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Abstract: Fuzzy integro-differential equations are used for modeling real-life phenomena that
involve uncertain (fuzzy) parameters or variables. The combination of the fuzzy Elzaki transform
and homotopy perturbation method provides a powerful hybrid technique for solving fuzzy
integro-differential equations. Therefore, the aim of this paper is to modify and apply a new hybrid
method called fuzzy Elzaki transform homotopy perturbation method for the first time in literature to
solve fuzzy integro-differential equations. In particular, the fuzzy Elzaki transform homotopy
perturbation method is developed and applied for solving linear and non-linear second-kind fuzzy
Volterra integro-differential equations, and non-linear second kind fuzzy mixed Fredholm- Volterra
integro-differential equations. Finally, several examples are presented to show that the fuzzy Elzaki
transform homotopy perturbation method is efficient for solving wide types of fuzzy
integro-differential equations with high accuracy. The novelty of this work lies in its ease of use and
its high efficiency, which allows mathematicians to obtain reliable results under fuzzy Hukuhara
differentiability aspects in a short time.
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1. Introduction

Integro-differential equations (IDEs) combine the characteristics of differential and integral
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equations, and there are significant tools for modeling numerous phenomena across various fields,
including engineering, physics, and economics [1].
The general formula for IDEs is represented as follows:

5(x)

1(s) zM(s) = f(s) + /’If k(s, t)N(z(t))dt.

y(x)

IDEs are classified into two main types based on the limits of integration: that are Volterra
integro-differential equations (V-IDEs), and Fredholm integro-differential equations (F-IDEs). In
particular, the classification of IDEs depends on whether the limits of integration are variable or
fixed. IDEs with variable limits known as V-IDEs where the name is assumed to refer to the scientist
Volterra [2]. V-IDEs are considered as one of the most important tools for modeling optimal control
systems, and they are often associated with initial value problems, meaning that the value of the
solution at a given time depends on its previous values. The main characteristic of V-IDEs makes it
an effective tool for modeling various systems across many fields, such as biology, physics,
engineering, economics, and finance [3,4].

In contrast, the IDEs with constant limits are known as a Fredholm integro-differential
equations (F-IDEs), where the name is assumed refer to the scientist Erik Fredholm [5]. F-IDEs are
typically associated with boundary value problems, where the unknown function depends on values
within fixed integration where they often make the F-IDEs more challenging or difficult to solve.
Fredholm equations are used for modeling complex systems in several fields including physics,
engineering, medicine, and biology [4].

In solving IDEs analytically, some transform methods are used, such as the Laplace transform,
Sumudu transform method, or direct integration method. But, in solving some IDEs classical
methods become cumbersome and inefficient or some classes of functions where the Laplace
transform might diverge or be undefined. Therefore, for handling this issue, some mathematicians
presented and applied a new approach known as the Elzaki transform method [6]. The Elzaki
transform method was derived from the classical Fourier transform and is used to simplify and
efficiently solve the IDEs since it offers some advantages over using the Laplace transform method.
It handles non-zero initial conditions more easily since it provides simpler operational rules for
derivatives and integrals and less strict convergence requirements. More specifically, the Elzaki
transform method is effective for solving the Volterra and Fredholm integral equations by converting
complex integral forms into simple algebraic expressions. After using the Elzaki transform method to
solve IDEs, we often still cannot find an exact solution, especially if the equation is complicated or
has nonlinear terms. Therefore, approximation methods are used to address these challenges. One
significant approximation method is the homotopy perturbation method (HPM) introduced by
(Ji-Huan He) in 1999. The homotopy perturbation method is an analytical approximate method used
to solve differential and integral equations in both linear and nonlinear forms. However, it is
particularly used for nonlinear equations because it is capable of isolating and processing their
nonlinear components [7,8].

In reality, real-world phenomena are often imprecise and contain uncertainties. This vagueness
can arise in scientific fields such as medicine, engineering, meteorology, manufacturing, and
others [9-13]. The fuzziness arises in the collection of data, due to experimental errors, and
measurement errors, inaccurate estimation, and it also may appear when calculating the
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boundary\initial conditions. These fuzzy aspects exist when collecting real data about essential
materials like microbial populations, soil, water, etc. As described in [14-16], fuzzy sets are
considered as an essential tool for handling or solving such problems in order to provide a better
understanding or illustration of phenomena. The intention of early research in fuzzy set theory that
was carried out by [17] was to generalize the classical concept of a set and provide a suggestion to
explain the fuzziness. Fuzzy set theory is considered as a tool for modeling vague systems and
processing uncertain information in mathematical models. These include using the fuzzy integral
equations instead of deterministic (crisp) integral equations. Studies of the theory of fuzzy
integro-differential equations (FIDEs) have greatly increased in recent times FIDEs are utilized in
modeling engineering, quantum optics, robotics, gravity, medicine, and intelligence tests [11,18-20].
Therefore, both IDEs and uncertainty (fuzzy) play a fundamental role in handling mathematical
problems. These lead to FIDEs.

The FIDEs are used for modeling the real-life phenomena that involving uncertain (fuzzy)
parameters or variables in many fields such as medicine, physics, intelligence tests, gravity,
engineering, and biology [21-23]. For example, in heat transfer or population growth models, the
parameters such as the diffusion rate or interaction coefficient may be uncertain due to measurement
errors, naturally leading to FIDE formulations [22]. Therefore, there is growing interest in obtaining
exact or approximation solutions for FIDEs. In solving FIDEs analytically, some fuzzy transform
methods are used such as, the Laplace transform, Sumudu transform method, or direct integration
method. But, in solving some FIDEs, the classical methods become cumbersome and inefficient or
some classes of functions where the Laplace transform might diverge or be undefined. Therefore, for
handling this issue. the combination of the fuzzy Elzaki Transform and HPM provides a powerful
hybrid technique for solving FIDEs. Our review of the literature indicates no attempts seem to have
been made on this front. Therefore, the aim of this paper is to modify and apply a hybrid method
called the fuzzy Elzaki transform homotopy perturbation method (FE-HPM) to solve FIDEs. The
FE-HPM is developed and applied for solving linear and non-linear second kind fuzzy Volterra
integro-differential equations (FVIDEs), and non-linear second kind fuzzy mixed Fredholm-Volterra
integro-differential equations (FFVIDEs).

The remainder of this paper is organized as follows: Section 2 introduces the preliminaries;
Section 3 develops the fuzzy Elzaki transform; Section 4 formulates the FIDEs; Section 5 presents
the FE-HPM approach for solving second-kind FIDEs; Section 6 illustrates numerical examples; and
Section 7 concludes the study.

2. Preliminaries

In this section, some theorems and definitions which are used later in this paper to establish the
fuzzy Elzaki transform under Hukuhara differentiability are presented.
Definition 2.1. [17] A fuzzy set A is defined as a collection of ordered pairs:

A= {(x,na(x) : x € X,pu (%) €[0,1]3,

where p_;(x) is the membership function of A and X denotes the universal set.

Definition 2.2. [17] A fuzzy number is a particular type of fuzzy set A, which is normalized and
convex having a piecewise continuous membership function.

Definition 2.3. [24] For 0 < a < 1 and A, = {x € X| u;(x) = a}, if A is a fuzzy number,
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then the fuzzy interval form using a-cut is given as:
Ay = [Ag, Ag], where A, = min{x | x € A, }and, A, = max{x | x € A, }.

Theorem 2.1. [24] Suppose that z,z:[0,1] = R, which satisfies the following conditions:
i) z is abounded increasing function, and Z is a bound decreasing function with z(1) < z(1).
i1) z and z are left-hand continuous functions at o = k, for all k € (0, 1].
iil) z and z are right-hand continuous functions at o = 0.

Then, z: R — [0,1] defined by z(x) = sup{a : z(a) < x < z(a)} is a fuzzy number and the

parametric form is [m(a), W(a)]. Otherwise, the functions z and z satisfy the conditions.

Definition 2.4. [25] A fuzzy number u, is called a triangular fuzzy number if defined by three
numbers a < b < ¢ where the graph of u(x) is a triangle with the base on the interval [a,c] and
vertex at x = b, and its membership function has the following form:

(x—a
Jb_a, ifa<x<b
ulxab,c) = c—z’ ifb<x<c
CO, other wise.

The a —cut of triangular fuzzy number is: [fi], = [a+ a (b —a),c — a (c —b)], a € [0,1].
Definition 2.5. [26] For arbitrary fuzzy numbers u and v on Rz X Ry - R* U {0}, we define the
Hausdorff distance by the mapping D: Ry X Ry = R* U {0} such that:

D(v,u) = supgs q ssmaxf|v(a) —u(a)l|, [v(a) —ula)l}.

Note: Ry denotes the set of fuzzy numbers on the real number(R).
Theorem 2.2. [26] The space (Rg, D) is a complete fuzzy metric space.

Some arithmetic operations in fuzzy mathematics:
(1) [v]lg + [ule = [v(a) + u(a), v(a) + u(a)] foreach v,u E Ry and 0 < a < 1.
(2) [v]e © [u]e = [v(a) —u(a),v(a) —u(a)], is called the Hukuhara difference (H-difference) of
v and u.

Additionally, we always use "©" to refer to the Hukuhara difference, and it is important to note
that

vOu+v+ (—Du. [27]
Definition 2.6. [28] If Z:1 - Ry and y, €I, where I € [ty,,T], Z is said to be Hukuhara
differentiable at y,, if there exists an element [2’ ]a € Ry such that for all A > 0 sufficiently small,

Z(yo + h; @) © Z(yy; @)and Z(yy; @) © Z(y, — h; @) exists where the limits are taken in the metric
space (Rg, D).

i ZW0thi@) © 200 _ Z(yp; @) © Z(yo —hya)
im = lim =7z'(yo)-

h>0+ h h—0+ h
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The fuzzy set [5’ (yo)]a is called the Hukuhara derivative of [E’ ]a at yo. Taking in account that this

limit corresponds to the Hukuhara derivative, as defined in the standard literature, and does not
represent the classical derivative, then we have the following theorem.
Theorem 2.3. [29] Let Z: [ty + a,T] —» Ry be Hukuhara differentiable and denote:

[Z®], =[2Z®.Z®)], =27 Ea)].

Then, the boundary functions z'(t; @), z'(t; @) are both differentiable

[7®)], = [(ztw) , EE) ] vaelol

Theorem 2.4. [28] Let Z: [t, + a,T] » Rp be Hukuhara differentiable and denote:
[?(t)]a = [g'(t),?'(t)]a =2t ), 7' (t a)].

Then, both boundary functions z'(t; a),Z'(t; a) are differentiable, and we can write for n**-order
fuzzy derivative

0], = [ @), (Z°Eo) | vae o,

Definition 2.7. [30] Suppose that z:[a, b] - Ry is be a fuzzy-valued function. For each partition
p = {x0, %1, ..., x,} of [a,b] and &; € [x;_1,%;],1 <i<n, assume that Rp =X, z(&) (x; —

Xi—1) and 4 = max |x;_1,x;|. The definite integral of z(x) over [a,b] is f; z(x)dx =£irr(1) Rp
sisn i

such that the limit exists in (Rg,d). If the fuzzy function z(x) is continuous in the metric d, its
definite integral exists [24]. Moreover,

bz(x;a)dx = bg(x;a)dx,

([osmar) - |
bz(x;a)dx = bE(x;a)dx,

([smar) - |

where the underline denotes the lower bound and the upper line denotes the upper bound of the fuzzy
integral at each a-cut level set.
Theorem 2.4. [31] Let Z(x) be a fuzzy-value function on [c,o) and it is represented by

(z(x,),Z(x,a)) for any fixed a € [0,1], assume z(x, a)and Z(x,a) are Riemann-integrable on
[c,d] for every d>c, and assume there are two positive M(a)and M(a) such that

fcd|g(x, a)|dx < M(a) and deIZ(x, a)|dx < M(a) for every d =c. Then, Z(x)is improper

fuzzy Riemann integrable on [c, o), and the improper fuzzy Riemann integral is a fuzzy number.
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Furthermore, we have:

foof(x)dx = (foog(x, a)dx,]oof(x, a)dx).
0 0 0

3. The fuzzy Elzaki transform

In this section, the main definitions and theorem of the fuzzy Elzaki transform are written for
the first time in literature under Hukuhara differentiability. In the formulation process the classical
Elzaki is developed and reformulated under fuzzy set aspects to get the main related definitions and
the theorem of fuzzy Elzaki transform. The fuzzy Elzaki transform works on fuzzy-number-valued
functions via a-cut representations, effectively and efficiently preserving uncertainty throughout
calculations.

Definition 3.1. [6,32] Let £, &;,and &, be constants and consider the set

[E3]
L= {Z(x): AL,&,& > 0,]z(x)| < Le¥i,x € (—1)7 x [0, ], where j = 1,2}.

Then, the Elzaki transform is defined as:

[0e]

E[z(x)] = vf Z(x)e_Tx dx, x>0,& <v<é,. (1)
0

Theorem 3.1. Linearity property for the Elzaki transforms [6,32]: Let ¥, (x) and ¥, (x) be two
functions with the constants ¢ and 6. Then,

E( o, (x) i&l’z(x)) = UE(¢1(X)) i5E(¢2(X))-

Theorem 3.2. Convolution Theorem for the Elzaki transform[33,34]: Let ¥, (x) and ¥, (x) are two
functions with the constants o and & then:

1
E(1(0) * ¥2(0) = —E(:(0))E((x)).

Theorem 3.3. [6, 32] Let Z(v) be the Elzaki transform of z(x) such that E[z(x)]= Z(v). Then,

@ Elz 1 = 22 e,
@ Elz (9] = 52— 2(0) ~ v (),
Z(v) n—-1
(3) E[z™(x)] = —— ) p2ntk 2z (0).

—-X

Definition 3.2. Let Z(x) be a continuous fuzzy-valued function. Suppose that Z(x) O ev is

improper fuzzy Riemann integrable on[0, ). then, v fOOOZ(x) ©) evdx is called the fuzzy Elzaki
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transform and it is denoted as:
~ o —_x
E(Z(x)) = f vZ(x) © eV dx.
0

From Theorem 2.4, the parameterized form of the fuzzy Elzaki transform is
f vi(x) Qevdx = f vz(x,a)ev dx,] vz(x,a)ev dx |,
0 0 0

where 0 < a < 1.
So, by using the definition of the classical Elzaki transform we have:

E (g(x, a)) = fooo vz(x, a)e_Txdx and E(Z(x,a)) = fooo vZ(x, a)e_Txdx.

Then, we have

E[z(0)] = (E[z(x, ®)] E[Z(x, @)]),

where x > 0, and it exists if Y and y are piecewise continuous functions.
Theorem 3.4. Let W;(x) and W, (x) are continuous fuzzy-valued functions with the constants o
and §. Then,

E[O'VT&(?C) OBIOW,x)] =00 E[W1(x)] ® 50O E[Wz(x)]-

Proof. Let #,(x) = [wy (6 ), W1 (% @], W2(x) = [ws (x; ), W (x; ).

From Definition 3.2, the following was obtained:

E [(am(x; a)) + (6&2(96; a))]

o -x © -x
= v] ow; (x;@)evdx + vJ Sw,(x; @)e v dx
0 0

o -x @ -x
= 0] vwy(x; a)evdx + 6J vw, (x; @)e v dx
0 0

= 0E[w;(x; )] + SE[w, (x; @),

and

E[(an (x; a)) + ((S‘WZ (x; a))]

= _1 ; %xd 005_2 ; _TXd
vjoooaw(xa)e x+vfooow(xa)e x

= O'j vw, (x; a)e_Txdx + 5[ vw, (x; a)e_Txdx

0 0
= oE[w;(x; )] + SE[w,(x; @)].
So,

AIMS Mathematics Volume 10, Issue 12, 29901-29926.
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= g QE[W ()] ® § O E[W,(x)].

Theorem 3.5. (Convolution Theorem): Let W;(x) and W, (x) be continuous fuzzy-valued functions
with the constants ¢ and §. Then,

- 1 . -
Elw (1) © W, ()] = — O E[W1(0)] O E[W, ()]
Proof. The fuzzy functions can be represented by their a-cut:
wi(x) = [m(x; a), wy(x; a)], W, (x) = [mz(x; ), wy(x; a)] for each a € [0,1].

Using the definition of the Elzaki transform of the lower bounds,

o)

E[m(x; a)] = vf w; (x; a)e_Txdx and E[ﬂz(x; a)] = vfoowz(r; a)e_Trdr.
0

0

Therefore,

—E[wy (x; )]E[w, (x; a)] = %(U °°_1(x a)e 5 dx >< f w,(r;a)ev dr)
0

- %(vz f:’ fow (mE@wsra)e -5 drdx>
)

= vjom fooo (m(x; a)w, (1; a))e_(

Taking s =7+ x and ds = dx, we have
o oo —s

= v] J (m(s —7; ), (7; a)) eV drdx = E[w;(x; a) * wy(x; a)],
o Jo

and

E[w, (6 a)] = v j W (G e dx and B[, (x a)] = v f W, e dr
0 0

= %(v fooo wi (x; a)e_Txdx> <v J:o w,(; a)e_?rdr>

= %(Uz foo foo(W1(X; a)w,(r; a))e_(?-r)drdx)

= j J(Wl(x a)w,(r; a))e v drdx

Take s =r + x and ds = dx then we have

= vjw Jw(wl(s —1;)w,(1; a))e_?sdrdx = E[w;(x; a) * w,(x; a)].
o Yo

AIMS Mathematics Volume 10, Issue 12, 29901-29926.
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So,
1 -
= -0 E[w;(x)] © E[w,(x)].

Lemma 3.1. Let W(x) be a continuous fuzzy-valued function on the interval [0,1) and o € R.
Then, E[oc © w(x)] = ¢ ©® E[Ww(x)].
Theorem 3.6. Let 2™ (x; a) be an integrable fuzzy-valued function, and 2™~V (x; @) is a prime
of 2™ (x;a) on [0, ). Then,
(1) E[Z (0] = X2 0 v2(0).
Proof. Assume Z is Hukuhara differentiable. Then, by Theorem 2.3 can we obtain that
259 = [7' (6 @), 7 (x; a)].

Therefore, it follows that

E[Z(x; )] = E[Z'(x; ) ,Z'(x; a)].
By using Definition 3.2, we can get

ElZ(x;0),Z' (x; )] = (E[z'(x; )], E[Z (x; @)]).

By using the classical Elzaki transform the first derivative, we to get the following

(E[2'(x; @) E[Z (x; )]) = (Z(’:j D _ a0 a),Z(l;; D _ 70, a)>.
Thus,
El# (5 )] = (Z(”; D 20: ), 2% _ 0, a)).

@ Bl (0] = 22 © 2(0) © v7(0)

Proof. Assume Z and Z'are Hukuhara differentiable. Then, by Theorem 2.4 can we obtain that

F11(xa) — [zll(x;a)'z”(x;a)].
Therefore, it follows that
ElZ"(x; )] = E|2" (6 ) , 7" (x; 2)].
By using Definition 3.2, we can get
E[z"(x ), 2" (x; )] = (E[2" (x; )], E[2" (x; )]).

AIMS Mathematics Volume 10, Issue 12, 29901-29926.
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By using the classical Elzaki transform the second derivative, we get

Z(v;a
_( ) _ Z(O; a) _ UZ’(O;a),

Z(';‘ D 00— v7 (0 0) ).

(Elz" (6 @) E[Z" (x; @)]) =

Thus,

ElZ" ()] = (4’”“) - 2(0; @) — vz ©9, 220 _7(0; @) - v7 (0 a))

(4

4. Integro-differential equations in fuzzy environment

Consider the one-dimensional FIDEs of the second kind under Hukuhara derivative with the
initial and boundary conditions:

5(x)

™ (s,a) = f(s,a) + /Tf k(s, OON(2(t, a))dt. (2)

y(x)

Using the fuzzy set theory based on the Zadeh extension principle and the « -cut level set approach,
as well as based on the approach in [30], Eq (7) can be rewritten as follows:

J€9)

zM(s,a) = f(s,0) + 2 j k(s,t) N(z(t, @))dt,
50 ®)
7" (s,a) = f(s,a) + 1 k(s, ON(z(t, @) dt,
y(x)

where [30],

{k(s, t) z(t,a) = k(s,t)z(t, @) k(s,t) =0, @

k(s,t)z(t,a) = k(s,t)z(t, a) k(s,t) =0,

such that (x) <s < §(x), 1> 0, k(s,t) is a known function called the kernel function, and «a
refers to the fuzzy parameter between [0,1]. Equation (3) represents the general formula of the FIDEs
of second kind in single parametric form of a fuzzy number under the Hukuhara derivative. The
H-derivative is chosen because it is the most widely used fuzzy derivative in analytical fuzzy
differential equations, and allows the FE-HPM method to be applied directly to a-cut representations.
Other fuzzy derivatives exist (e.g., generalized Hukuhara and strongly generalized derivatives), but
their applicability to integral-type fuzzy equations is more restricted.

5. Solving the second kind FIDEs using the FE-HPM

To solve Eq (3) by FE-HPM, at the first the HPM is implemented as follows:

AIMS Mathematics Volume 10, Issue 12, 29901-29926.
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5(x)
(H(z. pa)=(1-p)[ZM(s,a) = zy(s, )| +p [z“” (s,0) = f(s,@) — 4 k(s )N (2(t @) dt] =0,
- 14€9)
- —(n) _ —(n) - e — =
H(Z, 12 a) =0-p) [Z (s,a) —zy(s, a)] +p [Z (s,a) —f(s,a) — A k(s,t)N (Z(t, a)) dt] =0.
14€3]
()
Thus, the initial approximation is taken as:
zo(s,a) = f(s,a),
{_ - (6)
Zo(s, a) = f (s, ).
By substituting Eq (6) in Eq (5), we get
5(x)
(gn(s, @) =f(s,a) +pA f k(s, )N (g(t, a)) dt,
- 14€9)
—n _ _ 8@ o (7)
Z (s,a) = f(s,a) +p A k(s ON (Z(t,@) ) d.
y(x)

Now, by taking the Elzaki transform and using the differential property of the Elzaki transform on
both sides of Eq (7), we get the following:

( n-1 8(x)
E{Z(s, @)} = (™) Z p=+270(0,q) +E {;_f(s, @) +pi j k(s ON (Z(t,)) dt} ,
i Y

i=1 (€
\
n-1 . ® -~ e o
E{Z(s,a)} = (™) Z p=@+27900 o) + E {f(s, @) +pi f k(s ON (Z(t,)) dt} .
L i=1 y(x)
)
Now, by taking the inverse Elzaki transform on both sides of Eq (8), we get the following:
( n-1 | | 500
2(s,0) = B @M ) o #020(0,0) + E{ﬂs, Q+pd| k(s ON(2(t) dt}
i=1 - 1463}
\
n—-1 . ® 3 ) o
Z(s, @) = E{ (v™) Z v=+277 (0, @) + E{f(s, Q) +pA f k(s, )N (Z(t, a))dt}
i=1 14€9)
\
9

To clarify the implementation of the homotopy perturbation method (HPM), an embedding
parameter is introduced to gradually transform the initial approximation into the final solution. When
this parameter is zero, the solution represents the initial guess, and as it approaches one, it becomes
the actual solution of the fuzzy integro-differential equation [35]. The method then expresses the

AIMS Mathematics Volume 10, Issue 12, 29901-29926.
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unknown function as a series in terms of this parameter, and the terms of the series are obtained step-
by-step by substituting into the main equation and matching coefficients of similar powers. Each new
term is calculated from the previous ones, and the complete approximate solution is obtained by
taking the parameter equal to one [36-39].

Now there are two cases dependent on the linearity of FIDEs:
Case 1: If the unknown function appears within the integral, in a linear form. Now the solution of
Eq (9) can be written as a power series p:

2(s,@) = ) piZi(s, )

o (10)

Z(s,a) = Y p'Z,(s, ).
2

Now, by substituting Eq (10) into Eq (9) and comparing coefficients such as the power of p.
Therefore, using the above iterative results, the series-form solution is provided as:

( n—-1
Zo(s,@) = B @] ) v @0200,0) + E{f(s @)}y,
po: = (11)
n-—1
7 (s,a) = E-1{ (w") Zv"—ﬁ“)z(”(o, ) + E{f(s, @)}
\ i=1
( )
5(x)
Zl(s; (X) = E_1< (Un) E{ij‘ k(S, t)ZO(t' a)dt}} 2
14€9)
pl:! < (12)
_ C) _
Z,(s,a) = E71{ (v™) E{Af k(s, t)Zy(t, a)dt}} > .
\ 14€9) )
( )
5(x)
Z(s,a) = E71{ (v™) E{if k(s,t)Z,_1(t, a)dt} >,
Y (x)
Pk ) 4 (13)
_ EIC) _
Zr(s,a) = E71< (v™) E{Af k(s,t)Z,_(t, a)dt} > .
\ Y (x) )

And so on....
Case 2: If the unknown function appears within the integral, in a non-linear term.
Now the solution of Eq (9) can be written as a power series p:

AIMS Mathematics Volume 10, Issue 12, 29901-29926.
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Z(s,a) = z p'Zi(s, @),
i=0

% (14)
Z(s,0) = ) p'Zi(s,0),
i=0
And, the non-linear term can be represented based on [34] as follows:
N (2 @) = ) plait ),

N (Z(ta) = Z piA;(t, a),
i=0

where 4; and A; are the Adomian polynomials, and can be calculated as follows [34]:

1d (<
Ai(t,a) =;ﬁf Zﬂ"zk(t,a) ,
' k=0 3

=0

and

At @) = Z A7 (6 )
) k=0
A

=0

Now, by substituting Eqs (14) and (15) into Eq (9) and comparing coefficients such as the power of
p. Therefore, using the above iterative results, the series form solution is provided as:

( n-1
Zy(s,a) = E71S (v™) Zv"‘(i+2)z(i)(0, a) +E{]_”(s, a)} ,
2o = (16)
n-—1
Zo(s.a) = 7M1 ) v D200, + E{f(s,0)
\ i=1
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( ( 3\
5(x)
Zi(s,a) =E"1{ (W< E {&f k(s,t)A(t, a)dt} >,
\ y(x) )
pli ; ! 17)
_ IC _
Z,(s,a) = E71{ (v™) E{A[ k(s,t)Ay(t, a)dt}} >
¥ (x)
\ \ J
( ( A
5(x)
Z(s,a) = E71{ (v™) E{i[ k(s, t)Ar_1(t, a)dt} >,
¥ (%)
p: p 4 (18)
_ EIC _
Zr(s,a) = E71< (v™) E{Af k(s, t)A,_1(t, a)dt} .
\ \ Y (x) )

And so on....
Thus, the general solution of FIDEs of the 2™? kind solution for both cases is given as follows:

( [oe]
z(s,a) = lin} Z(s,a) = Zgi(s, a),
p—)
i=0

Zi(sl a)'
i=0

(19)

kE(s, a) = }Ji_r)l}f(s, a) =

In summary, to clarify how the theoretical method is applied, we briefly outline the procedure used in
the examples. For each problem, we first express the fuzzy integro-differential equation in terms of
its a-cut representation. Then, we construct the homotopy and apply the fuzzy Elzaki transform to
obtain the recursive relations for the HPM terms. After that, we compute a finite number of series
terms and reconstruct the lower and upper fuzzy solutions. Finally, we compare the approximate
solution with the exact fuzzy solution at selected values of s and a.

6. Numerical examples

In this section, a numerical example of FIDEs is presented.
Example 1. Consider the linear FVIDE of the second kind

7'(s,a) = f(s,a) +J Z(t, a)dt, (20)

S
0
with 2(0,a) =[0,0], where 1 =[1,1], 0<t<s,0<a <1, k(st)=1, f(s,a)=[a—1,1—
al.
To solve Eq (20) by FE-HPM, first, the HPM is implemented as follows:
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S

H(Zpa)=Z'(s,a)—(a—1) —pl Z(t,a)dt = 0,
0 (21)

H(Zp, a) = Zl(s, a)—(1—a)—p fsf(t, a)dt = 0.
0

Now, by taking the Elzaki transform and using the differential property of the Elzaki transform on both
sides of Eq (21), we obtain

IE{Z(S, a)} =v3(a—1) +vE {p Jsg(t, a)dt},
0

< (22)
LE{Z(S, a)} =v:(1—a)+vE {pj Z(t, a)dt}.
0
Now, by taking the inverse Elzaki transform on both sides of Eq (22), we get the following:
S
(Z(s, a) = E"{v3(a—1) + vE {pf g(t,a)dt}n
0
(23)
S
Z(s,a) = E-Y{v3(1 —a) 4+ vE {pf Z(t, a)dt} 3
0
Now, the solution of Eq (23) can be written as a power series in p as follows:
Z(s,@) = ) piZi(s, )
i=0 (24)

Z(s,a) = Z pZ(s, ).
i=0

Now, by substituting Eq (24) into Eq (23) and comparing coefficients such as the power of p.
Therefore, using the above iterative results, the series form solution is provided as

m{%@ﬂ)=ﬂa—ﬂ, 05

Zy(s,@) = s(1—a).

$3
Zl(s; (I) = Z (a - 1):

pt: B E (26)
Z(s,a) = 3 1-a).
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55
ZZ(S) C() = (a - 1):
p:d 15250 27)
ZZ(S, C() = m (1 - a).

5040 (28)

S7

5040

(26500 = = (@— 1),
p*:
Zs(s,a) = (1-a).

And so on....
Currently, the answer is provided as

( oo
Z(sx a) = Zi(sl a)'
2

© (29)
z(s,a) = Z Z:(s, ).
i=0
Therefore, using the above iterative results, the series form solution is provided as:
3 5 7
, Q) = -D+—(a—-1)+— (-1 1)+
2,0 =s(@=D+— (@@= D+ 5= @=D+zes (@— 1D+ o
3 5 7
z(s,a) = s(1 — — (1 - — (1 - 1-—
Z(s,a) = s( a:)+6( a:)+120( a)+5040( a) +
Additionally, the exact solution is provided as:
{%(s, a) = s?nh s(a — 1), 31)
Z(s,a) = sinhs(1 — a).

Table 1 and Figure 1 show that the approximation of Eq (20) by FE-HPM and, the exact solution
ats = 0.2 for a € [0,1] attains the triangular fuzzy number shape, and thus satisfies the fuzzy
number properties. Also, the results obtained using FE-HPM show that the method is accurate, and
the results confirm our theoretical analysis. Furthermore, Table 2 shows that the FE-HPM method
gives good results very quickly. With only a few terms, the approximate solution becomes very close
to the exact solution. When we use 4 or 5 terms, the difference between the exact and approximate
values becomes extremely small. This means the method converges fast, and the tiny errors in Table 1
are normal and expected.
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Table 1. The lower and upper bounds fuzzy exact and approximation solutions of Eq (20)
by FE-HPM with 4 HPM terms at s = 0.2 for all @ € [0,1].

Lower fuzzy solution

Upper fuzzy solution

(a) Exact Approximation Absolute Exact Approximation Absolute
Solution Solution Error Solution Solution Error
0 —0.201336 —-0.201336 141x107**  0.201336 0.201336 141 x 10712
0.2 —0.161068 —0.161068 1.12 x 10712 0.161068 0.161068 1.12 x 10712
0.4 —0.120801 —0.120801 8.46 x 10713 0.120801 0.120801 8.46 x 10713
0.6 —0.080534 —0.080534 5.64 x 10713 0.080534 0.080534 5.64 x 10713
0.8 —0.040267 —0.040267 2.82x 10713 0.040267 0.040267 2.82x 10713
1 0 0 0 0 0 0

Comparison of Exact and Approximate Solutions

08;

t / N\ | — Exactz(0.2)
08y v N\ - — Exactz(0.2)

a-level
N
y

04l Py \ Approximate z(0.2)

/ ‘\‘ ] Approximate Z(0.2)

-0.2 -0.1 0.0 0.1 0.2
Solutions

Figure 1: 2D plot comparing the fuzzy exact and approximate solutions of Eq (20) by
FE-HPM with 4 HPM terms at s = 0.2 forall « € [0,1].

Table 2. Convergence of the lower and upper bounds fuzzy FE-HPM solution for Example
lats = 0.2 anda = 0.

Lower fuzzy solution Upper fuzzy solution
Number  Approximation Absolute Error | Exact Solution Absolute Error
of terms Solution
(N)
1 —0.200000000 1.34x 1073 0.200000000 1.34x 1073
2 —0.201333333 2.67 X 107 0.201333333 2.67 x107°
3 —0.201336000 2.54 x 107° 0.201336000 2.54x107°
4 —0.201336003 1.41x 107" 0.201336003 1.41 x 10713
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Example 2. Consider the non-linear FVIDE of the second kind

S
7'(s,a) = f(s,a) +f Z2(t, a)dt (32)
0
with #(0,a) =[0,0] , where A=[1,1,0<t<s, 0<a<1, k(s,t)=1, and f(s,a) =
[0.75 + 0.25a,1.25 — 0.25«].
To solve Eq (32) by FE-HPM, first, the HPM is implemented as follows:

S

H(Z,p, @) = Z'(s,a) — (0.75 + 0.25a) — p ] 22t @)dt = 0,

0

B ., s_, (33)

H(Z,p, a) =Z (s,a) — (1.25 - 0.25a) — pf Z (t,a)dt = 0.
0

Now, by taking the Elzaki transform and using the differential property of the Elzaki transform on both
sides of Eq (33), we obtain

JE{Z(S, a)} = {v3(0.75 + 0.25a) + vE {p js Z2(t, a)dt}},
0

. (34)
LE{?(S, a)} = {v3(1.25 —0.25a) + VE {pj Z (t, a)dt}}.
0
Now, by taking the inverse Elzaki transform on both sides of Eq (34), we get the following:
( s
Z(s,a) = E7! {v3(0.75 + 0.25a) + vE {pJ Z2 (¢, a)dt}},
" (35)
— —2
Z(s,a) = E71 {v3(1.25 — 0.25a) + vE {pf Z (t, a)dt}}.
0
Now, the solution of Eq (35) can be written as power series in p as follows:
Z(s,@) = ) piZi(s, )
o (36)
Z(s,a) = z p'Zi(s,a),
i=0
and the non-linear term can be represented as
2t = ) plaits,a),
o (37)

Z (t,a) = Z p'A;(s, a).
i=0
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where A;(t,a) and A;(t,a) are the Adomian polynomials for the non-linear terms Z2(t, &) and
—2
Z (t,a), respectively, and they are given by
— — 2
Ao(s,a) = Zoz(& a), Ao(s,a) = Zy (s, ).

Ai(s,@) = 2 Zo(s, @) Z1 (s, @), Ai(s,@) = 2 Zo(s, @) Z, (s, @).

Now, by substituting Egs (36) and (37) into Eq (35) and comparing coefficients such as the power of
p. Therefore, using the above iterative results, the series-form solution is provided as

o [Zo(s, @) = s(0.75 + 0.25a),
P '{70(5, @) = s(1.25 — 0.25a). (38)

4

( _5 2
Z.(s,a) (0.75 + 0.25a)%,
1.7 12

phid 2 (39)
Z1(s,a) = —(1.25 — 0.25a)?.
12
7
Z,(s,a) = —(O 75 + 0.25a)3,
p; 2572 (40)

Z,(s,a) = ZSE (1.25 — 0.25a)3.

And so on....
Currently, the answer is provided as

Z(S' a) = Z Zi (S' Of),
i=0

o (41)
z(s,a) = z Z;(s, ).
i=0
Therefore, using the above iterative results, the series form solution is provided as
4 S7
z(s,a) = s(0.75 + 0.25a) + —(O 75+ 0.25a)? + —(0.75 + 0.25a)3 +
4 2527 (42)

Z(s,a) = s(1.25 — 0.25a) + —(1 25 — 0.25a)? + 555 (1 25 —0.25a)3 ...

Table 3 and Figure 2 show that the approximation of Eq (32) by FE-HPM at s = 0.2 for a €
[0,1] attains the triangular fuzzy number shape, and thus satisfies the fuzzy number properties. Also,
the results obtained using FE-HPM show that the method is accurate, and the results confirm our

theoretical analysis.
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Table 3. The lower and upper bounds fuzzy aproximation solutions of Eq (32) by
FE-HPM with 3 HPM terms at s = 0.2 and FL-ADM with 4 ADM terms for all a €

[0,1].
Lower fuzzy solution Upper fuzzy solution
(a) FL-ADM FE-HPM Absolute Error | FL-ADM  FE-HPM  Absolute Error
0 0.150075 0.150075 3.66x 1071® 0.250208 0.250208 1.69 x 10~°
0.2 0.160085 0.160085 4.44x1071° 0.240192 0.240192 1.50 x 107°
0.4 0.170096 0.170096 5.33x 1071 0.230176 0.23017 1.32x107°
0.6 0.180108 0.180108 6.33x 1071 0.220161 0.220161 1.15%x107°
0.8 0.190120 0.190120 7.45x 1071 0.21014 0.210147 1.00 x 107°
1 0 0 0 0 0 0

a-level

0.0

Approximation Solution

0.8-
06
0.4~

02}

0.16

0.18 0.20

Solutions

0.22 0.24

Figure 2. The lower and upper bounds fuzzy approximation solutions of Eq (43) by
FE-HPM with 4 HPM terms at s = 0.2 for all a € [0,1].

Example 3: Consider the non-linear FFVIDEs second kind:

zZ'(s,a) = f(s,a) + fsf z%(t, a)dtdr,
0 Jo

(43)

with 2(0,@) = (0,0), where 0 <t <1, 0<a <1, k(s,t) = 1, and f(s,a) = (i(s, ), s, a)),

ie.,

f(s,a) =[0.75 + 0.25a,1.25 — 0.25«].

To solve Eq (43) by FE-HPM, we first create the following homotopy:

AIMS Mathematics
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s r1
H(Z,p,a)=Z'(s,a) — (0.75 + 0.25a) — p] f Z?(t, a)dtdr = 0,
0o Jo
B B s 1 (44)
H(Z,p, a) =Z (s,a) — (1.25 — 0.25a) — pl f Z (t,a)dtdr = 0.
0o Jo

Now, by taking the Elzaki transform and using the differential property of the Elzaki transform on both
sides of Eq (44), we get the following:

E{Z(s, a)} = {v3(0.75 + 0.25a) + vE {p fsf Z%(t, a)dtdr}},
0o Jo

(45)
s 1
LE{?(S, )} = {v3(1.25 —0.25a) + vE {pj j 72(t, a)dtdr}}.
0 Jo
Now, by taking the inverse Elzaki transform on both sides of Eq (45), we get the following:
( s 1
Z(s,a) = E7! {v3(0.75 + 0.25a) + vE {pj J Z2(t, a)dtdr}},
os 01 (46)
L?(s, a) = E71 {v3(1.25 —0.25a) + vE {pj J A (t, a)dtdr}}.
0o Jo
Now, the solution of Eq (46) can be written as power series in p as follows:
Z(s,@) = ) piZi(s, )
£y (47)
Z(s,a) = Z pZ;(s, a).
i=0
And, let the non-linear term can be represented as
22t = ) plaits,a),
o (48)

-2 . —
Z (t,a) = Z p'A;(s, a),
i=0

where A;(t, @) and A;(t, @) are the Adomian polynomials for the non-linear terms Z*(t,a) and

—2
Z (t,a), respectively, and they are given by

Ao(s, @) = Z*(s, @), Ag(s, ) = Z, (s, a).
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29922

Ai(s, @) = 2 Zy(s, @) Z1(s, @), Ay (s,a) = 2 Zo(s,@)Z, (s, ).

Now, by substituting Eqs (47) and (48) into Eq (46) and comparing coefficients such as the power of
p. Therefore, using the above iterative results, the series form solution is given as

0, {%0(5, a) = s (0.75 + 0.25a), 49)
Zy(s,a) = s(1.25 — 0.25a).

2
. {Zl(s, a) = % (0.75 + 0.25a)?,
pl:

2

: (50)
Z.(s,a) = < (1.25 — 0.25a)2.
52
Zy(s,a) = o (0.75 + 0.25a)3,
p?: §2 (&2
Z = — (1.25 — 0.25a)%.
2(s,a) >4 (1.25 - 0.25a)
And so on....
Currently, the answer is given as
(Z(S' a) = Z Zi (S: CZ),
" (52)
zZ(s,a) = z Z;(s, ).
i=0
Therefore, using the above iterative results, the series-form solution is given as
s? s?
z(s,a) = s (0.75 4 0.25a) + — (0.75 4+ 0.25a)* + — (0.75 + 0.25a)> + -
i S 4 (53)

Z(s, ) = s(1.25 — 0.25a) + %(1.25 —0.25a)% + ;—4 (1.25 — 0.25a) + ---

Table 4 and Figure 3 show that the approximation of Eq (43) by FE-HPM at s = 0.2 for a €
[0,1] attains the triangular fuzzy number shape, and thus satisfies the fuzzy number properties. Also,

the results obtained using FE-HPM show that the method is accurate, and the results confirm our
theoretical analysis.
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Table 4. The lower and upper bounds fuzzy aproximation solutions of Eq (43) by
FE-HPM with 3 HPM terms at s = 0.2 and FL-ADM with 4 ADM terms for all a €
[0,1].

Lower fuzzy solution Upper fuzzy solution

(a) FL-ADM FE-HPM Absolute Error | FL-ADM  FE-HPM  Absolute Error

0 0.154453 0.154453 1.66 x 1071° 0.258463 0.258463 1.28 x 10712
0.2 0.165120 0.165120 2.16 x 1071° 0.247679 0.247679 1.09 x 10712
0.4 0.175840 0.175840 2.75x 1071 0.236943 0.236943 9.23 x 10712
0.6 0.186615 0.186615 3.46x 1071° 0.226251 0.226251 7.72 x 10712
0.8 0.197445 0.197445 3.46x1071° 0.216245 0.216245 6.41 x 10712

1 0.208333 0.208333 5.27 x 1071° 0.205000 0.205000 5.27 x 10712

Approximation Solution

S — 2(0.2)
T — 70.2)

a-level

Figure 3. 2D plot of the fuzzy approximate solutions of Eq (43) by FE-HPM with 3 HPM
terms at s = 0.2,n = 4 for all a € [0,1].

With regard to the CPU time to run the algorithm, all computations for the FE-HPM algorithm
were performed using Wolfram Mathematica 13 on a Windows 10 computer equipped with an Intel
Core 17 processor and 16 GB of RAM. The execution time required to obtain the approximate fuzzy
solutions was minimal: each example ran in well under 0.05 seconds when using four HPM terms.
These results indicate that the proposed FE-HPM method is computationally efficient and requires
only minimal computational resources. Furthermore, the present study is limited to fuzzy
integro-differential equations that satisfy Hukuhara differentiability, and the analysis focuses on
particular types of Volterra and mixed Fredholm—Volterra structures. In addition, the convergence
and stability of the FE-HPM approach have been demonstrated numerically, but a rigorous
theoretical proof for the fuzzy HPM series remains an open issue. These aspects will be examined in
future investigations.
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7. Conclusions

In this paper, the FE-HPM is provided as an efficient and effective approach for solving several
types of FIDEs under Hukuhara differentiability. The proposed method using a hybrid method
between fuzzy Elzaki transform with homotopy perturbation method is provided as a new and
reliable method to solve both linear and non-linear FVIDEs and FFIDEs, in addition to nonlinear
FFVIDEs, which are used in fields involving unclear and uncertainty. The results obtained
demonstrate that FE-HPM provides a quick convergence to exact solutions with significantly lower
iterations compared to classical numerical methods. This makes it a fundamental tool for solving
these problems. This method of handling fuzzy systems makes it intrinsically valuable for obtaining
reliable results in a short time. Future research may extend the FE-HPM method to broader classes of
fuzzy integro-differential equations, including rigorous convergence and stability analysis,
performing deeper comparisons with other fuzzy numerical techniques, and applying the approach to
real-world fuzzy models.

Author contributions

Hamzeh Zureigat: Conceptualization, methodology, software, validation, formal analysis,
investigation, writing—original draft preparation, writing-review and editing; Murad Algazo: Formal
analysis, resources, writing—original draft preparation, funding acquisition. All authors have read
and agreed to the published version of the manuscript.

Use of Generative-Al tools declaration

The authors declare they have not used Artificial Intelligence tools in the creation of this article.
Conlflicts of interest

The authors declare no conflicts of interest.
Acknowledgments

The authors are grateful to the Deanship of Scientific Research at Jadara University for providing
financial support for this publication.

References

I. Y. N. Grigoriev, N. H. Ibragimov, V. F. Kovalev, S. V. Meleshko, Symmetries of
integro-differential equations, Dordrecht: Springer, 2010.
https://doi.org/10.1007/978-90-481-3797-8

2. V. Volterra, Theory of functionals and of integral and integro-differential equations, New Y ork:
Dover, 1959.

3. D.S. Naidu, Optimal control systems, Boca Raton: CRC Press, 2003.

4. V. Lakshmikantham, M. R. M. Rao, Theory of integro-differential equations, New York: CRC
Press, 1995.

AIMS Mathematics Volume 10, Issue 12, 29901-29926.


https://doi.org/10.1007/978-90-481-3797-8

29925

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

I. Fredholm, Sur une classe d’équations fonctionnelles, Acta Math., 27 (1903), 365-390.
https://doi.org/10.1007/BF02421317

T. M. Elzaki, the new integral transform Elzaki transform, Glob. J. Pure Appl. Math., 7 (2011),
57-64.

J. H. He, Homotopy perturbation technique, Comput. Methods. Appl. Mech. Eng., 178 (1999),
257-262. https://doi.org/10.1016/S0045-7825(99)00018-3

J. H. He, Comparison of homotopy perturbation method and homotopy analysis method, Appl.
Math. Comput., 156 (2004), 527-539. https://doi.org/10.1016/j.amc.2003.08.008

S. Kambalimath, P. C. Deka, A basic review of fuzzy logic applications in hydrology and water
resources, Appl. Water Sci., 10 (2020), 191. https://doi.org/10.1007/s13201-020-01276-2

D. T. Muhamediyeva, Approaches to the numerical solving of fuzzy differential equations, Int. J.
Res. Eng. Technol., 3 (2014), 335-342. https://doi.org/10.15623/ijret.2014.0307057

F. Baig, M. S. Khan, Y. Noor, M. Imran, Design model of fuzzy logic medical diagnosis control
system, Int. J. Comput. Sci. Eng., 3 (2011), 2093-2108.

K. Nemati, M. Matinfar, An implicit method for fuzzy parabolic partial differential equations, The
J. Nonlinear Sci. Appl., 1 (2008), 61-71. https://doi.org/10.22436/jnsa.001.02.02

H. T. Nguyen, C. Walker, E. A. Walker, 4 first course in fuzzy logic, New York: Chapman and
Hall/CRC, 2018. https://doi.org/10.1201/9780429505546

S. P. Mondal, T. K. Roy, System of differential equation with initial value as triangular
intuitionistic fuzzy number and its application, Int. J. Appl. Comput. Math., 1 (2015), 449-474.
https://doi.org/10.1007/s40819-015-0026-x

Q. Zhou, H. Li, L. Wang, R. Lu, Prescribed performance observer-based adaptive fuzzy control
for nonstrict-feedback stochastic nonlinear systems, /EEE Trans. Syst. Man Cybern. Syst., 48
(2017), 1747-1758. https://doi.org/10.1109/TSMC.2017.2738155

S. S. Behzadi, B. Vahdani, T. Allahviranloo, S. Abbasbandy, Application of fuzzy Picard method
for solving fuzzy quadratic Riccati and fuzzy Painlevé I equations, Appl. Math. Model., 40 (2016),
8125-8137. https://doi.org/10.1016/j.apm.2016.05.003

L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338-353.
https://doi.org/10.1016/S0019-9958(65)90241-X

H. V. Long, N. T. K. Son, N. V. Hoa, Fuzzy fractional partial differential equations in partially
ordered  metric  spaces, Iran. J.  Fuzzy  Syst, 14  (2017), 107-126.
https://doi.org/10.22111/1jf5.2017.3136

O. Akin, O. Oruc, A prey and predator model with fuzzy initial values, Hacet. J. Math. Stat., 41
(2012), 387-395.

A. Torres, J. J. Nieto, Fuzzy logic in medicine and bioinformatics, Biomed Res. Int., 2006 (2006),
091908. https://doi.org/10.1155/JBB/2006/91908

P. Guttorp, Fuzzy mathematical models in engineering and management science, Technometrics,
32 (1990), 238. https://doi.org/10.1080/00401706.1990.10484661

S. Chakraverty, S. Tapaswini, D. Behera, Fuzzy differential equations and applications for
engineers and scientists, Boca Raton: CRC Press, 2016. https://doi.org/10.1201/9781315372853
O. Abu Arqub, R. Mezghiche, B. Maayah, Fuzzy M-fractional integrodifferential models:
theoretical existence and uniqueness results, and approximate solutions utilizing the Hilbert
reproducing kernel algorithm, Front. Phys., 11 (2023), 1252919.
https://doi.org/10.3389/fphy.2023.1252919

AIMS Mathematics Volume 10, Issue 12, 29901-29926.


https://doi.org/10.1007/BF02421317
https://doi.org/10.1016/S0045-7825(99)00018-3
https://doi.org/10.1016/j.amc.2003.08.008
https://doi.org/10.1007/s13201-020-01276-2
https://doi.org/10.15623/ijret.2014.0307057 
https://doi.org/10.22436/jnsa.001.02.02
https://doi.org/10.1201/9780429505546
https://doi.org/10.1007/s40819-015-0026-x
https://doi.org/10.1109/TSMC.2017.2738155
https://doi.org/10.1016/j.apm.2016.05.003
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.22111/ijfs.2017.3136
https://doi.org/10.1155/JBB/2006/91908
https://doi.org/10.1080/00401706.1990.10484661 
https://doi.org/10.1201/9781315372853 
https://doi.org/10.3389/fphy.2023.1252919 

29926

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Sets Syst., 18 (1986), 31-43.
https://doi.org/10.1016/0165-0114(86)90026-6

D. Dubois, H. Prade, Systems of linear fuzzy constraints, Fuzzy Sets Syst., 3 (1980), 37-48.
https://doi.org/10.1016/0165-0114(80)90004-4

M. L. Puri, D. A. Ralescu, L. Zadeh, Fuzzy random variables, In: Readings in fuzzy sets for
intelligent systems, 1993, 265-271. https://doi.org/10.1016/b978-1-4832-1450-4.50029-8

M. Hukuhara, Integration des applications mesurables dont la valeur est un compact convexe,
Funkcial. Ekvac., 10 (1967), 205-223.

S. S. Mansouri, N. Ahmady, A numerical method for solving nth-order fuzzy differential equation
by using characterization theorem, Commun. Nonlinear Sci., 2012 (2012), cna-00054.

L. Stefanini, L. Sorini, M. L. Guerra, Parametric representation of fuzzy numbers and application
to fuzzy calculus, Fuzzy Sets Syst., 157 (2000), 2423-2455.
https://doi.org/10.1016/].ss.2006.02.002

M. Friedman, M. Ma, A. Kandel, Numerical solutions of fuzzy differential and integral equations,
Fuzzy Sets Syst., 106 (1999), 35-48. https://doi.org/10.1016/s0165-0114(98)00355-8

H. C. Wu, The improper fuzzy Riemann integral and its numerical integration, /nf. Sci., 111
(1998), 109—137. https://doi.org/10.1016/s0020-0255(98)00016-4

T. M. Elzaki, S. M. Elzaki, On the Tarig Transform and ordinary differential equation with
variable coefficients, Elixir Appl. Math., 38 (2011), 4250-4252.

H. Kim, The time shifting theorem and the convolution for Elzaki transform, Int. J. Pure Appl.
Math., 87 (2013), 261-271. https://doi.org/10.12732/ijpam.v8712.6

A. Ghorbani, Beyond Adomian polynomials: He polynomials, Chaos Soliton Fract., 39 (2009),
1486—-1492. https://doi.org/10.1016/j.chaos.2007.06.034

H. M. Ahmed, An advanced approach for numerical solution of a class of Fredholm-Volterra
integro-differential equations with mixed boundary conditions, Int. J. Mod. Phys. C, 2025.
https://doi.org/10.1142/S0129183125501542

S. M. Hosseini, S. Shahmorad, Numerical piecewise approximate solution of Fredholm
integro-differential equations by the Tau method, Appl. Math. Model., 29 (2005), 1005-1021.
https://doi.org/10.1016/j.apm.2005.02.003

S. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput., 147
(2004), 499-513. https://doi.org/10.1016/S0096-3003(02)00790-7

O. Nave, V. Gol’dshtein, A combination of two semi-analytical methods called ‘“singular
perturbed homotopy analysis method (SPHAM)” applied to combustion of spray fuel droplets,
Cogent Math., 3 (2016), 1256467. https://doi.org/10.1080/23311835.2016.1256467

T. Liu, Porosity reconstruction based on Biot elastic model of porous media by homotopy
perturbation method, Chaos Soliton Fract., 158 (2022), 112007.
https://doi.org/10.1016/j.chaos.2022.112007

. © 2025 the Author(s), licensee AIMS Press. This is an open access
MS ATMS Press  article distributed under the terms of the Creative Commons
. Attribution License (https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 12, 29901-29926.


https://doi.org/10.1016/0165-0114(86)90026-6 
https://doi.org/10.1016/0165-0114(80)90004-4 
https://doi.org/10.1016/b978-1-4832-1450-4.50029-8 
https://doi.org/10.1016/j.fss.2006.02.002 
https://doi.org/10.1016/s0165-0114(98)00355-8 
https://doi.org/10.1016/s0020-0255(98)00016-4 
https://doi.org/10.12732/ijpam.v87i2.6 
https://doi.org/10.1016/j.chaos.2007.06.034
https://doi.org/10.1142/S0129183125501542
https://doi.org/10.1016/j.apm.2005.02.003
https://doi.org/10.1016/S0096-3003(02)00790-7
https://doi.org/10.1080/23311835.2016.1256467
https://doi.org/10.1016/j.chaos.2022.112007

