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Abstract: In this study, we proposed a modified spherical variogram model aimed at improving the 

accuracy of spatial modeling in volume estimation. The model enhances the flexibility of the traditional 

spherical variogram structure by incorporating additional polynomial terms to better capture spatial 

variability in structured plantation datasets. Parameters such as nugget, sill, range, and the coefficients 

of the polynomial terms were estimated using the L-BFGS-B optimization algorithm under box 

constraints, ensuring numerical stability and physically meaningful values. The performance of the 

modified model was evaluated using real-world volume data from Tectona grandis Linn. f. (teak) trees 

planted in a multiclonal block in Brumas Camp, Tawau, Sabah, Malaysia. To assess model accuracy 

and generalizability, predicted volumes derived from the fitted variogram model were compared to 

measured values using three validation strategies: Full dataset fitting, Leave-One-Out Cross-Validation 

(LOOCV), and K-Fold Cross-Validation. The modified spherical variogram model demonstrated 

superior performance over the classical version in terms of weighted root mean squared error (RMSE) 

and coefficient of determination (R²). These findings highlighted the value of refining variogram 

structures to improve estimation precision in geostatistical applications, particularly when modeling 

spatially complex forest data. 



29665 

AIMS Mathematics  Volume 10, Issue 12, 29664–29685. 

Keywords: modified spherical variogram; geostatistics; spatial modelling; constrained optimization; 

L-BFGS-B; Tectona grandis Linn. F 

Mathematics Subject Classification: 62M30, 62H11, 65K10, 62P12 

 

1. Introduction  

The accuracy of modeling spatial dependence is a major concern in geostatistics, with broad 

applications across environmental sciences, engineering, and applied mathematics. The variogram, a 

key tool for quantifying spatial continuity, plays a central role in geostatistical modeling and spatial 

prediction [1]. Among the widely used models, the spherical variogram is particularly popular for its 

simplicity and bounded support, which makes it appealing in applications requiring spatial 

interpolation with limited range influence [2,3]. However, traditional spherical models often struggle 

to capture complex spatial structures, particularly when the underlying data exhibit anisotropy, non-

stationarity, or scale-dependent variability [4]. 

While the spherical model is widely used in geostatistical modeling due to its simplicity and ease 

of interpretation, other models such as exponential, Gaussian, and Matérn variograms have also been 

widely studied [5]. These models vary in their smoothness and support properties, which influence 

their suitability in different spatial data. However, even these standard models may fall short when 

faced with spatially complex, non-stationary, or anisotropic datasets, prompting a need for more 

adaptable structures [4,6]. Prior research has explored these challenges by proposing new techniques 

such as nested models, spatial deformation, and spline-based variograms [7–9], but these often increase 

computational complexity or require additional assumptions. Research has demonstrated the potential 

of advanced optimization and adaptive modeling techniques in improving spatial prediction accuracy, 

such as Kriging-assisted reliability analysis [10] and smooth surface fitting via finite-element thin plate 

splines with adaptive refinement [11], reinforcing the need for more flexible variogram formulations. 

In this study, we focus on enhancing the flexibility of the spherical model itself through a polynomial-

based modification, providing more flexibility and tractability. 

We address such limitations by proposing a modified spherical variogram model designed to 

enhance spatial representation and prediction accuracy. The modified model incorporates additional 

polynomial terms into the standard spherical structure to enhance flexibility of the model, thus 

capturing complex spatial patterns. This results in improved fitting capability over heterogeneous 

spatial domains, which is especially crucial for real-world data such as forestry. 

The modified model is constructed to retain essential theoretical properties, including continuity, 

boundedness, and valid sill behavior. To ensure these properties are preserved, constraints are imposed 

on the polynomial coefficients so that the variogram transitions smoothly to the sill at ℎ =  𝑎. To 

estimate the model parameters, which are nugget, partial sill, range, and polynomial coefficients, we 

employ the L-BFGS-B optimization algorithm. This quasi-Newton method enables efficient parameter 

estimation under box constraints, such as non-negativity of the nugget (𝐶0), partial sill (𝐶), and range 

(𝑎 > 0). This constrained optimization framework enables the model to achieve a better empirical fit 

while maintaining physical and statistical plausibility.  

Although the proposed model is demonstrated using spatial volume data from Tectona grandis 

Linn. f. (teak) plantations in Brumas Camp, Tawau, Malaysia, its formulation is grounded in general 

geostatistical principles and does not rely on domain-specific assumptions. The methodology is 

therefore applicable to a broad range of spatial datasets across environmental sciences, engineering, 

and other fields where spatial heterogeneity is present. The main contribution of this work is not only 
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the improved structure of the variogram model, but also the use of constrained optimization to estimate 

its parameters. Together, these elements provide a practical alternative to traditional variogram fitting 

methods, which may give unstable or less accurate results in datasets with complex spatial patterns.  

The remainder of this paper is organized as follows: In Section 2, we introduce the mathematical 

formulation of the modified spherical variogram model, including the continuity constraint and 

optimization approach. In Section 3, we describe the empirical analysis conducted on the real teak 

dataset, along with details of the model fitting procedure. In Section 4, we present the results from 

various cross-validation techniques and compares the performance of the proposed model against the 

traditional spherical variogram. Finally, in Section 5, we conclude with a summary of findings, discuss 

the implications for geostatistical modeling, and suggests directions for future research. 

2. Materials and methods 

2.1. Overview of methodological framework 

We present a structured framework for fitting the proposed modified spherical variogram model, 

as shown in Figure 2.1. The process begins with the mathematical formulation of the model and 

proceeds to parameter estimation through an optimization approach. To ensure the model remains 

theoretically valid, a mathematical validity check is conducted, verifying essential conditions such as 

continuity and boundedness. Finally, the model’s predictive performance is evaluated using several 

cross-validation techniques. 

 

Figure 2.1. Framework for fitting the modified spherical variogram model. 
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Although Figure 2.1 includes “Estimation” (referring to kriging methods such as ordinary, 

universal, and simple kriging) as a potential application of the fitted model, this step is acknowledged 

but not carried out in this paper. The focus remains on variogram fitting and validation. Nonetheless, 

the model is built to be compatible with these kriging techniques for future use.  

2.2. Mathematical formulation of the modified spherical variogram 

The modified spherical variogram is defined as the piecewise function: 

𝛾(ℎ) =

{
 
 

 
 0,                                                                                       ℎ = 0

𝐶0 + 𝐶 [𝑥1 (
ℎ

𝑎
) + 𝑥2  (

ℎ

𝑎
)
2

+ 𝑥3  (
ℎ

𝑎
)
3

] , 0 < ℎ ≤ 𝑎

𝐶0 + 𝐶,                                                                             ℎ > 𝑎

 (2.1) 

where: 

• 𝐶0 is the nugget effect, 

• 𝐶 is the partial sill variance, 

• 𝑎 is the range parameter, 

• ℎ is the lag distance, 

• 𝑥1, 𝑥2, and 𝑥3 are coefficients that define the shape of the variogram curve for 0 ≤ ℎ ≤ 𝑎.  

This definition explicitly satisfies the fundamental condition of a variogram, 𝛾(0) = 0.  The 

nugget 𝐶0 represents the discontinuity at the origin, i.e.,  

lim
ℎ↓0

𝛾(ℎ) =  𝐶0, (2.2) 

consistent with the variogram theory [12]. To guarantee continuity at the range ℎ = 𝑎 and smooth 

transition to the sill, the coefficients must satisfy the constraints 

𝑥1  +  𝑥2 + 𝑥3 = 1, and (2.3) 

𝑥1  +  2𝑥2 +  3𝑥3 = 0. (2.4) 

Equation (2.3) enforces 

𝛾(𝑎−) =  𝐶0 + 𝐶, 

ensuring continuity, while Eq (2.4) ensures 

𝛾′(𝑎−) =  0, 

preventing discontinuity where the variogram reaches its sill.  

Rather than estimating (𝑥1, 𝑥2, 𝑥3) directly under equality constraints, the polynomial is re-

parameterised using a single free parameter 𝑢, such that  

𝑥1 = 𝑢,    𝑥2 = 3 − 2𝑢,    𝑥3 = 𝑢 − 2.  (2.5) 

This analytical substitution ensures that (2.3) and (2.4) are satisfied for all values of 𝑢, making the 

parameterisation both parsimonious and unambiguous. 
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With this re-parameterisation, the variogram becomes  

𝛾(ℎ) =

{
 
 

 
 0,                                                                                       ℎ = 0

𝐶0 + 𝐶 [𝑢 (
ℎ

𝑎
)  + (3 − 2𝑢) (

ℎ

𝑎
)
2

+ (𝑢 − 2) (
ℎ

𝑎
)
3

] , 0 < ℎ ≤ 𝑎

𝐶0 + 𝐶,                                                                             ℎ > 𝑎

 (2.6) 

which depends only on the four estimable parameters (𝐶0, 𝐶, 𝑎, 𝑢). Presenting the model in this form 

eliminates ambiguity regarding non-estimable coefficients and directly aligns with the optimization 

procedure. 

2.2.1. Mathematical validity conditions 

Mathematical validity ensures that the variogram model adheres to theoretical conditions essential 

for reliable spatial prediction, specifically [13]: 

1) Symmetry: A valid variogram must be symmetric, meaning 𝛾(ℎ) = 𝛾(−ℎ), which ensures 

consistent spatial dependence measurement in all directions. 

2) Non-negativity: Variogram value must never be negative, 𝛾(ℎ) ≥ 0, as negative values are 

not physically meaningful. This is ensured by; (a) non-negativity constraints on 𝐶0and 𝐶, and 

(b) the monotonicity properties of the cubic polynomial under the parameter space used. 

3) Sill Attainment: A valid variogram should reach a defined sill (𝐶0 + 𝐶) at large distances, 

indicating the range beyond which spatial autocorrelation becomes negligible. 

4) Conditional Positive Definiteness: Variograms must be conditionally positive semi-definite 

to ensure the validity of the kriging interpolation. This condition guarantees the covariance 

matrix derived from the variogram is invertible and produces non-negative variances. 

For kriging to be valid, the covariance matrix 

𝐾𝑖𝑗 = (𝐶0 + 𝐶) − 𝛾(|𝑠𝑖 − 𝑠𝑗|) 

where |𝑠𝑖 − 𝑠𝑗| is the distance between two locations, must be conditionally positive semi-definite. 

For each fitted model, 𝐾 was assembled using empirical coordinates, and its eigenvalues were 

computed. In all cases (6th, 7th, and 10th years), the minimum eigenvalues were non-negative within 

numerical tolerance, confirming admissibility. 

This verification, with the structural form of (2.6), ensures that the model satisfies all necessary 

validity conditions. Detailed mathematical derivations for the proposed modified spherical variogram 

model and eigenvalues calculated to prove positive-definiteness are available upon request, as they 

have not been published. 

In terms of monotonicity, a well-behaved variogram should be non-decreasing on the interval 

0 ≤ ℎ ≤ 𝑎. Differentiating (2.6) yields: 

𝛾′(ℎ) =
𝐶

𝑎
[𝑢 + 2(3 − 2𝑢) (

ℎ

𝑎
) + 3(𝑢 − 2) (

ℎ

𝑎
)
2

]. (2.7) 

For the estimated values of 𝑢 obtained in all years, the derivative remains non-negative on [0, 𝑎], 
confirming empirical monotonicity. This monotonic behavior is also visually supported by the fitted 

curves. 
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2.2.2. Goodness-of-fit metrics and cross-validation 

Goodness-of-fit metrics and cross-validation methods were applied to assess how well the 

theoretical and modified variogram models describe the empirical spatial structure and predict values 

at unsampled locations. We employ the following metrics: 

1) Weighted Root Mean Squared Error (RMSE): RMSE measures the prediction error magnitude 

and incorporates bin-level weights based on the number of point pairs: 

𝑅𝑀𝑆𝐸 = √
∑ 𝜔𝑖(𝑧𝑖 − 𝑧𝑖̂)2
𝑛
𝑖=1

∑ 𝜔𝑖
𝑛
𝑖=1

 (2.7) 

where 𝜔𝑖  denotes the weight for lag ℎ𝑖 , typically the number of point pairs (𝑛𝑝 ) used in 

empirical variogram calculation, 𝑧𝑖  is the observed value and 𝑧𝑖̂  is the predicted value at 

location 𝑖.  
2) Coefficient of Determination (R-squared, 𝑅2):  This metric assesses the proportion of 

variability in observed data explained by predictions: 

𝑅2 = 1 − 
∑ (𝑧𝑖−𝑧𝑖̂)

2𝑛
𝑖=1

∑ (𝑧𝑖−𝑧̅)
2𝑛

𝑖=1

. (2.8) 

The closer the value of 𝑅2 to 1, indicates better explanatory ability of the model.  

This weighted RMSE and standard 𝑅2  formulation ensures comparability across all models, 

including the modified spherical variogram, as required for reviewer-consistent evaluation. 

To further strengthen the analysis, two cross-validation methods are applied:  

1) Leave-One-Out Cross-Validation (LOOCV): Sequentially removes each data point, predicts its 

value from the remaining data, and evaluates predictive accuracy. 

2) K-Fold Cross-Validation: The dataset is partitioned into k subsets, training on 𝑘 − 1 folds and 

testing on the remaining fold, cycling through all folds to robustly assess model performance. 

We assume k=5.  

These validation procedures provide a comprehensive evaluation of each variogram model's suitability 

for reliable spatial interpolation of teak tree volumes.  

2.2.3. Rationale for modifications  

The motivation for modifying the spherical variogram model arises from the need to better capture 

the spatial patterns observed in teak volume data over multiple years and configurations. While the 

classical spherical model yielded consistently low RMSE and high R² among standard models, it still 

showed residual trends near the range limit, suggesting limited flexibility in fitting real-world 

variability. 

Two major factors guided the modification: 

1) Improved empirical fit 

Although the spherical model performed well statistically, visual inspection of the empirical 

variograms revealed that it did not fully capture the smooth transitions in some years, especially 

near the cutoff distance. 

2) Greater flexibility in curve shape 

The cubic extension adds shape-controlling coefficients ( 𝑥1, 𝑥2, 𝑥3 ), enabling the model to 
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better match diverse empirical trends. This is useful when spatial correlation decays non-

uniformly or the effective range is unclear. 

The modified model maintains key theoretical properties mentioned in Section 2.2.1, making it 

valid for geostatistical applications. It also includes the classical spherical model as a special case, 

ensuring compatibility with traditional approaches. 

To estimate parameters, we use L-BFGS-B, a constrained optimization method that handles 

parameter bounds like non-negative nugget and range values. This makes the model more robust and 

adaptable for spatial modeling in complex environments such as forest plantations commonly studied 

in tropical regions. 

2.3. Parameter estimation via constrained optimization 

To estimate the parameters of the modified spherical variogram model, we use the Limited-

memory Broyden–Fletcher–Goldfarb–Shanno algorithm with box constraints (L-BFGS-B), a quasi-

Newton method suited for nonlinear problems with bounded parameters [14,15]. This approach is 

implemented in R using the optim() function with method “L-BFGS-B”. 

The cubic component of the model is subject to the continuity at the range and smoothness 

constraints previously defined in Eqs (2.3) and (2.4). To ensure these conditions are always satisfied 

during optimization, the polynomial was reparameterised using a single free coefficient 𝑢, as defined 

earlier in Eq (2.5). 

This reduces the parameter vector to 

𝜃 = {𝐶0, 𝐶, 𝑎, 𝑢}, 

greatly simplifying estimation while guaranteeing mathematical validity of the variogram. Parameters 

are obtained by minimizing a weighted least-squares objective function: 

min
𝜃
𝑄(𝜃) =  ∑𝑤(ℎ𝑖)

𝑛

𝑖=1

[𝛾𝑒𝑚𝑝(ℎ𝑖) − 𝛾𝑚𝑜𝑑𝑒𝑙(ℎ𝑖; 𝜃)]
2 

subject to: 𝜃𝑚𝑖𝑛 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥 

(2.9) 

where 𝜃 = {𝐶0, 𝐶, 𝑎, 𝑢}  is the parameter vector, ℎ𝑖   are lag distances, 𝛾𝑒𝑚𝑝(ℎ𝑖)  is the empirical 

variogram value at lag ℎ𝑖, 𝛾𝑚𝑜𝑑𝑒𝑙(ℎ𝑖; 𝜃) is the theoretical value from the modified variogram, and 

𝑤(ℎ𝑖) is the number of point pairs at lag ℎ𝑖. 
Box constraints ensure non-negativity for the nugget (𝐶0 ≥ 0), partial sill (𝐶 ≥ 0), and positivity 

for the range ( 𝑎  > 0). Since all equality constraints are satisfied analytically through the 

reparameterisation in Eq (2.5), no penalty terms were required. Initial parameter values and bounds 

were selected based on exploratory variogram inspection and physically interpretable limits. 

This estimation framework guarantees that the resulting fitted model is smooth, continuous, and 

mathematically valid, while retaining the flexibility needed to capture empirical spatial structures. 

2.4. Study area and data description 

The study is conducted in a clonal teak (Tectona grandis linn F.) plantation managed by the 

Research and Development Division of Sabah Softwood Berhad at Brumas Camp, Tawau, Sabah, 

Malaysia. Established in 2002, the selected block (Block 96G) spans 5.67 hectares and is at 4°37′23.85′′ 
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N, 117°47′05.12′′ E. The site is moderately sloped (elevation: 180–370 m), situated in a tropical 

rainforest climate (Köppen classification), and underlain by Tanjung Lipat soil, which is typically low 

in nitrogen, potassium, and magnesium. 

Among the fifteen teak genotypes propagated via micropropagation, seven were Solomon Island-

derived clones, which serve as the primary focus of this study. A randomized complete block design 

(RCBD) with four replications is implemented, each comprising two rows of 30 trees per genotype, 

spaced 4×4 meters apart resulting in a planting density of approximately 625 stems per hectare. Only 

the 11th to 20th trees in each row are sampled, giving 80 trees per genotype. 

Although 1,200 trees are initially assessed for height and diameter at breast height (DBH), only 

the Solomon clones are included in the analysis due to its lucrative outcome. Volume is calculated 

using the following equation [16]: 

𝑉 =
1

10
[[1.3𝜋 (

𝐷

2
)
2

] + [𝜋 (
𝐷

2
)
2

(
(𝐻 − 1.3)

3
)]] (2.10) 

where 𝑉  is the tree volume in cubic centimeters (cm3), 𝐷  is the diameter at breast height in 

centimeters, and 𝐻 is the total tree height in meters. Sampling was conducted at years 6, 7, and 10. 

Table 2.1 summarizes the total and georeferenced samples. After excluding trees lost to undergrowth 

and mortality, 801 Solomon-clone trees are retained for analysis in years 6 and 7. Sample sizes decline 

by year 10 due to natural tree mortality. Tree locations are georeferenced using GPS coordinates 

recorded in the field and later converted into spatial points using the WGS84 coordinate system 

(EPSG:4326). 

The focus on Solomon Island-derived clones is motivated by their consistently superior growth 

performance in earlier studies [17]. Topographic details of the site are illustrated in Figure 2.2, provided 

by the Sabah Softwood Berhad research team. 

 

Figure 2.2. The topologic map of block 96G at Brumas Camp, Tawau, Sabah. 
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Table 2.1. Samples collected according to teak tree’s age. 

Teak Tree Age (years) Sample size (n) Georeferenced samples 

6 451 432 

7 451 445 

10 354 354 

2.5. Empirical variogram construction and model fitting 

Variograms are essential tools in spatial statistics used to quantify how similarity between 

observations changes with distance. In forestry applications, they are especially useful for exploring 

spatial continuity in variables such as tree volume. The empirical variogram, computed from observed 

data, provides a non-parametric approximation of spatial autocorrelation. It is constructed using a fixed 

bin width of 0.0035 units, selected to balance resolution and pair count across distance classes. In this 

study, volume measurements of teak trees serve as the variable of interest, denoted as 𝑍(𝑥𝑖) and the 

variogram value is estimated using: 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑[𝑍(𝑥𝑖) − 𝑍(𝑥𝑖 + ℎ)]

2

𝑁(ℎ)

𝑖=1

 (2.11) 

where ℎ is the lag distance and 𝑁(ℎ) is the number of point pairs at that lag. This bin-based approach 

offers exploratory insight into spatial patterns within the plantation block.  

Once the empirical variogram is computed, valid theoretical models are fitted to ensure 

smoothness, continuity, and positive semi-definiteness, which are essential for kriging. Several 

classical models are evaluated, including spherical, exponential, Gaussian, wave, circular, and penta-

spherical models. Each model is defined by three key parameters: 

• Nugget, 𝐶0: Variogram at zero distance, indicating measurement error or micro-scale variation. 

• Sill, 𝐶: Plateau representing the limit of spatial dependence. 

• Range 𝑎 : The distance at which the variogram reaches the sill, beyond which spatial 

correlation diminishes. 

These models are fitted to the empirical variogram using least squares, and their performance is 

evaluated based on visual fit and predictive accuracy. Table 2.2 summarizes the models evaluated in 

this study. This variogram modeling process lays the foundation for kriging-based spatial prediction, 

although kriging is not performed in this study. Instead, model validation is conducted via cross-

validation techniques to assess the generalizability and robustness of each fitted model. 
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Table 2.2. Theoretical variogram models evaluated in this study. 

Model VARIOGRAM  

Exponential 𝛾(ℎ) = 𝐶0 + 𝐶 [1 − 𝑒
(
−ℎ
𝑎
)] if, 0 ≤ ℎ ≤ 𝑎. Otherwise, 𝐶0 + 𝐶. 

Spherical 𝛾(ℎ) = 𝐶0 + 𝐶 [(
3

2
) (
ℎ

𝑎
) − (

1

2
) (
ℎ

𝑎
)
3

] if, 0 ≤ ℎ ≤ 𝑎. Otherwise, 𝐶0 + 𝐶. 

Gaussian 𝛾(ℎ) = 𝐶0 + 𝐶 [1 − 𝑒
(−(

ℎ
𝑎
)
2
)
] for all h. 

Wave 𝛾(ℎ) = 𝐶0 + 𝐶 [1 −
sin (𝜋

ℎ
𝑎
)

𝜋
ℎ
𝑎

] for all h. 

Circular 𝛾(ℎ) = 𝐶0 + 𝐶 [1 +
2

𝜋
(
ℎ

𝑎
√1 − (

ℎ

𝑎
)
2

− 𝑐𝑜𝑠−1
ℎ

𝑎
)] if, 0 ≤ ℎ ≤ 𝑎. Otherwise, 𝐶0 + 𝐶. 

Penta spherical 𝛾(ℎ) = 𝐶0 + 𝐶 [(
15

8
) (
ℎ

𝑎
) − (

5

4
) (
ℎ

𝑎
)
3

+
3

8
(
ℎ

𝑎
)
5

] if, 0 ≤ ℎ ≤ 𝑎. Otherwise, 𝐶0 + 𝐶. 

3. Results 

In this section, we present the outcomes of fitting classical and modified theoretical variogram 

models to the empirical variogram data derived from teak volume measurements. The results are 

organized by tree age, in years, starting from 6, 7, and 10, highlighting how well each model captures 

spatial dependence. Visual comparisons, parameter estimates, and goodness-of-fit metrics are provided 

to evaluate model performance. Special attention is given to the proposed modified spherical 

variogram, whose enhanced flexibility is assessed against standard models using cross-validation 

methods such as weighted RMSE and R². 

3.1. Empirical variogram modeling and visual fit 

Figures 3.1−3.3 present the empirical variograms overlaid with fitted curves for each of the seven 

theoretical models, including the proposed Modified Spherical Variogram, across the 6th, 7th, and 10th 

plantation years. Each model is fitted using least squares method based on binned variogram values. 

These visual comparisons highlight how well each model captures the spatial dependence structure 

across age stages, particularly around the range threshold. 

As shown in the figures, none of the classical models captured the empirical variogram trends 

perfectly across all years. In the 6th year, the spherical and circular models provided a relatively good 

visual fit, while the wave model slightly underestimated variogram values at mid-lag distances. The 

modified spherical variogram model, included for comparison, closely followed the upward curvature 

across lags, showing improved alignment with empirical points. For the 7th year, the spatial structure 

appeared more linear, and most classical models struggled to reflect the steady rise in variogram value, 

particularly across transitional lag zones. Here too, the modified spherical variogram model 

demonstrated a better visual fit, especially in the mid-to-late lag range. In the 10th year, where a more 

pronounced increase in variogram was observed, the modified spherical variogram model again offered a 

smoother transition across lags, capturing the empirical trend more effectively in this later growth stage. 

These inconsistencies highlight the limitations of classical variogram forms in capturing the 

spatial complexity of clonal teak stands at different growth stages. This amplifies the need to introduce 
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a modified spherical variogram model that is formulated to provide improved flexibility in gradient 

behavior and curve fitting. 

  

  

  

 

Figure 3.1. Fitted Variogram Models for Year 6. 
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Figure 3.2. Fitted variogram models for Year 7. 
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Figure 3.3. Fitted variogram models for Year 10. 
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3.2. Variogram model fitting and parameter estimates 

All theoretical variogram models were fitted using the fit.variogram() function in gstat, and their 

predictive performances were objectively compared using K-fold and leave-one-out cross-validation 

(LOOCV). The resulting RMSE and R² values serve as numerical indicators of model discrepancy, 

providing an objective numerical evaluation comparable to automated routines such as 

autofitVariogram [18]. The modified spherical variogram was estimated using constrained weighted 

least squares (Section 2.3), ensuring exact satisfaction of all continuity and smoothness constraints. 

This approach ensures objective model comparison beyond visual assessment, particularly for 

evaluating the modified spherical variogram alongside the six classical models. 

3.2.1. Parameter estimates for classical models 

The first six models, Exponential, Spherical, Gaussian, Wave, Circular, and Pentaspherical, were 

fitted independently for each year. The estimated parameters (nugget, sill, and range) are summarized 

in Table 3.1, providing insight into the spatial structure captured by each model. 

The estimated parameters reveal several interesting trends. Across all years, the Gaussian and 

wave models tend to produce shorter range estimates, while penta-spherical and spherical models show 

longer effective ranges. Nugget values were generally higher in the 10th year, indicating increased 

short-scale variability or measurement error as the trees matured. The exponential model showed 

relatively high partial sills in the 7th and 10th years, which may be a sign of overestimation of spatial 

structure near the origin. These differences will be further evaluated in terms of predictive accuracy 

and visual fit. 

Table 3.1. Estimated parameters of theoretical variogram models (excluding Modified Spherical). 

  Spherical Exponential Gaussian Circular Penta spherical Wave 

6
th

 

y
ea

r
 

𝑪𝟎 0.002462 0.002424 0.002605 0.002464 0.002460 0.002619 

𝑪 0.001370 0.001754 0.001182 0.001337 0.001403 0.001012 

𝒂 0.05506 0.03649 0.02411 0.04618 0.06966 0.03121 

7
th

 

y
ea

r
 𝑪𝟎 0.004775 0.004668 0.005016 0.004800 0.004762 0.005110 

𝑪 0.003271 0.003988 0.002633 0.003306 0.003294 0.002622 

𝒂 0.07905 0.04719 0.02879 0.07154 0.09657 0.04781 

1
0

th
 

y
ea

r
 

𝑪𝟎 0.005790 0.004019 0.007559 0.005888 0.005715 0.007644 

𝑪 0.006938 0.009097 0.005327 0.006798 0.007078 0.004669 

𝒂 0.01811 0.007049 0.01069 0.01580 0.02225 0.01369 

3.2.2. Parameter estimation for the modified spherical variogram model 

To evaluate the performance of the proposed modified spherical variogram, its parameters are 

estimated for each year using the L-BFGS-B optimization algorithm, as introduced in Section 2.3. The 

model includes the nugget (𝐶0), partial sill (𝐶), and range (𝑎), together with a single shape parameter 

𝑢 . The remaining polynomial coefficients (𝑥1, 𝑥2, 𝑥3)  are derived from 𝑢  using the 

reparameterisation described in Section 2.3, which guarantees continuity and smoothness at the range 

while reducing the dimensionality of the optimization. 

Table 3.2 presents the estimated parameter values for the modified spherical variogram model 
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across the 6th, 7th, and 10th plantation years. These results reflect the modified spherical variogram 

model’s ability to adapt its shape to fit various empirical trends, particularly in lag intervals where 

classical models show limitations. 

Table 3.2. Optimized parameters for the modified spherical variogram model. 

Year 𝑪𝟎 𝑪 𝒂 𝒙𝟏 𝒙𝟐 𝒙𝟑 

6th 0.00295499 0.00132806 0 .11749 0.499568 2.000864 -1.50043 

7th 0.0052383 0.002804838 0.074983 0.500521 1.998959 -1.49948 

10th 0.01108929 0.00386093 0.117476 0.499614 2.000771 -1.50039 

The modified spherical variogram estimates demonstrate several key advantages: 

• Range flexibility: Parameter 𝑎 adapts to the extent of spatial influence, with values consistent 

yet often smoother than those from classical models. 

• Curvature control: The cubic terms ( 𝑥1, 𝑥2 , 𝑥3) enable nuanced adjustments to model the 

variogram’s rate of increase, particularly beneficial in transition zones. 

• Backward compatibility: In cases where 𝑢 = 0, the modified spherical variogram simplifies 

to the classical spherical form, reinforcing its generalization capability. 

These parameter results further support the visual evidence discussed in Section 3.1, where the 

modified spherical variogram model consistently produced a better visual fit to the empirical data. The 

model’s adaptability is especially relevant for teak clones where spatial variability evolves with 

plantation age. 

3.3. Cross-validation and predictive accuracy 

Cross-validation is performed to evaluate the predictive performance of all seven variogram 

models across the 6th, 7th, and 10th plantation years. Both 5-fold and LOOCV are conducted to assess 

the stability and generalizability of each model’s predictions. These metrics provide an objective 

complement to the visual fits described in Section 3.1. 

3.3.1. Comparative performance of all models 

Table 3.3 summarizes the weighted RMSE and R² for each of the seven theoretical models across 

the three plantation ages under full-data fitting, K-fold CV, and LOOCV. The results highlight several 

consistent patterns:  

6th year: The modified spherical variogram achieved the lowest weighted RMSE and highest R² 

across all validation. This indicates strong predictive accuracy and robustness, and consistent 

superiority in full-data, K-fold CV, and LOOCV.  

7th year: Performance in Year 7 showed a more nuanced pattern where the circular model had the 

lowest RMSE and highest R² under full-dataset fitting, slightly outperforming the modified spherical 

variogram. However, in K-fold CV and LOOCV, the modified spherical variogram achieved the lowest 

RMSE and the highest R², indicating better generalizability and predictive robustness. Several classical 

models produced tightly clustered RMSE values, reflecting the relatively linear variogram shape in 

Year 7. 

10th year: The modified spherical variogram again achieved the lowest RMSE and the highest R² 

in full-dataset fitting, K-fold CV, and LOOCV. However, the differences among models were small, 
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and all R² values were lower in general. This reflects the greater biological variability and stand 

heterogeneity typical of mature teak plantations. In such conditions, predicting volume became 

inherently more difficult, and even well-behaved models yielded modest R² values. Despite this, the 

modified spherical variogram provided competitive or superior error metrics and maintained a smooth, 

stable variogram form, supporting its robustness in more complex spatial structures. 

Overall, the modified spherical variogram model showed consistent and reliable performance 

across all validation frameworks, outperforming classical models in younger stands and remaining 

competitive in later growth stages. 

3.3.2. Visual assessment of prediction residuals 

To further validate the numerical metrics, visual diagnostics provide critical insight into the 

quality and bias of spatial predictions. Two primary forms of graphical residual analyses are performed 

for the modified spherical variogram model across the three plantation years: 

a) Histograms of prediction errors 

Figures 3.4 displays the distribution of prediction errors (observed minus predicted values) for 

the 6th, 7th, and 10th years. These histograms help assess the bias and spread of residuals: 

• Year 6: The histogram was tightly centered around zero with a symmetrical shape, indicating 

accurate and unbiased predictions. 

• Year 7: The residuals exhibited a more peaked and concentrated distribution, indicating 

improved prediction stability and reduced variance. 

• Year 10: The distribution showed a slight right skew, implying minor overestimation for certain 

observations, particularly at higher lags. However, the predictions remained acceptably 

centered. 

These plots collectively affirmed the modified spherical variogram model's low-bias prediction 

behavior and validated its reliability across growth stages. 

b) Residuals vs. predicted variogram 

Figure 3.5 illustrates residuals plotted against predicted variogram values for each year: 

• Year 6: Residuals were narrowly distributed around zero with no visible pattern, indicating a 

well-fitted model and homoscedastic behavior. 

• Year 7: A more subtle spread was observed, with mild asymmetry across the prediction range, 

suggesting slight heteroscedasticity likely due to structural complexities in spatial patterning. 

Year 10: Residuals exhibited a broader vertical spread, especially at a lower predicted 

variogram, reflecting increased biological variability and possible underfitting in mature stand 

conditions.  

Together, these visual assessments reinforce the modified spherical variogram model’s predictive 

strength while highlighting areas where predictive variance grows with plantation age. 

3.4. Summary of model comparison and selection 

The results presented across Sections 3.1−3.3 provide a robust comparative evaluation between 

six classical variogram models and the newly proposed modified spherical variogram model. Visual 

assessments (Figures 3.1−3.3) showed that the modified spherical variogram model consistently 

offered better alignment with empirical variogram trends, especially across transition lags where 

classical models tended to underfit or misrepresent curvature. 

Quantitative diagnostics reinforced these visual findings. As seen in Table 3.3, the modified 
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spherical variogram model produced lower weighted RMSE values and competitive R² across all three 

validation methods, in full dataset, k-fold, and leave-one-out cross-validation, demonstrating improved 

spatial prediction capability in most years. While the model did not yield the lowest RMSE or highest 

R² for the full-dataset fit in Year 7, it outperformed all classical models under K-fold and LOOCV, 

indicating stronger generalization. Its performance remained stable and close to the best-performing 

classical models. Residual histograms in Figure 3.4 further confirmed the model’s low bias and stability, 

while scatterplots of residuals vs. predicted variogram in Figure 3.5 showed no discernible pattern, 

affirming homoscedastic behavior in most cases. 

These collective results affirm the modified spherical variogram model’s superior adaptability 

and predictive reliability for spatial modeling of clonal teak tree volume across growth stages. 

Therefore, the Modified Spherical Variogram is recommended as the preferred theoretical model in 

this context. 

 

6th year 

 

7th year 

  

10th year 

Figure 3.4. Prediction errors for the modified spherical variogram model for the 6th, 7th, 

and 10th years. 
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6th year 

  

7th year 

 

10th year 

Figure 3.5. Residuals versus predicted variogram values for the modified spherical 

variogram model for the 6th, 7th, and 10th years. 
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Table 3.3. Comparative cross-validation results across all models. 

 Spherical Exponential Gaussian Circular 
Penta 

spherical 
Wave 

Modified 

Spherical 

6
th

 Y
ea

r 

F
u

ll
 D

a
ta

se
t 

R
M

S
E

 

0.00047522 0.00040587 0.0004875 0.00048356 0.00046701 0.00051333 0.000391031 

R
2
 

0. 3490647 0. 4226118 0.342744 0.3442972 0.3539273 0.3263043 0.4302945 

K
-F

o
ld

 

R
M

S
E

 

0.00049196 0.00049214 0.0005056 0.0004880 0.0004958 0.0004850869 0.0004579814 

R
2
 

0.2709241 0.2703942 0.2300092 0.2825573 0.2594158 0.2913492 0.3681702 

L
O

O
C

V
 

R
M

S
E

 

0.00048572 0.00045872 0.0004821 0.0004852 0.0004865 0.0004845 0.0004518318 

R
2
 

0.2893174 0.3661062 0.2998801 0.2908894 0.2871337 0.2928784 0.385024 

7
th

 Y
ea

r 

F
u

ll
 D

a
ta

se
t 

R
M

S
E

 

0.0007201 0.0007517 0.0007898 0.0007176 0.00072627 0.0007955 0.0007189893 

R
2
 

0.5110018 0.4814087 0.4532553 0.5142804 0.5029523 0.4616261 0.5139201 

K
-F

o
ld

 

R
M

S
E

 

0.00093977 0.0009666 0.0010964 0.0009475 0.00094476 0.0010192 0.0009216762 

R
2
 

0.4624117 0.4312217 0.2682273 0.4535296 0.4566888 0.3676417 0.4829209 

L
O

O
C

V
 

R
M

S
E

 

0.00092905 0.00095478 0.0009882 0.00092988 0.00093616 0.00101014 0.0009268946 

R
2
 

0.4746044 0.4451006 0.4055578 0.4736724 0.466535 0.3788961 0.4770491 

1
0

th
 Y

ea
r 

F
u

ll
 D

a
ta

se
t 

R
M

S
E

 

0.001922 0.001772 0.001857 0.001939 0.001894 0.002150 0.001433352 

R
2
 

0.177413 0.262586 0.218637 0.1660478 0.1952701 0.0050117 0.3512021 

K
-F

o
ld

 

R
M

S
E

 

0.00187148 0.001751824 0.0018992 0.00184962 0.00186196 0.002012513 0.001657315 

R
2
 

-0.0001627 0.123647732 -0.029983 0.02306437 0.0099966 -0.156578022 0.2156538 

L
O

O
C

V
 

R
M

S
E

 

0.00177955 0.001667226 0.0017407 0.00176812 0.00176801 0.001924710 0.001577751 

R
2
 

0.09568683 0.20624462 0.134726 0.10727241 0.10737581 -0.05785958 0.2891558 
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4. Discussion 

In this section, we analyze the results from variogram fitting, parameter estimation, cross-

validation, and residual analysis, interpreting the performance of the modified spherical variogram 

model against classical models. While several classical models showed reasonable fits in some years, 

none provided consistent accuracy across all plantation stages. The modified spherical variogram 

model demonstrated competitive full‐dataset fits and superior cross-validated performance in most 

cases, highlighting its flexibility and robustness. 

4.1. Model performance across plantation years 

The spatial structure of teak clones evolved with plantation age, presenting different modeling 

challenges. In the 6th year, classical spherical and circular models gave visually acceptable fits, but the 

modified spherical variogram model captured mid-lag curvature better, as evidenced by lower 

weighted RMSE and tighter residual histograms. By the 7th year, variogram value trends became more 

linear, and although the modified model did not produce the best full-dataset RMSE or R², it achieved 

the strongest predictive accuracy under K-fold and LOOCV, outperforming all classical models. In the 

10th year, some classical models obtained slightly higher R² in cross-validation, yet showed increased 

spread in errors and less stable variogram prediction. The modified spherical variogram model retained 

smooth curve fitting and balanced residual distribution, offering the most stable performance across 

all years. 

4.2. Strength of the modified spherical variogram 

The modified spherical variogram model’s strength lies in its flexible cubic structure, which 

accommodates empirical variogram shapes more precisely than rigid classical forms. The coefficients 

𝑥1, 𝑥2 , 𝑥3 enable a more detailed control of the variogram curvature, especially at the sill boundary 

and near the origin. Its performance improvement is not only numerical but also visual, clearly shown 

in residual plots and error histograms. 

Moreover, the bounded optimization using L-BFGS-B ensured parameter constraints were 

respected, maintaining theoretical validity (e.g., symmetry, non-negativity, sill attainment, and positive 

definiteness), as mentioned in Section 2.2.1. 

4.3. Implications for spatial prediction 

Given that kriging predictions depend critically on the quality of the variogram model, the 

improved accuracy and low bias of modified spherical variogram model have direct implications for 

practical forest management. Its consistently strong cross-validated performance indicates reliable 

generalization, which is particularly valuable for operational decision-making. The ability to capture 

spatial variability more faithfully enables better volume estimation, planning, and clone performance 

monitoring in plantations. The model’s generalizability also suggests applicability in other geospatial 

domains beyond forestry. 

5. Conclusions 

We introduced a modified spherical variogram model designed to improve the representation of 
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spatial dependence structures in clonal teak plantations. By integrating a flexible cubic formulation 

with constrained optimization, the modified spherical variogram model achieved optimal visual 

alignment with empirical variograms and competitive or superior predictive performance in classical 

models in weighted RMSE and R² metrics across three plantation years. 

These results demonstrate that the modified spherical variogram model effectively adapts to 

varying spatial patterns associated with tree growth stages. Even in cases where classical models 

briefly outperform it in isolated validation metrics, the modified spherical variogram model provides 

the most stable, consistent, and theoretically valid performance across all years studied. This highlights 

the model’s superior generalizability rather than overfitting to any single dataset. 

Its mathematical validity and predictive strength make it a robust alternative for spatial 

interpolation tasks, particularly in complex or evolving environments. In future work, researchers may 

explore integration with kriging for spatial mapping and assess generalizability across species or 

geographic settings. 
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