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Abstract: In this paper, we introduce a novel formulation of dynamic Hardy-type inequalities on a
time scale, motivated by a recently-established convexity approach in the Haar measure. The classical
Hardy inequality is refined so that the classical Lebesgue-measure constant is replaced by the sharp
constant 1. We obtain time-scale analogues on finite intervals with best constants, and, for nonincreasing
and nondecreasing functions, reversed inequalities with explicit weights described by incomplete
B-functions. To establish our results, we employ two distinct time scales and apply the chain rule,
together with the substitution rule, the derivative of inverse functions, and Fubini’s theorem for delta
integration. Our approach generalizes classical integral inequalities in the continuous setting, while
yielding fundamentally new inequalities in the discrete setting. Furthermore, we explore the application
of our results in the quantum case, demonstrating their broader relevance.
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1. Introduction

In 1920, Hardy [1] showed that if p > 1 and {a(n)};?, is a sequence of nonnegative real numbers,

then
© (12 P P
Z[r—lza(z‘)] S(p—l) Za”(n). (1.1)

n=1 i=1 n=1

In 1925, Hardy [2] provided a continuous analogue of (1.1), proving that if p > 1 and g > 0 is
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p-integrable on (0, c0), then g is integrable on each finite interval (0, x) for x € (0, co0) and

00 1 X p p p 00
f (— f g(t)dt) dx S( ) f g7 (x)dx. (1.2)
0o \*Jo p—1 0

In both the discrete and continuous cases, the constant C = (p/(p — 1))? is sharp and cannot be replaced
by a smaller value without losing its validity for certain sequences and functions.

In 1928, Hardy [3] generalized (1.2) and proved thatif p > 1, @ < p — 1, and g is measurable and
nonnegative for x € (0, o), then

o 1 X p p p 00
f x"(—f g(t)dt) dx < (—) f x¥gP(x)dx. (1.3)
0 X Jo p—a-—1 0

For nonincreasing functions, (1.3) holds with the inequality reversed and the constant C = 1.
By substituting g(x) = f(x'~"/")x~'/? for p > 1, one can see that Hardy’s inequality (1.2) is equivalent

to
00 X 14 00
f (lf f(t)dt) d—xgl-f f”(x)d—x (1.4)
o \XJo X 0 X

for p > 1. As discussed in Persson et al. [4], this version (1.4) of Hardy’s inequality in the Haar measure
dx/x can be succinctly derived using Jensen’s inequality and Fubini’s theorem:

00 X )4 00 X
G roa) S [0 f o)
o \XJo X o \xJo X
(o] OOd
=f f”(y)(f —f)dy
0 y X

=jmf%w93
0 X

It follows that all three inequalities (1.2), (1.3), and (1.4) are equivalent, and, in fact, hold for p < 0 as
well, since ¢(u) = u” remains convex for negative p. Moreover, (1.4) also holds with equality when
p = 1, which gives a possibility to interpolate and analyze the mapping properties of the Hardy operator
further.

For the case of a finite interval, Persson et al. [4] extended the basic (convexity) form of Hardy’s
inequality (1.4). They proved that if g is a nonnegative measurable function on (0, £) for 0 < £ < oo,

then , ) ,
f(lf f(t)dt) %sl-ffp(x)(l—f)%, (1.5)
o \XJo X 0 t) x

provided either p < O or p > 1, and, if p < 0, that f(x) > 0 for 0 < x < € (see [4, Lemma 2.2]). They
also showed that in the reversed case 0 < p < 1,

{ X p L
ff%fﬂmdgzkfﬂﬁw—q%- (16)
0 0 X 0 t) x

In both (1.5) and (1.6), the constant C = 1 is sharp, just as it is for (1.4).
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Furthermore, Persson et al. [4] derived the reversed form of (1.5) by introducing a new parameter

a > 0. In particular,
{ Y X 14 dx p 4 > @\ dx
fo x ( fo f(t)dt) —>1 fo (1= (3) )5 (1.7)

holds provided p > 1, 0 < @ < p, and f is a nonnegative, nonincreasing function on (0, ¢), 0 < £ < oo
(see [4, Theorem 3.2]). They also showed that

¢ X p 4
f e ( f f(t)dt) v p f P T, (18)
0 0 X a@Jo X

provided @ > p > 0 and f is a nonnegative, nondecreasing function on (0, £) for 0 < £ < co, where

1
T(x)=aB;(@—p+1,p) and Bﬂ(u,v):ft“_l(l—t)"_ldt for 0<A<l,
A

see [4, Theorem 3.3]. Note that 5 is the usual S-function S(u, v). Lastly, the authors of [4] showed that
if f is a nonnegative and nonincreasing function on (£, o) for 0 < £ < co, @ > 0, and p > 1, then

00 00 P 00
f X ( f f(t)dt) x,»p f WP To(0) (1.9)
14 X X a Jy X

where To(x) = af (@, p) for x > € (see [4, Theorem 3.5]). As in the case @ = p, the constant C = p/a
is sharp in all three inequalities (1.7), (1.8), and (1.9).

In the last few decades, many researchers have addressed the problem of extending classical
continuous results to a broader framework that unifies both discrete and continuous cases. Since
Hilger’s seminal paper [5], the idea of unification of continuous and discrete analysis has attracted
substantial attention. The theory of time scales provides a unified approach by defining a time scale T to
be any closed, nonempty subset of the real numbers with the subspace topology from R. Within this
framework, dynamic inequalities generalize both differential and difference inequalities. In particular,
choosing a specific time scale determines the type of inequalities addressed, thereby allowing various
discrete analogues of classical continuous results to be formulated.

Notably, considerable attention has been directed towards dynamic inequalities on time scales,
as evidenced by works such as [6-11] (on Hardy inequalities), [12, 13] (on inequalities involving
monotone functions), and [14] (on Littlewood inequalities), and, in particular, the monograph by
Agarwal et al. [15].

In [16], Saker and O’Regan established a time-scale analogue of (1.3). Specifically, they showed
thatif p,y > 1, f € Ciq ([a, ®)r,R*), a > 0, and A(?) = fat f(s)As for any ¢ € [a, co)r, then

00 o D
oS ( 1) f TO=DT o, (1.10)

« (@) —Cl)y —ayroh

When T = R, (1.10) reduces to the classical integral inequality (1.3), while T = N yields its discrete

analogue, and T = g™ with ¢ > 1 recovers the corresponding formula in quantum calculus.
Motivation. In their recent work [4], Persson et al. formulated the Hardy inequality (1.4) via

convexity in the natural Haar measure dx/x, replacing the classical Lebesgue setting. In this form,
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the Hardy average becomes a Jensen mean, the sharp constant is C = 1, the endpoint p = 1
holds with equality, and the range 0 < p < 1 follows by concavity. On finite intervals, the same
argument yields explicit weights with the sharp constants (see (1.5) and (1.6)). On the cones of
nonincreasing/nondecreasing functions, it gives the reversed inequalities (1.7), (1.8), and (1.9) with the
optimal factor p/a, and with the associated weights expressed via incomplete S-functions 5,(u, v).

In this paper, we apply time-scale theory to transfer the continuous, Haar-measure, convexity-based
formulation of Hardy’s inequality on time scales. Our approach involves utilizing the chain rule on
a time scale T alongside another chain rule linking time scales T and T := w(T), where v : T — R is
strictly increasing. Additionally, we explore the substitution rule, the derivative of inverse functions,
and Fubini’s theorem. In this way, we extend the integral inequalities (1.5)—(1.9) to time scales.

2. Auxiliary lemmas

A time scale T is any arbitrary nonempty closed subset of reals. We define the forward jump
operator o : T — T by o(¢) := inf{s € T : s > ¢t} and the graininess function u : T — [0, o) by
u(t) := o(t) —t. Here, we do not repeat further background on time scales, see the monograph of Bohner
and Peterson [17] for a comprehensive overview of the theory. We only state a few basic theorems
needed in Section 3.

Theorem 2.1 (see [17, Theorem 1.76]). If f2 > 0 (f2 < 0), then f is nondecreasing (nonincreasing).

Theorem 2.2 (chain rule, see [17, Theorem 1.87]). Assume n : R — R is continuous, n : T — R is
delta differentiable on T, and ¢ : R — R is continuously differentiable. Then, there exists c in the real
interval [t, o(t)] with

(@ o)1) = ¢ (N (). (2.1)

Theorem 2.3 (see [17, Theorem 1.77]). If a,b € T and ¢,n € Cy([a, blt,R), then the integration by
parts rule is given by

b b
f (O (DAL = [ptn()]2 - f " (Om” (DAL, (2.2)

a

Theorem 2.4 (see [17, Theorem 1.75]). If f € Ca(T,R) and t € T, then

®
J(As = u@) (). (2.3)

t

Theorem 2.5 (Jensen’s inequality, see [17, Theorem 6.17]). Leta,b € T, ¢,d € R, g € Cq ([a, b7, (¢, d)),
and F € C((c,d),R) be convex. Then,

. [} s0ar) [} Fgapar
b—-a - b-a '

(2.4)

When F is concave, (2.4) holds with reversed sign.

Let n € N be fixed. Foreachi = 1,2,...,n, let T; denote a time scale, and

A":TIX...XTn:{t:(tl,...,tn): t,-ET,-,lsiSn}
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denote an n-dimensional time scale. Let uy be the o-additive Lebesgue A-measure on A" and F be the
family of A-measurable subsets of A”. Let E € F and (E, F, u,) be a time-scale measure space. Then,
for a A-measurable function f : E — R, a corresponding A-integral of f over E will be denoted by

f F(th, .. t)AL ... Aty f f(HAL, f fdus or f F(0)duat.
E E E E

Theorem 2.6 (Fubini’s theorem, see [18, Theorem 1.1]). Let (X, M, up) and (Y, L, A5) be two finite-
dimensional time-scale measure spaces. If f : X XY — R is a A-integrable function, and the

Sfunction ¢(y) = fx f(x,y)Ax is defined for a.e. y € Y and y(x) = fY f(x,y)Ay for a.e. x € X, then ¢ is
Ap-integrable on Y, Y is ux-integrable on X, and

f Ax f o)Ay = f Ay f o)A, 2.5)
X Y Y X

Before we present the next theorem, we shall define the set T, which is given by

g~ [ T\(p(supT),supT] if supT < oo
S\ T if supT = oco.

Theorem 2.7 (chain rule, see [17, Theorem 1.93]). Assume that v : T — R is strictly increasing,
T := w(T) is a time scale, and w : T — R. If v2(t) and w™ (V(t)) exist for t € T, then

(wov)! = (a)A ) v) e (2.6)

Here, W is the delta derivative of the function w on the time scale T.

Theorem 2.8 (derivative of the inverse, see [17, Theorem 1.97]). Assume v : T — R is strictly increasing
and T := w(T) is a time scale. Then,

1 .
" =0 Hloy 2.7
at points where v is different from zero.

Throughout this paper, we assume that all integrals under consideration are well defined. In what
follows, we present several auxiliary lemmas on time scales that will be used to prove our main results. In
particular, the first lemma provides a foundation for extending inequalities (1.7)—(1.9) to the time-scale
setting.

Lemma 2.1. Leta,b € T, f € Cy(la,blr,RY), and p > 1. If f is nonincreasing, then

b p b
( f f(y)Ay) > p f o —a)’" fP(y)Ay (2.8)

and . » .
( f f(y)Ay) > p f (v —a) fP(»)Ay. (2.9)

Also, if f is nondecreasing, then
b P b
(f f(Y)AY) > Pf (b — ()" fP()AY. (2.10)

AIMS Mathematics Volume 10, Issue 12, 29627-29649.



29632

Proof. Denote
X b
Flx) = f FO)AY and Q) = f FOIAY.

Now we are prepared to prove (2.8). Employing the chain rule (2.1) with n(x) = F(x) and ¢(7) = t*, we
get
(@ om® (x) = ¢ W (x) = pF"" (©)F*(x) forsome ¢ € [x,c(x)]. (2.11)

Since F2(x) = f(x) > 0, the function F is nondecreasing on [a, ]y and we have FP~!(c) > FP~!(x) for
¢ > xand p > 1. Then, (2.11) gives

(o™ (x) = pF" ' () f(x).

Therefore,

b b
(pon) (D) —(pon)(a) = f (o (X)Ax > p f FP (%) f(x)Ax,

b r b X p-1
( f f(y)Ay) 2p f ( f f(y)Ay) S(0Ax. (2.12)

Since f is nonincreasing on [a, b]t, we observe that fa * SO)Ay = (x — a)f(x) and (2.12) becomes

b p b
( f f(y)Ay) > p f (r— ) P (DA,

which implies

which is the desired (2.8).
By using a similar technique as before, one can get

00 p 00
( | f(y)Ay) >p [ 0-ar o,
which represents (2.9).

Finally, we establish (2.10). Employing the chain rule (2.1) with n(r) = Q(¢) and ¢(x) = x”, we
obtain
(@om™ () = ¢ (1) = pQ 1 ()QNr) forsome ¢ € [1,0(D)].
Since QA(f) = —f(f) < 0 so that the function Q is nonincreasing on [a, b]r, we have, for ¢ < o(¢), that
Q(c) = Q(o (1)), and thus — (¢ o r))A (1) > pQr~Y(o (1) f(1). So,

b b b p
p f Q" (o (0) f(OAL < - f (pom™ (DAL = (pon)(a)=(pon)(b) = ( f f(y)Ay) . 213)

Using that f is nondecreasing, (2.13) becomes

( f b f(y)Ay)P 2 p f b ( fo (: f(y)Ay)p1 ()AL

b
> p f b-o@®)" fr (o) fOAL

b
> p f b - oY 2O,

which shows (2.10) and completes the proof.
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The following lemma will be used to prove the time-scale versions of (1.9) and of the reversed
form (1.7).

Lemma 2.2. Assume thata,x € T, p > 1, and f € C4(T,R") is nondecreasing. Then,
X P X
(f f(s)As) < pf (o () — a)"  fP(1)At. (2.14)

Proof. Denote F(t) = fa ' f(s)As. Employing the chain rule (2.1) with n(r) = F(f) and ¢(x) = x”, we
have

(om0 = @' e’ (®) = pF*" ()F (1) forsome ¢ € [1,0(1)]. (2.15)

Since FA(f) = f(t) > 0, the function F is nondecreasing, and (2.15) becomes

o (1)

p-1
(pom™ (@) < pF' (o)) f(1) = p( f(S)AS) f@. (2.16)

Applying (2.3), since f is nondecreasing, we get

o (1) o (f)

f(s)As = f[ f(s)As + f(s)As

a

:ff(S)ASHt(t)f(t)

<@ -a)f®+u@0f@)
= (o) - a)f(@).

Thus, (2.16) gives
(pom)™ (t) < p(o(t) — a)’™' f7(1).

Integrating the last inequality over ¢ from a to x, we obtain

(0 mM() — (o M(a) = f (0 om (DA < p f (1) - ay fP(OA,

X p X
( f f(S)AS) <p f (o(t) — a)" fP(D)AL,

which is (2.14). The proof is complete.

and, therefore,

The next lemma will be established for two different time scales T and T := v(T), which are used to
prove (1.8) on time scales.

Lemma 2.3. Assume v : T — R is strictly increasing and T := w(T) is a time scale. If g € Cy([a, b]T, R),
then
b v(b) i
f g(DAL = f (gov ) (') (9As. (2.17)
a v(a)
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29634

Proof. Since g is an rd-continuous function, it possesses an antiderivative G with G® = g and

b b
f g(DAL = f G2 (1At = G(b) — G(a)
= (G o v—l) (b)) — (G o v—l) ((a)) (2.18)
"®) A, -
= f (G ) v_l) (s)As.

(@)
Applying (2.6) with w = G o v!, we observe that
G0 = (G o v™) (O ().

Then, by using (2.7), we get

G (1) (v—l)A (1)) = (G o v-l)A (1)) (2.19)

Since i i i
G0 () ) = g0 (V) @) = (g0 v ) ) () o),

we have from (2.19) that

(0v) ) (') o) = (G 0 v) (o),

i.e., ~ )
(gov) @) (9=(Gov") () s=wpeT. (2.20)
Substituting (2.20) into (2.18), we obtain

b v(b) A 5 v(b) A 5
f g(DAL = f (Gov™) (s)As = f (gov )@ (") (9As,

(a) v(a)

which is (2.17). The proof is complete.
3. Main results

Now we are prepared to state and prove our results. The first result we start with is the time scales
version of (1.5), which gives a new reformulation of the Hardy-type inequality valid in the case p = 1.

Theorem 3.1. Let T be a time scale with a,€ € T, f € Cyq ([a, €]r,R"), and either p > 1 or p < 0. Then,

e [ FOAYY _
f (fa SO )’) Ax < f(l C)) a)fp(x) Ax ’ 3.1
a xX—a o(x)—a a {—a o(x)—a

where f(x) > 0if p <O.
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Proof. Applying Jensen’s inequality (2.4) with the convex function F(x) = x”, we see that

[ I f(y)Ay)” e romy

X—da

X—da

Then,

(T FoAYY  Ax ‘ 1 .
ﬁ[ xX—a ) o(x)—a Sj; (x —a)(o(x) — a) (j; fp(y)Ay)Ax_ (3.2)

Employing the integration by parts rule (2.2) on the right-hand side of (3.2) with

(" reay and o = — [ A
‘p(x)_faf O)Ay and  n(x) = f - a) o) —a)

{ 1 X
fa (- a)o(x) —a) (f STy ) Ax

{ 4
= f (N (DAx = e(On(L) — p(ayn(a) - f @" (Mo (x))Ax

we have

'
= - f O (xX)n(o(x))Ax

{ { Ay )
= A
fa (fm) O - a)o0) - a))f (DA,

and hence (3.2) becomes

t fax FO)Ay g Ax d 4 Ay
f“ ( x—a ] o(x)—a : ﬁ (L(x) -a) o) —a) fP0Ax. (3.3)

1
O-a(c@) —a)

Note that

1
h(y) = ——— implies h*(y) =
y—a

and therefore,

{ 1 y
Ay= |  H0MAy=h)-h
fm) -y -a) > fa o Ay = h(£) = h(o(x))

34
B 1 I 1 | ox)—a 4)
S o(x)—a (-a o(x)—a t—a |
Substituting (3.4) into (3.3) yields (3.1).
Corollary 3.1. Let T = R and a = 0. Then, (3.1) reduces to (1.5), proved by Persson et al. [4].
Corollary 3.2. Let T = Ny, a,{ € Ny, and f be a positive sequence. Then,
-1 x-1 P -
1 2y=a SO 1 +1-
Z e [0 < Z 1-= 4 ), (3.5)
xzax+l—a X—a x:ax+l—a {—a

provided either p > 1 or p < 0.
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Corollary 3.3. Let T = ¢ forg > 1, a = g™, { = ¢", m,n € Ny, and f be a positive sequence. Then,

k

O - D’ f(q") g \ el
( & —q" ) T SZ( )f”(q) o g (3.6)

k=m
provided either p > 1 or p < Q.

To illustrate our results achieved so far, we provide two examples (the cases p < O and p > 1,
respectively) for each of Corollaries 3.1, 3.2, and 3.3.

Example 3.1. f T=R,a=0,¢=1, p = -1, and f(x) = x7, then
X X -1 -1
ff Lroay)  ax _fl bymdr) dx
a xX—a ox)—a Jo X x

4
Lf(l—”f) )f%) f\l—mﬁﬁf:—.

Hence, (3.1) is fulfilled.
Example3.2. f T=R,a=0,0=1, p =2, and f(x) = x, then

fﬁﬁmmﬂ Ax _fﬁﬁmmpm_fammzm_l

p xX—a ox)—a J, X x 0 X x 8
¢

f(l_cr(fx) a) f(l—x)fp(x)— f(l—x)xdx——

Hence, (3.1) is fulfilled.

and

and

Example3.3. f T=N,a=1,£=7,p=—1,and f(y) = y(y+l)’ then Zy | y()+1) = ~land
-1 6 x-1_1 7! 6
1 )Y 1
Z Z f(y Z_ “y=1y(+1) 221:6.
x:ax+l—a i x x—1 —

Moreover,
-1 6

Zﬂi_a(l—x;i )f”(x) Z[(x“)(l—%)] ~ 8.3333,

x=1
Therefore, (3.5) is fulfilled.
Example 3.4. If T =Ny, a=0,{ =7, p =2, and f(x) = x, then }}7° Oy = x(x— 1) and

gﬁi_a(z ﬂy)) =Zélx ( ”’y] :i ( x—l))zl:2.5925.

X2 | x+1
x+1 7

Moreover,
-1 6

e U =S AURD)

Therefore, (3.5) is fulfilled.

= 3.59.
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Example 3.5. If T = g withg =2, m=0,n =3, p = —6, and f(x) = 5 then

m /2

qu(q)—Zq o

so that
- DY a' @) ¢+
q _ q - qk/z + qm/Z'
Thus, the left-hand side of (3.6) becomes

n—1 s s n—1
Z((q—nzs \a f(q))” ¢ | Ny )P ¢
— q — q qk+1 — qm — qk/l + qm/l qk+1 _ qm

2 -6
212 41 ok
= Z;(Zk/z . 1) ST = 309385,

while the right-hand side of (3.6) gives

n-1 k+1 m k 2 k+1 4k
g7 —q N 277 -1\ 2
§ [ S S 1T - E 1 - = 3.9048,
( qn_qm )f (q )qk+l_qm ( 7 )2k+l_l

which indicates that (3.6) holds for p = -6 < 0.

Example 3.6. If T = ¢ withg =2, m=0,n =3, p =5, and f(x) = x, then

2m

k-1 k-1 q2k q
s s\ 2s _ B
;an(q)—;q =TACT
so that -
(¢-D¥,q'f@) _qd'+q"
g -q" g+1 -
Thus, the left-hand side of (3.6) becomes

i((q—nzs mqvf(q‘))” ¢ <
P q _ q qk+1 _ qm

—

g +q" ¢

k4 1) 2k
( il ) — 8.14697,

[ T

i\ 3 ) aero

Il
(=]

and the right-hand side of (3.6) gives

k=m k=0

which indicates that (3.6) holds.

n-1 K+l 2 k+1 _ 6k
q 2 2
E (1 - —C[ )fp(q e — k+1 z ‘( )2k+1 _1 13.0476,
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By applying a similar technique as used previously, we can readily derive the following time scales
version of (1.6).

Theorem 3.2. Let T be a time scale with a, € T, f € Ciq([a,€]r,R"), and 0 < p < 1. Then,

t faxf (»MAy ! Ax t o(x) — Ax
L[ xX—a ] U(x)—aZL (1_ {—a )fp( )O'(x)—a' 37

Corollary 3.4. Let T = R and a = 0. Then, (3.7) reduces to (1.6), proved by Persson et al. [4].

Remark 3.1. Inequality (3.7) represents the reversed version of (3.1) when 0 < p < 1.
Corollary 3.5. If T =Ny, a,f € Ny, 0 < p < 1, and f is a positive sequence, then
-1

1 S 0) R L S il
;X'i‘l—a( XxX—a ] sz+1_a(1_ {—a )fp(x) (38)

X=a

Corollary 3.6. If T =g forqg>1,a=q", t = q", m,n € Ny, 0 < p < 1, and f is a positive sequence,

then
"

)f”(Q) T g (3.9)

o (2K g - D' fg)Y q" = kil
q _qm k+1

k=m k=m

Example3.7. f T=R,a=0,=1,p = %, and f(x) = x*, then

of [* AvY 1 [*v2d 2
f[f“ o) y] Ax :f[foy y) 49X _ 057735026
a xX—a o(x)—a 0 X X

t o(x) —
fa‘(l— = )fp( )O'(x) f(l—x)dx—OS()

So, (3.7) is fulfilled.
Example38. f T=N,a=1,=7,p = % and f(x) = 1, then

and

-1

1 (S &1
Zx+1—a( X—a ]_25_2.45'

X=a

Moreover,
-1

6
Zﬁ(l‘x}f1_a)fp(x>zzi(1‘—)—1-45'

x=a x=1

Therefore, (3.8) is fulfilled.
Example 3.9. If T = 2" where g =2, m=0,n=3, p = %, and f(x) = 4x, then

k-1 k-1
4(C[2k_(]2m)
s s\ 25 _
;qf(q)—4;q ==
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so that el
(¢- DL f(@) _ 4q"+q7)
g —q" g+1 =
Thus, the left-hand side of (3.9) gives

—_

q" 4(gk + q™)

k
= w/4(2 D 444175,
+1 _

"Z_i((q 1>k mqsf(q“))p ¢ <
- g —q" g+t —gm

BNgAEIng

and the right-hand side of (3.9) becomes

=m k=0

which implies that (3.9) is satisfied.

In the following, we establish the time scales version of (1.7).

Theorem 3.3. Assume a,{ €T, p>1,a >0, and f € Cyq ([a, ]r,R") is nonincreasing. Then,

—_ -1 e
[ ([ o) cmarars 2 [ G020 o
(c(x) —a)y —a

Proof. Applying (2.8) by replacing b with x, we see that

X p X
( f f(y)Ay) > p f (v —a)"” fP(y)Ay.
Therefore,

4 X )4 1) .
([ sosfases (oo s

Employing the integration by parts formula (2.2) on the right-hand side of (3.11) with

¥ ¢
o) = f G -ay Ay and () = - f (t—ay A,

{ X
f ( f (- a)f’-lff’cymy) (= @) Ax

4
= f ()" (x)Ax

a

we get

= @(On(6) — pla)n(a) - f O (n(o(x)Ax

a

n—-1 + 2 k+1 _ 1+3%

q 2 22
E (1 - —)fp(q )——— k+1 E ( )2k+1 1 =2.7918,
k

(3.10)

(3.11)
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1
f ¢ (0m(o(x))Ax

l
f (x —a)’! fp(x)( a)_‘HAt)Ax,

o(x)

and substituting this into (3.11), we see that

4
f ( f f(y)Ay) (x—a)'Ax>p f (x — a)y’! f”(x)( a)“HAt)Ax. (3.12)
o(x)

Employing the chain rule (2.1) with () = t — a and ¢(x) = x™%, we get

(@om(®) = ¢ @ (1) = —a(c —a) ™" forsome c € [t,0(D)].
For ¢ > t and @ > 0, we observe that

(o) = —alt—ay,

and then

t -1 (f 1

f (t—a)y " 'Ar> — f (o (At = —[(c(x) —a) " = (L -a)]. (3.13)
o(x) a o(x) @

Substituting (3.13) into (3.12), we obtain

jj (j:‘ f@)Ay)p (x— a) " Ax

£
> § f (x—a) /() [(0(x) = @)™ = (£ — a) "] Ax

B [1 - (U(X) . a)] Ax
a

aJ, (c(x)—a) {—

which is (3.10). The proof is complete.

Corollary 3.7. Let T = R and a = 0. Then, (3.10) reduces to (1.7), proved by Persson et al. [4].
Corollary 3.8. Let T =Ny, a,{ e Ny, p > 1, @ > 0, and f be a nonnegative nonincreasing sequence.

Then,
-1 ( x—1 a
o1 (x —a)P! x+1—-a
Z(Zf(y)] (x—a)” > @ 2] _a)af"(x)[l —(ﬁ) ] (3.14)

x=a \ y=a

Corollary 3.9. Let T =g forg>1,a=q", £ = q", m,n € Ny, p > 1, @ > 0, and f be a nonnegative
nonincreasing sequence. Then,

n=1 (k-1 p p (q — g qk+1 —q" @
Z(Z(q— l)q“'f(qs)] q(qd =" Z T m)a( - [W] )qkfp(q"). (3.15)

n
k=m \s=m k m q

AIMS Mathematics Volume 10, Issue 12, 29627-29649.



29641

Example 3.10. fT=R,a=0,0=1,p=2,a = 1,and f(x) = 2 — x, then

2

4 X V4 1 X 37
f ( f f(y)Ay) (r— )" Ax = f ( f (2—y>dy) P
a a 0 0 12

¢ -1 @ 1
p (x —a)f o(x) —a 3 Sy _ 17
¢ | o |i= (T ez [femsra-ne- 3

Thus, (3.10) is achieved.

and

Example 3.11. If T=Ny,a=0,£=6,p=2,a =1, and f(x) = 1, then

i(Zf(y)]poc o i(zl 1)2x—2 i

X=a y=a x=0 y=0

and

EZ (x — a)Pl ) 1_(x+1—a)" _2251 X (1—x+1)—21
ald(x+1- f() {—-a - x+1 6 | T

So, (3.14) holds.
Example 3.12. If T = g withg=2,m=0,n=3,p=2,a =1, and f(x) = 1, then

k-1 k-1
Z 1) = Z q =

Thus, the left-hand side of (3.15) gives

n—1 — p
((q—l)qu(q)]q(q —g"y = sz

k=m s=m

and the right-hand side of (3.15) gives

o (¢ - g ¢ - Q- 21—
4 (g - m)a( [ ])qu( ) = ZZ T ( - ):0.7619.

Therefore, (3.15) holds.
The following theorem is established for a nondecreasing function f.

Theorem 3.4. Leta,l €T, p>1,a >0, and f € Cq ([a, {]t,R") be a nondecreasing function. Then,

{ X p
f (o(x) — @)™ ( f f(s)As) Ax
a a (T(Xj —d

{ a
Sgf(d(x)—a)”“’fp(x)[l—(O-(X)_a)} Ax

{— ox)—a

(3.16)
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Proof. Applying (2.14), since f is nondecreasing, we have

% X )4
f (o) — @)™ ( f f(s)As) Ax
a a o(x)—a
£ X p
= f ( f f(s)As) (o(x) —a)'Ax (3.17)

4 X
<p f (o(x) —a) ™! ( f (o(t) — a)P™! fp(t)At) Ax.

Applying the integration by parts formula (2.2) on the right-hand side of (3.17) with

* ¢
o= [ 0-arpos ad == [ ©@o-aar

we get
[ () - ay ! ( [ wo- a)”‘lf”(t)At) Ax
= f [ (N (D)Ax = p(On(L) — p(a)n(a) - f [ @™ (0m” (x)Ax
= - fa ' A7 (0)Ax = — fa K(G(X) — )" P ()" (x)Ax

{
= f (rr(x)—a)”“f”(x)( (O'(I)—a)_“_lAt)Ax,

o(x)

and substituting this into (3.17), we observe that

4 X p
f ( f f(s)As) (o(x) —a) ™ 'Ax

¢ ¢ (3.18)
<p f (o (x) —a)’ ' fP(x) ( (o(t) - a)“"lAt) Ax.
a o(x)
Applying the chain rule formula (2.1) with n(¢) = t — a and ¢(x) = x™*, we get
(@ o (1) = ¢'((e)n(1) = —a(c —a)™ ™" forsome ¢ € [1,0(1)].
Since ¢ < o(t) and a > 0, we obtain
-1
;(90 o)1) = (o(t) —a)™ ",
and so
¢ 1 (¢
@o-aars = [ onPwar
o(x) ¥ Jox (3 . 19)

-1 1
= — Le@0) = el (xN)] = ~ [(c(x)-a)™* = -a)™].
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Substituting (3.19) into (3.18), we obtain

4 X p
f ( f f(s)As) (o(x) —a)* 'Ax

4
< g f (0(x) — )" () [(0(x) —a)™ = (£ — a) "] Ax

£ a
_P f (a(x)—a)f"“ff’(x)[l—((’(X’_“)] Ax
aJ, -a

t o(x)—a’
which is (3.16). The proof is complete.

Remark 3.2. Using the nondecreasing function f along with o(x) in (3.16) shows that (3.16) is a
reversed version of (3.10).

In the following, we establish a time scales version of (1.9).

Theorem 3.5. Let T be a time scale with € € T, £ >0, p > 1, @ > 0, and let f € Cq (£, ), R") be
nonincreasing. If T= v(T) is also a time scale with v(x) = ﬁ, x,y €T, andy > ¢, then

00 00 P 00
f ( f f(y)Ay) vlaxz b f Y POT(G)AY, (3.20)
l X

14

where |
T(y) =aBc(a,p) with By(u,v):= f s (1 = 5)"'As for 0<A<1.
Y 2

Proof. Applying (2.9) by replacing a with x, we get
00 V4 00
( f f(y)Ay) >p f =) fP)AY.

00 00 p - -
[ o e [ ([morrom)es
¢ x , i
=P f f Xy = X P G)AVAR.
4 x
Applying Fubini’s theorem (2.5) on the right-hand side of (3.21), we obtain

00 00 p o oat))
f ( f f(y)Ay) I Ax > p f f ¥y = 0P 2 (0)AxAY
£ X ¢ €
00 )
p f 1) ( f x“—l(y—x)P-le) Ay (3.22)
£ £
> p f " ) ( f ST x)”_le) Ay,
£ £

Applying (2.17) with v(x) = £, vA(x) > 0, and g(x) = x*~!(y — x)?~!, we observe that

y

Then,

(3.21)

Y ! -
f Xy -0 Ax = f Y1 - s A (3.23)
¢ ;
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Substituting (3.23) into (3.22), we get

00 00 p o) 1
f ( f f(y)Ay) x““sz§ f yf’*“‘lf%y)(a f s“‘l(l—s)P“As]Ay,
¢ X ¢ ;/

which is (3.20). The proof is complete.

Corollary 3.10. If T = R, then (3.20) reduces to (1.9), proved by Persson et al. [4].

Corollary 3.11. If € = 0, then B (a, p) = Bo(a, p) = B(a, p), where B(u,v) = fo] s“1(1 = s)'As, and
¢

00 00 P 00
fo ( f f(y)Ay) x*'Ax > pB(a, p) fo Y P (0)AY. (3.24)

Corollary 3.12. Let T =N with teN, p>1,a>0,and f be a nonnegative nonincreasing sequence.
If T = W(T) such that v(x) = £, x,y € T, and y > ¢, then

i [i f (y)] Z el T (y), (3.25)

x= X y:Z

where
y a-1 p—1
T(y) = ap:(a, p) = Z( ) (1 - —) :
' =¢
Corollary 3.13. Let T = ¢ forg > 1 with{ = g™, p > 1 a > 0, and f be a nonnegative nonincreasing
sequence. If T = v(T) is also a time scale with v(x) = %, x,y € T, and y > ¢, then

(o)

b P 0 k-1
qua [Z(q _ l)qu(qS)] > pzqk(]?ﬂr)fp(qk) [Z(q _ 1)qa(s—k)[1 _ qs—k]p—IJ. (3.26)
k=m s=k k=m s=m

Example 3.13. f T=Rwith£ =0, p=2,a = 1, and f(y) = then the left-hand side of (3.24)

becomes

(y+l)2’

00 00 p 4, 00 00 1 2
v[(; (£ f(y)dy) X dx :L (f; (y+—1)2dy) dx =1,

and the right-hand side of (3.24) becomes

1 o 1 00 2
a-171 _ -1 +a—1 _ _ M _1
p(j; s (1 = s)P ds)j(J YT fP(y)dy = 2(£ (1 s)ds) Nl 1)4dy =3

So, (3.24) is satisfied.

Example 3.14. Let T =Nwith{ =1,p =1, =1, and f(y) = % = v(T) such that v(x) = f,
x,y € T, and y > ¢, then the left-hand side of (3.25) becomes

o0 o0 p o0 0
3 (Z f(y)] S [Z y%) _ %2 = 1.644934,
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and the right-hand side of (3.25) gives

3] y-1 a-1 p—1 o
P T f) (1 - )—C) = 1 (1 - 1) = 0.442877.
a;y f(y)(yZ(y I P e el

x=C
Thus, (3.25) holds.

Example 3.15. Assume T = 2" withg=2,m=0,p=2,@=1,and f(x) = 5. f T = »(T) is also a
time scale with v(x) = f, x,y €T, and y > ¢, then

(o] oo 1 N
Da=Da'flg)=@-1)), (—) =q'™
s=k s=k q

the left-hand side of (3.26) becomes

(59

00 00 p 00
Z qka (Z(C[ _ l)qvf(qv)] — Z qka+p(1—k) — Z 2—k+2 =8,
s=k

k=m k=0 k=0
and the right-hand side of (3.26) becomes

[

k-1 o0 k-1
P> gy [Z@ - g ML - qs—k]f’-l] =22 [Z 27411 - 2“]) = 0.7619.

k=m k=0 s=0
This shows that (3.26) holds.

In the following, we establish the time scales version of (1.8) by applying Fubini’s theorem and the
integration by substitution from a time scale T to another one T = w(T).

Theorem 3.6. Let T be a time scale with € € T, € >0, p > 1, and a > 0, and let f € Cyq ((0, €]y, R*) be
nondecreasing. If T = w(T) is also a time scale with v(x) = %Y) for x,y €T, then

A X p 4
f ( f f(Y)Ay) X Ax > g f (@O LT (y)Ay, (3.27)
0o \Jo 0
where
_ 1 o1 sl—p+oz 5
T(y) = Q’fvf(})(l - S) WAS

Proof. Applying (2.10) with @ = 0 and b = x, we get

( f f(y)Ay) > p f (= 0P P AY.
0 0

Consequently,

4 X p 4 X
| ( | f(y)Ay) vl p [ ( [ @ rom)eear (3.28)
0 0 0 0
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Applying Fubini’s theorem (2.5) on the right-hand side of (3.28), we obtain

4 X { X
f ( f <x—a<y>>ﬂ-‘ff’<ymy) A = f f (= o) P () AyAx
0 0 0 0

4 0
- [ [ amooyrroneiamy
0 Joi)

{ {
= f f”(y)( (x—cr(y))”‘lx‘““AX) Ay.
0

o(y)
Hence, (3.28) becomes

¢/ px P ¢ ¢
f (f f(y)Ay) X Ax > pf f”(y)( (x— U(y))”_lx_"_le) Ay.
0 0 0 a(y)

Applying (2.17) on the term
¢
f (x — o) x T Ax

»
with v(x) = ”7@), vA(x) < 0, and g(x) = (x — o(y))”" x| we see that

t V(o) p-1
(x— O'(y))P—lx—a—le _ f (a(y) (y)) (O'(y)) ( o(y) )

() () N s s (s)

As
() 1!
- [ eor (] () ()
v(0) K s (s)
1 1 p-1 1—(11 1
_ —a-1[|_ _ _
_fz@(m))p ( 1) () (sa(s))

1 sl—p+a
- [ @i s

As.

a(s)
Then, (3.29) becomes

1 —-pta
f(f f(y)Ay) ‘”Ax>pff”(y)(f (o)) (1 = sy 2 505 s) y

1 -pta
- p f (O™ ‘fp(y)( f (-9 As)Ay

== f (O fPONT Ay,
a Jo

which is (3.27). The proof is complete.

Remark 3.3. If T = R, then (3.27) reduces to (1.8), proved by Persson et al. [4].

(3.29)

Corollary 3.14. Let T = Nwith{ € N, p > 1, and @ > 0, and f be a nonnegative, nondecreasing

sequence on (0, Clr. If T = w(T) is also a time scale with v(x) = ‘TT(’) for x,y € T, then

x=1

-1 ((x—1 » » x—1 y+1 p-1 y+1 1-p+a
[Zf(y)] >pZ(y+1>P f”(y>[2x(x+1)(1— x) (x) } (3.30)
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Corollary 3.15. Let T = g™ forg > 1, myn € No, p > 1, @ > 0, and let f € Cyq((0, ], RY) be
nondecreasing. If T = v(T) is also a time scale with v(x) = @ for x,y €T, then

n—1 k—1 p
g [Z(q - 1>cff<cf>]

=m ; (3.31)

- (g-D(g' -1 ey ) (1-p+a
> Z (k+1)(p l)fp( )(Z q— qwa (1 qk+l ) lq(k+1 Y(1-p+ )].

k=m s=k+1

Example 3.16. Let T =R with £ =1, p =2, a = 1, and f(x) = x. In this case, T = R, the left-hand
side of (3.27) gives
2

4 X p 1 X 1
| ( | f(y)dy) vrlae= [ ( [ ydy) NEVR
0 0 0 0 12

and the right-hand side of (3.27) becomes

4 1 sl—p+a 1 1 1 —5 1
p f yf"“ff’(y)( f (1—sP! ds)dyzz f yz( f ds)dyzl—-
0 % S 0 y S 8

This shows that (3.27) holds.

Example 3.17. Let T=Nwith £ =4, p =2, @ = 1, and f(x) = x. If T = w(T) with v(x) = ‘TT(Y) for
x,y € T, then the left-hand side of (3.30) becomes

Z [Z f(y)]p i {H y]2 ¥ =125,

x=1 \y=1

and the right-hand side of (3.30) gives

S+ 1 ) Z x| (1_”1)”_1(“1)1%
P Y x(x+1) X X

y=1

3 4
B ) x—1 _y+1 3
=2y [Z x(x+1)(1 . )]—0.5611.

y=1 x=y+1

Thus, (3.30) is satisfied.

Example 3.18. Assume T =2 ¢g=2m=0,n=3,p =2, a =1, and let f(x) = x. If T = w(T) is
also a time scale with v(x) = @ for x,y € T, then the left-hand side of (3.31) becomes

el k-1 14 2 k-1 2
g (Z(q - l)qsf(q“‘)) =) (Z 228) =075,
s=m k=0 s=0

k=m

and the right-hand side of (3.31) gives

pzqkq(k+l)(p a— l)fp k)( Z (g - 1)S(:]1 )(1 _ qk+1—S)p—1q(k+1—.v)(1—p+(x))

s=k+1

=2 Z 2*"( Z (2 2k+H)) = 0.375.

s=k+1

Thus, (3.31) is satlsﬁed.
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4. Conclusions

In this paper, we presented a novel formulation of Hardy-type inequalities in the Haar measure dx/x
on time scales, where the classical constant C = (p%l)p known from Lebesgue setting is replaced by a
sharp one C = 1. We developed a technique that applies the chain rule on a time scale T and on a second,
associated time scale T := v(T) (for strictly increasing v), together with a chain rule and the derivative
of inverse functions. This was crucial to our proofs. In this way, we extended finite-interval Hardy-type
inequalities of Persson et al. [4] to time scales: the convexity form with sharp constant C = 1 (time-scale
analogue of (1.5)), the reversed case for 0 < p < 1 (analogue of (1.6)), and the parameterized reversed
forms with @ > 0 and weights T'(-), T(+) (analogues of (1.7), (1.8), (1.9)), preserving the sharp constant
C = p/a. Hence, our approach recovers classical integral inequalities in the continuous case as special
cases while yielding fundamentally new inequalities in the discrete case. Finally, we provided illustrative
examples in both continuous and discrete calculi, showcasing the broad applicability of our approach.
Moreover, we extended our findings to the quantum setting, deriving fundamentally new inequalities.

As further research directions, it would be interesting to establish a dynamic Hardy-type formulation
with parameters p,q and two weight functions, together with a characterization of the admissible
weights. Another interesting task is to investigate a Hardy-type generalization including a positive
kernel k(x, y).
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