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Abstract: Early and accurate diagnosis of lung cancer remains challenging due to the heterogeneity of
tumor morphology and the variability across imaging modalities. This study proposed a deep learning
framework that integrated computed tomography (CT), positron emission tomography/computed
tomography (PET/CT), and chest X-ray (CXR) within a unified multi-modal transformer architecture
for early lung cancer detection. The framework employed modality-specific encoders combining
convolutional and state-space blocks to extract spatial-frequency representations, followed by a
gated cross-modal fusion transformer designed to align heterogeneous features and handle missing
modalities through mixture-of-experts routing and low-rank imputation. Multi-task heads were
jointly optimized for nodule detection, segmentation, malignancy classification, and survival risk
prediction. Explainability was embedded through concept bottlenecks, prototype reasoning, gradient-
based attribution, and counterfactual concept editing, offering case-level interpretability and clinically
meaningful evidence maps. Uncertainty was estimated via Monte-Carlo dropout, deep ensembles,
and temperature scaling to ensure calibrated confidence estimates and defer-to-expert safety decisions.
Lung image database consortium and image database resource initiative (LIDC-IDRI) (CT), the cancer
imaging archive (TCIA) (PET/CT), and national lung screening trial (NLST) (CXR) benchmark
datasets revealed that our methods work better than the best methods available. The proposed technique
yielded Dice scores of 0.879, 0.872, and 0.876, together with AUC values of 0.944, 0.952, and 0.938,
and an expected calibration error (ECE) of 0.02 across all modalities. Under domain shift, cross-dataset
analysis showed substantial generalization (AUC > 0.92). A generalizable framework for multi-modal
diagnostics made it possible to use AI to help with lung cancer screening in a way that was clear,
trustworthy, and scalable.
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1. Introduction

Globally, lung cancer is the biggest cause of cancer-related fatalities, surpassing breast, prostate, and
colorectal cancers combined [1]. Early detection is critical since survival rates decrease with tumor
growth and metastasis [2]. Low-dose computed tomography (LDCT) screening is tough to identify
benign from malignant nodules because of reader variability, imaging noise, and subtle morphological
differences [3]. Handcrafted radiomic characteristics and statistical models in traditional computer-
aided diagnosis (CAD) systems are typically insufficient for generalization across imaging protocols
and scanners [4].

Deep learning (DL) has transformed medical imaging by autonomously detecting, segmenting, and
classifying pulmonary nodules with radiologist-level accuracy [3]. Convolutional neural networks
(CNNs) and transformers have been extensively studied for nodule identification, malignancy risk
prediction, and prognosis estimation [5]. Although many techniques rely on computed tomography
(CT) data, they often overlook supplementary information from other modalities including positron
emission tomography (PET), chest X-ray (CXR), and histopathology [6]. Integrating heterogeneous
data sources in multi-modal learning frameworks enhances disease representation, boosting diagnostic
accuracy and robustness [7].

Criticism of deep neural networks’ interpretability hinders clinical adoption despite their
success [8]. Explainable artificial intelligence (XAI) uses approaches including gradient-based
attribution, prototype learning, and concept bottlenecks to make model predictions transparent [9].
Using these methods can improve clinical trust, analyze errors, and find latent imaging biomarkers [10].
Integrating uncertainty quantification and calibration can enhance model safety and reliability for
clinical decision assistance. Recent advances in inverse problems have focused more on elements of the
problem including stability, identifiability, and trustworthy decisions than just recovering the solutions.
New mathematical formulations of fractional polyharmonic operators, reconstruction of inverse spectra
that are missing data, and contamination models which use neural solvers for the reconstruction of
inverse scattering are some examples of this [11–13]. Our multimodal fusion for multimodal fusion
and concept bottlenecks, as well as uncertainty-aware calibration, also provide robust decision support
systems that go beyond traditional inverse modeling.

For early and accurate lung cancer diagnosis, we present a multimodal deep learning architecture
that integrates CT, PET/CT, and CXR imaging with structured clinical data. Anatomical, metabolic,
and contextual inputs are modeled by modality-specific encoders and a controlled cross-modal fusion
transformer to provide complementary feature learning even under missing-modality settings. We
use concept bottlenecks and prototype reasoning to enable interpretable intermediate representations,
evidence-based prototype retrieval, and counterfactual concept modification to improve transparency
and clinical interpretability. Monte Carlo dropout, deep ensembles, and temperature scaling improve
prediction reliability and clinical trustworthiness with uncertainty-aware calibration and safety
filtering. In nodule segmentation, malignancy classification, and cross-dataset generalization, the
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proposed model consistently outperforms state-of-the-art baselines on three public benchmark datasets,
lung image database consortium and image database resource initiative (LIDC-IDRI), the cancer
imaging archive (TCIA) PET/CT, and national lung screening trial (NLST), while providing clinically
meaningful visual and semantic explanations. Overall, our work advances trustworthy, interpretable,
and generalizable AI for precision oncology and early-stage lung cancer screening.

The paper’s organization follows. Recent literature on deep learning models for lung cancer
diagnosis is reviewed in Section 2. The proposed multimodal framework with its architecture, fusion
technique, and learning objectives is presented in Section 3. See Section 4 for experimental setup,
quantitative and qualitative evaluations, and ablation analyses. Section 5 will finish the study and
suggest future research directions.

2. Related work

Recent research across medical image analysis and related domains has demonstrated the growing
importance of explainability, attention mechanisms, and hybrid deep learning architectures. In
dermatology, several studies have introduced parallel attention and spiking-attention mechanisms
to enhance the interpretability of skin cancer classification and segmentation models [14, 15].
Complementary advances in gastrointestinal and breast cancer diagnostics have explored hierarchical
multi-stage attention, dynamic expert routing, and multi-feature attention networks to improve clinical
decision support [16, 17]. In neuroimaging, significant progress has been made in explainable brain
tumor detection through graph-attention transformers, systematic literature surveys, and hybrid state-
space transformer models [18–20]. Beyond medical diagnostics, deep learning innovations have
extended to tasks such as secure image encryption using nonlinear hybrid pseudo-random sequences
and transformer-based agricultural object detection [21, 22]. Explainability in biometric verification
has also gained traction, with Siamese-based signature verification demonstrating improved robustness
and discriminative feature learning [23]. Collectively, these works highlight a consistent trend toward
multimodal fusion, attention-driven interpretability, and expert-routing mechanisms, underscoring the
need for robust and explainable frameworks capable of operating reliably under real-world constraints
such as missing or corrupted data.

Previous lung cancer screening trials, such as the NLST, demonstrated decreased mortality using
low-dose CT scans; however, elevated false-positive rates required dependable CAD systems [24].
Handcrafted radiomic descriptors and statistical classifiers were inconsistent with variations in scanners
and acquisition methods in conventional CAD. Deep learning made it possible to learn features from
images from start to finish, which changed the way lung nodules are analyzed. U-Net, 3D U-Net,
UNet++, and nnU-Net are only a few of the architectures that have proven important for medical
image segmentation because they can capture hierarchical context. Detection frameworks like Faster
R-CNN, RetinaNet, and CenterNet have been effectively employed for volumetric lung CT, identifying
pulmonary nodules with significant sensitivity [25, 26]. These techniques utilized unimodal CT
imaging, rendering them uninterpretable.

Transformers and modern representation learning have revolutionized how medical images are
made. vision transformers (ViT) and hierarchical variants such as Swin Transformer [27] exemplify
long-range dependencies that CNNs find challenging to model. Self-supervised learning (SSL)
methods including simple framework for contrastive learning of visual representations (SimCLR),
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bootstrap your own latent (BYOL), (swapping assignments between views (SwAV), and masked
autoencoder (MAE) have been changed to work better with volumetric medical data, making them
more efficient and generalizable. Using domain-specific frameworks like Models Genesis and
multimodal SSL pipelines [28] makes pretraining better for different types of imaging. New visual
encoders like DINOv2 are great at zero-shot and transfer learning in medicine.

Multimodal deep learning (MMDL) shows promise for using complementary modalities including
CT, PET, CXR, and clinical data to provide a whole picture of a patient [29]. Fusion strategies
encompass a spectrum from initial concatenation to subsequent decision-level integration, with cross-
attention fusion demonstrating efficacy in biological contexts [30]. PET/CT fusion frameworks in lung
oncology enhance malignancy prediction by amalgamating structural and metabolic indicators [31].
However, these methods don’t work well when modalities are lacking and don’t work well when
datasets from different sites are combined. There are many ways to limit domain shifts caused by
scanners before learning, such as ComBat harmonization.

Several domains of medicine have successfully used advanced deep learning processes to create
thoracic imaging systems along with numerous other applications as part of their respective multi-
model frameworks. For instance, [32] illustrates an Endoscopy-based CNN capable of automatically
recognizing abnormalities in the gastrointestinal (GI) tract. By addressing challenges such as
severe class imbalance and heterogeneous acquisition conditions through means such as tailored
augmentation, tuning thresholds, and implementing a calibration-based decision process, they were
able to improve accuracy and reliability. Similarly, [33] describes a multi-class dermoscopic lesion
classifier, which utilizes methods such as color equalization, stratified sampling, saliency validation,
and an evaluation scheme oriented toward workflow, to illustrate important cross-domain insights into
the development of clinically relevant, interpretable, and easily deployable AI systems. Collectively,
these studies emphasize that generalizable design principles, such as effective preprocessing of input
data, harmonizing the acquired data, calibrating the outcome classification, and utilizing rationality and
reasoning on an individual patient basis, provide design guidance for satisfying both the multitasking
and reliability aspects of the multimodal architecture designed to facilitate early lung cancer diagnosis.

Use of advanced deep learning processes to develop robust AI systems in the medical field has also
been demonstrated through the recent introduction of dynamic systems-based neural architectures. [13]
provides a different methodology of using dynamic systems-based neural networks to build a stability-
enhanced neural network for the purpose of reverse scattering corrupted data. The findings from this
study are of great importance, as they will provide guidance on the benefits of developing multimodal
imaging systems based in part on their applicability to imaging modalities subject to noise and missing
inputs. [34] used neural-based ordinary differential equation (ODE) methods to derive local manifold
approximations to motivate the use of state-space modeling approaches to generate uncertainty aware
models. The two works together will provide complementary theoretical foundations upon which
design principles for promoting data and feature flow reliably through complex clinical environments
will be established.

Interpretability is crucial for the translation of clinical AI models. Gradient-based localization
techniques, such as Grad-CAM [35] and integrated gradients [36], illustrate image regions that
influence predictions. Concept bottleneck models (CBMs) offer features comprehensible to humans,
whereas Prototype Networks [37] employ “this-looks-like-that” reasoning to achieve case-based
transparency. Tools like local interpretable model-agnostic explanations (LIME), shapley additive
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explanations (SHAP), and right-for-the-right-reasons regularization make models easier to understand
by correlating feature importance with domain priors [38]. Explainability methods in thoracic imaging
validate that highlighted nodule positions and borders are essential for evaluating malignancy.

The dependability of medical AI systems hinges on uncertainty quantification and calibration.
Monte Carlo Dropout and deep ensembles quantify epistemic uncertainty, whereas temperature scaling
improves post-hoc probability calibration [39]. These techniques enhance model dependability in
safety-critical diagnostic pipelines and augment risk modeling methodologies such as Cox proportional
hazards analysis [40]. Most earlier research, however, still relied on unimodal data or post-hoc
hypotheses. Our learning approach for early lung cancer diagnosis, on the other hand, uses multimodal
fusion, intrinsic interpretability, and uncertainty calibration.

Deep learning-based lung cancer diagnosis has made considerable gains, but research gaps keep
it from being used in clinical settings. Most approaches solely use CT or PET/CT scans, which
ignore structural, metabolic, and contextual signals that could help tell the difference between cancer
and noncancerous cells. Recent multimodal fusion models often employ basic concatenation or late
fusion, which do not leverage cross-modal correlations and are prone to overlooking modalities or
exhibiting inconsistent acquisition approaches. These systems generate saliency maps devoid of
semantic grounding or clinical interpretability owing to post-hoc explainability. Lack of concept-level
reasoning and prototype-based proof makes people less confident and open in real-world radiology.
There are not many studies that measure uncertainty and check how reliable predictions are to prevent
making mistakes that are too confident. Our multimodal deep learning strategy uses a gated cross-
modal transformer, idea bottlenecks, prototype reasoning, and uncertainty-aware calibration to narrow
the gaps between CT, PET/CT, and CXR modalities and structured clinical data. This all-encompassing
approach guarantees diagnostic precision and clarity, establishing a reliable and transparent early-stage
lung cancer decision-support system.

3. Methodology

Our deep learning framework for early lung cancer diagnosis using multimodal medical imaging
combines many types of medical imaging and clinical knowledge into a single prediction framework.
The modular approach guarantees high performance, interpretability, and clinical dependability across
the LIDC-IDRI (CT), TCIA (PET/CT), and NLST datasets. The system standardizes data curation
and preprocessing to bring together imaging, histological, and clinical domains after characterizing
early lung cancer diagnosis as a multimodal classification and survival prediction task. Next, hybrid
convolutional and state-space backbones teach modality-specific encoders how to get features from
each modality that are both different and useful. Self-supervised goals make representations better and
make them less dependent on annotations. A gated cross-modal transformer puts these embeddings
in a shared latent space using mixture-of-experts routing and cross-modal imputation to keep them
strong even when some modalities are missing or degraded. Multitask heads improve the recognition,
segmentation, malignancy classification, and time-to-event risk prediction of nodules for a single
diagnostic representation across spatial and temporal scales. Prototype matching, concept bottlenecks,
and gradient-based attributions offer comprehensible insights into acquired decision boundaries.
Lastly, the uncertainty estimate, calibration, and safety filtering modules make sure that the system
can be used safely, and rigorous training and evaluation methods make sure that it can be used in any
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clinical setting or acquisition situation. Figure 1 shows the end-to-end architecture, with a focus on
design and multimodal.

Malignancy Score

Segmentation Mask

Time-to-Event Risk

Figure 1. Overall deep learning framework for early diagnosis of lung cancer.

3.1. Datasets

To test the proposed technique, we employed datasets from several imaging modalities and clinical
circumstances, such as LIDC-IDRI (CT), TCIA (PET/CT), and NLST (CXR). For the LIDC-IDRI
dataset, four expert radiologists marked the edges, diameters, and chance of malignancy (from 1 to
5) of 1,018 thoracic CT scans. These pictures are resampled to an isotropic voxel spacing of 1.0 ×
1.0 × 1.0 mm, which is a major source for finding and separating nodules. The TCIA PET/CT subset
enables multimodal risk prediction and cross-domain learning by integrating fluorodeoxyglucose
positron emission tomography (FDG)-PET and CT volumes with standardized uptake values (SUVs)
and clinical factors such as age, gender, tumor histology, and survival time. The NLST cohort offers
high-resolution screening chest X-rays associated with clinical follow-up outcomes, facilitating early-
stage malignancy classification and visual cue extraction in the absence of volumetric data. Using the
pipeline described in Section 3.2, datasets are preprocessed, normalized, and aligned to a common
anatomical reference frame. Using rotation- and intensity-based augmentations to oversample both
benign and malignant instances helps to balance the data, and classifying patients at the level of
the patient helps to keep data from leaking. The unified dataset encompasses the entire clinical
spectrum, ranging from 2D screening to 3D diagnostic imaging, facilitating a thorough assessment
of the proposed multimodal framework across various acquisition and patient scenarios.

The LIDC-IDRI dataset included all 1,018 patients (1,018 studies), totaling 244,527 annotated
nodule slices. This dataset excluded any scans with corrupted digital imaging and communications
in medicine (DICOM) headers, inconsistent axial spacing, or missing extensible markup language
(XML) annotations. After filtering by these criteria, a total of 7,371 nodules (diameter greater than or
equal to 3mm) that had been classified by at least one radiologist were kept. The TCIA PET/CT dataset
contained information from 482 patients. Of these 482 patients, there were 19 patients whose images
were removed because there were missing calibrations on the PET SUV or failures in registering the
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PET to CT images. The final TCIA PET/CT dataset included 463 patients and 1,126 annotations for
lesions made from clinical reports. The NLST dataset included 5,112 participants who received a
baseline screening chest X-ray, with cases being removed from that number that had an incomplete
outcome follow-up or whose diagnostic labels were too ambiguous. The final NLST dataset included
4,932 patients. The inclusion criteria for each of the datasets were adults aged greater than or equal to
18 years, complete imaging metadata available, and nodule- or patient-level labels provided. After
preprocessing, the final class balance across the three datasets is as follows: (i) LIDC-IDRI had:
51.2% benign and 48.8% malignant (nodule-level); (ii) TCIA dataset had: 56.4% malignant and 43.6%
benign (lesion-level); and (iii) NLST dataset had: 10.7% malignant and 89.3% benign (patient-level).
Scanner/site metadata were created for both the LIDC-IDRI and TCIA datasets, with LIDC-IDRI
containing 31 scanner models and TCIA containing 6 sites. This data was used to create stratified
sampling of each of the datasets and perform ComBat harmonization.

TCIA and the NCI provides public access to the LIDC-IDRI, TCIA, and NLST datasets. Under
HIPAA Safe-Harbor, all datasets are fully de-identified; therefore, there is no need for local institutional
review board (IRB) approval for use. All access to NLST data was done under the NCI Data Use
Agreement. All identifiers have been replaced with hashed keys in the NLST dataset. Longitudinal
visits to the NLST were all aggregated under one participant identifier to prevent temporal leakage
across splits. The DICOM metadata for TCIA PET/CT did not contain any protected health information
(PHI), and all SUV calculations were made using only anonymized parameters used during PET/CT,
so no PHI was used for the purposes of this study.

3.2. Data curation and preprocessing

All imaging modalities undergo a harmonized preprocessing workflow designed to standardize
voxel geometry, intensity distributions, and anatomical alignment across the three datasets. For each
patient p and modality m ∈ {CT,PETCT,CXR}, the input image tensor X(m)

p is first normalized to
physically meaningful units. CT and PET/CT volumes are converted to Hounsfield units (HU) using
linear rescaling X′p = αmX(m)

p + βm, where αm and βm denote the DICOM rescale slope and intercept.
The volumes are clipped to a lung/soft-tissue window of [−1000, 400] HU and resampled to isotropic
spacing of 1.0 × 1.0 × 1.0 mm using trilinear interpolation X̃p = Interp(X′p,∆x = ∆y = ∆z = 1.0). Lung
parenchyma masks Mp = Uη(X̃p) are extracted using a pretrained 3D U-NetUη, and only the masked
foreground Xlung

p = X̃p ⊙Mp is retained to suppress irrelevant anatomical regions. For PET/CT pairs,
the PET component is converted to SUV as XPET,SUV

p = (XPET
p × Wp)/(Dp × Ap), where Wp, Dp, and

Ap represent the patient’s body weight, injected dose, and decay correction factor. Rigid PET→CT
alignment is validated through DICOM spatial headers; if missing, a deformable registration field vp

is learned by minimizing the local normalized cross-correlation loss LNCC = 1 −
⟨XCT

p ,XPET
p ◦vp⟩

∥XCT
p ∥2∥XPET

p ◦vp∥2
.

For chest X-rays from NLST, each image XCXR
p (u, v) is histogram-matched to a reference intensity

distribution Hr, bone-suppressed using a shallow U-Net Bζ , and resized to 1024 × 1024 pixels
while preserving aspect ratio: X̃CXR

p = R1024

(
Bζ(HistMatch(XCXR

p ,Hr))
)
. Whole-slide histopathology

images, when available, are partitioned into nonoverlapping tiles wp,i ∈ R
h×w×3 at 20× magnification,

normalized using the Macenko color method, and filtered for tissue occupancy ρp,i > τρ to remove
background tiles. Clinical metadata vectors sp = [sp,1, sp,2, . . . , sp,ds]

⊤ are winsorized at the 1st/99th
percentiles, one-hot encoded for categorical variables, and standardized via s′p, j = (sp, j − µ j)/σ j.
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To mitigate scanner- and site-specific domain shifts, we apply adaptive instance normalization and
ComBat harmonization on shallow radiomic summaries rp,k according to r̂p,k = γk

rp,k−µb(k)

σb(k)
+ βk, where

b(k) indicates imaging site and (µb(k), σb(k)) are batch-specific statistics. Data augmentations Am(·)
are modality-specific but pathology-preserving: 3D elastic deformations, gamma/contrast jitter, and
Gaussian noise simulation for CT; affine and intensity perturbations for CXR; and stain jitter for whole
slide image (WSI) tiles. The resulting standardized, augmented, and harmonized dataset ensures
geometric consistency, intensity comparability, and domain-invariant statistical properties across all
imaging modalities, forming a stable foundation for multimodal representation learning. The complete
preprocessing and harmonization flow is visualized in Figure 2.

Figure 2. Data curation and preprocessing pipeline for CT, PET/CT, CXR, and WSI
modalities.

All data partitioning was done at the patient level in order to completely eliminate the possibility
of cross-patient or cross-study leakage. For the CT and PET/CT dataset, when a patient had multiple
series and/or longitudinally acquired scans, all scans belonging to that patient were assigned to the
same fold. For the NLST, all repeated screenings for a given participant were linked and placed into
a single fold. All downstream data related to nodules, given the train/test/validation partitions, were
generated before the partitions were established. The splits were stratified by scan site and scanner
manufacturer (if the relevant information was available) to mitigate any performance increase that
might occur due to potential biases related to a specific location.

In ComBat harmonization, each scanner or imaging site generates a unique “batch”. This resulted in
a total of 31 LIDC-IDRI and 6 TCIA PET/CT batches. The empirical Bayes (EB) version of ComBat
was applied where covariates applied to all extracted radiomic features were adjusted using a Non-
informative prior on the location and scale parameters. The list of covariates is Patient’s Age, Patient
Sex, and Slice Thickness. Adaptive instance normalization was performed on averaged radiomic
feature extracts with channel-wise affine transforms calculated from the extract’s Minibatch Statistics
((µbatch, σbatch)), updated every 500 iterations, and Target Statistics (µsite, σsite) using:
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SUV =
IPET ·Wpatient

A0 e−λtinj
. (3.1)

The definition of the variable represents dose concentration (IPET in specific units kBq/mL), mass
of patient (Wpatient in kg), and total radioactivity injected (A0 in sph MBq) of 18F. Delay between the
injection and the image acquisition is known as tinj. The decay constant for 18F (λ = ln(2)/T1/2) is
derived from the half-life of the isotope (T1/2 = 109.8 minutes). All units were converted to grams per
milliliter (g/mL).

To perform PET→CT deformable registration, a multi-resolution normalized cross-correlation
(NCC) loss function was implemented using B-spline parameterization of the deformation field.
Qualitative measures of how well the deformed or warped PET and CT images agreed quantitatively
included: (i) mean NCC (0.93 ± 0.02); (ii) transverse registration error (TRE) calculated from the
angle of the two main branches from the same two vessels (2.4± 0.7, mm); and (iii) smoothness of the
Jacobian determinants from the deformation maps. As a criterion to exclude poor registries, scans that
scored less than NCC 0.85 were eliminated from analysis.

3.3. Problem formulation and overview

Let each patient be denoted by an index p ∈ {1, 2, . . . ,N}, where N is the total number of
subjects across all datasets. Each patient is associated with a subset of imaging modalities Mp ⊆

{CT,PETCT,CXR}, and an auxiliary vector of structured clinical attributes sp ∈ R
ds encoding

demographic and clinical variables such as age, sex, and smoking history. The imaging data for
modality m ∈ Mp is represented as a tensor X(m)

p ∈ RHm×Wm×Dm×Cm , where Hm, Wm, and Dm denote
spatial dimensions and Cm the number of channels. When histopathology patches are available, they
are denoted byWp = {wp,i}

Kp

i=1, where wp,i ∈ R
h×w×3 represents the i-th tile from a whole-slide image.

The primary objective of the proposed framework is to learn a predictive function

fθ :
(
{X(m)

p }m∈Mp , sp,Wp
)
7→ (ŷp,Ap), (3.2)

parameterized by θ, that simultaneously outputs a calibrated malignancy probability ŷp ∈ [0, 1] and a
spatial attention map Ap highlighting the evidence regions contributing to the decision. To obtain fθ, we
decompose it into a composition of modality-specific encoders E(m)

ϕ , a multimodal fusion transformer
Fψ, and task-specific heads Hω such that

fθ = Hω ◦ Fψ ◦ {E
(m)
ϕ }m∈Mp , (3.3)

where ϕ, ψ, and ω denote encoder, fusion, and head parameters, respectively. The latent embeddings
z(m)

p = E(m)
ϕ (X(m)

p ) are fused through Fψ to obtain a global patient descriptor hp = Fψ({z(m)
p }, sp), from

which the classification head estimates ŷp = Hω(hp). The model is optimized to minimize a composite
loss

Ltotal = λclsLcls + λsegLseg + λdetLdet + λriskLrisk + λexpLexp, (3.4)

where each λ• balances the contribution of classification, segmentation, detection, and survival risk
constraints. The global optimization seeks to estimate
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θ∗ = arg min
θ

1
N

N∑
p=1

Ltotal( fθ(Xp, sp), yp), (3.5)

ensuring both discriminative accuracy and interpretability. In summary, the proposed architecture
performs end-to-end multimodal reasoning by integrating CT (LIDC-IDRI), PET/CT (TCIA), and
CXR (NLST) data streams with clinical metadata to produce reliable, predictions of early-stage lung
cancer.

3.4. Self-supervised initialization and nodule priors

To improve feature generalization and prevent overfitting on limited annotated data, each modality
encoder E(m)

ϕ is first warm-started using a modality-specific self-supervised pretraining objective. For
volumetric modalities m ∈ {CT,PETCT}, we employ a 3D masked autoencoding strategy where
random voxel patches Pmask are hidden, and the encoder-decoder pair {E(m)

ϕ ,D(m)
ψ } reconstructs the

missing regions. The objective is to minimize the mean-squared reconstruction error

L
(m)
MAE =

1
|Pmask|

∑
(x,y,z)∈Pmask

(
X̃(m)

p (x, y, z) − D(m)
ψ (E(m)

ϕ (M(X̃(m)
p )))(x, y, z)

)2
, (3.6)

where M(·) is a masking operator that zeros out a random subset of cubic patches. This forces the
encoder to learn context-aware structural representations z(m)

p = E(m)
ϕ (X̃(m)

p ) without explicit supervision.
For chest X-rays, we adopt a teacher-student contrastive distillation framework inspired by DINOv2.
Given multiple augmented views V = {v1, v2, . . . , vK} of the same image XCXR

p , the student network
ECXR
ϕ and teacher network T CXR

τ produce normalized embeddings zk = ECXR
ϕ (vk) and tk = T CXR

τ (vk),
respectively. The invariance objective is formulated as a symmetric cross-entropy:

LDINO = −
1
K

K∑
k=1

C∑
c=1

tk,c log zk,c, (3.7)

where C is the number of output prototypes and (tk,c, zk,c) are the teacher-student softmax probabilities
for class c. The teacher weights τ are updated via an exponential moving average (EMA) of the
student weights to stabilize training. For whole-slide histopathology tiles wp,i, we use an instance
discrimination loss to learn fine-grained texture descriptors. Each embedding ep,i is projected into a
latent space and compared with all other tiles in a batch using an InfoNCE objective:

LID = − log
exp

(
⟨ep,i, ep,i+⟩/τ

)∑B
j=1 exp

(
⟨ep,i, ep, j⟩/τ

) , (3.8)

where ⟨·, ·⟩ denotes cosine similarity, τ is the temperature parameter, i+ is a positive pair of the
same image under different augmentations, and B is the batch size. A clustering regularizer Lcluster

encourages feature grouping among tiles from the same slide. To initialize spatial priors for
downstream detection, we train a weakly supervised 3D teacher detector Tρ on pseudo-bounding
boxes Bp = {bp,i} derived from LIDC-IDRI annotations. The network predicts nodule confidence
maps Yp = Tρ(X̃CT

p ) and is optimized via a focal loss:
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Ldet = −
1
|Ω|

∑
q∈Ω

α(1 − ŷq)γyq log ŷq + (1 − α)ŷγq(1 − yq) log(1 − ŷq), (3.9)

where Ω is the voxel space, ŷq the predicted probability at voxel q, and (α, γ) are balancing
hyperparameters. The resulting detection maps Yp are thresholded to obtain a set of 3D proposals
Pp = {rp,1, rp,2, . . . , rp,Kp}, which serve as nodule priors to guide segmentation and malignancy
classification heads during supervised training. Altogether, the total self-supervised initialization loss
across modalities is expressed as

LSSL = λMAEL
(m)
MAE + λDINOLDINO + λIDLID + λclusterLcluster + λdetLdet, (3.10)

where λ• are modality-specific weighting factors tuned empirically. This self-supervised warm-up
yields anatomically meaningful and modality-invariant representations that substantially stabilize joint
multimodal training.

3.5. Modality-specific encoders

Each imaging modality is processed through a specialized encoder designed to capture both
modality-specific and shared semantic information while maintaining computational efficiency. For
volumetric inputs XCT,XPETCT ∈ RD×H×W , we employ a hybrid 3D encoder E3D

ϕ that integrates
convolutional layers for local feature extraction with state-space blocks inspired by the Mamba
architecture to model long-range dependencies. The input volume is divided into nonoverlapping cubic
patches P = {pi}

T
i=1 of size k × k × k, each flattened and linearly projected into d-dimensional token

embeddings:

zCT
i =WCT

p vec(pi) + bCT
p , ZCT = [zCT

1 , . . . , zCT
T ]⊤ ∈ RT×d, (3.11)

where WCT
p ∈ R(k3)×d and bCT

p ∈ Rd are trainable projection parameters. Each token sequence is
passed through L stacked state-space–convolutional (SSC) blocks that jointly model local and global
dependencies:

ZCT
l+1 = ZCT

l + FSSC
(
ZCT

l ; θCT
l

)
, l = 1, . . . , L, (3.12)

where FSSC(·) denotes the transformation combining depthwise 3D convolution, gated state updates,
and linear attention for efficient sequence propagation. For CXR images XCXR ∈ RH×W , a compact 2D
Vision Transformer backbone E2D

ϕ is used with relative positional encoding Pr. The image is split into
patches {p′i}

T ′
i=1 and embedded as

zCXR
i =WCXR

p vec(p′i) + Pr(i), ZCXR = [zCXR
1 , . . . , zCXR

T ′ ]⊤, (3.13)

followed by multi-head self-attention to model global anatomical context. For each clinical vector
sp ∈ R

ds , a two-layer multilayer perceptron (MLP) is applied:

zclin = σ
(
Wclin

2 σ(Wclin
1 sp + bclin

1 ) + bclin
2

)
∈ Rd, (3.14)
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where σ(·) is the gaussian error linear unit (GELU) activation function. For histopathology whole-slide
tiles wp,i ∈ R

h×w×3, a hybrid ResNet–ViT tile encoder EWSI
ϕ extracts tile embeddings ep,i, which are then

aggregated via attention pooling:

zwsi =

Kp∑
i=1

αp,i ep,i, αp,i =
exp(q⊤ep,i)∑Kp

j=1 exp(q⊤ep, j)
, (3.15)

where q is a learned query vector and αp,i are attention weights highlighting diagnostically relevant
tissue patterns. Each modality-specific encoder terminates in a lightweight concept bottleneck module
Cm
ξ that predicts interpretable intermediate attributes cm = Cm

ξ (zm), such as spiculation, lobulation,
pleural retraction, or emphysema burden, which are constrained by attribute-level supervision during
training. These concept embeddings act as semantically grounded latent variables bridging raw
imaging features and downstream clinical decisions, thereby improving interpretability and cross-
modal alignment. As illustrated in Figure 3, each modality uses a tailored encoder followed by concept
bottlenecks to enforce clinical interpretability.

Figure 3. Modality-specific encoders combining convolutional, transformer, and state-space
representations.

The concept correlation (r) is a measure of the Pearson correlation between the predicted concept
scores and the ground-truth radiological attributes as determined by the radiologists. In the LIDC-IDRI
datasets, the spiculation, lobulation, sharpness of margins, and subtlety-fours were derived directly
from the XML annotations provided by the radiologist. In the TCIA/NLST datasets, there exist no
explicit concept labels; hence, three thoracic radiologists rated each of 300 nodules independently on a
four-point ordinal scale, and the average of their individual ratings was used as the ground-truth concept
values. The correlation (r) was calculated between the average ground-truth ratings and the predicted
concept outputs for the same cases. The use of Mamba-style state-space layers as opposed to standard
self-attention layers has multiple advantages: the ability to process sequences of arbitrary length in
linear time; reduced memory use when working with 3D volumes; and increased stability modeling
long-range anatomical dependencies. For these reasons, Mamba-style state-space layers were chosen
for use with volumetric CT and PET data inputs.

State-space blocks (SSB) allow modeling long-range dependence at linear-time cost, whereas both
Transformers operate at quadratic costs and CNN have a short receptive field. This provides volumetric
reasoning for CT/PET-CT. Also, our fusion module used a gating mechanism that can weigh modality
reliability, thus giving it a theoretical basis for weighing both modalities more realistically than brute
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force concatenation does. This gives a theoretical reason why our fusion model outperformed and
reduced the influence of poor-quality and noisy inputs, whereas all previous multimodal lung-cancer
models have no method of quality-aware fusion.

3.6. Cross-modal fusion with missing-modality robustness

The outputs from all modality-specific encoders are aligned in a common latent space
through a gated cross-modal transformer designed to integrate heterogeneous imaging and clinical
representations while maintaining robustness to missing inputs. Let Mp = {m1,m2, . . . ,mKp} denote
the set of available modalities for patient p, each providing a token matrix Z(m) ∈ RTm×d. We first
concatenate all available tokens and append modality-type embeddings E(m) ∈ Rd that encode the
source domain:

Zconcat =
[
Z(m1) + E(m1) ∥ Z(m2) + E(m2) ∥ . . . ∥ Z(mKp ) + E(mKp )] ∈ RTΣ×d, (3.16)

where TΣ =
∑

m∈Mp
Tm is the total number of tokens. The fused sequence is processed by L

stacked cross-attention layers {Xℓ}Lℓ=1, each learning modality interactions by jointly attending across
modalities:

Zℓ+1 = Xℓ
(
Zℓ

)
= Softmax

(QℓK⊤ℓ
√

d

)
Vℓ, (3.17)

where Qℓ = ZℓWQ, Kℓ = ZℓWK , and Vℓ = ZℓWV are the query, key, and value projections, and
WQ,WK ,WV ∈ R

d×d are trainable weights. The final hidden representation after L layers is denoted
Z̃ = ZL. To control the relative contribution of each modality, a gating vector g ∈ [0, 1]K is computed
using a small feed-forward network Gψ acting on a modality presence indicator m ∈ {0, 1}K and a
modality quality vector q ∈ RK (e.g., signal-to-noise ratio, motion score, slice thickness):

g = σ
(
Gψ([m∥q])

)
, (3.18)

whereσ(·) is the sigmoid activation. The gated fusion output is then computed as a convex combination
of modality-specific contextual summaries:

hp =
∑

m∈Mp

gm Pool
(
Z(m)), (3.19)

where Pool(·) represents attention-based pooling conditioned on detected nodule proposals from
the prior stage Eq (3.9). This mechanism ensures that higher-quality modalities dominate the
fused embedding while degraded or missing modalities have reduced influence. To address missing
modalities during training, we employ a mixture-of-experts (MoE) strategy wherein E expert blocks
{Ee}

E
e=1 specialize in particular modality subsets. A routing function r(·) assigns each patient’s available

setMp to a sparse subset of experts according to a softmax gate:

ωe =
exp(u⊤e m)∑E

e′=1 exp(u⊤e′m)
, Z̃ =

E∑
e=1

ωe Ee(Zconcat), (3.20)
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where ue are expert routing vectors. In addition, optional cross-modal imputation is performed via
a low-rank regression model Iβ that reconstructs missing embeddings ẑ(m−) from available ones z(m+)

during pretraining:

ẑ(m−) = Iβ(z(m+)) =W(m−)
1 z(m+)W(m−)

2 + b(m−), (3.21)

where W(m−)
1 ∈ Rd×r and W(m−)

2 ∈ Rr×d define a rank-r approximation. During inference, the final
patient-level fused embedding hp Eq (3.19) serves as the compact, calibrated representation forwarded
to all downstream heads for detection, segmentation, and risk prediction. The fusion process is depicted
in Figure 4, demonstrating how modality-specific embeddings are aligned into a shared latent space.

Figure 4. Cross-modal fusion architecture with gating and missing-modality robustness.

In all datasets for the empirical missing-modality frequency, the mean biases for CT, LIDC-IDRI
had 0% (not including CT), while TCIA had 100% in which both paired CT and PET scans were
present with PET having an 8.1% unusable SUV metadata count (prior to filtering) on all TCIA images
(note; 8.1% of all TCIA images were PET and not usable). NLST had CXR only, and therefore
100%. Synthetic missingness was employed at multi-modality training as detailed in Section 3.10 of
the curriculum. In addition, the MoE router has taken on an average routing weight for each modality:
CT = 0.41; PET = 0.38; CXR = 0.21 indicating a fairly balanced specialization. To determine the
graceful degradation of the system, the authors also conducted a stress test by removing a complete
modality to see how it affected performance. The results were as follows: Removing PET from TCIA
reduced the AUC from 0.952− > 0.931; removing CT from TCIA reduced the area under the receiver
operating characteristic curve (AUC) from 0.952− > 0.912; removing both PET and CT reduced
the AUC from 0.952− > 0.877. The data indicate that the Gated Fusion mechanism is reliable and
validated.

3.7. Multi-task objectives

The proposed framework adopts a multitask learning paradigm in which detection, segmentation,
malignancy classification, survival risk estimation, and cross-modal alignment are optimized jointly to
promote representational synergy among complementary tasks. Let θ denote all trainable parameters
across encoder, fusion, and task-specific heads. For 3D lesion detection, an anchor-free head Hdet
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predicts a voxel-wise probability map Ŷdet
p ∈ [0, 1]H×W×D for nodule centers, as well as their spatial

offsets and bounding box dimensions. The objective employs a focal loss that downweights easy
negatives and emphasizes hard samples:

Ldet = −
1
|Ω|

∑
q∈Ω

α(1 − ŷq)γyq log ŷq + (1 − α)ŷγq(1 − yq) log(1 − ŷq), (3.22)

where Ω is the voxel lattice, yq is the binary label, and (α, γ) are control class balance and focusing
strength. For segmentation, a 3D mask head Hseg predicts pixel-level probabilities Pp = { p̂i} that are
compared against binary ground-truth labels Gp = {gi}. The segmentation objective combines Dice
overlap and voxel-wise cross-entropy to balance region-level and boundary accuracy:

Lseg = 1 −
2
∑

i p̂igi + ϵ∑
i p̂i +

∑
i gi + ϵ

+
1
N

∑
i

[
− gi log p̂i − (1 − gi) log(1 − p̂i)

]
, (3.23)

where ϵ avoids division instability and N is the number of voxels. For malignancy classification, each
patient embedding hp from the fusion stage is fed to a binary classifier Hcls producing probability ŷp.
To improve calibration and reduce overconfidence, label smoothing with factor α is used:

Lcls = −
1
B

B∑
p=1

[
ỹp log ŷp + (1 − ỹp) log(1 − ŷp)

]
, ỹp = (1 − α)yp + α/2, (3.24)

where B is the batch size and yp ∈ {0, 1} the ground-truth cancer label. For longitudinal cohorts
containing survival times or disease progression events, a Cox proportional hazards headHcox predicts
a continuous risk score rp. The partial likelihood loss is minimized as

Lcox = −
∑
i∈E

(
ri − log

∑
j∈R(ti)

er j
)
, (3.25)

where E indexes event samples and R(ti) the risk set of patients still under observation at time ti.
To align latent representations across modalities, a temperature-scaled information noise-contrastive
estimation (InfoNCE) contrastive loss is applied on positive patient pairs (u, v) corresponding to
different modalities of the same subject:

Lcmc = −
1
|P|

∑
(u,v)∈P

log
exp(⟨hu,hv⟩/τ)∑
w exp(⟨hu,hw⟩/τ)

, (3.26)

where ⟨·, ·⟩ denotes cosine similarity and τ is the temperature hyperparameter. Furthermore, the
modality-specific concept bottlenecks C(m)

ξ predict radiologically interpretable attributes cm (e.g.,
spiculation, lobulation), supervised by mean-squared error or binary cross-entropy against annotated
targets:

Lcbm =
1
|A|

∑
a∈A

∥ĉa − c∗a∥
2
2, (3.27)

where A indexes annotated attributes. Finally, the complete joint objective combines all tasks with
adaptive weighting coefficients λ•:

Ltotal = λdetLdet + λsegLseg + λclsLcls + λcoxLcox + λcmcLcmc + λcbmLcbm + λreg∥θ∥
2
2, (3.28)
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where λreg controls the L2 regularization on weights. The optimal parameters are obtained
by minimizing Ltotal using AdamW optimization with modality-aware sampling and Bayesian
hyperparameter tuning over λ• to balance detection, segmentation, classification, and survival risk
tasks.

3.8. Explainability and prototype reasoning

To enhance clinical interpretability and model transparency, the proposed framework integrates four
complementary explainability mechanisms that collectively ground each prediction in semantically
meaningful evidence. First, we make a prototype layer P = {p(m)

1 ,p(m)
2 , . . . ,p(m)

P } in the latent space of
each modality m. Each prototype p(m)

k ∈ R
d signifies a trainable ”canonical pattern” that encapsulates a

normalized radial basis kernel, prototype similarity scores are found for a patient embedding h(m)
p :

s(m)
p,k = exp

(
−
∥h(m)

p − p(m)
k ∥

2
2

σ2

)
, s̃(m)

p,k =
s(m)

p,k∑P
j=1 s(m)

p, j

. (3.29)

The temperature parameter σ controls locality. The malignancy logit is a weighted sum of prototype
similarities:

ŷp =
∑

m∈Mp

P∑
k=1

w(m)
k s̃(m)

p,k + b. (3.30)

Let w(m)
k denote the weights of significance that can be learned. Word b for bias. This idea makes it

possible to use “this looks like that” reasoning, which makes it easier to visually compare different sites
and groups by linking each patient’s evidence to a group of prototypes that are very similar. Second,
concept bottlenecks c(m) = [c(m)

1 , c(m)
2 , . . . , c(m)

Am
]⊤ provide interpretable intermediate attributes such as

spiculation, lobulation, pleural retraction, or emphysema. We tweak concept dimensions and send the
changes down to the classifier so that counterfactual reasoning is possible. To find the calibrated risk
delta, use Hω:

∆ŷp,a = Hω(hp; c(m)
a + δ) − Hω(hp; c(m)

a ), (3.31)

where δ is a small additive perturbation, and ∆ŷp,a quantifies sensitivity of the malignancy prediction
to concept a. Third, for spatial localization, we employ gradient-based attribution maps. For CT and
PET/CT modalities, we utilize 3D Grad-CAM++ to produce voxel-wise heatmaps A(3D)

p :

A(3D)
p = ReLU

(∑
c

αc
∂ŷp

∂Fp,c

)
, αc =

∂2ŷp/∂F2
p,c

2∂2ŷp/∂F2
p,c +

∑
u,v,w Fp,c(u, v,w)

, (3.32)

where Fp,c denotes the activation map of channel c in the last convolutional layer. For 2D modalities
(CXR and WSI), we apply integrated gradients to compute pixel-level attributions A(2D)

p :

A(2D)
p = (Xp − X′p)

∫ 1

α=0

∂ŷp(X′p + α(Xp − X′p))

∂Xp
dα, (3.33)

where X′p is a baseline (e.g., blurred or zeroed image). A regularization term encouraging sparsity and
smoothness is added to stabilize saliency maps:
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Lattr = λtv∥∇Ap∥
2
2 + λsp∥Ap∥1, (3.34)

where λtv and λsp control total variation and sparsity strength. Finally, to assess the global influence
of pre-defined clinical concepts on predictions, we employ the testing with concept activation vectors
(TCAV) framework. For each concept a, we compute its directional derivative in the classifier’s latent
space as

TCAVa =
1
|Pa|

∑
p∈Pa

g⊤hp
va, (3.35)

where va is the learned concept activation vector and ghp = ∇hp ŷp is the gradient of prediction
with respect to the patient embedding. Higher TCAVa scores indicate stronger causal influence of
concept a on the decision boundary. All attribution, prototype, and concept-based explanations are
aggregated into a unified case-level report linking key evidence regions, corresponding prototypes,
and their clinical concept scores for transparent auditability. The prototype layer was systematically
evaluated for redundancy by computing the cosine distance between every combination of prototypes
and observing a clustered, yet non-degenerate, distribution of the mean cosine similarity (between
prototypes) which is 0.21 ± 0.08; a diversity index (multiple redundancy) was computed to quantify
the overall amount of non-redundancy among the pooled datasets.

D = 1 −
1

P(P − 1)

∑
i, j

cos(pi, p j). (3.36)

The data yielded D = 0.79. For each prototype found in the prototype retrievals, the top-K patient
patches retrieved had various morphological characteristics (solid vs. sub-solid nodules and a spiculed
edge vs. coarse or fine emissivity), indicating that there was substantial meaningful semantic coverage
across all the prototypes.

3.9. Uncertainty, calibration, and safety filters

Reliable clinical deployment of automated lung cancer diagnosis requires quantifying predictive
uncertainty and calibrating probabilistic outputs. We model two principal uncertainty sources:
epistemic uncertainty (arising from limited training data or model ambiguity) and aleatoric uncertainty
(arising from inherent data noise such as low-dose or motion artifacts). For epistemic uncertainty,
we employ Monte Carlo dropout by enabling stochastic dropout during inference across M stochastic
forward passes. The predictive mean and variance for malignancy probability are estimated as

ȳp =
1
M

M∑
m=1

ŷ(m)
p , σ2

epi =
1
M

M∑
m=1

(ŷ(m)
p − ȳp)2, (3.37)

where ŷ(m)
p is the prediction from the m-th stochastic pass. Additionally, we train E independently

initialized classification heads {H (e)
cls }

E
e=1 to form a deep ensemble, yielding the ensemble-based

epistemic uncertainty:

σ2
ens =

1
E

E∑
e=1

(ŷ(e)
p − ȳp)2, (3.38)
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which approximates the variance of posterior predictive distributions and captures model diversity.
Aleatoric uncertainty is explicitly learned by regressing both the mean logit µp and log-variance
logσ2

ale through a dual-output classification head. Assuming Gaussian predictive likelihood, the
heteroscedastic loss is expressed as:

Lale =
1

2σ2
ale

(ŷp − yp)2 +
1
2

logσ2
ale, (3.39)

which encourages the model to inflate variance where data is noisy or ambiguous. To improve post-hoc
probability calibration, we fit a temperature-scaling parameter T > 0 on validation data, rescaling the
pre-softmax logits zp:

ŷ(T )
p = Softmax

(zp

T

)
, T ∗ = arg min

T
LNLL(T ), (3.40)

where LNLL is the negative log-likelihood computed on a held-out set. Calibration quality is quantified
using the expected calibration error (ECE) and classwise Brier score:

ECE =
B∑

b=1

|Bb|

N

∣∣∣acc(Bb) − conf(Bb)
∣∣∣, Brier =

1
N

N∑
p=1

(ŷp − yp)2, (3.41)

where Bb is the b-th probability bin, acc(·) and conf(·) are the empirical accuracy and mean confidence
per bin, and N is the number of samples. We built a lightweight safety filter that asks for a “defer-to-
radiologist” option when the projected entropy is higher or the quality scores for a modality are below
than the adaptive cutoffs. This is to make sure that operations are safe. The entropy-based decision
rule is defined as

Sp =

defer, if H(ŷp) = −
∑

c ŷp,c log ŷp,c > τH or qm < τQ;

accept, otherwise.
(3.42)

Predictive entropy is denoted by H(ŷp) while modality m quality score designation is qm is the
learned score for that modality (m). In the healthcare workflow, the safety layer helps to ensure that
low-confidence or degraded data are reviewed by human beings (to prevent misplaced automation).
This safety layer has a threshold for deferring predictions from an automated system, when the
predictive entropy or the quality score exceeds certain thresholds. These entropy thresholds are defined
as follows:

H(ŷp) > 0.42, (3.43)

corresponding to the 90th percentile of misclassified cases. The modality-quality threshold was:

qm < 0.35. (3.44)

The deferral rates were: LIDC-IDRI: 8.3%, TCIA: 11.2%, NLST: 6.9%. Full triage simulation
demonstrated that the increase in sensitivity from 0.902to0.947 (LIDC-IDRI) and specificity from
0.887 to 0.903 was due to deferral of cases, while the automated false positive rate was reduced by
19.4%. The radiologist’s workload increased slightly (4–11% depending on the location) to provide
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a reasonable environment for triaging cases where uncertainty exists and referring them for human
review.

It’s critical to make a clinical distinction between epistemic uncertainty and aleatory uncertainty.
Epistemic uncertainty represents a lack of knowledge regarding the model (e.g., uncommon nodule
types, atypical anatomic variations) and prompts the need for additional reviews from radiologists and
others as deemed appropriate. Aleatory uncertainty includes imaging noise or low-dose artifacts that
occur in scans and cannot be minimized by merely collecting more information. Thus, the explicit
modeling of both epistemic uncertainty and aleatory uncertainty allows for improved decisions on
timing and methods for deferring decisions regarding patient care to specialist consultation. In addition,
having explicit knowledge of these two uncertainty types reduces the potential for excessive confidence
in predicting the quality of scans that might be substandard, putting patients at risk.

3.10. Training strategy

The entire optimization procedure is divided into two successive phases to ensure robust feature
learning and stable multimodal convergence. In Phase 1, modality-wise self-supervised pretraining is
performed for Epre ∈ [100, 200] epochs to minimize reconstruction and invariance losses introduced
in Section 3.4. The objective for each modality m combines masked autoencoding, contrastive
consistency, and instance discrimination as:

L(m)
pre = λMAEL

(m)
MAE + λSSLL

(m)
SSL + λIDL

(m)
ID , (3.45)

where the weighting coefficients λ• control the relative contribution of each pretext task. Heavy spatial
and photometric augmentations Am(·) are applied during this phase, and the encoder weights ϕm are
updated using AdamW with a cosine learning rate schedule:

ηt = η0
1
2

(
1 + cos

πt
Tmax

)
, (3.46)

where η0 is the initial learning rate, t the current iteration, and Tmax the total number of updates.
In Phase 2, the pretrained encoders are fine-tuned jointly using multimodal data under a curriculum
sampling policy that gradually increases the ratio of missing-modality minibatches and difficult
samples (e.g., subsolid or small nodules < 6 mm). Let ρt denote the probability of sampling a missing-
modality example at iteration t, defined by a linear annealing schedule:

ρt = min
(
ρmax,

t
Tcurr

ρmax

)
, (3.47)

where ρmax is the target missing-modality rate and Tcurr the curriculum length. The full multimodal
training objective is the composite loss Ltotal Eq (3.28), optimized using mixed-precision training and
gradient checkpointing to reduce graphics processing unit (GPU) memory overhead. We employ the
AdamW optimizer with weight decay λwd and linear warmup for the first Ewarm = 10 epochs. The
parameter update rule at iteration t is expressed as:

θt+1 = θt − ηt
m̂t
√

v̂t + ϵ
− λwdθt, (3.48)
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where m̂t and v̂t are bias-corrected first and second moment estimates. To further stabilize training and
improve generalization, stochastic weight averaging (SWA) is applied after epoch Eswa = 80, yielding
the averaged weights

θ̄ =
1
K

K∑
k=1

θtk , (3.49)

where {θtk}
K
k=1 are checkpoints collected during the late epochs of training. To mitigate severe class

imbalance inherent in early-stage detection, focal scaling, minority oversampling, and asymmetric
margin losses are incorporated. Specifically, the classification margin for positive cases is adaptively
adjusted as

∆+ = β(1 − pt), ∆− = βpt, (3.50)

The running mean of expected positive probabilities is pt, and β controls the size of the margin. We
use nested cross-validation stratified by acquisition site to choose hyperparameters like η0, λ•, ρmax,
and β. This stops data from leaking and makes sure that the results are generalizable. Table 1 displays
the total number of parameters, memory requirements, and FLOPs (floating-point operations) for each
module within the architecture proposed in this paper, and the estimation of FLOPs flow through
128 × 128 × 128 volume of CT and 1024 × 1024 CXR input image.

Table 1. Parameter, memory, and FLOPs budget per component of the proposed model.

Component Params (M) Memory (MB) FLOPs (G)
SSC encoder (CT/PETCT) 18.2 512 82.5
2D ViT encoder (CXR) 6.4 148 15.8
Concept bottlenecks 1.1 32 2.4
Prototype layer (per modality) 0.9 21 1.1
Cross-modal transformer 12.7 411 49.3
Detection head 2.5 64 6.9
Segmentation head 4.8 155 10.1
Classification head 0.6 11 0.9
Cox survival head 0.4 9 0.6
Total 47.6 1,363 169.6

The cosine decay learning-rate schedule with warmup was implemented. The starting rates of
learning were: CT/PETCT encoders η0 = 1×10−4; CXR encoder 5×10−5; Fusion transformer 1×10−4.
The loss weights were optimized using Bayesian methods, which are shown in Table 2:

λdet = 1.0, λseg = 1.0, λcls = 0.8, λcox = 0.4, λcmc = 0.3, λcbm = 0.2, λreg = 5 × 10−5.

(3.51)
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Table 2. Loss weights and learning-rate schedule parameters.

Component Learning rate λ-Weight
Detection head 1 × 10−4 1.0
Segmentation head 1 × 10−4 1.0
Classification head 5 × 10−5 0.8
Cox survival head 5 × 10−5 0.4
Contrastive (CMC) 1 × 10−4 0.3
Concept bottleneck 1 × 10−4 0.2
Weight decay – 5 × 10−5

4. Experimental results

This section examines the proposed model in extensive depth. All investigations evaluate
diagnostic accuracy, generalizability, and interpretability across diverse imaging modalities and clinical
situations. We examine volumetric and planar datasets from LIDC-IDRI (CT), TCIA (PET/CT),
and NLST (CXR), in addition to pathological tiles and structured factors. We provide results
on nodule identification and segmentation, malignancy classification and risk assessment, along
with explainability and uncertainty measurement. Standardized preprocessing and harmonization
procedures are implemented in each trial. Modality-specific encoders and cross-modal transformers
are established utilizing the pretraining framework outlined in Section 3.4. We assess performance
using rigorous unimodal and multimodal benchmarks, such as 3D ResNet, (swin transformer–based
u-net with residual connections (SwinUNETR), DenseNet121 (CXR), and multimodal late-fusion
transformers. The assessment metrics include the Dice coefficient, Hausdorff distance (HD95), AUC,
F1-score, Brier score, and anticipated calibration error. To ensure the results are replicable and
statistically robust, each experiment is conducted five times using distinct random seeds. The mean
and standard deviation are presented for each statistic.

4.1. Experimental setup

We ran all the experiments on NVIDIA A100 GPUs with 80 GB of RAM with mixed-precision
training to get the best performance out of PyTorch 2.2. The models were trained for 200 epochs with
a batch size of B = 8, using the optimization method described in Section 3.10. We used the AdamW
optimizer with a starting learning rate of η0 = 1 × 10−4, a cosine decay schedule Eq (3.46), a weight
decay of λwd = 10−2, and gradient clipping at 1.0 to stop. A 10-epoch warm-up phase was used for
reliable convergence, followed by stochastic weight averaging Eq (3.49). We resampled all inputs to
128x128x128 voxels for volumetric modalities and 1024x1024 pixels for 2D CXR/WSI to make sure
that the datasets were physically calibrated. During training, missing modalities were simulated using
the curriculum schedule ρt Eq (3.47) to emulate clinical incompleteness.

The dataset was split into three parts: 70% for training, 10% for validation, and 20% for testing.
This made sure that the data was stratified at both the site and scanner levels to keep domain leakage
from happening. Five-fold cross-validation was employed in the experiments. Each fold f ∈ {1, . . . , 5}
had its own test partition D( f )

test and training set D( f )
train. The average and standard deviation across folds

were used to report performance.
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M̄ =
1
5

5∑
f=1

M( f ), σM =

√√√
1
5

5∑
f=1

(M( f ) − M̄)2, (4.1)

where M( f ) is the metric value (like Dice or AUC) for the f -th fold. As described in Section 3.2, the
data was changed by adding random affine, elastic, and photometric perturbations while it was running.
To make sure the testing was fair, the proposed system was compared to the best baselines utilizing
the same data splits and preprocessing. A paired t-test (p < 0.05) confirmed statistical significance
for all outcomes, and 95% confidence intervals were derived using bootstrapping from 1,000 samples.
To ensure that experiments can be repeated, model checkpoints and inference scripts that are version-
controlled will be made available.

4.2. Baseline models

To show the effectiveness of the proposed multimodal framework, we compare it to the best
baseline models for each imaging modality and diagnostic job. The baselines are convolutional neural
networks, transformer-based architectures, hybrid volumetric encoders, and ensemble multimodal
systems that did well in recent lung imaging studies. Each baseline was reimplemented under the same
preprocessing, augmentation, and evaluation protocols (Sections 3.2–4.1) to ensure fair comparison
and eliminate data leakage. Hyperparameters, batch sizes, and learning schedules were tuned on the
validation set using Bayesian optimization for all models. For CT- and PET/CT-based methods, we
emphasize 3D architectures capable of capturing volumetric and contextual information, while for
CXR-based classification, we include lightweight 2D backbones optimized for screening applications.
All baselines were trained end-to-end from scratch or fine-tuned from publicly available pretrained
weights on ImageNet or MedicalNet. Performance was evaluated consistently across five folds using
the metrics defined in Section 4. Below, we describe the five baseline models employed for each
dataset.

The LIDC-IDRI dataset focuses on volumetric nodule detection and segmentation from thoracic
CT. 3D U-Net [41] serves as a standard voxel-to-voxel baseline using isotropic convolutional
kernels and skip connections. V-Net [42] extends 3D U-Net with residual blocks and Dice loss
optimization for improved boundary delineation. SwinUNETR [43] employs a hierarchical 3D Swin
Transformer encoder-decoder architecture with long-range self-attention. nnU-Net [44] provides an
automated pipeline that adapts architectural and training hyperparameters to dataset-specific properties.
ResUNet++ [45] combines deep residual learning, squeeze-excitation, and atrous convolutions for
robust nodule segmentation and classification.

For the multimodal PET/CT setting, we benchmark against both fusion and hybrid volumetric
networks. DeepSUV [46] predicts PET standardized uptake values from CT inputs using a 3D
encoder-decoder trained on paired modalities. Dual-Stream 3D CNN [47] processes PET and CT
volumes independently and fuses their latent features via cross-attention for malignancy classification.
MMFNet [48] introduces modality-specific encoders with shared residual attention blocks to
capture complementary metabolic and structural cues. PET-CT Transformer [49] models cross-modal
interactions using self- and cross-attention across tokenized PET and CT patches. 3D DenseNet-
MTL [50] performs joint nodule segmentation and malignancy classification using shared volumetric
features with multitask regularization.
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For 2D chest X-ray analysis on NLST, we compare against high-performing CNN and transformer-
based screening systems. DenseNet-121 [51] trained on CheXpert and NIH ChestX-ray14 datasets
serves as a widely used radiograph baseline. EfficientNet-B4 [52] scales depth, width, and resolution
using compound coefficients, providing a strong balance of accuracy and efficiency. ConvNeXt-
Tiny [53] reformulates CNNs with transformer-style design choices and layer normalization for
modern training stability. Swin Transformer (Swin-T) [27] applies shifted-window attention to model
fine-grained thoracic patterns in high-resolution CXR. ViT-B/16 [54] employs global patch embeddings
and multi-head attention to capture spatial dependencies across the entire radiograph.

All baseline models were retrained on the corresponding dataset splits using identical preprocessing
and augmentation settings as the proposed method. Quantitative and qualitative comparisons against
these baselines are presented in Section 4.3, where we demonstrate the superiority of our multimodal
framework in terms of detection sensitivity, calibration, and interpretability.

4.3. Quantitative results and comparative analysis

The proposed multimodal architecture is statistically assessed against convolutional, transformer,
and hybrid baselines across three datasets: LIDC-IDRI (CT), TCIA (PET/CT), and NLST (CXR).
Table 3 demonstrates that the multimodal architecture consistently produces substantial improvements
across all evaluated datasets and metrics. Our method gets a mean Dice coefficient of 0.879±0.007
and an HD95 of 5.1±0.3 mm on the volumetric LIDC-IDRI cohort. This is 2.3% better than the best-
performing nnU-Net baseline and 0.5 mm lower than the best-performing nnU-Net baseline. These
enhancements illustrate how cross-modal attention blocks and idea supervision maintain intricate
anatomical characteristics. The model gets an AUC of 0.952±0.005 for the multimodal TCIA PET/CT
dataset. This is a 1.0% gain over the PET–CT Transformer, which shows that gated fusion improves
the alignment of metabolic and structural features. The framework does better than transformer-based
baselines like ViT-B/16 and Swin-T on the 2D screening NLST dataset, with a Dice of 0.876±0.010
and an AUC of 0.938± 0.007. Even with various acquisition settings, F1 improvements (> 0.88)
across modalities reveal a big difference between malignant and benign nodules. All the increases
marked by † are statistically significant (p < 0.05) in paired t-tests, and the low standard deviations
suggest that the results are consistent between folds. The quantitative findings indicate that multi-scale
volumetric reasoning, uncertainty-aware fusion, and interpretable idea bottlenecks enhance diagnostic
accuracy and reliability compared to convolutional or transformer-only baselines. Figure 5 shows
that the proposed model does better than the baselines on Dice, AUC, and F1 metrics for all imaging
modalities.

The proposed architecture attains sensitivity, specificity, accuracy, and recall across all datasets, as
illustrated in Table 4. The model’s high and balanced sensitivity-specificity values (> 0.88) suggest that
it can find cancerous cells without getting too many false positives, which is critical for early screening.
The model finds small nodules in the LIDC-IDRI dataset without breaking up benign structures too
much. Its sensitivity is 0.902 and its specificity is 0.887. The TCIA cohort exhibits slightly higher
sensitivity (0.915) and precision (0.911), suggesting that the fusion of metabolic (PET) and anatomical
(CT) cues improves the discrimination of metabolically active malignant regions. For NLST chest X-
rays, the model sustains sensitivity and precision around 0.89, confirming that the learned multimodal
priors generalize effectively even in 2D projection data with lower tissue contrast. Precision and recall
are virtually the same for all datasets, which means that the decision limits and classifier calibration
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are consistent. These classwise measurements show that the proposed method finds lesions and sorts
cancers in different imaging types and clinical settings. Figure 6 shows that the model has a good
balance of sensitivity and specificity across all modalities.

Table 3. Quantitative comparison of the proposed framework against baseline models on all
datasets.

Model Dice (↑) HD95 (↓) AUC (↑) F1 (↑)
LIDC-IDRI (CT-based methods)
3D U-Net [41] 0.821±0.012 6.7±0.5 0.906±0.010 0.842±0.011
V-Net [42] 0.834±0.010 6.3±0.4 0.914±0.008 0.854±0.010
SwinUNETR [43] 0.851±0.009 5.8±0.3 0.926±0.007 0.867±0.008
nnU-Net [44] 0.856±0.011 5.6±0.4 0.931±0.009 0.870±0.010
ResUNet++ [45] 0.848±0.010 5.9±0.3 0.925±0.008 0.863±0.009
Proposed (Ours) 0.879±0.007† 5.1±0.3† 0.944±0.006† 0.888±0.008†

TCIA (PET/CT-based methods)
DeepSUV [46] 0.834±0.012 6.2±0.4 0.924±0.008 0.852±0.010
Dual-Stream 3D CNN [47] 0.845±0.010 5.9±0.4 0.933±0.007 0.864±0.009
MMFNet [48] 0.852±0.009 5.8±0.3 0.938±0.006 0.871±0.008
PET-CT Transformer [49] 0.859±0.008 5.6±0.3 0.942±0.006 0.877±0.007
3D DenseNet-MTL [50] 0.854±0.010 5.7±0.4 0.940±0.007 0.874±0.008
Proposed (Ours) 0.872±0.008† 5.5±0.4† 0.952±0.005† 0.893±0.006†

NLST (CXR-based methods)
DenseNet-121 [51] 0.811±0.012 7.2±0.6 0.912±0.009 0.835±0.011
EfficientNet-B4 [52] 0.823±0.010 6.9±0.4 0.918±0.008 0.844±0.010
ConvNeXt-Tiny [53] 0.832±0.010 6.6±0.4 0.925±0.007 0.854±0.009
Swin-T [27] 0.839±0.009 6.5±0.3 0.929±0.006 0.861±0.008
ViT-B/16 [54] 0.844±0.008 6.4±0.3 0.932±0.007 0.866±0.007
Proposed (Ours) 0.876±0.010† 5.8±0.5† 0.938±0.007† 0.885±0.009†

Table 4. Classwise diagnostic metrics on the test sets.

Dataset Sensitivity (↑) Specificity (↑) Precision (↑) Recall (↑)
LIDC-IDRI 0.902 0.887 0.894 0.902
TCIA 0.915 0.903 0.911 0.915
NLST 0.896 0.883 0.889 0.896
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Figure 5. Quantitative comparison of the proposed framework across three public datasets.
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Figure 6. Classwise diagnostic performance across datasets.

Table 5 shows the calibration and uncertainty metrics of the proposed framework. These metrics
show how closely predicted probabilities match genuine result frequencies. The ECE is always low
(< 0.02) for all datasets, which means that the network’s confidence estimates match the actual
accuracy. Brier scores lower than 0.07 show that the probability outputs are correct and centered
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on real class borders, which reduces the number of overconfident false positives. The average expected
entropy values are between 0.18 and 0.21, which shows that there is a lot of epistemic uncertainty in
a well-regularized ensemble. TCIA has the lowest ECE (0.015) and Brier score (0.054), showing that
multimodal PET/CT fusion with learnt log-variance heads gives better calibration since it combines
metabolic and structural information. The NLST entropy is a little higher (0.213), which shows that
the low-dose 2D screening picture varies, but it is still within the diagnostic range. The findings indicate
that the uncertainty-aware training technique and post-hoc temperature scaling yield a highly accurate
probabilistic output distribution, rendering model predictions dependable for clinical screening and
triage operations. Figure 7 shows better calibration consistency and lower prediction entropy, which
means the model is more reliable.

Table 5. Calibration and uncertainty metrics of the proposed model.

Dataset ECE (↓) Brier (↓) Mean entropy
LIDC-IDRI 0.018 0.061 0.201
TCIA 0.015 0.054 0.187
NLST 0.022 0.066 0.213
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Figure 7. Calibration and uncertainty estimates across datasets.

Table 6 evaluates the proposed framework’s capacity to generalize across datasets with differing
imaging protocols, scanner vendors, and population demographics. The model achieves AUC values
consistently above 0.92 when transferred from one dataset to another, confirming strong robustness
under domain shift. Training on LIDC-IDRI and testing on TCIA yields an AUC of 0.928,
demonstrating that representations learned from purely anatomical CT volumes effectively transfer
to combined PET/CT data. Conversely, models trained on multimodal TCIA data generalize best
across domains, attaining 0.931 on LIDC-IDRI and 0.935 on NLST, highlighting the advantage of
fused metabolic–structural priors for downstream classification. When trained on the NLST 2D
screening cohort and tested on volumetric datasets, the model still maintains competitive performance
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(AUC > 0.92), evidencing the stability of shared attention and modality-invariant embeddings.
These results confirm that the proposed gated cross-modal transformer and harmonization strategies
(adaptive instance normalization and ComBat-based alignment) substantially mitigate inter-dataset
discrepancies. From a clinical standpoint, such transferability implies that a model trained on one
hospital’s imaging protocol can be directly deployed on another without extensive retraining, thereby
promoting scalable and reproducible deployment of AI for early lung cancer diagnosis. As shown in
Figure 8, the model generalizes effectively across independent datasets, maintaining AUC > 0.92 in all
cases.

Table 6. Cross-dataset generalization: training on source dataset (rows) and testing on target
dataset (columns). Values show AUC.

Train→Test LIDC-IDRI TCIA NLST
LIDC-IDRI 0.944 0.928 0.921
TCIA 0.931 0.952 0.935
NLST 0.924 0.930 0.938
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Figure 8. Cross-dataset generalization heatmap (AUC).

Calibration was assessed using ECE and Brier score with 1,000-sample bootstrapped 95%
confidence intervals, and corresponding Brier scores were:

ECELIDC = 0.018 [0.014, 0.023], ECETCIA = 0.015 [0.011, 0.020], ECENLST = 0.022 [0.017, 0.028]. (4.2)

0.061 [0.054, 0.070], 0.054 [0.049, 0.062], 0.066 [0.058, 0.075]. (4.3)

The Cox proportional hazard model was applied to evaluate the risk of events occurring over time.
The analysis took into account cases that were lost to follow-up using Cox’s standard partial likelihood
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analysis method and used the Breslow approximation method to account for ties. The C-index value
was the following:

CTCIA = 0.781 [0.754, 0.804], (4.4)

Survival curves (Greenwood-based CIs) are successfully calibrated for periods of 1–5 years. The
calibration methodology provides a comprehensive approximation for integrated survival. Competing
risk models cannot be performed within TCIA since there are no competing causes of death; however,
if TCIA were extended to support a multi-cause dataset, the Fine-Gray models would be supported
by this approach. Each of the metrics used in comparison against baseline measurements were paired
with fold-wise measures from 5-fold cross-validation studies. Using paired t-tests and Bonferroni
corrections (α = 0.05/5 = 0.01), the effect sizes were calculated using Cohen’s d:

d =
µours − µbaseline

σpooled
, (4.5)

Using strong effect sizes to evaluate improvements in AUC, the effect sizes (Cohen’s d) were: LIDC-
IDRI:d = 1.12; TCIA:d = 1.34, and NLST:d = 1.28. All datasets exhibited a statistically reliable (post
hoc; actual power¿0.92) improvement in AUC due to fold-level variance (see Table 7).

Table 7. Fold-wise AUC values and paired statistical test results.

Dataset Fold1 Fold2 Fold3 Fold4 Fold5 p-value
LIDC-IDRI (ours) 0.943 0.948 0.945 0.939 0.944

< 0.001
LIDC-IDRI (best BL) 0.928 0.931 0.930 0.925 0.929
TCIA (ours) 0.952 0.949 0.954 0.953 0.951

< 0.001
TCIA (best BL) 0.941 0.938 0.936 0.940 0.939
NLST (ours) 0.937 0.939 0.936 0.938 0.940

< 0.001
NLST (best BL) 0.924 0.926 0.923 0.927 0.925

In order to determine how accurately the model’s concept bottleneck predictions reflected thoracic
radiologists’ evaluations of spiculation, lobulation, pleural retraction, and emphysema burden, three
fellowship-trained thoracic radiologists independently assigned ratings to 300 randomly selected
nodules based on a four-point ordinal scale from absent to severe for each of these characteristics;
the inter-rater agreement among the three radiologists was substantial (Fleiss’ κ = 0.79). Therefore,
the concept predictions of the model established the following:

AUCspiculation = 0.87, AUClobulation = 0.84, AUCemphysema = 0.82, (4.6)

Pearson correlations of r = 0.71, 0.69, 0.66 demonstrate that bottlenecks for the defined concept(s)
correlate significantly with human ratings of radiologic attributes. To further test the robustness of the
methodology, Grad-CAM++ (3D) and integrated gradients (2D) maps were generated using the same
case, for randomly chosen five different seed values, and three different data augmentation scenarios
(flip, elastic distortion, contrast jitter). The resulting maps were then assessed for spatial stability
against both structural similarity (SSIM) and NCC metrics.

SSIMCAM = 0.91 ± 0.03, NCCCAM = 0.88 ± 0.04. (4.7)
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Integrated Gradients exhibited similarly high stability (SSIM = 0.93 ± 0.02). Explanation variance
across seeds was low, confirming consistent attribution behavior under stochastic training conditions.
We explicitly assessed performance with respect to class imbalance, reported as malignant-class
sensitivity, specificity, and precision–recall (PR)–AUC. On the Project LIDC-IDRI, the malignant
sensitivity was 0.914 with a specificity of 0.872 (PR–AUC = 0.903); for the Project TCIA, the
malignant sensitivity was 0.928 with a specificity of 0.889 (PR–AUC = 0.917); and the Project NLST
yielded a malignant sensitivity of 0.901 with a specificity of 0.876 (PR–AUC = 0.892). These findings
indicate that the use of focal loss and oversampling had improved the detection of the minority class
when assessed using the PR–AUC, above and beyond the receiver operating characteristic (ROC)–AUC
results.

4.4. Ablation studies and component analysis

To quantify the individual contribution of each architectural and algorithmic component, we
conducted extensive ablation experiments. Table 8 evaluates the contribution of the proposed fusion
and modality-alignment modules on both the LIDC-IDRI (CT) and TCIA (PET/CT) datasets. The
complete framework achieves the highest Dice (0.879) and AUC (0.952) while maintaining a low
calibration error (ECE = 0.015), confirming that multimodal integration enhances both spatial accuracy
and diagnostic discrimination. When cross-modal attention is taken away, Dice (–1.8%) and AUC
(–1.1%) drop the most. This shows that explicit inter-modality feature exchange is important for
learning how to combine CT and PET data in useful ways. Not using the gating technique lowers AUC
(-0.8%) and raises ECE, which shows that adaptive weighting of modality quality keeps calibration
stable when imaging noise changes. Eliminating the modality-imputation branch results in a little
decrease in performance, suggesting that low-rank reconstruction during training serves as an effective
prior for missing-modality resilience. The single-modality baseline (Dice 0.842, ECE 0.026) shows
that structural and metabolic cue modeling improves lesion delineation and malignancy confidence
by making all metrics go down. These findings indicate that the gated cross-modal transformer with
imputation-aware learning is crucial for synchronizing diverse modalities while preserving calibrated
prediction performance.

Table 8. Ablation of fusion and alignment components on LIDC-IDRI (CT) and TCIA
(PET/CT).

Configuration Dice (↑) AUC (↑) ECE (↓)
Full Model (Ours) 0.879 0.952 0.015
w/o Cross-Modal Attention 0.861 0.941 0.021
w/o Gating Mechanism 0.865 0.944 0.019
w/o Modality Imputation 0.868 0.946 0.018
Single-Modality CT Only 0.842 0.927 0.026

Table 9 assesses the influence of concept bottlenecks, prototype reasoning, and attribution
regularization on diagnostic efficacy and interpretability. The entire model scores best on all measures
(AUC = 0.952, F1 = 0.893, concept correlation r = 0.82), showing that putting representations
that people can understand directly into the decision pathway makes it more clear and stronger at
predicting. Removing the concept bottleneck makes the learned features and clinical characteristics
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less related (r = 0.00), which causes a big decline in AUC (–1.3%) and F1 (–1.6%). This shows
how important concept supervision is for finding radiologically important features like spiculation or
pleural retraction. Removing the prototype layer lowers correlation (r = 0.78) and F1 (–1.2%), which
shows that prototype reasoning makes class borders smoother and makes it easier to understand cases
(such “this looks like that”). Without attribution regularization, gradient-based localization goes down
a little (AUC 0.945) and visual saliency noise goes up. When all interpretability modules are removed,
performance deteriorates the most (AUC 0.934, F1 0.868), verifying that explicit explainability
constraints yield measurable gains in both accuracy and semantic alignment. Collectively, these results
demonstrate that interpretability and performance are not competing objectives; rather, concept-aware
and prototype-driven reasoning improves generalization by embedding domain priors into the learned
representation space.

Table 9. Impact of explainability components on interpretability and diagnostic performance.

Configuration AUC (↑) F1 (↑) Concept correlation (r)
Full Model (Ours) 0.952 0.893 0.82
w/o Concept Bottleneck 0.939 0.877 0.00
w/o Prototype Layer 0.944 0.881 0.78
w/o Attribution Regularization 0.945 0.882 0.79
w/o All Explainability Modules 0.934 0.868 0.00

Table 10 assesses the impact of uncertainty estimates and calibration components on model
reliability. The whole model’s AUC is 0.952, its ECE is 0.015, and its Brier score is 0.054. This means
that the model’s probabilistic output matches the expected confidence with the actual correctness.
Turning offMonte-Carlo (MC) dropout raises the ECE by 0.006 and the Brier score by 0.007, showing
that random sampling during inference takes into account epistemic uncertainty from limited data.
When you take away deep ensembles, AUC 0.944 and ECE get a little worse. This shows that having
a lot of different models makes people less sure of their decisions and smooths out the lines between
them. Without temperature scaling, the highest calibration drift (ECE = 0.024) happens. This shows
how important post-hoc scaling is for matching logits with probability magnitudes on data that hasn’t
been seen before. The biggest drop in AUC (–1.0%) and calibration (ECE = 0.027) happens when you
get rid of uncertainty-aware loss weighting. This is because it prohibits the model from learning how
to change its confidence based on the mode during training. The results indicate that multi-source
uncertainty modeling—MC sampling, ensemble averaging, and temperature calibration—enhances
reliability without sacrificing accuracy, ensuring that predicted probabilities remain interpretable and
therapeutically relevant.

Table 10. Effect of uncertainty and calibration mechanisms on model reliability.

Configuration AUC (↑) ECE (↓) Brier (↓)
Full Model (Ours) 0.952 0.015 0.054
w/o MC Dropout 0.945 0.021 0.061
w/o Deep Ensembles 0.944 0.019 0.058
w/o Temperature Scaling 0.946 0.024 0.060
w/o Uncertainty Loss Weighting 0.942 0.027 0.065
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We evaluated two models for absolute gains under the ‘missing modality’ condition. The CT-only
model attained an AUC of 0.902 and the PET-only model attained an AUC of 0.889 on the TCIA dataset
(i.e., 0.902 vs 0.889). The best model’s AUC (i.e., the low-rank imputation model) was 0.931, while
the full fusion model attained an AUC of 0.952. Thus, it is clear that low-rank imputation increases the
predictive accuracy of unimodal models, while the benefit from combining modalities is maximized
once the integrated model(s) contain all available information from both models.

4.5. Preprocessing and harmonization ablation

Table 11 provides details on how different components of preprocessing contribute to the
classification performance. The elimination of ComBat leads to increased variation between sites,
resulting in a decrease in AUC of 2.1%. Eliminating the use of adaptive instance normalization
(AdaIN) also results in a decrease in ECE by +0.012. The deactivation of SUV normalization leads to
a decrease in TCIA AUC of 0.952 to 0.937. The removal of deformable PET–CT registration leads to a
1.4% degradation in segmentation Dice due to misaligned metabolic/structural boundaries. Removal of
low-rank imputation decreases robustness of missing modality with AUC drop of 0.019 under modality
dropout testing.

Table 11. Ablation of preprocessing and harmonization components.

Configuration Dice (CT) AUC (PET/CT) ECE (NLST)
Full pipeline (ours) 0.879 0.952 0.022
No ComBat 0.868 0.931 0.028
No AdaIN 0.872 0.946 0.034
No SUV calibration – 0.937 –
No deformable registration – 0.938 –
No low-rank imputation 0.871 0.933 0.026

4.6. Discussion

Deep learning consistently outperforms across many imaging modalities for early lung cancer
diagnosis. Quantitative findings from LIDC-IDRI, TCIA, and NLST demonstrate that the model
surpasses convolutional and transformer-based benchmarks in detection accuracy and calibration. The
combination of volumetric feature modeling, cross-modal fusion, and training that takes uncertainty
into account leads to better performance. The gated transformer aligns structural and metabolic
inputs, while clinical and pathological embeddings enhance contextual understanding. The paradigm
generalizes effectively across acquisition methodologies, scanner discrepancies, and demographic
distributions owing to the little variance among folds and ECE values.

Ablation tests show that the main parts of the architecture work well on their own and
together. The most significant loss transpires upon the removal of cross-modal attention or
gating, indicating that synchronized feature representation necessitates adaptive information transfer
among modalities. Excluding modality imputation drastically reduces performance in missing-
modality scenarios, illustrating that the imputation-aware objective enables the model to deduce
latent representations in the absence of a modality. Explainability-oriented ablations demonstrate
that concept bottlenecks and prototype reasoning stabilize learning while enforcing semantically
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meaningful feature disentanglement as regularizers. Monte-Carlo dropout, deep ensembles, and
temperature scaling calibrate confidence measures, providing reliable and comprehensible probability
outputs in high-stakes diagnostic settings.

Experiments across datasets demonstrate that the proposed model exhibits robust generalization.
When trained and tested on diverse datasets, the model has AUC values over 0.92, which means it can
handle domain shift and scanner bias. Adaptive instance normalization and ComBat-style feature
alignment are examples of harmonization solutions that make this strong by reducing differences
between institutions and keeping therapeutically relevant trends. For scalable clinical translation
to work, there needs to be consistency across domains. This is because models trained in one
healthcare system need to work the same way in another system with different patient demographics
and acquisition methods. So, the proposed design makes it possible for AI screening technologies to
work across several institutions and with each other.

The inclusion of gastrointestinal endoscopic analysis [32] and dermoscopic lesion classification [33]
underscores the broader applicability of the methodological choices embedded in our framework.
Both studies demonstrate that heterogeneous clinical modalities benefit from carefully designed
preprocessing pipelines, balanced augmentation strategies, calibrated probability outputs, and
validated saliency mechanisms. These transferable insights align with our use of concept bottlenecks,
prototype reasoning, reliability estimation, and uncertainty-aware triage, situating the proposed multi-
modal lung cancer system within a wider class of clinically grounded, interpretable, and workflow-
integrated AI models. Although the optimized inference speed is as follows: 1.8 seconds for CT
scans, 1.4 seconds for PET/CT scans, and 0.6 seconds for CXR using one NVIDIA A100, the memory
requirements are manageable at less than 7.2 gigabytes. These times are within acceptable limits
for the implementation of real-time Washington State Radiological Society (WSRS) protocols (e.g.,
picture archiving and communication system (PACS) triage). Additionally, it is possible to disable the
usage of ensemble that was speed inference when deploying into a PACS system, reducing the latency
to the PACS system to below one percent (1.5% AUC decrease).

Our approach is designed to efficiently support clinical usage from a computational perspective. By
incorporating hybrid state-space encoders into our model (which decrease the time taken to process
volumetric data from a quadratic time basis like other Transformer models), we are able to achieve
higher-speed inference on CT/PETCT than was possible when we used full attention methods. When
using an NVIDIA A100, we achieved an average inference time of 0.42 seconds for CT, 0.38 seconds
for PET/CT, and 0.11 seconds for CXR with multimodal total inference completed in less than 1
second. Times for our method are consistent with routine clinical workflows and much faster than the
standard 3D Transformer algorithms with similar accuracy. Therefore, the model has been optimized
to provide both high diagnostic performance and computational efficiency to allow for real-world use.

The methodology delineates explicit reasoning pathways to tackle the medical AI interpretability
gap beyond mere quantitative performance. Radiologists may connect predictions to clinically
interpretable parameters including nodule margin irregularity, spiculation, and metabolic intensity
thanks to localized and semantically matched explanations using prototype-based reasoning, concept
bottlenecks, and saliency regularization. TCAV analysis measures global concept influence by
connecting domain information to model decisions. The methodology enables the integration of
ethical AI into diagnostic workflows by merging concept-level reasoning with pixel-level attribution,
so promoting human trust, second-opinion validation, and actionable interpretability.
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The proposed methodology demonstrates that explainability, calibration, and diagnostic
performance can be enhanced without clinical trade-offs. The framework’s impressive concordance
between predicted malignancy probability and radiologist annotations indicates its potential as a
dependable early-stage lung cancer screening decision-support system. This study incorporated various
imaging modalities; nonetheless, larger, multi-center cohorts and uncommon subgroups are essential
to ascertain generalizability among real-world variation. We will look on federated and continuous
learning extensions that can change based on site-specific factors while keeping patient privacy safe.
This study demonstrates that interpretable and uncertainty-aware multimodal learning can provide
clinically applicable AI systems that enhance radiological decision-making.

5. Conclusions

This research presents a multimodal deep learning framework for early lung cancer detection using
CT, PET/CT, and CXR imaging via a single cross-modal transformer architecture. This architecture
utilizes modality-specific state-space encoders combined with gated fusion utilizing uncertainty
estimation and multitask learning, allowing the model to segment pulmonary nodules, separate benign
and malignant lesions, and model the risk of survival, and has been tested on the LIDC-IDRI, TCIA,
and NLST datasets, consistently providing superior performance over state-of-the-art baseline models
in terms of dice scores, AUC, calibration, and robustness under missing modality and cross dataset
conditions. The results of ablation studies show that cross-modal attention, concept bottlenecks, and
uncertainty modeling each contribute to the overall improvement of diagnostic accuracy and model
interpretability. Prototype reasoning, concept supervision, and gradient-based attribution all provide
case-level explanations of predictions by visual evidence maps and concept score representations
that allow for clinical-level justification of each prediction to radiologists. These features provide a
framework as a reliable assistance system to eliminate delays in diagnosis and reduce the potential for
inter-observer variability in lung cancer screening processes. The proposed architecture provides an
indication of being a clinically used diagnostic tool that is uncertainty aware and clinically interpretable
while being modality-agnostic. In addition, federated, privacy-preserving training and adaptive
continual learning across institutions will enable widespread functioning in the near future. Thus, this
research indicates a trustworthy, transparent, and robust framework for multimodal deep learning that
will greatly improve the clinical precision and usefulness of computer-assisted lung cancer screening.
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