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Abstract: In this study, we proposed a modified spherical variogram model aimed at improving the
accuracy of spatial modeling in volume estimation. The model enhances the flexibility of the traditional
spherical variogram structure by incorporating additional polynomial terms to better capture spatial
variability in structured plantation datasets. Parameters such as nugget, sill, range, and the coefficients
of the polynomial terms were estimated using the L-BFGS-B optimization algorithm under box
constraints, ensuring numerical stability and physically meaningful values. The performance of the
modified model was evaluated using real-world volume data from 7ectona grandis Linn. f. (teak) trees
planted in a multiclonal block in Brumas Camp, Tawau, Sabah, Malaysia. To assess model accuracy
and generalizability, predicted volumes derived from the fitted variogram model were compared to
measured values using three validation strategies: Full dataset fitting, Leave-One-Out Cross-Validation
(LOOCYV), and K-Fold Cross-Validation. The modified spherical variogram model demonstrated
superior performance over the classical version in terms of weighted root mean squared error (RMSE)
and coefficient of determination (R?). These findings highlighted the value of refining variogram
structures to improve estimation precision in geostatistical applications, particularly when modeling
spatially complex forest data.
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1. Introduction

The accuracy of modeling spatial dependence is a major concern in geostatistics, with broad
applications across environmental sciences, engineering, and applied mathematics. The variogram, a
key tool for quantifying spatial continuity, plays a central role in geostatistical modeling and spatial
prediction [1]. Among the widely used models, the spherical variogram is particularly popular for its
simplicity and bounded support, which makes it appealing in applications requiring spatial
interpolation with limited range influence [2,3]. However, traditional spherical models often struggle
to capture complex spatial structures, particularly when the underlying data exhibit anisotropy, non-
stationarity, or scale-dependent variability [4].

While the spherical model is widely used in geostatistical modeling due to its simplicity and ease
of interpretation, other models such as exponential, Gaussian, and Matérn variograms have also been
widely studied [5]. These models vary in their smoothness and support properties, which influence
their suitability in different spatial data. However, even these standard models may fall short when
faced with spatially complex, non-stationary, or anisotropic datasets, prompting a need for more
adaptable structures [4,6]. Prior research has explored these challenges by proposing new techniques
such as nested models, spatial deformation, and spline-based variograms [7-9], but these often increase
computational complexity or require additional assumptions. Research has demonstrated the potential
of advanced optimization and adaptive modeling techniques in improving spatial prediction accuracy,
such as Kriging-assisted reliability analysis [10] and smooth surface fitting via finite-element thin plate
splines with adaptive refinement [11], reinforcing the need for more flexible variogram formulations.
In this study, we focus on enhancing the flexibility of the spherical model itself through a polynomial-
based modification, providing more flexibility and tractability.

We address such limitations by proposing a modified spherical variogram model designed to
enhance spatial representation and prediction accuracy. The modified model incorporates additional
polynomial terms into the standard spherical structure to enhance flexibility of the model, thus
capturing complex spatial patterns. This results in improved fitting capability over heterogeneous
spatial domains, which is especially crucial for real-world data such as forestry.

The modified model is constructed to retain essential theoretical properties, including continuity,
boundedness, and valid sill behavior. To ensure these properties are preserved, constraints are imposed
on the polynomial coefficients so that the variogram transitions smoothly to the sill at h = a. To
estimate the model parameters, which are nugget, partial sill, range, and polynomial coefficients, we
employ the L-BFGS-B optimization algorithm. This quasi-Newton method enables efficient parameter
estimation under box constraints, such as non-negativity of the nugget (C,), partial sill (C), and range
(a > 0). This constrained optimization framework enables the model to achieve a better empirical fit
while maintaining physical and statistical plausibility.

Although the proposed model is demonstrated using spatial volume data from 7ectona grandis
Linn. f. (teak) plantations in Brumas Camp, Tawau, Malaysia, its formulation is grounded in general
geostatistical principles and does not rely on domain-specific assumptions. The methodology is
therefore applicable to a broad range of spatial datasets across environmental sciences, engineering,
and other fields where spatial heterogeneity is present. The main contribution of this work is not only
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the improved structure of the variogram model, but also the use of constrained optimization to estimate
its parameters. Together, these elements provide a practical alternative to traditional variogram fitting
methods, which may give unstable or less accurate results in datasets with complex spatial patterns.

The remainder of this paper is organized as follows: In Section 2, we introduce the mathematical
formulation of the modified spherical variogram model, including the continuity constraint and
optimization approach. In Section 3, we describe the empirical analysis conducted on the real teak
dataset, along with details of the model fitting procedure. In Section 4, we present the results from
various cross-validation techniques and compares the performance of the proposed model against the
traditional spherical variogram. Finally, in Section 5, we conclude with a summary of findings, discuss
the implications for geostatistical modeling, and suggests directions for future research.

2. Materials and methods
2.1. Overview of methodological framework

We present a structured framework for fitting the proposed modified spherical variogram model,
as shown in Figure 2.1. The process begins with the mathematical formulation of the model and
proceeds to parameter estimation through an optimization approach. To ensure the model remains

theoretically valid, a mathematical validity check is conducted, verifying essential conditions such as
continuity and boundedness. Finally, the model’s predictive performance is evaluated using several

cross-validation techniques.
Fitting the Modified
Spherical variogram model
Copinizion
— Mathematical
validity check
L Non-
L-BFGS-B Sill Positive Semi-
Behaviour Definitness
-
validation
] K-Fold
mmm] LOOCV
—
Analysis

Figure 2.1. Framework for fitting the modified spherical variogram model.
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Although Figure 2.1 includes “Estimation” (referring to kriging methods such as ordinary,
universal, and simple kriging) as a potential application of the fitted model, this step is acknowledged
but not carried out in this paper. The focus remains on variogram fitting and validation. Nonetheless,
the model is built to be compatible with these kriging techniques for future use.

2.2. Mathematical formulation of the modified spherical variogram

The modified spherical variogram is defined as the piecewise function:

(o, h=0
y(h) = c0+clx1 (ﬁ) +x, (ﬁ)z +x, (ﬁﬂ, 0O<h<a @.1)
a a a
Co+C, h>a

where:
e (, is the nugget effect,
C is the partial sill variance,
a is the range parameter,
h is the lag distance,
X1,X5,and x3 are coefficients that define the shape of the variogram curve for 0 < h < a.

This definition explicitly satisfies the fundamental condition of a variogram, y(0) = 0. The
nugget C, represents the discontinuity at the origin, i.e.,

limy(h) = Co, (2.2)

consistent with the variogram theory [12]. To guarantee continuity at the range h = a and smooth
transition to the sill, the coefficients must satisty the constraints

X1 + Xy + X3 = 1, and (23)

Equation (2.3) enforces
y@) = (G +C,
ensuring continuity, while Eq (2.4) ensures
y'@) =0,

preventing discontinuity where the variogram reaches its sill.
Rather than estimating (x4, x,, x3) directly under equality constraints, the polynomial is re-
parameterised using a single free parameter u, such that

Xy =uU, X, =3-—2u, x3=u-—2. (2.5)

This analytical substitution ensures that (2.3) and (2.4) are satisfied for all values of u, making the
parameterisation both parsimonious and unambiguous.
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With this re-parameterisation, the variogram becomes

0, h=0
=t ro-2() va-n (@] o<rise e
Co+ C, h>a

which depends only on the four estimable parameters (Cy, C, a, u). Presenting the model in this form
eliminates ambiguity regarding non-estimable coefficients and directly aligns with the optimization
procedure.

2.2.1. Mathematical validity conditions

Mathematical validity ensures that the variogram model adheres to theoretical conditions essential
for reliable spatial prediction, specifically [13]:

1) Symmetry: A valid variogram must be symmetric, meaning y(h) = y(—h), which ensures
consistent spatial dependence measurement in all directions.

2) Non-negativity: Variogram value must never be negative, y(h) = 0, as negative values are
not physically meaningful. This is ensured by; (a) non-negativity constraints on Cyand C, and
(b) the monotonicity properties of the cubic polynomial under the parameter space used.

3) Sill Attainment: A valid variogram should reach a defined sill (Cy + C) at large distances,
indicating the range beyond which spatial autocorrelation becomes negligible.

4) Conditional Positive Definiteness: Variograms must be conditionally positive semi-definite
to ensure the validity of the kriging interpolation. This condition guarantees the covariance
matrix derived from the variogram is invertible and produces non-negative variances.

For kriging to be valid, the covariance matrix

Kij=(Co+C)—v(si —s;|)

where |Sl- — sjl is the distance between two locations, must be conditionally positive semi-definite.
For each fitted model, K was assembled using empirical coordinates, and its eigenvalues were
computed. In all cases (6th, 7th, and 10th years), the minimum eigenvalues were non-negative within
numerical tolerance, confirming admissibility.

This verification, with the structural form of (2.6), ensures that the model satisfies all necessary
validity conditions. Detailed mathematical derivations for the proposed modified spherical variogram
model and eigenvalues calculated to prove positive-definiteness are available upon request, as they
have not been published.

In terms of monotonicity, a well-behaved variogram should be non-decreasing on the interval
0 < h < a. Differentiating (2.6) yields:

y'(h) = g[u + 2(3 — 2u) (g) +3(u—2) (g)zl (2.7)

For the estimated values of u obtained in all years, the derivative remains non-negative on [0, a],
confirming empirical monotonicity. This monotonic behavior is also visually supported by the fitted
curves.
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2.2.2.  Goodness-of-fit metrics and cross-validation

Goodness-of-fit metrics and cross-validation methods were applied to assess how well the
theoretical and modified variogram models describe the empirical spatial structure and predict values
at unsampled locations. We employ the following metrics:

1) Weighted Root Mean Squared Error (RMSE): RMSE measures the prediction error magnitude
and incorporates bin-level weights based on the number of point pairs:

RMSE = \/Z?ﬂw"(zi —7) 2.7)

where w; denotes the weight for lag h;, typically the number of point pairs (np) used in
empirical variogram calculation, z; is the observed value and Z, is the predicted value at
location .

2) Coefficient of Determination (R-squared, R?): This metric assesses the proportion of
variability in observed data explained by predictions:

Yie,(zi—7)?

i (zi=2)?

R?=1- (2.8)
The closer the value of R? to 1, indicates better explanatory ability of the model.
This weighted RMSE and standard R? formulation ensures comparability across all models,
including the modified spherical variogram, as required for reviewer-consistent evaluation.
To further strengthen the analysis, two cross-validation methods are applied:
1) Leave-One-Out Cross-Validation (LOOCV): Sequentially removes each data point, predicts its
value from the remaining data, and evaluates predictive accuracy.
2) K-Fold Cross-Validation: The dataset is partitioned into & subsets, trainingon k — 1 folds and
testing on the remaining fold, cycling through all folds to robustly assess model performance.
We assume k=5.
These validation procedures provide a comprehensive evaluation of each variogram model's suitability
for reliable spatial interpolation of teak tree volumes.

2.2.3. Rationale for modifications

The motivation for modifying the spherical variogram model arises from the need to better capture
the spatial patterns observed in teak volume data over multiple years and configurations. While the
classical spherical model yielded consistently low RMSE and high R* among standard models, it still
showed residual trends near the range limit, suggesting limited flexibility in fitting real-world
variability.

Two major factors guided the modification:

1) Improved empirical fit
Although the spherical model performed well statistically, visual inspection of the empirical
variograms revealed that it did not fully capture the smooth transitions in some years, especially
near the cutoff distance.

2) Greater flexibility in curve shape
The cubic extension adds shape-controlling coefficients ( x4, x5, X3), enabling the model to
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better match diverse empirical trends. This is useful when spatial correlation decays non-
uniformly or the effective range is unclear.

The modified model maintains key theoretical properties mentioned in Section 2.2.1, making it
valid for geostatistical applications. It also includes the classical spherical model as a special case,
ensuring compatibility with traditional approaches.

To estimate parameters, we use L-BFGS-B, a constrained optimization method that handles
parameter bounds like non-negative nugget and range values. This makes the model more robust and
adaptable for spatial modeling in complex environments such as forest plantations commonly studied
in tropical regions.

2.3. Parameter estimation via constrained optimization

To estimate the parameters of the modified spherical variogram model, we use the Limited-
memory Broyden—Fletcher—Goldfarb—Shanno algorithm with box constraints (L-BFGS-B), a quasi-
Newton method suited for nonlinear problems with bounded parameters [14,15]. This approach is
implemented in R using the optim() function with method “L-BFGS-B”.

The cubic component of the model is subject to the continuity at the range and smoothness
constraints previously defined in Eqs (2.3) and (2.4). To ensure these conditions are always satisfied
during optimization, the polynomial was reparameterised using a single free coefficient u, as defined
earlier in Eq (2.5).

This reduces the parameter vector to

6 ={C,, C,a,u},

greatly simplifying estimation while guaranteeing mathematical validity of the variogram. Parameters
are obtained by minimizing a weighted least-squares objective function:

min Q(6) = ; w(h) [Yemp (he) = Ymoder(hi; 0)]° (2.9)

subject to: Opin < 0 < Opax

where 6 = {Cy,C,a,u} is the parameter vector, h; are lag distances, Vemp(h;) is the empirical
variogram value at lag h;, Vmoqet(Ri; 0) is the theoretical value from the modified variogram, and
w(h;) is the number of point pairs at lag h;.

Box constraints ensure non-negativity for the nugget (C, = 0), partial sill (C = 0), and positivity
for the range (a > 0). Since all equality constraints are satisfied analytically through the
reparameterisation in Eq (2.5), no penalty terms were required. Initial parameter values and bounds
were selected based on exploratory variogram inspection and physically interpretable limits.

This estimation framework guarantees that the resulting fitted model is smooth, continuous, and
mathematically valid, while retaining the flexibility needed to capture empirical spatial structures.

2.4. Study area and data description
The study is conducted in a clonal teak (7ectona grandis linn F.) plantation managed by the

Research and Development Division of Sabah Softwood Berhad at Brumas Camp, Tawau, Sabah,
Malaysia. Established in 2002, the selected block (Block 96G) spans 5.67 hectares and is at 4°37'23.85"
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N, 117°47'05.12" E. The site is moderately sloped (elevation: 180-370 m), situated in a tropical
rainforest climate (K&ppen classification), and underlain by Tanjung Lipat soil, which is typically low
in nitrogen, potassium, and magnesium.

Among the fifteen teak genotypes propagated via micropropagation, seven were Solomon Island-
derived clones, which serve as the primary focus of this study. A randomized complete block design
(RCBD) with four replications is implemented, each comprising two rows of 30 trees per genotype,
spaced 4x4 meters apart resulting in a planting density of approximately 625 stems per hectare. Only
the 11th to 20th trees in each row are sampled, giving 80 trees per genotype.

Although 1,200 trees are initially assessed for height and diameter at breast height (DBH), only
the Solomon clones are included in the analysis due to its lucrative outcome. Volume is calculated
using the following equation [16]:

= b O )

where V is the tree volume in cubic centimeters (cm?), D is the diameter at breast height in
centimeters, and H is the total tree height in meters. Sampling was conducted at years 6, 7, and 10.
Table 2.1 summarizes the total and georeferenced samples. After excluding trees lost to undergrowth
and mortality, 801 Solomon-clone trees are retained for analysis in years 6 and 7. Sample sizes decline
by year 10 due to natural tree mortality. Tree locations are georeferenced using GPS coordinates
recorded in the field and later converted into spatial points using the WGS84 coordinate system
(EPSG:4326).

The focus on Solomon Island-derived clones is motivated by their consistently superior growth
performance in earlier studies [17]. Topographic details of the site are illustrated in Figure 2.2, provided
by the Sabah Softwood Berhad research team.
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Figure 2.2. The topologic map of block 96G at Brumas Camp, Tawau, Sabah.
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Table 2.1. Samples collected according to teak tree’s age.

Teak Tree Age (years) Sample size (n) Georeferenced samples

6 451 432
7 451 445
10 354 354

2.5. Empirical variogram construction and model fitting

Variograms are essential tools in spatial statistics used to quantify how similarity between
observations changes with distance. In forestry applications, they are especially useful for exploring
spatial continuity in variables such as tree volume. The empirical variogram, computed from observed
data, provides a non-parametric approximation of spatial autocorrelation. It is constructed using a fixed
bin width of 0.0035 units, selected to balance resolution and pair count across distance classes. In this
study, volume measurements of teak trees serve as the variable of interest, denoted as Z(x;) and the
variogram value is estimated using:

N(R)

1 2
y(h) = N ; [Z(x;) — Z(x; + h)] (2.11)

where h is the lag distance and N (h) is the number of point pairs at that lag. This bin-based approach
offers exploratory insight into spatial patterns within the plantation block.

Once the empirical variogram is computed, valid theoretical models are fitted to ensure
smoothness, continuity, and positive semi-definiteness, which are essential for kriging. Several
classical models are evaluated, including spherical, exponential, Gaussian, wave, circular, and penta-
spherical models. Each model is defined by three key parameters:

e Nugget, C,: Variogram at zero distance, indicating measurement error or micro-scale variation.

o Sill, C: Plateau representing the limit of spatial dependence.

e Range a: The distance at which the variogram reaches the sill, beyond which spatial
correlation diminishes.

These models are fitted to the empirical variogram using least squares, and their performance is
evaluated based on visual fit and predictive accuracy. Table 2.2 summarizes the models evaluated in
this study. This variogram modeling process lays the foundation for kriging-based spatial prediction,
although kriging is not performed in this study. Instead, model validation is conducted via cross-
validation techniques to assess the generalizability and robustness of each fitted model.
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Table 2.2. Theoretical variogram models evaluated in this study.

Model VARIOGRAM
—h
Exponential y(h) =Co+C [1 - 9(7)] if, 0 < h < a. Otherwise, C, + C.
3\ /h 1\ /h
Spherical y(h) =Co+C (E) (5) - (E) (E) if, 0 < h < a. Otherwise, Cy + C.
(-&)
Gaussian y(h)=Co+C|l1—e for all A.
sin (m g)
Wave y(W) =G+ C1-—7p for all /.
T2
2(h h\? _,h
Circular y(h) =Co+C|1+ p 1- (E) —cos™ if, 0 < h < a. Otherwise, C, + C.
o =corc(D)E-C)E) +30)] i 0snzaomen
Penta spherical y(h) = C, AW 1)\ 5\g if, 0 < h < a. Otherwise, C, + C.

3. Results

In this section, we present the outcomes of fitting classical and modified theoretical variogram
models to the empirical variogram data derived from teak volume measurements. The results are
organized by tree age, in years, starting from 6, 7, and 10, highlighting how well each model captures
spatial dependence. Visual comparisons, parameter estimates, and goodness-of-fit metrics are provided
to evaluate model performance. Special attention is given to the proposed modified spherical
variogram, whose enhanced flexibility is assessed against standard models using cross-validation
methods such as weighted RMSE and R>.

3.1. Empirical variogram modeling and visual fit

Figures 3.1-3.3 present the empirical variograms overlaid with fitted curves for each of the seven
theoretical models, including the proposed Modified Spherical Variogram, across the 6th, 7th, and 10th
plantation years. Each model is fitted using least squares method based on binned variogram values.
These visual comparisons highlight how well each model captures the spatial dependence structure
across age stages, particularly around the range threshold.

As shown in the figures, none of the classical models captured the empirical variogram trends
perfectly across all years. In the 6th year, the spherical and circular models provided a relatively good
visual fit, while the wave model slightly underestimated variogram values at mid-lag distances. The
modified spherical variogram model, included for comparison, closely followed the upward curvature
across lags, showing improved alignment with empirical points. For the 7th year, the spatial structure
appeared more linear, and most classical models struggled to reflect the steady rise in variogram value,
particularly across transitional lag zones. Here too, the modified spherical variogram model
demonstrated a better visual fit, especially in the mid-to-late lag range. In the 10th year, where a more
pronounced increase in variogram was observed, the modified spherical variogram model again offered a
smoother transition across lags, capturing the empirical trend more effectively in this later growth stage.

These inconsistencies highlight the limitations of classical variogram forms in capturing the
spatial complexity of clonal teak stands at different growth stages. This amplifies the need to introduce
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a modified spherical variogram model that is formulated to provide improved flexibility in gradient
behavior and curve fitting.
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Figure 3.3. Fitted variogram models for Year 10.
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3.2. Variogram model fitting and parameter estimates

All theoretical variogram models were fitted using the fit.variogram() function in gstat, and their
predictive performances were objectively compared using K-fold and leave-one-out cross-validation
(LOOCYV). The resulting RMSE and R? values serve as numerical indicators of model discrepancy,
providing an objective numerical evaluation comparable to automated routines such as
autofitVariogram [18]. The modified spherical variogram was estimated using constrained weighted
least squares (Section 2.3), ensuring exact satisfaction of all continuity and smoothness constraints.
This approach ensures objective model comparison beyond visual assessment, particularly for
evaluating the modified spherical variogram alongside the six classical models.

3.2.1. Parameter estimates for classical models

The first six models, Exponential, Spherical, Gaussian, Wave, Circular, and Pentaspherical, were
fitted independently for each year. The estimated parameters (nugget, sill, and range) are summarized
in Table 3.1, providing insight into the spatial structure captured by each model.

The estimated parameters reveal several interesting trends. Across all years, the Gaussian and
wave models tend to produce shorter range estimates, while penta-spherical and spherical models show
longer effective ranges. Nugget values were generally higher in the 10th year, indicating increased
short-scale variability or measurement error as the trees matured. The exponential model showed
relatively high partial sills in the 7th and 10th years, which may be a sign of overestimation of spatial
structure near the origin. These differences will be further evaluated in terms of predictive accuracy
and visual fit.

Table 3.1. Estimated parameters of theoretical variogram models (excluding Modified Spherical).

Spherical Exponential Gaussian Circular Penta spherical Wave

Co 0.002462 0.002424 0.002605 0.002464 0.002460 0.002619
- _C 0.001370 0.001754 0.001182 0.001337 0.001403 0.001012
©  a 0.05506  0.03649 0.02411  0.04618  0.06966 0.03121

Co 0.004775 0.004668 0.005016  0.004800 0.004762 0.005110
- _C 0.003271 0.003988 0.002633  0.003306 0.003294 0.002622
™ @ 0.07905  0.04719 0.02879  0.07154  0.09657 0.04781

Co 0.005790 0.004019 0.007559 0.005888 0.005715 0.007644
£ C 0.006938 0.009097 0.005327 0.006798 0.007078 0.004669
- a 0.01811 0.007049 0.01069  0.01580  0.02225 0.01369

3.2.2. Parameter estimation for the modified spherical variogram model

To evaluate the performance of the proposed modified spherical variogram, its parameters are
estimated for each year using the L-BFGS-B optimization algorithm, as introduced in Section 2.3. The
model includes the nugget (Cy), partial sill (C), and range (a), together with a single shape parameter
u . The remaining polynomial coefficients (xq,x,,x3) are derived from u using the
reparameterisation described in Section 2.3, which guarantees continuity and smoothness at the range
while reducing the dimensionality of the optimization.

Table 3.2 presents the estimated parameter values for the modified spherical variogram model
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across the 6th, 7th, and 10th plantation years. These results reflect the modified spherical variogram
model’s ability to adapt its shape to fit various empirical trends, particularly in lag intervals where
classical models show limitations.

Table 3.2. Optimized parameters for the modified spherical variogram model.

Year Co Cc a X1 Xy X3

6t 0.00295499 0.00132806 0.11749 0.499568 2.000864 -1.50043
7th 0.0052383 0.002804838 0.074983 0.500521 1.998959 -1.49948
10" 0.01108929 0.00386093 0.117476 0.499614 2.000771 -1.50039

The modified spherical variogram estimates demonstrate several key advantages:
¢ Range flexibility: Parameter a adapts to the extent of spatial influence, with values consistent
yet often smoother than those from classical models.
e Curvature control: The cubic terms ( x4, x,, x3) enable nuanced adjustments to model the
variogram’s rate of increase, particularly beneficial in transition zones.
e Backward compatibility: In cases where u = 0, the modified spherical variogram simplifies
to the classical spherical form, reinforcing its generalization capability.

These parameter results further support the visual evidence discussed in Section 3.1, where the
modified spherical variogram model consistently produced a better visual fit to the empirical data. The
model’s adaptability is especially relevant for teak clones where spatial variability evolves with
plantation age.

3.3. Cross-validation and predictive accuracy

Cross-validation is performed to evaluate the predictive performance of all seven variogram
models across the 6th, 7th, and 10th plantation years. Both 5-fold and LOOCYV are conducted to assess
the stability and generalizability of each model’s predictions. These metrics provide an objective
complement to the visual fits described in Section 3.1.

3.3.1. Comparative performance of all models

Table 3.3 summarizes the weighted RMSE and R? for each of the seven theoretical models across
the three plantation ages under full-data fitting, K-fold CV, and LOOCV. The results highlight several
consistent patterns:

6" year: The modified spherical variogram achieved the lowest weighted RMSE and highest R?
across all validation. This indicates strong predictive accuracy and robustness, and consistent
superiority in full-data, K-fold CV, and LOOCV.

7" year: Performance in Year 7 showed a more nuanced pattern where the circular model had the
lowest RMSE and highest R? under full-dataset fitting, slightly outperforming the modified spherical
variogram. However, in K-fold CV and LOOCYV, the modified spherical variogram achieved the lowest
RMSE and the highest R?, indicating better generalizability and predictive robustness. Several classical
models produced tightly clustered RMSE values, reflecting the relatively linear variogram shape in
Year 7.

10" year: The modified spherical variogram again achieved the lowest RMSE and the highest R?
in full-dataset fitting, K-fold CV, and LOOCV. However, the differences among models were small,
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and all R? values were lower in general. This reflects the greater biological variability and stand
heterogeneity typical of mature teak plantations. In such conditions, predicting volume became
inherently more difficult, and even well-behaved models yielded modest R? values. Despite this, the
modified spherical variogram provided competitive or superior error metrics and maintained a smooth,
stable variogram form, supporting its robustness in more complex spatial structures.

Overall, the modified spherical variogram model showed consistent and reliable performance
across all validation frameworks, outperforming classical models in younger stands and remaining
competitive in later growth stages.

3.3.2.  Visual assessment of prediction residuals

To further validate the numerical metrics, visual diagnostics provide critical insight into the
quality and bias of spatial predictions. Two primary forms of graphical residual analyses are performed
for the modified spherical variogram model across the three plantation years:

a) Histograms of prediction errors

Figures 3.4 displays the distribution of prediction errors (observed minus predicted values) for
the 6th, 7th, and 10th years. These histograms help assess the bias and spread of residuals:

e Year 6: The histogram was tightly centered around zero with a symmetrical shape, indicating
accurate and unbiased predictions.

e Year 7: The residuals exhibited a more peaked and concentrated distribution, indicating
improved prediction stability and reduced variance.

e Year 10: The distribution showed a slight right skew, implying minor overestimation for certain
observations, particularly at higher lags. However, the predictions remained acceptably
centered.

These plots collectively affirmed the modified spherical variogram model's low-bias prediction
behavior and validated its reliability across growth stages.

b) Residuals vs. predicted variogram

Figure 3.5 illustrates residuals plotted against predicted variogram values for each year:

e Year 6: Residuals were narrowly distributed around zero with no visible pattern, indicating a
well-fitted model and homoscedastic behavior.

e Year 7: A more subtle spread was observed, with mild asymmetry across the prediction range,
suggesting slight heteroscedasticity likely due to structural complexities in spatial patterning.
Year 10: Residuals exhibited a broader vertical spread, especially at a lower predicted
variogram, reflecting increased biological variability and possible underfitting in mature stand
conditions.

Together, these visual assessments reinforce the modified spherical variogram model’s predictive
strength while highlighting areas where predictive variance grows with plantation age.

3.4. Summary of model comparison and selection

The results presented across Sections 3.1—-3.3 provide a robust comparative evaluation between
six classical variogram models and the newly proposed modified spherical variogram model. Visual
assessments (Figures 3.1—-3.3) showed that the modified spherical variogram model consistently
offered better alignment with empirical variogram trends, especially across transition lags where
classical models tended to underfit or misrepresent curvature.

Quantitative diagnostics reinforced these visual findings. As seen in Table 3.3, the modified
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spherical variogram model produced lower weighted RMSE values and competitive R? across all three
validation methods, in full dataset, k-fold, and leave-one-out cross-validation, demonstrating improved
spatial prediction capability in most years. While the model did not yield the lowest RMSE or highest
R? for the full-dataset fit in Year 7, it outperformed all classical models under K-fold and LOOCY,
indicating stronger generalization. Its performance remained stable and close to the best-performing
classical models. Residual histograms in Figure 3.4 further confirmed the model’s low bias and stability,
while scatterplots of residuals vs. predicted variogram in Figure 3.5 showed no discernible pattern,
affirming homoscedastic behavior in most cases.

These collective results affirm the modified spherical variogram model’s superior adaptability
and predictive reliability for spatial modeling of clonal teak tree volume across growth stages.
Therefore, the Modified Spherical Variogram is recommended as the preferred theoretical model in
this context.

Year 6 Prediction Errors Year 7 Prediction Errors

~ —
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Figure 3.4. Prediction errors for the modified spherical variogram model for the 6%, 7%,
and 10" years.
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Year 6 Residuals vs Predicted Values
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Figure 3.5. Residuals versus predicted variogram values for the modified spherical
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AIMS Mathematics

Volume 10, Issue 12, 29664-29685.



29682

Table 3.3. Comparative cross-validation results across all models.

Penta Modified
Spherical Exponential | Gaussian | Circular Wave
spherical Spherical
5| @
& E 0.00047522 | 0.00040587 0.0004875 | 0.00048356 | 0.00046701 | 0.00051333 0.000391031
8
'E o
= & 1 0.3490647 | 0.4226118 0.342744 | 0.3442972 0.3539273 0.3263043 0.4302945
. %
E % E 0.00049196 | 0.00049214 | 0.0005056 | 0.0004880 0.0004958 0.0004850869 | 0.0004579814
= v
i) -
& | 0.2709241 0.2703942 0.2300092 | 0.2825573 0.2594158 0.2913492 0.3681702
%
% E 0.00048572 | 0.00045872 0.0004821 | 0.0004852 0.0004865 0.0004845 0.0004518318
Q
3
& | 02893174 | 03661062 0.2998801 | 0.2908894 0.2871337 0.2928784 0.385024
5| 2
g E 0.0007201 0.0007517 0.0007898 | 0.0007176 0.00072627 | 0.0007955 0.0007189893
8
I
= ~ 105110018 0.4814087 0.4532553 | 0.5142804 0.5029523 0.4616261 0.5139201
%
E !; E 0.00093977 | 0.0009666 0.0010964 | 0.0009475 0.00094476 | 0.0010192 0.0009216762
> =
S
~ | 0.4624117 | 0.4312217 0.2682273 | 0.4535296 0.4566888 0.3676417 0.4829209
%
5 E 0.00092905 | 0.00095478 0.0009882 | 0.00092988 | 0.00093616 | 0.00101014 0.0009268946
Q
]
A o
& | 0.4746044 | 0.4451006 0.4055578 | 0.4736724 0.466535 0.3788961 0.4770491
5| @
g E 0.001922 0.001772 0.001857 | 0.001939 0.001894 0.002150 0.001433352
8
-= o
= & | 0.177413 0.262586 0.218637 | 0.1660478 0.1952701 0.0050117 0.3512021
%
= = = 1 0.00187148 | 0.001751824 | 0.0018992 | 0.00184962 | 0.00186196 | 0.002012513 0.001657315
£ 2| F
L u
& | -0.0001627 | 0.123647732 | -0.029983 | 0.02306437 | 0.0099966 -0.156578022 | 0.2156538
%
5 E 0.00177955 | 0.001667226 | 0.0017407 | 0.00176812 | 0.00176801 | 0.001924710 | 0.001577751
Q
3
& | 0.09568683 | 0.20624462 0.134726 | 0.10727241 | 0.10737581 | -0.05785958 0.2891558
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4. Discussion

In this section, we analyze the results from variogram fitting, parameter estimation, cross-
validation, and residual analysis, interpreting the performance of the modified spherical variogram
model against classical models. While several classical models showed reasonable fits in some years,
none provided consistent accuracy across all plantation stages. The modified spherical variogram
model demonstrated competitive full-dataset fits and superior cross-validated performance in most
cases, highlighting its flexibility and robustness.

4.1. Model performance across plantation years

The spatial structure of teak clones evolved with plantation age, presenting different modeling
challenges. In the 6' year, classical spherical and circular models gave visually acceptable fits, but the
modified spherical variogram model captured mid-lag curvature better, as evidenced by lower
weighted RMSE and tighter residual histograms. By the 7 year, variogram value trends became more
linear, and although the modified model did not produce the best full-dataset RMSE or R?, it achieved
the strongest predictive accuracy under K-fold and LOOCYV, outperforming all classical models. In the
10" year, some classical models obtained slightly higher R? in cross-validation, yet showed increased
spread in errors and less stable variogram prediction. The modified spherical variogram model retained
smooth curve fitting and balanced residual distribution, offering the most stable performance across
all years.

4.2. Strength of the modified spherical variogram

The modified spherical variogram model’s strength lies in its flexible cubic structure, which
accommodates empirical variogram shapes more precisely than rigid classical forms. The coefficients
X1,X5,%x3 enable a more detailed control of the variogram curvature, especially at the sill boundary
and near the origin. Its performance improvement is not only numerical but also visual, clearly shown
in residual plots and error histograms.

Moreover, the bounded optimization using L-BFGS-B ensured parameter constraints were
respected, maintaining theoretical validity (e.g., symmetry, non-negativity, sill attainment, and positive
definiteness), as mentioned in Section 2.2.1.

4.3. Implications for spatial prediction

Given that kriging predictions depend critically on the quality of the variogram model, the
improved accuracy and low bias of modified spherical variogram model have direct implications for
practical forest management. Its consistently strong cross-validated performance indicates reliable
generalization, which is particularly valuable for operational decision-making. The ability to capture
spatial variability more faithfully enables better volume estimation, planning, and clone performance
monitoring in plantations. The model’s generalizability also suggests applicability in other geospatial
domains beyond forestry.

5. Conclusions

We introduced a modified spherical variogram model designed to improve the representation of
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spatial dependence structures in clonal teak plantations. By integrating a flexible cubic formulation
with constrained optimization, the modified spherical variogram model achieved optimal visual
alignment with empirical variograms and competitive or superior predictive performance in classical
models in weighted RMSE and R? metrics across three plantation years.

These results demonstrate that the modified spherical variogram model effectively adapts to
varying spatial patterns associated with tree growth stages. Even in cases where classical models
briefly outperform it in isolated validation metrics, the modified spherical variogram model provides
the most stable, consistent, and theoretically valid performance across all years studied. This highlights
the model’s superior generalizability rather than overfitting to any single dataset.

Its mathematical validity and predictive strength make it a robust alternative for spatial
interpolation tasks, particularly in complex or evolving environments. In future work, researchers may
explore integration with kriging for spatial mapping and assess generalizability across species or
geographic settings.
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