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Abstract: Fuzzy integro-differential equations are used for modeling real-life phenomena that 

involve uncertain (fuzzy) parameters or variables. The combination of the fuzzy Elzaki transform 

and homotopy perturbation method provides a powerful hybrid technique for solving fuzzy 

integro-differential equations. Therefore, the aim of this paper is to modify and apply a new hybrid 

method called fuzzy Elzaki transform homotopy perturbation method for the first time in literature to 

solve fuzzy integro-differential equations. In particular, the fuzzy Elzaki transform homotopy 

perturbation method is developed and applied for solving linear and non-linear second-kind fuzzy 

Volterra integro-differential equations, and non-linear second kind fuzzy mixed Fredholm- Volterra 

integro-differential equations. Finally, several examples are presented to show that the fuzzy Elzaki 

transform homotopy perturbation method is efficient for solving wide types of fuzzy 

integro-differential equations with high accuracy. The novelty of this work lies in its ease of use and 

its high efficiency, which allows mathematicians to obtain reliable results under fuzzy Hukuhara 

differentiability aspects in a short time. 
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1. Introduction 

Integro-differential equations (IDEs) combine the characteristics of differential and integral 
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equations, and there are significant tools for modeling numerous phenomena across various fields, 

including engineering, physics, and economics [1]. 

The general formula for IDEs is represented as follows: 

𝑙(𝑠) 𝑧(𝑛)(𝑠) = 𝑓(𝑠) + 𝜆∫ 𝑘(𝑠, 𝑡)𝑁(𝑧(𝑡))𝑑𝑡
𝛿(𝑥)

𝛾(𝑥)

. 

IDEs are classified into two main types based on the limits of integration: that are Volterra 

integro-differential equations (V-IDEs), and Fredholm integro-differential equations (F-IDEs). In 

particular, the classification of IDEs depends on whether the limits of integration are variable or 

fixed. IDEs with variable limits known as V-IDEs where the name is assumed to refer to the scientist 

Volterra [2]. V-IDEs are considered as one of the most important tools for modeling optimal control 

systems, and they are often associated with initial value problems, meaning that the value of the 

solution at a given time depends on its previous values. The main characteristic of V-IDEs makes it 

an effective tool for modeling various systems across many fields, such as biology, physics, 

engineering, economics, and finance [3,4]. 

In contrast, the IDEs with constant limits are known as a Fredholm integro-differential 

equations (F-IDEs), where the name is assumed refer to the scientist Erik Fredholm [5]. F-IDEs are 

typically associated with boundary value problems, where the unknown function depends on values 

within fixed integration where they often make the F-IDEs more challenging or difficult to solve. 

Fredholm equations are used for modeling complex systems in several fields including physics, 

engineering, medicine, and biology [4]. 

In solving IDEs analytically, some transform methods are used, such as the Laplace transform, 

Sumudu transform method, or direct integration method. But, in solving some IDEs classical 

methods become cumbersome and inefficient or some classes of functions where the Laplace 

transform might diverge or be undefined. Therefore, for handling this issue, some mathematicians 

presented and applied a new approach known as the Elzaki transform method [6]. The Elzaki 

transform method was derived from the classical Fourier transform and is used to simplify and 

efficiently solve the IDEs since it offers some advantages over using the Laplace transform method. 

It handles non-zero initial conditions more easily since it provides simpler operational rules for 

derivatives and integrals and less strict convergence requirements. More specifically, the Elzaki 

transform method is effective for solving the Volterra and Fredholm integral equations by converting 

complex integral forms into simple algebraic expressions. After using the Elzaki transform method to 

solve IDEs, we often still cannot find an exact solution, especially if the equation is complicated or 

has nonlinear terms. Therefore, approximation methods are used to address these challenges. One 

significant approximation method is the homotopy perturbation method (HPM) introduced by 

(Ji-Huan He) in 1999. The homotopy perturbation method is an analytical approximate method used 

to solve differential and integral equations in both linear and nonlinear forms. However, it is 

particularly used for nonlinear equations because it is capable of isolating and processing their 

nonlinear components [7,8]. 

In reality, real-world phenomena are often imprecise and contain uncertainties. This vagueness 

can arise in scientific fields such as medicine, engineering, meteorology, manufacturing, and 

others [9‒13]. The fuzziness arises in the collection of data, due to experimental errors, and 

measurement errors, inaccurate estimation, and it also may appear when calculating the 
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boundary\initial conditions. These fuzzy aspects exist when collecting real data about essential 

materials like microbial populations, soil, water, etc. As described in [14‒16],  fuzzy sets are 

considered as an essential tool for handling or solving such problems in order to provide a better 

understanding or illustration of phenomena. The intention of early research in fuzzy set theory that 

was carried out by [17]  was to generalize the classical concept of a set and provide a suggestion to 

explain the fuzziness. Fuzzy set theory is considered as a tool for modeling vague systems and 

processing uncertain information in mathematical models. These include using the fuzzy integral 

equations instead of deterministic (crisp) integral equations. Studies of the theory of fuzzy 

integro-differential equations (FIDEs) have greatly increased in recent times FIDEs are utilized in 

modeling engineering, quantum optics, robotics, gravity, medicine, and intelligence tests [11,18‒20]. 

Therefore, both IDEs and uncertainty (fuzzy) play a fundamental role in handling mathematical 

problems. These lead to FIDEs. 

The FIDEs are used for modeling the real-life phenomena that involving uncertain (fuzzy) 

parameters or variables in many fields such as medicine, physics, intelligence tests, gravity,  

engineering, and biology  [21‒23]. For example, in heat transfer or population growth models, the 

parameters such as the diffusion rate or interaction coefficient may be uncertain due to measurement 

errors, naturally leading to FIDE formulations [22]. Therefore, there is growing interest in obtaining 

exact or approximation solutions for FIDEs. In solving FIDEs analytically, some fuzzy transform 

methods are used such as, the Laplace transform, Sumudu transform method, or direct integration 

method. But, in solving some FIDEs, the classical methods become cumbersome and inefficient or 

some classes of functions where the Laplace transform might diverge or be undefined. Therefore, for 

handling this issue. the combination of the fuzzy Elzaki Transform and HPM provides a powerful 

hybrid technique for solving FIDEs. Our review of the literature indicates no attempts seem to have 

been made on this front. Therefore, the aim of this paper is to modify and apply a hybrid method 

called the fuzzy Elzaki transform homotopy perturbation method (FE-HPM) to solve FIDEs. The 

FE-HPM is developed and applied for solving linear and non-linear second kind fuzzy Volterra 

integro-differential equations (FVIDEs), and non-linear second kind fuzzy mixed Fredholm-Volterra 

integro-differential equations (FFVIDEs). 

The remainder of this paper is organized as follows: Section 2 introduces the preliminaries; 

Section 3 develops the fuzzy Elzaki transform; Section 4 formulates the FIDEs; Section 5 presents 

the FE-HPM approach for solving second-kind FIDEs; Section 6 illustrates numerical examples; and 

Section 7 concludes the study. 

2. Preliminaries 

In this section, some theorems and definitions which are used later in this paper to establish the 

fuzzy Elzaki transform under Hukuhara differentiability are presented. 

Definition 2.1. [17] A fuzzy set 𝒜̃ is defined as a collection of ordered pairs: 

𝒜̃ =  {(𝓍, 𝜇𝒜̃(𝓍)) ∶  𝓍 ∈ 𝒳, 𝜇𝒜̃(𝓍) ∈ [0, 1]} , 

where 𝜇𝒜̃(𝓍) is the membership function of 𝒜̃ and 𝒳 denotes the universal set. 

Definition 2.2. [17] A fuzzy number is a particular type of fuzzy set 𝒜̃, which is normalized and 

convex having a piecewise continuous membership function. 

Definition 2.3. [24] For 0 ≤  𝛼 ≤  1 and 𝒜̃𝛼 = {𝓍 ∈ 𝒳| 𝜇𝒜̃(𝓍) ≥  𝛼}, if 𝒜̃ is a fuzzy number, 
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then the fuzzy interval form using 𝛼-cut is given as: 

𝒜̃𝛼 = [𝒜𝛼 , 𝒜𝛼], where 𝒜𝛼 = 𝑚𝑖𝑛{𝓍 | 𝓍 ∈ 𝒜̃𝛼  } and, 𝒜𝛼 =  𝑚𝑎𝑥{𝓍 | 𝓍 ∈ 𝒜̃𝛼  }. 

Theorem 2.1. [24] Suppose that 𝑧, 𝑧: [0,1] →  ℝ, which satisfies the following conditions: 

i) 𝑧 is a bounded increasing function, and 𝑧 is a bound decreasing function with 𝑧(1) ≤ 𝑧(1). 

ii) 𝑧 and 𝑧 are left-hand continuous functions at 𝜎 = 𝑘, for all 𝑘 ∈ (0, 1]. 

iii) 𝑧 and 𝑧 are right-hand continuous functions at 𝜎 = 0. 

Then, 𝑧: ℝ → [0,1]  defined by  𝑧(𝑥) = 𝑠𝑢𝑝{𝛼 ∶ 𝑧(𝛼) ≤ 𝑥 ≤ 𝑧(𝛼)}  is a fuzzy number and the 

parametric form is [𝑤(𝛼), 𝑤(𝛼)]. Otherwise, the functions 𝑧 and 𝑧 satisfy the conditions. 

Definition 2.4. [25] A fuzzy number 𝜇, is called a triangular fuzzy number if defined by three 

numbers 𝑎 < 𝑏 < 𝑐 where the graph of 𝜇(𝑥) is a triangle with the base on the interval [𝑎, 𝑐] and 

vertex at 𝑥 = 𝑏, and its membership function has the following form: 

𝜇(𝑥; 𝑎, 𝑏, 𝑐) =

{
 
 

 
 
𝑥 − 𝑎

𝑏 − 𝑎
,   𝑖𝑓 𝑎 < 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
,    𝑖𝑓 𝑏 < 𝑥 < 𝑐

  0,           𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒.

 

The 𝛼 −cut of triangular fuzzy number is: [𝜇]𝛼 = [𝑎 +  𝛼 (𝑏 − 𝑎), 𝑐 −  𝛼 (𝑐 − 𝑏)], 𝛼 ∈  [0, 1]. 

Definition 2.5. [26] For arbitrary fuzzy numbers 𝑢 and 𝑣 on ℝℱ ×ℝℱ → ℝ+ ∪ {0}, we define the 

Hausdorff distance by the mapping 𝐷:ℝ𝐹 × ℝ𝐹 → ℝ+ ∪ {0} such that:  

𝐷(𝑣, 𝑢) = 𝑠𝑢𝑝0≤ 𝛼 ≤1𝑚𝑎𝑥{|𝑣( 𝛼 ) − 𝑢( 𝛼 )|, |𝑣( 𝛼 ) − 𝑢( 𝛼 )|}. 

Note: ℝℱ denotes the set of fuzzy numbers on the real number(ℝ). 

Theorem 2.2. [26] The space (ℝℱ , 𝐷) is a complete fuzzy metric space. 

Some arithmetic operations in fuzzy mathematics: 

(1) [𝑣]𝛼  + [𝑢]𝛼  =  [𝑣(𝛼) + 𝑢(𝛼), 𝑣(𝛼) + 𝑢(𝛼)] for each 𝑣, 𝑢 ∈ ℝ𝐹  and 0 ≤ 𝛼 ≤ 1. 

(2) [𝑣]𝛼⊖ [𝑢]𝛼 = [𝑣(𝛼) − 𝑢(𝛼), 𝑣(𝛼) − 𝑢(𝛼)], is called the Hukuhara difference (H-difference) of 

𝑣 and 𝑢. 

Additionally, we always use "⊖" to refer to the Hukuhara difference, and it is important to note 

that 

𝑣 ⊖ 𝑢 ≠ 𝑣 + (−1)𝑢. [27] 

Definition 2.6. [28] If 𝑧̃: 𝐼 → ℝ𝐹  and 𝑦0 ∈ 𝐼 , where 𝐼 ∈ [𝑡0, 𝑇] ,  𝑧̃  is said to be Hukuhara 

differentiable at 𝑦0, if there exists an element [𝑧′̃]
𝛼
∈ ℝ𝐹  such that for all ℎ > 0 sufficiently small, 

𝑧̃(𝑦0 + ℎ; 𝛼) ⊝ 𝑧̃(𝑦0; 𝛼)and 𝑧̃(𝑦0; 𝛼) ⊝ 𝑧̃(𝑦0 − ℎ; 𝛼) exists where the limits are taken in the metric 

space (ℝ𝐹 , 𝐷). 

lim
ℎ→0+

 𝑧̃(𝑦0 + ℎ; 𝛼) ⊝ 𝑧̃(𝑦0; 𝛼)

ℎ
= lim

ℎ→0+

 𝑧̃(𝑦0; 𝛼) ⊝ 𝑧̃(𝑦0 − ℎ; 𝛼)

ℎ
=𝑧 ′̃(𝑦0). 
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The fuzzy set [𝑧 ′̃(𝑦0)]𝛼 is called the Hukuhara derivative of [𝑧′̃]
𝛼

 at 𝑦0. Taking in account that this 

limit corresponds to the Hukuhara derivative, as defined in the standard literature, and does not 

represent the classical derivative, then we have the following theorem. 

Theorem 2.3. [29] Let 𝑧̃: [𝑡0 + 𝛼, 𝑇] → ℝ𝐹 be Hukuhara differentiable and denote: 

  [𝑧 ′̃(𝑡)]
𝛼
= [𝑧′(𝑡), 𝑧′(𝑡)]

𝛼
= [𝑧′(𝑡; 𝛼), 𝑧′(𝑡; 𝛼)]. 

Then, the boundary functions 𝑧′(𝑡; 𝛼), 𝑧′(𝑡; 𝛼) are both differentiable 

[𝑧 ′̃(𝑡)]
𝛼
= [(𝑧(𝑡; 𝛼))

′

, (𝑧(𝑡; 𝛼))
′
], ∀ 𝛼 ∈ [0,1]. 

Theorem 2.4. [28] Let 𝑧̃: [𝑡0 + 𝛼, 𝑇] → ℝ𝐹 be Hukuhara differentiable and denote : 

[𝑧 ′̃(𝑡)]
𝛼
= [𝑧′(𝑡), 𝑧′(𝑡)]

𝛼
= [𝑧′(𝑡; 𝛼), 𝑧′(𝑡; 𝛼)].  

Then, both boundary functions 𝑧′(𝑡; 𝛼), 𝑧′(𝑡; 𝛼) are differentiable, and we can write for 𝑛𝑡ℎ-order 

fuzzy derivative 

[𝑧̃(𝑛)(𝑡)]
𝛼
= [(𝑧(𝑛)(𝑡; 𝛼))

′

, (𝑧
(𝑛)
(𝑡; 𝛼))

′

], ∀ 𝛼 ∈ [0,1]. 

Definition 2.7. [30] Suppose that 𝑧: [𝑎, 𝑏] → ℝℱ is be a fuzzy-valued function. For each partition 

𝑝 = {𝑥0, 𝑥1, … , 𝑥𝑛}  of [𝑎, 𝑏]  and  𝜉𝑖 ∈ [𝑥𝑖−1, 𝑥𝑖], 1 ≤ 𝑖 ≤ 𝑛 , assume that 𝑅𝑃 = ∑  𝑧(𝜉𝑖)
𝑛
𝑖=1 (𝑥𝑖 −

𝑥𝑖−1) and 𝛥 = max
1≤𝑖≤𝑛

|𝑥𝑖−1, 𝑥𝑖|. The definite integral of 𝑧(𝑥) over  [𝑎, 𝑏] is ∫ 𝑧(𝑥)𝑑𝑥
𝑏

𝑎
= lim

𝛥→0
𝑅𝑃 

such that the limit exists in (ℝℱ , 𝑑). If the fuzzy function 𝑧(𝑥) is continuous in the metric 𝑑, its 

definite integral exists [24]. Moreover, 

(∫ 𝑧(𝑥; 𝛼)𝑑𝑥
𝑏

𝑎

) = ∫ 𝑧(𝑥; 𝛼)𝑑𝑥,
𝑏

𝑎

 

(∫ 𝑧(𝑥; 𝛼)𝑑𝑥
𝑏

𝑎

) = ∫ 𝑧(𝑥; 𝛼)𝑑𝑥,
𝑏

𝑎

 

where the underline denotes the lower bound and the upper line denotes the upper bound of the fuzzy 

integral at each α-cut level set. 

Theorem 2.4. [31] Let 𝑧̃(𝑥)  be a fuzzy-value function on [𝑐,∞)  and it is represented by 

(𝑧(𝑥, 𝛼), 𝑧(𝑥, 𝛼)) for any fixed 𝛼 ∈ [0,1], assume 𝑧(𝑥, 𝛼)and 𝑧(𝑥, 𝛼) are Riemann-integrable on 

[𝑐, 𝑑]  for every 𝑑 ≥ 𝑐 , and assume there are two positive 𝑀(𝛼) and 𝑀(𝛼)  such that 

∫ |𝑧(𝑥, 𝛼)|
𝑑

𝑐
𝑑𝑥 ≤ 𝑀(𝛼)  and ∫ |𝑧(𝑥, 𝛼)|

𝑑

𝑐
𝑑𝑥 ≤ 𝑀(𝛼)  for every 𝑑 ≥ 𝑐.  Then, 𝑧̃(𝑥) is improper 

fuzzy Riemann integrable on [𝑐,∞), and the improper fuzzy Riemann integral is a fuzzy number. 
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Furthermore, we have: 

∫ 𝑧̃(𝑥)𝑑𝑥
∞

0

= (∫ 𝑧(𝑥, 𝛼)𝑑𝑥
∞

0

, ∫ 𝑧(𝑥, 𝛼)𝑑𝑥
∞

0

). 

3. The fuzzy Elzaki transform 

In this section, the main definitions and theorem of the fuzzy Elzaki transform are written for 

the first time in literature under Hukuhara differentiability. In the formulation process the classical 

Elzaki is developed and reformulated under fuzzy set aspects to get the main related definitions and 

the theorem of fuzzy Elzaki transform. The fuzzy Elzaki transform works on fuzzy-number-valued 

functions via α-cut representations, effectively and efficiently preserving uncertainty throughout 

calculations. 

Definition 3.1. [6,32] Let ℒ, 𝜉1, 𝑎𝑛𝑑 𝜉2 be constants and consider the set 

ℒ = {𝑧(𝑥): ∃ℒ, 𝜉1, 𝜉2 > 0, |𝑧(𝑥)| < ℒ𝑒
|𝑥|
𝜉𝒿 , 𝑥 ∈ (−1)𝒿 × [0,∞], where 𝒿 = 1,2}. 

Then, the Elzaki transform is defined as: 

𝐸[𝑧(𝑥)] = 𝑣∫ 𝑧(𝑥)𝑒
−𝑥
𝑣

∞

0

𝑑𝑥, 𝑥 > 0, 𝜉1 ≤ 𝑣 ≤ 𝜉2. (1) 

Theorem 3.1. Linearity property for the Elzaki transforms [6,32]: Let 𝜓1(𝑥) and 𝜓2 (𝑥) be two 

functions with the constants 𝜎 and 𝛿. Then, 

𝐸( 𝜎𝜓1(𝑥)  ± 𝛿𝜓2(𝑥))  =  𝜎𝐸(𝜓1(𝑥))  ± 𝛿𝐸(𝜓2(𝑥)). 

Theorem 3.2. Convolution Theorem for the Elzaki transform[33,34]: Let 𝜓1(𝑥) and 𝜓2 (𝑥) are two 

functions with the constants 𝜎 and 𝛿 then:  

𝐸(𝜓1(𝑥) ∗  𝜓2(𝑥)) =  
1

𝑣
𝐸(𝜓1(𝑥))Е(𝜓2(𝑥)). 

Theorem 3.3. [6, 32] Let 𝑍(𝑣) be the Elzaki transform of 𝑧(𝑥) such that 𝐸[𝑧(𝑥)]= 𝑍(𝑣). Then, 

(1) 𝐸[𝑧′(𝑥)] =
𝑍(𝑣)

𝑣
− 𝑣𝑧(0), 

(2) 𝐸[𝑧′′(𝑥)] =
𝑍(𝑣)

𝑣2
− 𝑧(0) − 𝑣𝑧′(0), 

(3) 𝐸[𝑧(𝑛)(𝑥)] =
𝑍(𝑣)

𝑣𝑛
−∑𝑣2−𝑛+𝑘
𝑛−1

𝑘=0

𝑧(𝑘)(0). 

Definition 3.2. Let 𝑧̃(𝑥) be a continuous fuzzy-valued function. Suppose that 𝑧̃(𝑥) ⊙ 𝑒
−𝑥

𝑣  is 

improper fuzzy Riemann integrable on[0,∞). then, 𝑣 ∫ 𝑧̃(𝑥)⊙ 𝑒
−𝑥

𝑣 𝑑𝑥
∞

0
 is called the fuzzy Elzaki 
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transform and it is denoted as: 

𝐸̃(𝑧̃(𝑥)) = ∫ 𝑣𝑧̃(𝑥) ⊙ 𝑒
−𝑥
𝑣 𝑑𝑥.

∞

0

 

From Theorem 2.4, the parameterized form of the fuzzy Elzaki transform is 

∫ 𝑣𝑧̃(𝑥) ⊙ 𝑒
−𝑥
𝑣 𝑑𝑥

∞

0

= (∫ 𝑣𝑧(𝑥, 𝛼)𝑒
−𝑥
𝑣 𝑑𝑥

∞

0

, ∫ 𝑣𝑧(𝑥, 𝛼)𝑒
−𝑥
𝑣 𝑑𝑥

∞

0

), 

where 0 ≤ 𝛼 ≤ 1. 

So, by using the definition of the classical Elzaki transform we have: 

𝐸 (𝑧(𝑥, 𝛼)) = ∫ 𝑣𝑧(𝑥, 𝛼)𝑒
−𝑥

𝑣 𝑑𝑥 
∞

0
 and 𝐸(𝑧(𝑥, 𝛼)) = ∫ 𝑣𝑧(𝑥, 𝛼)𝑒

−𝑥

𝑣 𝑑𝑥.
∞

0
 

Then, we have 

𝐸̃[𝑧̃(𝑥)] = (𝐸[𝑧(𝑥, 𝛼)], 𝐸[𝑧(𝑥, 𝛼)]), 

where 𝑥 > 0, and it exists if 𝜓 and 𝛾 are piecewise continuous functions. 

Theorem 3.4. Let 𝑤̃1(𝑥) and 𝑤̃2 (𝑥) are continuous fuzzy-valued functions with the constants 𝜎 

and 𝛿. Then, 

𝐸̃[𝜎𝑤̃1(𝑥) ⊙ ⊕ 𝛿 ⊙ 𝑤̃2(𝑥) ]  =  𝜎 ⊙ 𝐸̃[𝑤̃1(𝑥)] ⊕  𝛿 ⊙ 𝐸̃[𝑤̃2(𝑥)]. 

Proof. Let 𝑤̃1(𝑥) = [𝑤1(𝑥; 𝛼), 𝑤1(𝑥; 𝛼)], 𝑤̃2(𝑥) = [𝑤2(𝑥; 𝛼), 𝑤2(𝑥; 𝛼)]. 

From Definition 3.2, the following was obtained: 

𝐸 [(𝜎𝑤1(𝑥; 𝛼)) + (𝛿𝑤2(𝑥; 𝛼))] 

= 𝑣∫ 𝜎𝑤1(𝑥; 𝛼)𝑒
−𝑥
𝑣 𝑑𝑥 

∞

0

+ 𝑣∫ 𝛿𝑤2(𝑥; 𝛼)𝑒
−𝑥
𝑣 𝑑𝑥 

∞

0

 

= 𝜎∫ 𝑣𝑤1(𝑥; 𝛼)𝑒
−𝑥
𝑣 𝑑𝑥 

∞

0

+ 𝛿∫ 𝑣𝑤2(𝑥; 𝛼)𝑒
−𝑥
𝑣 𝑑𝑥 

∞

0

 

= 𝜎𝐸[𝑤1(𝑥; 𝛼)] + 𝛿𝐸[𝑤2(𝑥; 𝛼)], 

and  

𝐸[(𝜎𝑤1(𝑥; 𝛼)) + (𝛿𝑤2(𝑥; 𝛼))] 

= 𝑣∫ 𝜎𝑤1(𝑥; 𝛼)𝑒
−𝑥
𝑣 𝑑𝑥 

∞

0

+ 𝑣∫ 𝛿𝑤2(𝑥; 𝛼)𝑒
−𝑥
𝑣 𝑑𝑥 

∞

0

 

= 𝜎∫ 𝑣𝑤1(𝑥; 𝛼)𝑒
−𝑥
𝑣 𝑑𝑥 

∞

0

+ 𝛿∫ 𝑣𝑤2(𝑥; 𝛼)𝑒
−𝑥
𝑣 𝑑𝑥 

∞

0

 

= 𝜎𝐸[𝑤1(𝑥; 𝛼)] + 𝛿𝐸[𝑤2(𝑥; 𝛼)]. 

So, 
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=  𝜎 ⊙ 𝐸̃[𝑤̃1(𝑥)] ⊕  𝛿 ⊙ 𝐸̃[𝑤̃2(𝑥)]. 

Theorem 3.5. (Convolution Theorem): Let 𝑤̃1(𝑥) and 𝑤̃2 (𝑥) be continuous fuzzy-valued functions 

with the constants 𝜎 and 𝛿. Then, 

𝐸̃[𝑤̃1(𝑥)⊙ 𝑤̃2(𝑥)] =  
1

𝑣
⊙ 𝐸̃[𝑤̃1(𝑥)] ⊙ 𝐸̃[𝑤̃2(𝑥)]. 

Proof. The fuzzy functions can be represented by their 𝛼-cut: 

𝑤̃1(𝑥) = [𝑤1(𝑥; 𝛼),𝑤1(𝑥; 𝛼)],    𝑤̃2(𝑥) = [𝑤2(𝑥; 𝛼), 𝑤2(𝑥; 𝛼)] for each 𝛼 ∈ [0,1]. 

Using the definition of the Elzaki transform of the lower bounds, 

𝐸[𝑤1(𝑥; 𝛼)] = 𝑣∫ 𝑤1(𝑥; 𝛼)𝑒
−𝑥
𝑣 𝑑𝑥 

∞

0

 and 𝐸[𝑤2(𝑥; 𝛼)] = 𝑣∫ 𝑤2(𝑟; 𝛼)𝑒
−𝑟
𝑣 𝑑𝑟.

∞

0

 

Therefore, 

1

𝑣
𝐸[𝑤1(𝑥; 𝛼)]𝐸[𝑤2(𝑥; 𝛼)] =

1

𝑣
(𝑣∫ 𝑤1(𝑥; 𝛼)𝑒

−𝑥
𝑣 𝑑𝑥 

∞

0

)(𝑣∫ 𝑤2(𝑟; 𝛼)𝑒
−𝑟
𝑣 𝑑𝑟 

∞

0

) 

=
1

𝑣
(𝑣2∫  

∞

0

∫ (𝑤1(𝑥; 𝛼)𝑤2(𝑟; 𝛼)) 𝑒
−(𝑥+𝑟)

𝑣 𝑑𝑟𝑑𝑥 
∞

0

) 

= 𝑣∫  
∞

0

∫ (𝑤1(𝑥; 𝛼)𝑤2(𝑟; 𝛼)) 𝑒
−(𝑟+𝑥)

𝑣 𝑑𝑟𝑑𝑥.
∞

0

 

Taking 𝑠 = 𝑟 + 𝑥 and 𝑑𝑠 = 𝑑𝑥, we have  

= 𝑣∫  
∞

0

∫ (𝑤1(𝑠 − 𝑟; 𝛼)𝑤2(𝑟; 𝛼)) 𝑒
−𝑠
𝑣 𝑑𝑟𝑑𝑥 = 𝐸[𝑤1(𝑥; 𝛼) ∗ 𝑤2(𝑥; 𝛼)],

∞

0

 

and  

𝐸[𝑤1(𝑥; 𝛼)] = 𝑣∫ 𝑤1(𝑥; 𝛼)𝑒
−𝑥
𝑣 𝑑𝑥 

∞

0

 and 𝐸[𝑤2(𝑥; 𝛼)] = 𝑣∫ 𝑤2(𝑟; 𝛼)𝑒
−𝑟
𝑣 𝑑𝑟 

∞

0

 

=
1

𝑣
(𝑣 ∫ 𝑤1(𝑥; 𝛼)𝑒

−𝑥
𝑣 𝑑𝑥 

∞

0

)(𝑣 ∫ 𝑤2(𝑟; 𝛼)𝑒
−𝑟
𝑣 𝑑𝑟 

∞

0

) 

=
1

𝑣
(𝑣2∫  

∞

0

∫ (𝑤1(𝑥; 𝛼)𝑤2(𝑟; 𝛼))𝑒
−(𝑥+𝑟)

𝑣 𝑑𝑟𝑑𝑥 
∞

0

) 

= 𝑣∫  
∞

0

∫ (𝑤1(𝑥; 𝛼)𝑤2(𝑟; 𝛼))𝑒
−(𝑟+𝑥)

𝑣 𝑑𝑟𝑑𝑥.
∞

0

 

Take 𝑠 = 𝑟 + 𝑥 and 𝑑𝑠 = 𝑑𝑥 then we have  

= 𝑣∫  
∞

0

∫ (𝑤1(𝑠 − 𝑟; 𝛼)𝑤2(𝑟; 𝛼))𝑒
−𝑠
𝑣 𝑑𝑟𝑑𝑥 = 𝐸[𝑤1(𝑥; 𝛼) ∗ 𝑤2(𝑥; 𝛼)].

∞

0
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So, 

=  
1

𝑣
⊙ 𝐸̃[𝑤̃1(𝑥)] ⊙ 𝐸̃[𝑤̃2(𝑥)]. 

Lemma 3.1. Let 𝑤̃(𝑥) be a continuous fuzzy-valued function on the interval [0,1) and 𝜎 ∈ ℝ. 

Then, 𝐸̃[𝜎 ⊙ 𝑤̃(𝑥)] = 𝜎 ⊙ 𝐸̃[𝑤̃(𝑥)]. 

Theorem 3.6. Let 𝑧̃(𝑛)(𝑥; 𝛼) be an integrable fuzzy-valued function, and 𝑧̃(𝑛−1)(𝑥; 𝛼) is a prime 

of 𝑧̃(𝑛)(𝑥; 𝛼) on [0, ∞). Then, 

(1) 𝐸̃[𝑧̃′(𝑥)] =
𝑧(𝑣)

𝑣
⊝𝑣𝑧̃(0).  

Proof. Assume 𝑧̃ is Hukuhara differentiable. Then, by Theorem 2.3 can we obtain that 

𝑧̃′(𝑥;𝛼) = [𝑧′(𝑥; 𝛼), 𝑧′(𝑥; 𝛼)]. 

Therefore, it follows that 

𝐸̃[𝑧̃′(𝑥; 𝛼)] = 𝐸̃[𝑧′(𝑥; 𝛼) , 𝑧′(𝑥; 𝛼)]. 

By using Definition 3.2, we can get 

𝐸̃[𝑧′(𝑥; 𝛼) , 𝑧′(𝑥; 𝛼)] = (𝐸[𝑧′(𝑥; 𝛼)], 𝐸[𝑧′(𝑥; 𝛼)]). 

By using the classical Elzaki transform the first derivative, we to get the following 

(𝐸[𝑧′(𝑥; 𝛼)], 𝐸[𝑧′(𝑥; 𝛼)]) = (
𝑍(𝑣; 𝛼)

𝑣
− 𝑣𝑧(0; 𝛼),

𝑍(𝑣; 𝛼)

𝑣
− 𝑣𝑧(0; 𝛼)). 

Thus, 

𝐸̃[𝑧̃′(𝑥; 𝛼)] = (
𝑍(𝑣; 𝛼)

𝑣
− 𝑣𝑧(0; 𝛼),

𝑍(𝑣; 𝛼)

𝑣
− 𝑣𝑧(0; 𝛼)). 

(2) 𝐸̃[𝑧̃′′(𝑥)] =
𝑍̃(𝑣)

𝑣
⊝ 𝑧̃(0) ⊝ 𝑣𝑧̃′(0). 

Proof. Assume 𝑧̃ and 𝑧̃′are Hukuhara differentiable. Then, by Theorem 2.4 can we obtain that 

𝑧̃′′(𝑥;𝛼) = [𝑧′′(𝑥;𝛼), 𝑧
′′(𝑥;𝛼)

]. 

Therefore, it follows that 

𝐸̃[𝑧̃′′(𝑥; 𝛼)] = 𝐸̃[𝑧′′(𝑥; 𝛼) , 𝑧′′(𝑥; 𝛼)]. 

By using Definition 3.2, we can get 

𝐸̃[𝑧′′(𝑥; 𝛼) , 𝑧′′(𝑥; 𝛼)] = (𝐸[𝑧′′(𝑥; 𝛼)], 𝐸[𝑧′′(𝑥; 𝛼)]). 
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By using the classical Elzaki transform the second derivative, we get 

(𝐸[𝑧′′(𝑥; 𝛼)], 𝐸[𝑧′′(𝑥; 𝛼)]) = (
𝑍(𝑣; 𝛼)

𝑣
− 𝑧(0; 𝛼) − 𝑣𝑧′(0;𝛼),

𝑍(𝑣; 𝛼)

𝑣
− 𝑧(0; 𝛼) − 𝑣𝑧′(0; 𝛼)). 

Thus, 

𝐸̃[𝑧̃′′(𝑥; 𝛼)] = (
𝑍(𝑣;𝛼)

𝑣
− 𝑧(0; 𝛼) − 𝑣𝑧′(0;𝛼),

𝑍(𝑣;𝛼)

𝑣
− 𝑧(0; 𝛼) − 𝑣𝑧′(0; 𝛼)). 

4. Integro-differential equations in fuzzy environment 

Consider the one-dimensional FIDEs of the second kind under Hukuhara derivative with the 

initial and boundary conditions: 

𝑧̃(𝑛) (𝑠, 𝛼) = 𝑓(𝑠, 𝛼 ) + 𝜆̃ ∫  
𝛿(𝑥)

𝛾(𝑥)

𝑘(𝑠, 𝑡)𝑁̃(𝑧̃(𝑡, 𝛼))𝑑𝑡. (2) 

Using the fuzzy set theory based on the Zadeh extension principle and the 𝛼 -cut level set approach, 

as well as based on the approach in [30], Eq (7) can be rewritten as follows: 

{
 
 

 
 

 

   𝑧(𝑛)(𝑠, 𝛼) = 𝑓(𝑠, 𝛼) + 𝜆∫ 𝑘(𝑠, 𝑡) 𝑁(𝑧(𝑡, 𝛼))𝑑𝑡,
𝛿(𝑥)

𝛾(𝑥)

𝑧
(𝑛)
(𝑠, 𝛼) = 𝑓(𝑠, 𝛼) + 𝜆∫  𝑘(𝑠, 𝑡)𝑁(𝑧(𝑡, 𝛼))𝑑𝑡

𝛿(𝑥)

𝛾(𝑥)

,

 (3) 

where [30], 

{
𝑘(𝑠, 𝑡) 𝑧(𝑡, 𝛼) = 𝑘(𝑠, 𝑡)𝑧(𝑡, 𝛼)        𝑘(𝑠, 𝑡) ≥ 0,

𝑘(𝑠, 𝑡)𝑧(𝑡, 𝛼) =  𝑘(𝑠, 𝑡)𝑧(𝑡, 𝛼)         𝑘(𝑠, 𝑡) ≥ 0,
 (4) 

such that (𝑥) ≤ 𝑠 ≤  𝛿(𝑥), 𝜆̃ > 0, 𝑘(𝑠, 𝑡) is a known function called the kernel function, and 𝛼  

refers to the fuzzy parameter between [0,1]. Equation (3) represents the general formula of the FIDEs 

of second kind in single parametric form of a fuzzy number under the Hukuhara derivative. The 

H-derivative is chosen because it is the most widely used fuzzy derivative in analytical fuzzy 

differential equations, and allows the FE-HPM method to be applied directly to α-cut representations. 

Other fuzzy derivatives exist (e.g., generalized Hukuhara and strongly generalized derivatives), but 

their applicability to integral-type fuzzy equations is more restricted. 

5. Solving the second kind FIDEs using the FE-HPM 

To solve Eq (3) by FE-HPM, at the first the HPM is implemented as follows: 
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{
 
 

 
 𝐻(𝑍, 𝑝, 𝛼) = (1 − 𝑝)[𝑍(𝑛)(𝑠, 𝛼) − 𝑧0(𝑠, 𝛼)] + 𝑝 [𝑍

(𝑛)(𝑠, 𝛼) − 𝑓(𝑠, 𝛼) − 𝜆∫ 𝑘(𝑠, 𝑡)𝑁 (𝑍(𝑡, 𝛼)) 𝑑𝑡
𝛿(𝑥)

𝛾(𝑥)

] = 0,

𝐻(𝑍, 𝑝, 𝛼) = (1 − 𝑝) [𝑍
(𝑛)
(𝑠, 𝛼) − 𝑧0(𝑠, 𝛼)] + 𝑝 [𝑍

(𝑛)
(𝑠, 𝛼) − 𝑓(𝑠, 𝛼) − 𝜆∫ 𝑘(𝑠, 𝑡)𝑁 (𝑍(𝑡, 𝛼)) 𝑑𝑡

𝛿(𝑥)

𝛾(𝑥)

] = 0.

 

 (5) 

Thus, the initial approximation is taken as: 

{
𝑧0(𝑠, 𝛼) = 𝑓(𝑠, 𝛼),

𝑧0(𝑠, 𝛼) = 𝑓(𝑠, 𝛼).
  (6) 

By substituting Eq (6) in Eq (5), we get 

{
 
 

 
 𝑍𝑛(𝑠, 𝛼) = 𝑓(𝑠, 𝛼) + 𝑝 𝜆∫ 𝑘(𝑠, 𝑡)𝑁 (𝑍(𝑡, 𝛼)) 𝑑𝑡,

𝛿(𝑥)

𝛾(𝑥)

𝑍
𝑛
(𝑠, 𝛼) = 𝑓(𝑠, 𝛼) + 𝑝 𝜆 ∫ 𝑘(𝑠, 𝑡)𝑁 (𝑍(𝑡, 𝛼)) 𝑑𝑡.

𝛿(𝑥)

𝛾(𝑥)

 (7) 

Now, by taking the Elzaki transform and using the differential property of the Elzaki transform  on 

both sides of Eq (7), we get the following: 

{
 
 
 

 
 
 
𝐸{𝑍(𝑠, 𝛼)} = (𝑣𝑛) {∑𝑣𝑛−(𝑖+2)𝑧(𝑖)(0, 𝛼)

𝑛−1

𝑖=1

 + 𝐸 {𝑓(𝑠, 𝛼) + 𝑝 𝜆∫ 𝑘(𝑠, 𝑡)𝑁 (𝑍(𝑡, 𝛼)) 𝑑𝑡
𝛿(𝑥)

𝛾(𝑥)

}} ,

      

𝐸{𝑍(𝑠, 𝛼)} = (𝑣𝑛) {∑𝑣𝑛−(𝑖+2)𝑧
(𝑖)
(0, 𝛼)

𝑛−1

𝑖=1

+ 𝐸 {𝑓(𝑠, 𝛼) + 𝑝 𝜆 ∫ 𝑘(𝑠, 𝑡)𝑁 (𝑍(𝑡, 𝛼)) 𝑑𝑡
𝛿(𝑥)

𝛾(𝑥)

}} .

 

 

 (8) 

Now, by taking the inverse Elzaki transform on both sides of Eq (8), we get the following: 

{
 
 
 
 

 
 
 
 
𝑍(𝑠, 𝛼) =  𝐸−1 {(𝑣𝑛) {∑𝑣𝑛−(𝑖+2)𝑧(𝑖)(0, 𝛼)

𝑛−1

𝑖=1

 + 𝐸 {𝑓(𝑠, 𝛼) + 𝑝 𝜆 ∫ 𝑘(𝑠, 𝑡)𝑁 (𝑍(𝑡, 𝛼)) 𝑑𝑡
𝛿(𝑥)

𝛾(𝑥)

}}} 

      

𝑍(𝑠, 𝛼) =  𝐸−1 {(𝑣𝑛) {∑𝑣𝑛−(𝑖+2)𝑧
(𝑖)
(0, 𝛼)

𝑛−1

𝑖=1

+ 𝐸 {𝑓(𝑠, 𝛼) + 𝑝 𝜆∫ 𝑘(𝑠, 𝑡)𝑁 (𝑍(𝑡, 𝛼)) 𝑑𝑡
𝛿(𝑥)

𝛾(𝑥)

}}} 

 

  

(9) 

To clarify the implementation of the homotopy perturbation method (HPM), an embedding 

parameter is introduced to gradually transform the initial approximation into the final solution. When 

this parameter is zero, the solution represents the initial guess, and as it approaches one, it becomes 

the actual solution of the fuzzy integro-differential equation [35]. The method then expresses the 
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unknown function as a series in terms of this parameter, and the terms of the series are obtained step- 

by-step by substituting into the main equation and matching coefficients of similar powers. Each new 

term is calculated from the previous ones, and the complete approximate solution is obtained by 

taking the parameter equal to one [36‒39]. 

Now there are two cases dependent on the linearity of FIDEs: 

Case 1: If the unknown function appears within the integral, in a linear form. Now the solution of 

Eq (9) can be written as a power series 𝑝: 

{
 
 

 
 𝑍(𝑠, 𝛼) =∑𝑝𝑖𝑍𝑖(𝑠, 𝛼),

∞

𝑖=0

𝑍(𝑠, 𝛼) =∑𝑝𝑖𝑍𝑖(𝑠, 𝛼).

∞

𝑖=0

 (10) 

Now, by substituting Eq (10) into Eq (9) and comparing coefficients such as the power of 𝑝. 

Therefore, using the above iterative results, the series-form solution is provided as: 

𝑝𝑜:

{
 
 
 

 
 
 
𝑍0(𝑠, 𝛼) =  𝐸

−1 {(𝑣𝑛) {∑𝑣𝑛−(𝑖+2)𝑧(𝑖)(0, 𝛼)

𝑛−1

𝑖=1

 + 𝐸 {𝑓(𝑠, 𝛼)}}} ,

𝑍𝑜(𝑠, 𝛼)  =  𝐸
−1 {(𝑣𝑛) {∑𝑣𝑛−(𝑖+2)𝑧

(𝑖)
(0, 𝛼)

𝑛−1

𝑖=1

+ 𝐸{𝑓(𝑠, 𝛼)}}} .

 (11) 

𝑝1:

{
 
 
 

 
 
 
 𝑍1(𝑠, 𝛼) = 𝐸

−1 {(𝑣𝑛) {𝐸 {𝜆∫ 𝑘(𝑠, 𝑡)𝑍0(𝑡, 𝛼)𝑑𝑡
𝛿(𝑥)

𝛾(𝑥)

}}} ,

 𝑍1(𝑠, 𝛼) = 𝐸
−1 {(𝑣𝑛) {𝐸 {𝜆∫ 𝑘(𝑠, 𝑡)𝑍0(𝑡, 𝛼)𝑑𝑡

𝛿(𝑥)

𝛾(𝑥)

}}} .

 (12) 

𝑝𝑘:

{
 
 
 

 
 
 
 𝑍𝑘(𝑠, 𝛼) = 𝐸−1 {(𝑣𝑛) {𝐸 {𝜆∫ 𝑘(𝑠, 𝑡)𝑍𝑘−1(𝑡, 𝛼)𝑑𝑡

𝛿(𝑥)

𝛾(𝑥)

}}} ,

 𝑍𝑘(𝑠, 𝛼) = 𝐸−1 {(𝑣𝑛) {𝐸 {𝜆∫ 𝑘(𝑠, 𝑡)𝑍𝑘−1(𝑡, 𝛼)𝑑𝑡
𝛿(𝑥)

𝛾(𝑥)

}}} .

 (13) 

And so on…. 

Case 2: If the unknown function appears within the integral, in a non-linear term. 

Now the solution of Eq (9) can be written as a power series 𝑝: 
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{
 
 

 
 𝑍(𝑠, 𝛼) =∑𝑝𝑖𝑍𝑖(𝑠, 𝛼),

∞

𝑖=0

𝑍(𝑠, 𝛼) =∑𝑝𝑖𝑍𝑖(𝑠, 𝛼).

∞

𝑖=0

  (14) 

And, the non-linear term can be represented based on [34] as follows: 

{
 
 

 
 𝑁 (𝑍(𝑡, 𝛼)) =∑𝑝𝑖𝐴𝑖(𝑡, 𝛼),

∞

𝑖=0

𝑁 (𝑍(𝑡, 𝛼)) =∑𝑝𝑖𝐴𝑖(𝑡, 𝛼),

∞

𝑖=0

 (15) 

where 𝐴𝑖 and 𝐴𝑖 are the Adomian polynomials, and can be calculated as follows [34]: 

𝐴𝑖(𝑡, 𝛼) =
1

𝑖!

𝑑𝑖

𝑑𝜆𝑖
ℱ(∑𝜆𝑘

∞

𝑘=0

𝑍𝑘(𝑡, 𝛼))

𝜆=0

, 

and 

𝐴𝑖(𝑡, 𝛼) =
1

𝑖!

𝑑𝑖

𝑑𝜆𝑖
ℱ (∑𝜆𝑘

∞

𝑘=0

𝑍𝑘(𝑡, 𝛼))

𝜆=0

. 

Now, by substituting Eqs (14) and (15) into Eq (9) and comparing coefficients such as the power of 

𝑝. Therefore, using the above iterative results, the series form solution is provided as: 

𝑝𝑜:

{
 
 
 

 
 
 
𝑍0(𝑠, 𝛼) =  𝐸

−1 {(𝑣𝑛) {∑𝑣𝑛−(𝑖+2)𝑧(𝑖)(0, 𝛼)

𝑛−1

𝑖=1

 + 𝐸 {𝑓(𝑠, 𝛼)}}} ,

𝑍𝑜(𝑠, 𝛼)  =  𝐸
−1 {(𝑣𝑛) {∑𝑣𝑛−(𝑖+2)𝑧

(𝑖)
(0, 𝛼)

𝑛−1

𝑖=1

+ 𝐸{𝑓(𝑠, 𝛼)}}} .

 (16) 
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𝑝1:

{
 
 
 

 
 
 
 𝑍1(𝑠, 𝛼) = 𝐸−1 {(𝑣𝑛) {𝐸 {𝜆∫ 𝑘(𝑠, 𝑡)𝐴0(𝑡, 𝛼)𝑑𝑡

𝛿(𝑥)

𝛾(𝑥)

}}} ,

 𝑍1(𝑠, 𝛼) = 𝐸−1 {(𝑣𝑛) {𝐸 {𝜆∫ 𝑘(𝑠, 𝑡)𝐴0(𝑡, 𝛼)𝑑𝑡
𝛿(𝑥)

𝛾(𝑥)

}}} .

 (17) 

𝑝𝑘:

{
 
 
 

 
 
 
 𝑍𝑘(𝑠, 𝛼) = 𝐸

−1 {(𝑣𝑛) {𝐸 {𝜆∫ 𝑘(𝑠, 𝑡)𝐴𝑘−1(𝑡, 𝛼)𝑑𝑡
𝛿(𝑥)

𝛾(𝑥)

}}} ,

 𝑍𝑘(𝑠, 𝛼) = 𝐸−1 {(𝑣𝑛) {𝐸 {𝜆∫ 𝑘(𝑠, 𝑡)𝐴𝑘−1(𝑡, 𝛼)𝑑𝑡
𝛿(𝑥)

𝛾(𝑥)

}}} .

 (18) 

And so on…. 

Thus, the general solution of FIDEs of the 2𝑛𝑑 kind solution for both cases is given as follows: 

{
 
 

 
 𝑧(𝑠, 𝛼) = lim

𝑝→1
𝑍(𝑠, 𝛼) =∑𝑍𝑖(𝑠, 𝛼),

∞

𝑖=0

𝑧(𝑠, 𝛼) = lim
𝑝→1

𝑍(𝑠, 𝛼) =∑𝑍𝑖(𝑠, 𝛼).

∞

𝑖=0

 (19) 

In summary, to clarify how the theoretical method is applied, we briefly outline the procedure used in 

the examples. For each problem, we first express the fuzzy integro-differential equation in terms of 

its α-cut representation. Then, we construct the homotopy and apply the fuzzy Elzaki transform to 

obtain the recursive relations for the HPM terms. After that, we compute a finite number of series 

terms and reconstruct the lower and upper fuzzy solutions. Finally, we compare the approximate 

solution with the exact fuzzy solution at selected values of 𝑠 and 𝛼. 

6. Numerical examples 

In this section, a numerical example of FIDEs is presented. 

Example 1. Consider the linear FVIDE of the second kind 

𝑧̃′(𝑠, 𝛼) = 𝑓(𝑠, 𝛼) + ∫  
𝑠

0

 𝑧̃(𝑡, 𝛼)𝑑𝑡, (20) 

with 𝑧̃(0, 𝛼) = [0,0], where 𝜆̃ = [1,1], 0 ≤ 𝑡 ≤ 𝑠, 0 ≤ 𝛼 ≤ 1, 𝑘(𝑠, 𝑡) = 1, 𝑓(𝑠, 𝛼) = [𝛼 − 1 , 1 −

𝛼]. 

To solve Eq (20) by FE-HPM, first, the HPM is implemented as follows: 
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{
 
 

 
 𝐻(𝑍, 𝑝, 𝛼) = 𝑍′(𝑠, 𝛼) − (𝛼 − 1) − 𝑝∫ 𝑍(𝑡, 𝛼)𝑑𝑡

𝑠

0

= 0,

𝐻(𝑍, 𝑝, 𝛼) = 𝑍
′
(𝑠, 𝛼) − (1 − 𝛼) − 𝑝∫ 𝑍(𝑡, 𝛼)𝑑𝑡

𝑠

0

= 0.

 (21) 

Now, by taking the Elzaki transform and using the differential property of the Elzaki transform on both 

sides of Eq (21), we obtain 

{
 
 

 
 𝐸{𝑍(𝑠, 𝛼)} = 𝑣3(𝛼 − 1) + 𝑣𝐸 {𝑝∫ 𝑍(𝑡, 𝛼)𝑑𝑡

𝑠

0

} ,

 

𝐸{𝑍(𝑠, 𝛼)} = 𝑣3(1 − 𝛼) + 𝑣𝐸 {𝑝∫ 𝑍(𝑡, 𝛼)𝑑𝑡
𝑠

0

} .

 (22) 

Now, by taking the inverse Elzaki transform on both sides of Eq (22), we get the following: 

{
 
 

 
 𝑍(𝑠, 𝛼) =  𝐸−1 {𝑣3(𝛼 − 1) + 𝑣𝐸 {𝑝∫ 𝑍(𝑡, 𝛼)𝑑𝑡

𝑠

0

}} ,

 

𝑍(𝑠, 𝛼) =  𝐸−1 {𝑣3(1 − 𝛼) + 𝑣𝐸 {𝑝∫ 𝑍(𝑡, 𝛼)𝑑𝑡
𝑠

0

}} .

 (23) 

Now, the solution of Eq (23) can be written as a power series in 𝑝 as follows: 

{
 
 

 
 𝑍(𝑠, 𝛼) =∑𝑝𝑖𝑍𝑖(𝑠, 𝛼),

∞

𝑖=0

𝑍(𝑠, 𝛼) =∑𝑝𝑖𝑍𝑖(𝑠, 𝛼).

∞

𝑖=0

 (24) 

Now, by substituting Eq (24) into Eq (23) and comparing coefficients such as the power of 𝑝. 

Therefore, using the above iterative results, the series form solution is provided as 

𝑝0: {
𝑍0(𝑠, 𝛼) = 𝑠(𝛼 − 1),

𝑍0(𝑠, 𝛼) =  𝑠(1 − 𝛼).
 (25) 

𝑝1:

{
 

 𝑍1(𝑠, 𝛼) =
𝑠3

6
 (𝛼 − 1),

𝑍1(𝑠, 𝛼) =
𝑠3

6
 (1 − 𝛼).

 (26) 
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𝑝2:

{
 

 𝑍2(𝑠, 𝛼) =  
𝑠5

120
 (𝛼 − 1),

𝑍2(𝑠, 𝛼) =
𝑠5

120
 (1 − 𝛼).

 (27) 

𝑝3:

{
 

 𝑍3(𝑠, 𝛼) =  
𝑠7

5040
 (𝛼 − 1),

𝑍3(𝑠, 𝛼) =
𝑠7

5040
 (1 − 𝛼).

 (28) 

And so on…. 

Currently, the answer is provided as 

{
 
 

 
 𝑧(𝑠, 𝛼) =∑𝑍𝑖(𝑠, 𝛼),

∞

𝑖=0

𝑧(𝑠, 𝛼) =∑𝑍𝑖(𝑠, 𝛼).

∞

𝑖=0

 (29) 

Therefore, using the above iterative results, the series form solution is provided as: 

{
 

 𝑧(𝑠, 𝛼) = 𝑠(𝛼 − 1) +
𝑠3

6
 (𝛼 − 1) +

𝑠5

120
 (𝛼 − 1) +

𝑠7

5040
 (𝛼 − 1) + ⋯ 

𝑧(𝑠, 𝛼) = 𝑠(1 − 𝛼) +
𝑠3

6
 (1 − 𝛼) +

𝑠5

120
 (1 − 𝛼) +

𝑠7

5040
 (1 − 𝛼) + ⋯

 (30) 

Additionally, the exact solution is provided as: 

{
𝑧(𝑠, 𝛼) = sinh 𝑠(𝛼 − 1),

𝑧(𝑠, 𝛼) = sinh 𝑠(1 − 𝛼).
 (31) 

Table 1 and Figure 1 show that the approximation of Eq (20) by FE-HPM and, the exact solution 

at 𝑠 = 0.2 for 𝛼 ∈ [0,1] attains the triangular fuzzy number shape, and thus satisfies the fuzzy 

number properties. Also, the results obtained using FE-HPM show that the method is accurate, and 

the results confirm our theoretical analysis. Furthermore, Table 2 shows that the FE-HPM method 

gives good results very quickly. With only a few terms, the approximate solution becomes very close 

to the exact solution. When we use 4 or 5 terms, the difference between the exact and approximate 

values becomes extremely small. This means the method converges fast, and the tiny errors in Table 1 

are normal and expected. 
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Table 1. The lower and upper bounds fuzzy exact and approximation solutions of Eq (20) 

by FE-HPM with 4 HPM terms at 𝑠 = 0.2 for all 𝛼 ∈ [0,1]. 

 Lower fuzzy solution Upper fuzzy solution 

(𝛼) Exact 

Solution 

Approximation 

Solution 

Absolute 

Error 

Exact 

Solution 

Approximation 

Solution 

Absolute 

Error 

0 −0.201336 −0.201336 1.41 × 10−12 0.201336 0.201336 1.41 × 10−12 

0.2 −0.161068 −0.161068 1.12 × 10−12 0.161068 0.161068 1.12 × 10−12 

0.4 −0.120801 −0.120801 8.46 × 10−13 0.120801 0.120801 8.46 × 10−13 

0.6 −0.080534 −0.080534 5.64 × 10−13 0.080534 0.080534 5.64 × 10−13 

0.8 −0.040267 −0.040267 2.82 × 10−13 0.040267 0.040267 2.82 × 10−13 

1 0 0 0 0 0 0 

 

Figure 1: 2D plot comparing the fuzzy exact and approximate solutions of Eq (20) by 

FE-HPM with 4 HPM terms at 𝑠 = 0.2 for all 𝛼 ∈ [0,1]. 

Table 2. Convergence of the lower and upper bounds fuzzy FE-HPM solution for Example 

1 at 𝑠 =  0.2 and 𝛼 =  0. 
 

Lower fuzzy solution Upper fuzzy solution 

Number 

of terms 

(N) 

Approximation 

Solution 

Absolute Error Exact Solution Absolute Error 

1 −0.200000000 1.34 × 10−3 0.200000000 1.34 × 10−3 

2 −0.201333333 2.67 × 10−6 0.201333333 2.67 × 10−6 

3 −0.201336000 2.54 × 10−9 0.201336000 2.54 × 10−9 

4 −0.201336003 1.41 × 10−13 0.201336003 1.41 × 10−13 
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Example 2. Consider the non-linear FVIDE of the second kind 

𝑧̃′(𝑠, 𝛼) = 𝑓(𝑠, 𝛼) + ∫  
𝑠

0

𝑧̃2(𝑡, 𝛼)𝑑𝑡 (32) 

with 𝑧̃(0, 𝛼) = [0,0] , where 𝜆̃ = [1,1], 0 ≤ 𝑡 ≤ 𝑠 , 0 ≤ 𝛼 ≤ 1 , 𝑘(𝑠, 𝑡) = 1, and 𝑓(𝑠, 𝛼) =
[0.75 + 0.25𝛼 , 1.25 − 0.25𝛼]. 

To solve Eq (32) by FE-HPM, first, the HPM is implemented as follows: 

{
 
 

 
 𝐻(𝑍, 𝑝, 𝛼) = 𝑍′(𝑠, 𝛼) − (0.75 + 0.25𝛼) − 𝑝∫  

𝑠

0

𝑍2(𝑡, 𝛼)𝑑𝑡 = 0,

𝐻(𝑍, 𝑝, 𝛼) = 𝑍
′
(𝑠, 𝛼) − (1.25 − 0.25𝛼) − 𝑝∫ 𝑍

2
(𝑡, 𝛼)𝑑𝑡

𝑠

0

= 0.

 (33) 

Now, by taking the Elzaki transform and using the differential property of the Elzaki transform on both 

sides of Eq (33), we obtain 

{
 
 

 
 𝐸{𝑍(𝑠, 𝛼)} = {𝑣3(0.75 + 0.25𝛼) + 𝑣𝐸 {𝑝∫  

𝑠

0

 𝑍2(𝑡, 𝛼)𝑑𝑡}} ,

𝐸{𝑍(𝑠, 𝛼)} = {𝑣3(1.25 − 0.25𝛼) + 𝑣𝐸 {𝑝∫ 𝑍
2
(𝑡, 𝛼)𝑑𝑡

𝑠

0

}} .

 (34) 

Now, by taking the inverse Elzaki transform on both sides of Eq (34), we get the following: 

{
 
 

 
 𝑍(𝑠, 𝛼) =  𝐸−1 {𝑣3(0.75 + 0.25𝛼) + 𝑣𝐸 {𝑝∫ 𝑍2

𝑠

0

(𝑡, 𝛼)𝑑𝑡}} ,

𝑍(𝑠, 𝛼) =  𝐸−1 {𝑣3(1.25 − 0.25𝛼) + 𝑣𝐸 {𝑝∫ 𝑍
2
(𝑡, 𝛼)𝑑𝑡

𝑠

0

}} .

 (35) 

Now, the solution of Eq (35) can be written as power series in 𝑝 as follows: 

{
 
 

 
 𝑍(𝑠, 𝛼) =∑𝑝𝑖𝑍𝑖(𝑠, 𝛼),

∞

𝑖=0

𝑍(𝑠, 𝛼) =∑𝑝𝑖𝑍𝑖(𝑠, 𝛼),

∞

𝑖=0

 (36) 

and the non-linear term can be represented as 

{
 
 

 
 𝑍2(𝑡, 𝛼) =∑𝑝𝑖𝐴𝑖(𝑠, 𝛼),

∞

𝑖=0

𝑍
2
(𝑡, 𝛼) =∑𝑝𝑖𝐴𝑖(𝑠, 𝛼).

∞

𝑖=0

 (37) 
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where 𝐴𝑖(𝑡, 𝛼) and 𝐴𝑖(𝑡, 𝛼) are the Adomian polynomials for the non-linear terms 𝑍2(𝑡, 𝛼) and 

𝑍
2
(𝑡, 𝛼), respectively, and they are given by 

𝐴0(𝑠, 𝛼) = 𝑍0
2(𝑠, 𝛼), 𝐴0(𝑠, 𝛼) = 𝑍0

2
(𝑠, 𝛼). 

𝐴1(𝑠, 𝛼) = 2 𝑍0(𝑠, 𝛼)𝑍1(𝑠, 𝛼), 𝐴1(𝑠, 𝛼) = 2 𝑍0(𝑠, 𝛼)𝑍1(𝑠, 𝛼). 

Now, by substituting Eqs (36) and (37) into Eq (35) and comparing coefficients such as the power of 

𝑝. Therefore, using the above iterative results, the series-form solution is provided as 

𝑝0: {
𝑍0(𝑠, 𝛼) = 𝑠(0.75 + 0.25𝛼),

𝑍0(𝑠, 𝛼) =  𝑠(1.25 − 0.25𝛼).
 (38) 

𝑝1:

{
 

 𝑍1(𝑠, 𝛼) =
𝑠4

12
(0.75 + 0.25𝛼)2,

𝑍1(𝑠, 𝛼) =  
𝑠4

12
(1.25 − 0.25𝛼)2.

 (39) 

𝑝2:

{
 

 𝑍2(𝑠, 𝛼) =
𝑠7

252
(0.75 + 0.25𝛼)3,

𝑍2(𝑠, 𝛼) =
𝑠7

252
(1.25 − 0.25𝛼)3.

 (40) 

And so on…. 

Currently, the answer is provided as 

{
 
 

 
 𝑧(𝑠, 𝛼) =∑𝑍𝑖(𝑠, 𝛼),

∞

𝑖=0

𝑧(𝑠, 𝛼) =∑𝑍𝑖(𝑠, 𝛼).

∞

𝑖=0

 (41) 

Therefore, using the above iterative results, the series form solution is provided as 

{
 

 𝑧(𝑠, 𝛼) = 𝑠(0.75 + 0.25𝛼) +
𝑠4

12
(0.75 + 0.25𝛼)2 + 

𝑠7

252
(0.75 + 0.25𝛼)3 +⋯

𝑧(𝑠, 𝛼) = 𝑠(1.25 − 0.25𝛼) + 
𝑠4

12
(1.25 − 0.25𝛼)2 + 

𝑠7

252
(1.25 − 0.25𝛼)3…

 (42) 

Table 3 and Figure 2 show that the approximation of Eq (32) by FE-HPM at 𝑠 = 0.2 for 𝛼 ∈

[0,1] attains the triangular fuzzy number shape, and thus satisfies the fuzzy number properties. Also, 

the results obtained using FE-HPM show that the method is accurate, and the results confirm our 

theoretical analysis. 
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Table 3. The lower and upper bounds fuzzy aproximation solutions of Eq (32) by 

FE-HPM with 3 HPM terms at 𝑠 = 0.2 and FL-ADM with 4 ADM terms for  all 𝛼 ∈

[0,1]. 

 Lower fuzzy solution Upper fuzzy solution 

(𝛼) FL-ADM FE-HPM Absolute Error FL-ADM FE-HPM Absolute Error 

0 0.150075 0.150075 3.66 × 10−10 0.250208 0.250208 1.69 × 10−9 

0.2 0.160085 0.160085 4.44 × 10−10 0.240192 0.240192 1.50 × 10−9 

0.4 0.170096 0.170096 5.33 × 10−10 0.230176 0.23017 1.32 × 10−9 

0.6 0.180108 0.180108 6.33 × 10−10 0.220161 0.220161 1.15 × 10−9 

0.8 0.190120 0.190120 7.45 × 10−10 0.21014 0.210147 1.00 × 10−9 

1 0 0 0 0 0 0 

 

Figure 2. The lower and upper bounds fuzzy approximation solutions of Eq (43) by 

FE-HPM with 4 HPM terms at 𝑠 = 0.2 for all 𝛼 ∈ [0,1]. 

Example 3: Consider the non-linear FFVIDEs second kind: 

𝑧′(𝑠, 𝛼) = 𝑓(𝑠, 𝛼) + ∫ ∫  
1

0

𝑠

0

𝑧2(𝑡, 𝛼)𝑑𝑡𝑑𝑟, (43) 

with 𝑧(0, 𝛼) = (0,0), where 0 ≤ 𝑡 ≤ 1, 0 ≤ 𝛼 ≤ 1, 𝑘(𝑠, 𝑡) = 1, and 𝑓(𝑠, 𝛼) = (𝑓(𝑠, 𝛼), 𝑓(𝑠, 𝛼)), 

i.e., 

𝑓(𝑠, 𝛼) = [0.75 + 0.25𝛼, 1.25 − 0.25𝛼]. 

To solve Eq (43) by FE-HPM, we first create the following homotopy: 
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{
 
 

 
 𝐻(𝑍, 𝑝, 𝛼) = 𝑍′(𝑠, 𝛼) − (0.75 + 0.25𝛼) − 𝑝∫ ∫  

1

0

 
𝑠

0

𝑍2(𝑡, 𝛼)𝑑𝑡𝑑𝑟 = 0,

𝐻(𝑍, 𝑝, 𝛼) = 𝑍
′
(𝑠, 𝛼) − (1.25 − 0.25𝛼) − 𝑝∫ ∫  

1

0

 
𝑠

0

𝑍
2
(𝑡, 𝛼)𝑑𝑡𝑑𝑟 = 0.

 (44) 

Now, by taking the Elzaki transform and using the differential property of the Elzaki transform on both 

sides of Eq (44), we get the following: 

{
 
 

 
 𝐸{𝑍(𝑠, 𝛼)} = {𝑣3(0.75 + 0.25𝛼) + 𝑣𝐸 {𝑝∫ ∫  

1

0

 
𝑠

0

𝑍2(𝑡, 𝛼)𝑑𝑡𝑑𝑟}} ,

𝐸{𝑍(𝑠, 𝛼)} = {𝑣3(1.25 − 0.25𝛼) + 𝑣𝐸 {𝑝∫ ∫  
1

0

 
𝑠

0

𝑍
2
(𝑡, 𝛼)𝑑𝑡𝑑𝑟}} .

 (45) 

Now, by taking the inverse Elzaki transform on both sides of Eq (45), we get the following: 

{
 
 

 
 𝑍(𝑠, 𝛼) =  𝐸−1 {𝑣3(0.75 + 0.25𝛼) + 𝑣𝐸 {𝑝∫ ∫  

1

0

 
𝑠

0

𝑍2(𝑡, 𝛼)𝑑𝑡𝑑𝑟}} ,

𝑍(𝑠, 𝛼) =  𝐸−1 {𝑣3(1.25 − 0.25𝛼) + 𝑣𝐸 {𝑝∫ ∫  
1

0

 
𝑠

0

𝑍
2
(𝑡, 𝛼)𝑑𝑡𝑑𝑟}} .

 (46) 

Now, the solution of Eq (46) can be written as power series in 𝑝 as follows: 

{
 
 

 
 𝑍(𝑠, 𝛼) =∑𝑝𝑖𝑍𝑖(𝑠, 𝛼),

∞

𝑖=0

𝑍(𝑠, 𝛼) =∑𝑝𝑖𝑍𝑖(𝑠, 𝛼).

∞

𝑖=0

 (47) 

And, let the non-linear term can be represented as 

{
 
 

 
 𝑍2(𝑡, 𝛼) =∑𝑝𝑖𝐴𝑖(𝑠, 𝛼),

∞

𝑖=0

𝑍
2
(𝑡, 𝛼) =∑𝑝𝑖𝐴𝑖(𝑠, 𝛼),

∞

𝑖=0

 (48) 

where 𝐴𝑖(𝑡, 𝛼) and 𝐴𝑖(𝑡, 𝛼) are the Adomian polynomials for the non-linear terms 𝑍2(𝑡, 𝛼) and 

𝑍
2
(𝑡, 𝛼), respectively, and they are given by 

𝐴0(𝑠, 𝛼) = 𝑍0
2(𝑠, 𝛼),  𝐴0(𝑠, 𝛼) = 𝑍0

2
(𝑠, 𝛼). 
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𝐴1(𝑠, 𝛼) = 2 𝑍0(𝑠, 𝛼)𝑍1(𝑠, 𝛼), 𝐴1(𝑠, 𝛼) = 2 𝑍0(𝑠, 𝛼)𝑍1(𝑠, 𝛼). 

Now, by substituting Eqs (47) and (48) into Eq (46) and comparing coefficients such as the power of 

𝑝. Therefore, using the above iterative results, the series form solution is given as 

𝑝0: {
𝑍0(𝑠, 𝛼) = 𝑠 (0.75 + 0.25𝛼),

𝑍0(𝑠, 𝛼) =  𝑠(1.25 − 0.25𝛼).
 (49) 

𝑝1:

{
 

 𝑍1(𝑠, 𝛼) =
𝑠2

6
 (0.75 + 0.25𝛼)2,

𝑍1(𝑠, 𝛼) =
𝑠2

6
(1.25 − 0.25𝛼)2.

 (50) 

𝑝2:

{
 

 𝑍2(𝑠, 𝛼) =
𝑠2

24
 (0.75 + 0.25𝛼)3,

𝑍2(𝑠, 𝛼) =
𝑠2

24
 (1.25 − 0.25𝛼)3.

 (51) 

And so on…. 

Currently, the answer is given as 

{
 
 

 
 𝑧(𝑠, 𝛼) =∑𝑍𝑖(𝑠, 𝛼),

∞

𝑖=0

𝑧(𝑠, 𝛼) =∑𝑍𝑖(𝑠, 𝛼).

∞

𝑖=0

 (52) 

Therefore, using the above iterative results, the series-form solution is given as 

{
 

 𝑧(𝑠, 𝛼) = 𝑠 (0.75 + 0.25𝛼) +
𝑠2

6
 (0.75 + 0.25𝛼)2 +

𝑠2

24
 (0.75 + 0.25𝛼)3 +⋯ 

𝑧(𝑠, 𝛼) = 𝑠(1.25 − 0.25𝛼) +
𝑠2

6
(1.25 − 0.25𝛼)2 + 

𝑠2

24
 (1.25 − 0.25𝛼)3 +⋯ 

 (53) 

Table 4 and Figure 3 show that the approximation of Eq (43) by FE-HPM at 𝑠 = 0.2 for 𝛼 ∈

[0,1] attains the triangular fuzzy number shape, and thus satisfies the fuzzy number properties. Also, 

the results obtained using FE-HPM show that the method is accurate, and the results confirm our 

theoretical analysis. 
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Table 4. The lower and upper bounds fuzzy aproximation solutions of Eq (43) by 

FE-HPM with 3 HPM terms at 𝑠 = 0.2 and FL-ADM with 4 ADM terms for  all 𝛼 ∈
[0,1]. 

 Lower fuzzy solution Upper fuzzy solution 

(𝛼) FL-ADM FE-HPM Absolute Error FL-ADM FE-HPM Absolute Error 

0 0.154453 0.154453 1.66 × 10−10 0.258463 0.258463 1.28 × 10−12 

0.2 0.165120 0.165120 2.16 × 10−10 0.247679 0.247679 1.09 × 10−12 

0.4 0.175840 0.175840 2.75 × 10−10 0.236943 0.236943 9.23 × 10−12 

0.6 0.186615 0.186615 3.46 × 10−10 0.226251 0.226251 7.72 × 10−12 

0.8 0.197445 0.197445 3.46 × 10−10 0.216245 0.216245 6.41 × 10−12 

1 0.208333 0.208333 5.27 × 10−10 0.205000 0.205000 5.27 × 10−12 

 

Figure 3. 2D plot of the fuzzy approximate solutions of Eq (43) by FE-HPM with 3 HPM 

terms at 𝑠 = 0.2,𝑛 = 4 for all 𝛼 ∈ [0,1]. 

With regard to the CPU time to run the algorithm, all computations for the FE-HPM algorithm 

were performed using Wolfram Mathematica 13 on a Windows 10 computer equipped with an Intel 

Core i7 processor and 16 GB of RAM. The execution time required to obtain the approximate fuzzy 

solutions was minimal: each example ran in well under 0.05 seconds when using four HPM terms. 

These results indicate that the proposed FE-HPM method is computationally efficient and requires 

only minimal computational resources. Furthermore, the present study is limited to fuzzy 

integro-differential equations that satisfy Hukuhara differentiability, and the analysis focuses on 

particular types of Volterra and mixed Fredholm–Volterra structures. In addition, the convergence 

and stability of the FE-HPM approach have been demonstrated numerically, but a rigorous 

theoretical proof for the fuzzy HPM series remains an open issue. These aspects will be examined in 

future investigations. 
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7. Conclusions 

In this paper, the FE-HPM is provided as an efficient and effective approach for solving several 

types of FIDEs under Hukuhara differentiability. The proposed method using a hybrid method 

between fuzzy Elzaki transform with homotopy perturbation method is provided as a new and 

reliable method to solve both linear and non-linear FVIDEs and FFIDEs, in addition to nonlinear 

FFVIDEs, which are used in fields involving unclear and uncertainty. The results obtained 

demonstrate that FE-HPM provides a quick convergence to exact solutions with significantly lower 

iterations compared to classical numerical methods. This makes it a fundamental tool for solving 

these problems. This method of handling fuzzy systems makes it intrinsically valuable for obtaining 

reliable results in a short time. Future research may extend the FE-HPM method to broader classes of 

fuzzy integro-differential equations, including rigorous convergence and stability analysis, 

performing deeper comparisons with other fuzzy numerical techniques, and applying the approach to 

real-world fuzzy models. 
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