13.486 0.021 73.0
500 η 0.40 -0.300 0.321 0.247 73.0
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• Baseline (λ = 5, η = 0.3): At n = 100, the MLE shows a modest positive bias for θ
(approximately 0.15) and λ (approximately 1.85), with a small negative bias for η

(approximately −0.17). Coverage is near the nominal 0.95 (0.927−0.973), improving to
0.895−1.000 at n = 500, where biases decrease (for λ bias to −0.265). Convergence rates are
robust at 75.0% (n = 100) and 85.5% (n = 500).
• Lomax-like (η = 0.01): With η near the boundary, θ is nearly unbiased, while η is slightly

overestimated (bias 0.04−0.05), reflecting boundary estimation challenges. At n = 100, λ
exhibits a significant positive bias (5.57) with a high RMSE (10.54) and slightly low coverage
(0.842), improving to a bias of 0.652 and coverage of 0.946 at n = 500. Convergence rates are
strong at 88.5% (n = 100) and 92.0% (n = 500).
• High Variance (λ = 1.1, η = 0.5): Despite heavy tails, biases are moderate, with λ bias at 0.592

(RMSE 1.16) and θ with small negative bias at n = 100. Coverage is near or above nominal
(0.883−1.000), improving at n = 500 (λ bias to 0.168, coverage 0.949). Convergence is excellent
at 98.0% (n = 100) and 98.5% (n = 500).
• EG-like (λ = 20, η = 0.4): As the frailty weakens, θ is overestimated (bias 0.375−0.405), and η

is underestimated (bias −0.32 to −0.30), indicating partial confounding. λ is severely downward
biased, with estimates drifting toward smaller values (e.g., λ̂ ≈ 6.9 when λ = 20, reflecting poor
identifiability in the EG-like regime), with a severe negative bias (−7.555 at n = 100, −13.146 at
n = 500) and under-coverage dropping to 0.021 at n = 500. The coverage of 1.000 at n = 100
arises from extreme estimator variability (RMSE = 12.48), yielding overly wide intervals; as n
increases, bias dominates and coverage collapses. Convergence rates are lower at 78.5% (n = 100)
and 73.0% (n = 500), likely due to a flat likelihood surface.

The simulation results underscore the unified survival model’s effectiveness for moderate
parameter values, where MLEs exhibit near-zero bias for n ≥ 500, achieving coverage above 90%.
Near the Lomax limit (η = 0.01), the η estimator displays a slight positive bias yet accurately
identifies the boundary, with performance enhancing as sample size increases. Conversely, in the
EG-like regime (λ = 20), identifiability weakens, with η coverage dropping below 25% and λ

significantly underestimated, indicative of a flattened likelihood surface. This highlights the model’s
robustness for typical scenarios but suggests that its performance near extreme parameter boundaries
could be improved with advanced techniques, such as informative priors, model reparameterization,
or profile-likelihood confidence intervals in applied contexts.

Based on these insights, the MLE emerges as the preferred method for standard parameter regimes
(λ > 2 with n ≥ 500), delivering reliable estimates with coverage exceeding 90%. However, its
efficacy declines near extreme values (e.g., η ≈ 0 or large λ), warranting further investigation. Future
work will address these limitations through: (1) Bayesian estimation with informative priors to address
identifiability challenges, (2) reparameterization (e.g., θ/λ ratios) to improve parameter estimation,
and (3) adaptive optimization methods to enhance convergence in extreme cases. We also intend to
extend the model to multivariate survival frameworks and test its applicability across diverse real-world
datasets, leveraging the current study’s findings. This simulation study provides a solid foundation for
these advancements, with results available for further analysis in the supplementary materials.
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6. Applications

This section evaluates the proposed unified survival model, which generalizes exponential, EG,
and Lomax distributions, across three benchmark datasets: Wheaton river exceedances (right-skewed
hydrology), aircraft air-conditioning failure intervals (heterogeneous repairable systems), and bladder
cancer remission times (homogeneous survival). The unified model and its special cases are fitted
using maximum likelihood estimation (MLE) with the L-BFGS-B algorithm, employing a convergence
tolerance of 10−8 and a maximum of 2000 iterations. Initial parameter estimates are data-driven: θ0 =

1/y (inverse mean as a baseline rate), λ0 = max(1.1, y2/s2
y)*, and η0 = 0.5 (a neutral midpoint for

the mixing parameter). Standard errors are derived from the numerical Hessian, and 95% confidence
intervals are constructed under asymptotic normality.

Model performance is assessed using information criteria (AIC, BIC, HQIC, CAIC), AIC weights,
likelihood-ratio (LR) tests for nested models, and Vuong tests for non-nested comparisons.
Goodness-of-fit is evaluated with Cramér-von Mises (W2

n ), Anderson-Darling (A2
n), Watson (U2

n), and
a Kolmogorov-Smirnov-like (Ln) statistic, supplemented by diagnostic panels including probability
density functions (PDFs), survival functions, P-P plots, and total time on test (TTT) curves. Table 2
summarizes the datasets.

Table 2. Summary measures for various datasets.

Data Sets n Min Q1 Median Mean Q3 Max

Bladder Cancer 115 0.08 3.34 6.25 9.51 11.8 79.1
Air Conditioning 125 1 18 50 91.9 111 603
Wheaton River 72 0.10 2.13 9.50 12.2 20.1 64.0

Information criteria are defined as:

AIC = −2`(θ̂) + 2q, BIC = −2`(θ̂) + q log n,

HQIC = −2`(θ̂) + 2q log log n, CAIC = −2`(θ̂) + q
n log n

n − q − 1
,

where `(θ̂) is the maximized log-likelihood, q is the number of parameters, and n is the sample size.
Lower values indicate superior parsimony-adjusted fit. Goodness-of-fit statistics, comparing empirical
and fitted cumulative distribution functions (CDFs), are:

• Cramér-von Mises (W2
n ): 1

12n +
∑n

i=1

[
F(y(i); θ̂) − 2i−1

2n

]2
,

• Anderson-Darling (A2
n): −n − 1

n

∑n
i=1(2i − 1)

[
ln F(y(i); θ̂) + ln(1 − F(y(n+1−i); θ̂))

]
,

• Watson (U2
n):

∑n
i=1

[
F(y(i); θ̂) − 2i−1

2n − F̄ + 1
2

]2
+ 1

12n , where F̄ = 1
n

∑n
i=1 F(y(i); θ̂),

• Kolmogorov-Smirnov-like (Ln):
√

1
n

∑n
i=1

[
F(y(i); θ̂) − i

n

]2
.

Smaller values of these statistics indicate better model-data alignment.

*The initial λ0 leverages the method-of-moments estimate for the gamma shape parameter (y2/s2
y , where s2

y is the sample variance),
with a minimum value of 1.1 to ensure a finite mean (λ > 1) and enhance numerical stability during optimization.
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Table 3. Parameter estimates with standard errors and 95% confidence intervals.

Distribution θ (SE, 95% CI) λ (SE, 95% CI) η (SE, 95% CI)

Wheaton river exceedances
Unified 0.0901 (0.00071, [0.0887, 0.0914]) 6.33 (0.0007, [6.33, 6.34]) 0.0849 (0.00071, [0.0836, 0.0864])
EG 0.0687 (0.0180, [0.0410, 0.1149]) – 0.303 (0.303, [0.0254, 0.879])
Lomax 0.0836 (0.0109, [0.0648, 0.1078]) 50.0 (128, [0.327, 7645]) –
Exp. 0.0819 (0.0096, [0.0650, 0.1032]) – –

Air conditioning
Unified 0.0106 (0.0005, [0.0096, 0.0117]) 5.58 (2.87, [2.04, 15.3]) 0.333 (0.117, [0.151, 0.583])
EG 0.0070 (0.0017, [0.0044, 0.0111]) – 0.571 (0.146, [0.292, 0.811])
Lomax 0.0143 (0.0022, [0.0105, 0.0194]) 3.99 (2.06, [1.45, 10.97]) –
Exp. 0.0109 (0.0010, [0.0091, 0.0130]) – –

Bladder cancer
Unified 0.116 (0.0150, [0.0901, 0.1497]) 10.8 (10.7, [1.57, 74.8]) 0.000 (−†, [0, 0.001])
EG 0.101 (0.0201, [0.0687, 0.1495]) – 0.0681 (0.302, [0.0000, 0.999])
Lomax 0.116 (0.0150, [0.0901, 0.1497]) 10.8 (10.7, [1.57, 74.8]) –
Exp. 0.105 (0.0098, [0.0876, 0.1263]) – –

Table 4. Model fit comparison: Information criteria and goodness-of-fit statistics.

Distribution − log L AIC BIC HQIC CAIC W2
n A2

n U2
n Ln AIC Weight

Wheaton river exceedances
Unified 252.5 511 518 513.7 511.4 0.188 1.09 0.188 0.0515 0.046
EG 251.8 507.5 512.1 509.2 508.0 0.185 1.06 0.185 0.0510 0.267
Lomax 252.1 508.3 512.8 510.0 509.8 0.225 1.41 0.213 0.0577 0.184
Exp. 252.1 506.3 508.5 507.2 508.6 0.231 1.46 0.216 0.0586 0.503

Air conditioning
Unified 687.0 1380 1388 1383 1379 0.0428 0.319 0.0425 0.0191 0.123
EG 686.3 1376.7 1382.3 1379.0 1377.6 0.0373 0.285 0.0373 0.0176 0.634
Lomax 687.5 1379.0 1384.6 1381.3 1379.9 0.0685 0.451 0.0640 0.0246 0.204
Exp. 690.1 1382.3 1385.1 1383.4 1385.2 0.417 2.26 0.232 0.0605 0.039

Bladder cancer
Unified 373.3 752.5 760.8 755.9 751.4 0.181 1.15 0.166 0.0385 0.115
EG 373.95 751.9 757.4 754.1 752.8 0.167 1.06 0.167 0.0383 0.157
Lomax 373.3 750.5 756.0 752.8 751.4 0.181 1.15 0.166 0.0385 0.313
Exp. 374.0 749.95 752.7 751.1 752.8 0.160 1.01 0.159 0.0379 0.416

6.1. Wheaton river exceedances data

This dataset (n = 72) comprises exceedances (m3/s above threshold) of flood peaks from 1958–
1984, rounded to one decimal place [25], exhibiting right-skewness (skewness = 1.5, kurtosis = 3.19):

1.7, 1.4, 0.6, 9.0, 5.6, 1.5, 2.2, 18.7, 2.2, 1.7, 30.8, 2.5, 14.4, 8.5, 39.0, 7.0, 13.3, 27.4, 1.1,
25.5, 0.3, 20.1, 4.2, 1.0, 0.4, 11.6, 15.0, 0.4, 25.5, 27.1, 20.6, 14.1, 11.0, 2.8, 3.4, 20.2, 5.3,
22.1, 7.3, 14.1, 11.9, 16.8, 0.7, 1.1, 22.9, 9.9, 21.5, 5.3, 1.9, 2.5, 1.7, 10.4, 27.6, 9.7, 13.0,
14.4, 0.1, 10.7, 36.4, 27.5, 12.0, 1.7, 1.1, 30.0, 2.7, 2.5, 9.3, 37.6, 0.6, 3.6, 64.0, 27.0

The exponential model provides the best fit (θ̂ = 0.0819, SE = 0.0096, 95% CI = [0.0650, 0.1032],
AIC = 506.3), followed by EG (θ̂ = 0.0687, η̂ = 0.303, 95% CI = [0.0254, 0.879], AIC = 507.5),
Lomax (θ̂ = 0.0836, λ̂ = 50.0, 95% CI = [0.327, 7645], AIC = 508.3), and Unified (θ̂ = 0.0901,
λ̂ = 6.33, η̂ = 0.0849, 95% CI = [0.0836, 0.0864], AIC = 511). Likelihood-ratio (LR) tests (EG
vs. Exponential, Λ = 0.735, p = 0.391) and Vuong tests (Unified vs. Exponential, V = −0.348,
p = 0.728) support the exponential model, with no significant improvement from Lomax vs. Unified
(Λ = −0.761, p = 1.000). AIC weights are 0.503 (Exponential), 0.267 (EG), 0.184 (Lomax), and
0.046 (Unified). The TTT curve’s convexity indicates a decreasing failure rate (DFR), aligning with
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Exponential and EG (Figure 6).
Diagnostic plots reveal Exponential’s strong alignment with the right-skewed histogram and rapid

survival function decay, matching the data’s drop-off. Unified and EG effectively capture the upper
tail, while Lomax shows minor misfit at lower values. The P-P plot confirms overall goodness-of-fit
across models, with points near the diagonal, though Lomax deviates slightly at extremes.

6.2. Air conditioning failure time data

This dataset (n = 125) records inter-failure times (hours) from seven Boeing 720 aircraft [26, 27].
Representative values include:

74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27, 153, 26, 326, 55, 320, 56, 104, 220, 239, 47,
246, 176, 182, 33, 15, 104, 35, 23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5,
12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95, 97, 51, 11, 4, 141, 18, 142, 68, 77,
80, 1, 16, 106, 206, 82, 54, 31, 216, 46, 111, 39, 63, 18, 191, 18, 163, 24, 50, 44, 102, 72,
22, 39, 3, 15, 197, 188, 79, 88, 46, 5, 5, 36, 22, 139, 210, 97, 30, 23, 13, 14, 359, 9, 12, 270,
603, 3, 104, 2, 438, 50, 254, 5, 283, 35, 12

The EG model offers the best fit (θ̂ = 0.0070, SE = 0.0017, 95% CI = [0.0044, 0.0111], η̂ = 0.571,
SE = 0.146, 95% CI = [0.292, 0.811], AIC = 1376.7), followed by Unified (θ̂ = 0.0106, λ̂ = 5.58, 95%
CI = [2.04, 15.3], η̂ = 0.333, 95% CI = [0.151, 0.583], AIC = 1380), Lomax (θ̂ = 0.0143, λ̂ = 3.99,
95% CI = [1.45, 10.97], AIC = 1379.0), and Exponential (θ̂ = 0.0109, 95% CI = [0.0091, 0.0130],
AIC = 1382.3). The LR test (EG vs. Exponential, Λ = 7.57, p = 0.006) and Vuong test (Unified
vs. Exponential, V = 1.247, p = 0.212) favor EG, with no significant difference between Lomax
and Unified (Λ = 0.990, p = 0.320). AIC weights are 0.634 (EG), 0.204 (Lomax), 0.123 (Unified),
and 0.039 (Exponential). The TTT curve’s convexity indicates a DFR, supporting EG and Unified
(Figure 7).

The PDF plot demonstrates EG’s ability to capture the histogram’s peak and heterogeneous tail,
while Exponential overestimates the middle range. The survival function plot shows EG’s slower
decay, fitting longer intervals (e.g., 502, 603), with Unified closely aligned. The P-P plot confirms
good fit for EG and Unified, with Exponential deviating in upper quantiles.

6.3. Bladder cancer remission time data

This dataset (n = 115) records remission times (months) from [28], ranging from 0.08 to 79.1
months:

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.1, 23.6, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.3, 0.40,
2.26, 3.57, 5.06, 7.09, 9.22, 13.8, 25.7, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.2, 25.8, 0.51,
2.54, 3.70, 5.17, 7.28, 9.74, 14.8, 26.3, 0.81, 2.62, 3.82, 5.32, 7.32, 10.1, 14.8, 32.2, 2.64,
3.88, 5.32, 7.39, 10.3, 14.8, 34.3, 0.90, 2.69, 4.18, 5.34, 7.59, 10.7, 16.0, 36.7, 1.05, 2.69,
4.23, 5.41, 7.62, 10.8, 16.6, 43.0, 1.19, 2.75, 4.26, 5.41, 7.62, 17.1, 46.1, 1.26, 2.83, 4.33,
5.49, 7.66, 11.3, 17.1, 79.1, 1.35, 2.87, 5.62, 7.87, 11.6, 17.4, 1.40, 3.02, 4.34, 5.71, 7.93,
12.0, 2.02, 3.31, 4.50, 6.25, 8.37, 12.0, 20.3, 2.02, 3.36, 6.76, 12.1, 21.7, 2.07, 3.36, 6.93,
8.65, 12.6, 22.7
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The Exponential model provides the best fit (θ̂ = 0.105, SE = 0.0098, 95% CI = [0.0876, 0.1263],
AIC = 749.95), closely followed by Lomax (θ̂ = 0.116, λ̂ = 10.8, 95% CI = [1.57, 74.8], AIC = 750.5),
with Unified (θ̂ = 0.116, λ̂ = 10.8, η̂ = 0.000, 95% CI = [0, 0.001], AIC = 752.5) and EG (θ̂ = 0.101,
η̂ = 0.0681, 95% CI = [0.0000, 0.999], AIC = 751.9) trailing. The LR test (EG vs. Exponential,
Λ = 0.048, p = 0.827) and Vuong test (Unified vs. Exponential, V = 0.542, p = 0.588) support
Exponential, with no significant difference between Lomax and Unified (Λ = −0.000, p = 1.000). The
MLE of η = 0 for Unified reduces it to Lomax. This boundary MLE is admissible and corresponds to
the Lomax face discussed in Appendix B. AIC weights are 0.416 (Exponential), 0.313 (Lomax), 0.157
(EG), and 0.115 (Unified). The TTT curve’s convexity indicates a DFR, aligning with Exponential and
Lomax (Figure 8).

The PDF plot shows Exponential fitting the histogram’s peak and tail well, with Unified and Lomax
matching the upper tail, while EG underperforms at lower values. The survival function plot reflects
Exponential’s rapid decay, consistent with the data, and Unified’s slower decline. The P-P plot confirms
good fit across models, with EG showing minor deviations at lower quantiles.
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Figure 6. Survival function comparisons for Wheaton river exceedances.

The analysis highlights context-specific model strengths: Exponential’s simplicity excels for
homogeneous data (Wheaton river AIC = 506.3, Bladder cancer AIC = 749.95), while EG’s
flexibility addresses heterogeneous, heavy-tailed data (Air conditioning AIC = 1376.7). The unified
model demonstrates adaptability, recovering limiting cases (e.g., Lomax when η = 0, Exponential for
homogeneity), and supports applications in hydrology, engineering, and medical contexts with
interpretable parameters.
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Figure 7. Survival function comparisons for air conditioning failure times.
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Figure 8. Survival function comparisons for bladder cancer remission times.
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7. Conclusions

We proposed a flexible survival model for first-failure times that unifies the exponential-geometric
and Lomax distributions through a gamma frailty and random system size. The model is interpretable,
mathematically tractable, and generalizes classical distributions. Applications to real-world datasets
demonstrate the versatility of the unified model as an alternative fit. The model effectively captures the
homogeneous nature of the bladder cancer data with the exponential limit and the heterogeneity of the
air conditioning data with the EG structure, validating its adaptability. Future work includes regression
extensions, multivariate generalizations, and applications to clustered survival data.
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Appendix A. Truncation and numerical stabilization (simple rules)

A.1. Series template

The series S(y;ϑ) =
∑∞

n=1 Tn(y;ϑ) represents a monotone, positive infinite series, where each term
is given by Tn(y;ϑ) = c(y;ϑ) ηn−1

(λ+nθy)α , with parameters ϑ = (θ, λ, η), constraints 0 ≤ η < 1, α > 0, y > 0,
and c(y;ϑ) > 0 independent of n. For fixed (y,ϑ), Tn > 0 and Tn+1 ≤ Tn due to the decaying ηn−1 and
increasing denominator.

For the marginal density fY(y), c = (1 − η)θλλ+1 and α = λ + 1; for the survival function S Y(y),
c = (1 − η)λλ and α = λ.

A.2. Tail bounds

Let S M =
∑M

n=1 Tn denote the partial sum and RM =
∑∞

n=M+1 Tn the remainder.

Ratio bound (conservative). The ratio ρM = TM+1
TM

= η
(

λ+Mθy
λ+(M+1)θy

)α
∈ (0, 1) provides a conservative

upper bound for the remainder:

RM ≤
TM+1

1 − ρM
=

TMρM

1 − ρM
.

As M → ∞, ρM ↑ η, ensuring the bound remains valid and slightly conservative.

Integral-test bound (tight for large y or M). A tighter bound for large y or M is:

RM ≤
c(y;ϑ)
1 − η

ηM−1

(λ + Mθy)α
.

AIMS Mathematics Volume 10, Issue 12, 29927–29954.

https://dx.doi.org/http://doi.org/10.1007/s41872-018-0049-5
https://dx.doi.org/http://doi.org/10.1198/00401700152672573
https://dx.doi.org/http://doi.org/10.3390/sym15091780
https://dx.doi.org/http://doi.org/10.1080/00401706.1963.10490105
https://dx.doi.org/http://doi.org/10.1002/0471458546
https://dx.doi.org/http://doi.org/10.1214/aoms/1177729953
https://dx.doi.org/http://doi.org/10.1016/s1573-4412(05)80005-4


29953

A.3. Stopping rule

Select an absolute tolerance ε = 10−8. Increment M = 1, 2, . . . until the tighter bound satisfies:

min
{

TM+1

1 − ρM
,

c(y;ϑ)
1 − η

ηM−1

(λ + Mθy)α

}
≤ ε.

For a relative tolerance, substitute ε with εrel(S M + R̂M), where R̂M is the current remainder estimate.

A.4. Stable evaluation (log–sum–exp)

To mitigate underflow or overflow, evaluate the series in the log domain:

an = log Tn = log c(y;ϑ) + (n − 1) log η − α log(λ + nθy),

where amax = max1≤n≤M an. The log-sum is then:

log S M = amax + log

 M∑
n=1

ean−amax

 ,
and the normalized weights are w̃n = ean−amax∑M

j=1 ea j−amax . For ratios of two series, compute each log S M

independently and take the difference.

Appendix B. Existence and uniqueness of the MLE

Let Y1, . . . ,Yn > 0 be independent and identically distributed (i.i.d.) observations from the density

f (y | θ, λ, η) = (1 − η)
∞∑

m=1

ηm−1 mθλλ+1

(λ + mθy)λ+1 , θ > 0, λ > 0, η ∈ [0, 1),

as defined in Eq (2.1). Denote the parameter vector by ϑ = (θ, λ, η), and let the log-likelihood be
`n(ϑ) =

∑n
i=1 log f (Yi | ϑ).

B.1. Existence

Continuity

The series is uniformly convergent on compact subsets of (0,∞) × (0,∞) × [0, 1) for fixed y > 0, as
established by the tail bounds in Appendix A. Consequently, the density f (y | ϑ) and the log-likelihood
`n(ϑ) are continuous on this domain.

Coercivity (natural boundaries)

For any dataset with Yi > 0, the log-likelihood `n(ϑ) tends to −∞ as θ ↓ 0, θ ↑ ∞, λ ↓ 0, or η ↑ 1,
because f (Yi | ϑ) → 0 in each case. This occurs due to a vanishing prefactor (e.g., θ ↓ 0 or λ ↓ 0) or a
denominator blow-up (e.g., θ ↑ ∞), ensuring that `n attains its maximum on any compact subset of the
interior (0,∞) × (0,∞) × [0, 1).
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Limit faces (EG and Lomax)

The model admits two key limiting cases: (i) η = 0, reducing to the Lomax distribution, and
(ii) λ → ∞, corresponding to the exponential-geometric (EG) distribution with no frailty. The log-
likelihood `n extends continuously to these boundary faces. By compactifying the parameter space to
include these limits, `n attains its maximum either in the interior of (0,∞) × (0,∞) × [0, 1) or on one
of these faces, consistent with the data analyses in Section 6. This follows from standard extremum-
estimation existence theorems [29, 30].

B.2. Local uniqueness

On compact subsets of the interior, termwise differentiation of the series is justified by dominated
convergence (as per Appendix A), rendering the score function and observed information matrix
Jn(ϑ) continuous. The Fisher information I(ϑ) = E[J1(ϑ)] is finite for λ > 2, reflecting the existence
of sufficient moments. Under standard regularity conditions—namely, the true parameter lies in the
interior, the model is identifiable, the density is thrice differentiable, and integrable envelopes
exist—the MLE is consistent and asymptotically normal, with a non-singular I(ϑ0). With probability
approaching one, `n exhibits strict concavity in a neighborhood of the true ϑ0, ensuring the MLE is
the unique maximizer locally.

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 12, 29927–29954.

https://creativecommons.org/licenses/by/4.0

	Introduction
	Distribution derivation
	Distributional properties
	Shape of the PDF
	CDF and survival function
	Hazard function
	Limiting and special cases
	Moment generating function (MGF)
	Moments
	Quantiles

	Estimation
	Maximum likelihood estimation
	EM algorithm
	Estimation via importance-sampling MCEM

	Simulation study
	Applications
	Wheaton river exceedances data
	Air conditioning failure time data
	Bladder cancer remission time data

	Conclusions

