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Abstract: This paper examines the cubic-quintic nonlinear Schrödinger equation (CQNLSE) with an
additional anti-cubic nonlinear term, by using Stainberg’s symmetry technique. The CQNLSE with the
additional anti-cubic nonlinear term is a generalized model of higher-order nonlinear effects, offering
a more accurate description of optical pulse propagation in nonlinear media with complex nonlinear
responses, which makes the CQNLSE have a wide range of applications in several fields like optics,
communications, spectroscopy, and computing. In our study, we used symmetry group analysis to
derive a finite Lie group of transformations, and as a result, a novel similarity transformation, not
previously reported in the literature, was obtained from this group. By using this transformation,
the CQNLSE with the anti-cubic term was reduced to a nonlinear ordinary differential equation, which
can be solved using the Jacobi elliptic expansion method, and a variety of wave solutions were obtained.
These solutions include periodic waves, kink solitons, and bright solitons, contain other solutions,
shown in the previous literature. We have also introduced a new solution, which has not been achived
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were given to declare the dynamical behavior of the wave propagation by controlling the parameters
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1. Introduction

The nonlinear Schrödinger equation (NLSE) and its extensions play a vital role in understanding
and modeling the propagation of optical waves in various nonlinear media. This equation, which
incorporates the effects of nonlinearity, dispersion, and attenuation, provides a fundamental framework
for studying phenomena such as solitons, supercontinuum generation, and optical switching [1–3].

Solitons, which are very important for their self-localized optical pulses that maintain their shape
and intensity over long distances, are described by specific solutions of the NLSE. These solitons have
a wide range of applications in optical communication systems, where they can be used to transmit
information efficiently and reliably [4–6].

Supercontinuum generation, the process of generating a broad spectrum of optical frequencies from
a single input pulse, is another area where the NLSE and its extensions are crucial. This phenomenon
provides applications in spectroscopy, optical coherence tomography, and metrology [7].

Optical switching, the ability to control the propagation of light using nonlinear effects, is also
described by the NLSE. This technology has potential applications in optical computing and all-optical
networks [8].

Therefore, the nonlinear Schrödinger equation and its extensions provide a powerful tool for
understanding and modeling the complex behavior of optical waves in nonlinear media. These
equations have broad applications in various fields of optics, including communications, spectroscopy,
and computing.

Regarding the previously highlighted importance for NLSEs extensions, we have chosen to study
the cubic-quintic nonlinear Schrödinger equation (CQNLSE) with an additional anti-cubic nonlinear
term which is consider the generalization form of the CQNLSE that incorporates higher-order nonlinear
effects. It is used to describe the propagation of optical pulses in nonlinear media where the nonlinear
response is more complex than the simple cubic-quintic model and can be written as [9, 10]:

iϑτ + αϑξξ +
(
β |ϑ|−4 + λ |ϑ|2 + δ |ϑ|4

)
ϑ = 0, (1.1)

where τ and ξ are the time and spatial variables, ϑ = ϑ (τ, ξ) is a complex wave function denoting
the soliton profile, where the first term depicts the temporal evolution, i2 = −1, α represents the
group velocity dispersion, and β, λ, and δ are anti-cubic, cubic, and quintic nonlinearities, respectively.
When β = 0, it denotes the soliton profile parabolic law nonlinearity [11, 12]. The anti-cubic term
can be introduced to stabilize solutions that would otherwise collapse or blow up in finite time under
the influence of other terms [13]. The CQNLSE with an additional anti-cubic nonlinear term has
been solved by using many traveling wave methodologies like the conservation laws [9], mapping
method [10], tanh-coth scheme, modified simple equation method [11], polynomial method [12], and
Jacobi elliptic function method [14], in addition to classical Lie group analysis [15].

This paper employs symmetry group analysis to derive a novel transformation that reduces
Eq (1.1) to a nonlinear ordinary differential equation (ODE). The traveling wave transformations used
previously were without any references reported in literature, this is the reason why it takes that form.
So in our study, we have chosen the symmetry group due to the evidence in [9–12, 14]. This approach
is distinct from the previous classical Lie group study [15] because it yields a general transformation
that encompasses all the special cases derived in [15], where the authors only solved for specific vector
fields. The reduced ODE is then solved using the Jacobi expansion method to obtain new optical
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solitary wave solutions in various forms, which cover the two cases given in [14] and provide many
other solutions. Finally, we analyze the dynamic behavior of periodic waves, kink solitons, and bright
solitons to highlight their intriguing properties.

2. Symmetry group analysis

Despite the emergence of various methods for solving nonlinear partial
differential equations (PDEs), Lie group analysis and its associated symmetry methods remain
a cornerstone [16–18]. Many of these methods rely on transformations to reduce the complexity of
the PDE before proceeding with further steps. These transformations often originate from Lie group
theory, making it a fundamental tool in the field of PDEs. The following shows the main steps of
symmetry group analysis [19–21]:

For any two differential operators Γ1 and Γ2 given by

Γ1(u) =
∂u
∂τ
− L1(u, v), (2.1)

Γ2(v) =
∂v
∂τ
− L2(u, v), (2.2)

where u = u(τ, ξ), v = v(τ, ξ), and L1, L2 are functions on τ, ξ, u, and v, then the symmetry operators
can be defined as:

S 1(u) = C(τ, ξ, u, v)
∂u
∂τ

+ D(τ, ξ, u, v)
∂u
∂ξ

+ E1(τ, ξ, u, v), (2.3)

S 2(v) = C(τ, ξ, u, v)
∂v
∂τ

+ D(τ, ξ, u, v)
∂v
∂ξ

+ E2(τ, ξ, u, v). (2.4)

The Frèchet derivatives f1 and f2 can be written as

f1(Γ1, u, v) =
d
dε

Γ1(u + εS 1)|ε=0, (2.5)

f2(Γ2, u, v) =
d
dε

Γ2(v + εS 2)|ε=0. (2.6)

Once we obtain the Fréchet derivatives, we substitute the expressions for ∂u
∂τ

and ∂v
∂τ

(and their
derivatives) from Eqs (2.1) and (2.2). By setting all coefficients for the derivatives of u and v
to be zero, we achive a partial differential system. Solving this system yields the infinitesimal
generators C,D, E1, E2. Finally, we solve the characteristic equations to determine the transformation
and reduce the original system to a nonlinear ordinary differential system.

3. Lie group and novel wave solutions for Eq (1.1)

At first, we assumed that the CQNLSE with an additional anti-cubic nonlinear term has a solution
in the form [19–21]:

ϑ (τ, ξ) = u (τ, ξ) eiv(τ,ξ). (3.1)

By separating the real and imaginary parts, the following partial differential system is obtained:

δu8 + λu6 − αu4v2
ξ − u4vτ + αu3uξξ + β = 0, (3.2)
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αu4vξξ + 2αu3uξvξ + u3uτ = 0. (3.3)

From the symmetry technique steps, Eqs (3.2) and (3.3) can be rewritten in the folllowing form:

Γ1(u) =
∂u
∂τ
−

(
−αuvξξ − 2αuξvξ

)
, (3.4)

Γ2(v) =
∂v
∂τ
−

(
δu4 + λu2 − αv2

ξ +
α

u
uξξ +

β

u4

)
. (3.5)

Then the Frèchet derivatives f1 and f2 are given by

f1 = 8δu7S 1 + 6λu5S 1 − 4αu3v2
ξS 1 − 2αu4vξS 2ξ

−4u3vτS 1 − u4S 2τ + 3αu2uξξS 1 + αu3S 1ξξ, (3.6)
f2 = 4αu3vξξS 1 + αu4S 2ξξ + 6αu2uξvξS 1 + 2αu3S 1ξvξ

+2αu3uξS 2ξ + u3S 1τ + 3u2uτS 1. (3.7)

By using the symmetry operators defined in Eqs (2.3) and (2.4) in Eqs (3.5) and (3.6), together with
substituting the drivatives of ∂u

∂τ
and ∂v

∂τ
to make the differentaition of u, v with respect to τ disappear,

then equating all partial drivatives of u, v with respect to ξ with zero, the following partial differential
system is obtained:

Cξ = 0, E1uu = 0, E1uv = 0, E1ξu = 0, 2E1ξu + Dξξ = 0,
u2E2u + E1v = 0, 2αE1ξv − 2uαE2ξ − uDτ = 0,

E1vv − 2uDξ − uE2v + uCτ = 0,
2uDξ + uE1u − E1 − uCτ − uE2v = 0,

2u5λE1 + 4u7δE1 − u8δCτ − u6λE2v − u6λCτ − u8δE2v

−
4β
u

E1 + αu3E1ξξ − u4E2τ − βCτ − βE2v = 0. (3.8)

C,D, E1, and E2 can be determined by solving system (3.8) using Maple:

C = a1, D = −2a2ατ + a3, E1 = 0, E2 = a2ξ + a4, (3.9)

where a1, a2, a3, and a4 are constants, whereas in a physical context, they would typically relate to the
velocity of a soliton or measurable quantities like gain/loss, background potential, or initial conditions.
Therefore, we can construct the following four-vector Lie group:

χ1 =
∂

∂τ
, χ2 = −2ατ

∂

∂ξ
+ ξ

∂

∂v
, χ3 =

∂

∂ξ
, χ4 =

∂

∂v
, (3.10)

with the commutator relations [χi, χi] = 0, [χ1, χ2] = −2αχ3, [χ1, χ3] = 0, [χ1, χ4] = 0, [χ2, χ1] =

2αχ3, [χ2, χ3] = −χ4, [χ2, χ4] = 0, [χ3, χ1] = 0, [χ3, χ2] = χ4, [χ3, χ4] = 0, [χ4, χi] = 0,∀i = 1, 2, 3, 4.
We have taken the general case of all vector fields as a linear combination, which is defined by:

a1χ1 + a2χ2 + a3χ3 + a4χ4. (3.11)
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Since the similarity variables can be determined by solving the characteristic equation

dτ
a1

=
dξ

−2a2ατ + c3
=
−du

0
=
−dv

a2ξ + a4
, (3.12)

we get

η = a1ξ + a2ατ
2 − a3τ, u = U(η),

v = V(η) +
a4

a1
τ −

a3a2

2a2
1

τ2 +
a2

2

3a2
1

ατ3 −
a2

a2
1

(
a1ξ + a2ατ

2 − a3τ
)
τ. (3.13)

By using Eq (3.13) in systems (3.2) and (3.3), this can be reduced to the folllowing nonlinear
ordinary system:

δU8 + λU6 − a2
1αU4V ′2 + a3U4V ′ −

a4

a1
U4 +

a2

a2
1

ηU4 + αa2
1U3U′′ + β = 0, (3.14)

αa2
1U2V ′′ + 2αa2

1UU′V ′ − a3UU′ = 0. (3.15)

Integrate Eq (3.15) with respect to η,

V ′ =
a3

2αa2
1

+
b1

U2 , (3.16)

where b1 is the integration constant. Then inserting (3.16) into (3.14), we get

δU8 + λU6 + (
a2

a2
1

η −
a4

a1
−

a2
3

4αa2
1

)U4 + αa2
1U3U′′ + β − αa2

1b2
1 = 0. (3.17)

Assume that
U(η) = F

1
2 (η). (3.18)

Therefore, Eq (3.17) becomes

δF4 + λF3 − (
a4

a1
−

a2

a2
1

η +
a2

3

4αa2
1

)F2 +
αa2

1

2

(
FF′′ −

F′2

2

)
+ β − αa2

1b2
1 = 0. (3.19)

To solve Eq (3.19), assume a2 = 0, and by using the Jacobi expansion technique [25, 26],

F(η) =

M∑
i=0

Λiϕ
i (η) , (3.20)

where Λi are constants to be found later. M is an integer determined from the balance between the
terms F4 and FF′′, so M = 1. Therefore,

F(η) = Λ0 + Λ1ϕ (η) , (3.21)

where ϕ (η) satisfies the following elliptic equation:(
dϕ (η)

dς

)2

= r0 + r2ϕ (η)2 + r4ϕ (η)4 , (3.22)
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where r0, r2, r4 are constants with known values. By substituting from (3.21) and (3.22) in Eq (3.19),
sorting the powers of ϕ (η) , and equating it to zero, the following system of algebric equations is given:

3α2a4
1r4Λ

2
1 + 4αa2

1δΛ
4
1 = 0,

α2a4
1r4Λ0Λ1 + 4αa2

1δΛ0Λ
3
1 + αa2

1λΛ3
1 = 0,

α2a4
1Λ

2
1r2 + 24αa2

1δΛ
2
0Λ

2
1 + 12αa2

1λΛ0Λ
2
1 + 4αa1a4Λ

2
1 − a2

3Λ
2
1 = 0,

α2a4
1Λ0Λ1r2 + 8αa2

1δΛ
3
0Λ1 + 6αa2

1λΛ2
0Λ1 − 4αa1a4Λ0Λ1 + a2

3Λ0Λ1 = 0,
α2a4

1Λ
2
1r0 + 4b2

1α
2a4

1 − 4αa2
1δΛ

4
0 − 4αa2

1λ + Λ3
0 + 4αa1a4Λ

2
0 − 4αβa2

1 − a2
3Λ

2
0 = 0. (3.23)

By solving the above system, the following solutions are considered:

Λ0 = −
S

3αλa2
1

,Λ1 =
1
λ

√
2
3

r4S ,where δ =
9αλ2a2

1

8S
, S =

(
α2a4

1r2 − 4αa1a4 + a2
3

)
,

β =
1

216α3a6
1λ

2

(
α6a12

1

(
5r3

2 − 36r0r2r4

)
+ 36α5a9

1a4

(
4r0r4 − r2

2

)
+ 216b2

1α
4a8

1λ
2 − 9α4a8

1a2
3

(
4r0r4 − r2

2

)
+48α4a6

1a2
4r2 − 24α3a5

1a2
3a4r2 + 3α2a4

1a4
3r2 + 64α3a3

1a3
4 − 48α2a2

1a2
3a2

4 + 12αa1a4
3a4 − a6

3

)
. (3.24)

By using the known values of r1, r2, and r4 as given in [22–24], the following new Jacobi periodic wave
solutions are obtained for Eq (3.19):

F1 =
α2a4

1

(
m2 + 1

)
+ 4αa1a4 − a2

3

3λαa2
1

+
m
λ

√
2
3

(
α2a4

1
(
m2 + 1

)
+ 4αa1a4 − a2

3

)
sn (η,m) , (3.25)

F2 =
α2a4

1

(
m2 + 1

)
+ 4αa1a4 − a2

3

3λαa2
1

+
m
λ

√
2
3

(
α2a4

1
(
m2 + 1

)
+ 4αa1a4 − a2

3

)
cd (η,m) , (3.26)

F3 = −
α2a4

1

(
2m2 − 1

)
− 4αa1a4 + a2

3

3λαa2
1

+
m
λ

√
2
3

(
α2a4

1
(
2m2 − 1

)
− 4αa1a4 + a2

3

)
cn (η,m) ,(3.27)

F4 = −
α2a4

1

(
2 − m2

)
− 4αa1a4 + a2

3

3λαa2
1

+
1
λ

√
2
3

(
α2a4

1
(
2 − m2) − 4αa1a4 + a2

3

)
dn (η,m) , (3.28)

F5 =
α2a4

1

(
1 + m2

)
+ 4αa1a4 − a2

3

3λαa2
1

+
1
λ

√
2
3

(
α2a4

1
(
1 + m2) + 4αa1a4 − a2

3

)
ns (η,m) , (3.29)

F6 =
α2a4

1

(
1 + m2

)
+ 4αa1a4 − a2

3

3λαa2
1

+
1
λ

√
2
3

(
α2a4

1
(
1 + m2) + 4αa1a4 − a2

3

)
dc (η,m) , (3.30)

F7 =
α2a4

1

(
1 − 2m2

)
+ 4αa1a4 − a2

3

3λαa2
1

+
1
λ

√
2
3

(
m2 − 1

) (
α2a4

1
(
2m2 − 1

)
− 4αa1a4 + a2

3

)
nc (η,m) , (3.31)

F8 =
α2a4

1

(
m2 − 2

)
+ 4αa1a4 − a2

3

3λαa2
1

+
1
λ

√
2
3

(
1 − m2) (α2a4

1
(
2 − m2) − 4αa1a4 + a2

3

)
nd (η,m) , (3.32)

F9 =
α2a4

1

(
m2 − 2

)
+ 4αa1a4 − a2

3

3λαa2
1

+
1
λ

√
2
3

(
m2 − 1

) (
α2a4

1
(
2 − m2) − 4αa1a4 + a2

3

)
sc (η,m) , (3.33)

F10 =
α2a4

1

(
1 − 2m2

)
+ 4αa1a4 − a2

3

3λαa2
1

+
1
λ

√
2
3

m2 (
1 − m2) (α2a4

1
(
2m2 − 1

)
− 4αa1a4 + a2

3

)
sd (η,m) , (3.34)
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F11 =
α2a4

1

(
m2 − 2

)
+ 4αa1a4 − a2

3

3λαa2
1

+
1
λ

√
2
3

(
α2a4

1
(
m2 − 2

)
+ 4αa1a4 − a2

3

)
cs (η,m) , (3.35)

F12 =
α2a4

1

(
m2 − 1

2

)
+ 4αa1a4 − a2

3

3λαa2
1

+
1

2λ

√
2
3

(
α2a4

1

(
m2 −

1
2

)
+ 4αa1a4 − a2

3

)
(ns (η,m) ± cs (η,m)), (3.36)

F13 =
4αa1a4 −

α2a4
1

2

(
m2 + 1

)
− a2

3

3λαa2
1

+
1

2λ

√
2
3

(
m2 − 1

) α2a4
1

2
(
m2 + 1

)
− 4αa1a4 + a2

3

(nc (η,m) ± sc (η,m)).

When the module of the previous Jacobi functions becomes 1, the following new hyperbolic
functions are obtained:

F14 =
2α2a4

1 + 4αa1a4 − a2
3

3λαa2
1

+
1
λ

√
2
3

(
2α2a4

1 + 4αa1a4 − a2
3

)
tanh(η), (3.37)

F15 =
4αa1a4 − α

2a4
1 − a2

3

3λαa2
1

+
1
λ

√
2
3

(
α2a4

1 − 4αa1a4 + a2
3

)
sech(η), (3.38)

F16 =
2α2a4

1 + 4αa1a4 − a2
3

3λαa2
1

+
1
λ

√
2
3

(
2α2a4

1 + 4αa1a4 − a2
3

)
coth(η), (3.39)

F17 =
4αa1a4 − α

2a4
1 − a2

3

3λαa2
1

+
1
λ

√
2
3

(
4αa1a4 − α2a4

1 − a2
3

)
csch(η), (3.40)

F18 =

1
2α

2a4
1 + 4αa1a4 − a2

3

3λαa2
1

+
1
λ

√
1
6

(
1
2
α2a4

1 + 4αa1a4 − a2
3

)
(coth(η) ± csch(η)) . (3.41)

As the module of the Jacobi functions becomes zero, the following periodic functions achieved:

F19 =
4αa1a4 − 2α2a4

1 − a2
3

3λαa2
1

+
1
λ

√
2
3

(
4αa1a4 − 2α2a4

1 − a2
3

)
tan(η), (3.42)

F20 =
α2a4

1 + 4αa1a4 − a2
3

3λαa2
1

+
1
λ

√
2
3

(
α2a4

1 + 4αa1a4 − a2
3

)
sec(η), (3.43)

F21 =
4αa1a4 − 2α2a4

1 − a2
3

3λαa2
1

+
1
λ

√
2
3

(
4αa1a4 − 2α2a4

1 − a2
3

)
cot(η), (3.44)

F22 =
α2a4

1 + 4αa1a4 − a2
3

3λαa2
1

+
1
λ

√
2
3

(
α2a4

1 + 4αa1a4 − a2
3

)
csc(η), (3.45)

F23 =
4αa1a4 −

1
2α

2a4
1 − a2

3

3λαa2
1

+
1
λ

√
1
6

(
4αa1a4 −

1
2
α2a4

1 − a2
3

)
(csc(η) ± cot(η)) , (3.46)

F24 =
4αa1a4 −

1
2α

2a4
1 − a2

3

3λαa2
1

+
1

2λ

√
2
3

(
4αa1a4 −

1
2
α2a4

1 − a2
3

)
(sec(η) ± tan(η)) . (3.47)

Novel solutions are obtained for the CQNLSE by back substitution from (3.25)–(3.47)
into (3.18), (3.13), and (3.16) under conditions given in (3.24) for δ and β; the following solution
are attained:
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ϑ (τ, ξ) = F
1
2
j (a1ξ − a3τ)e

i( a3
2αa2

1
(a1ξ−a3τ)+ b1

F j(ς) +
a4
a1
τ)
, j = 1, ..., 24. (3.48)

To physically interpret the obtained solutions given by Eq (3.48), we have found that the traveling
wave transformation η = a1ξ − a3τ, a1is the wave number component and a3 is the frequency. F j can
describe the amplitude envelope of the soliton, where 1

a1
is proportional to the characteristic width of

the soliton. Moreover, η can be rewritten as η = a1(ξ − a3
a3
τ), and therefore the group velocity of the

soliton’s envelope is given by Vg = a3
a3
. According to that, a1, along with a3, both determine the speed

at which the soliton travels, making it an essential parameter defining the soliton’s motion [9–11].

4. Results and discussion

The ability of solitary waves or solitons to propagate in a non-dispersive manner allows them to be
useful in a range of scientific and engineering application fields. They are used in geophysics and fluid
dynamics to study non-dispersive internal ocean waves and the Morning Glory cloud. They are also
used in condensed matter physics to explain the flow of energy in crystal lattices and the formation of
skyrmions. Furthermore, in the study of acoustics and the propagation of pressured pulses in two-phase
systems, especially bubbly liquids, solitons are of very useful in such areas [25–27].

Optical solitary waves are fascinating phenomena in nonlinear optics that have significant
implications for various applications, including telecommunications, optical computing, and materials
science. These self-sustaining pulses of light can propagate long distances without dispersing or
changing their shape, which can be considered as the most critical commercial application [28–30].

To visualize this unique behavior, we will plot the the intensity of the wave solution |ϑ1 (τ, ξ)|2

obtained in the previous section. This will allow us to investigate the wave’s profile and dynamics.
Figure 1 shows the 3D and 2D plots of the periodic wave amplitude |ϑ1 (τ, ξ)|2according to the

Jacobi sn function solution given by Eq (3.25), where the parameters are chosen to be a1 = a3 = a4 =

b1 = 1, α = λ = 1,m = 0.3, and according to the consideration of condition (3.24), β = 0.872 and
δ = −0.275.

(a) (b)
Figure 1. (a) The intensity of the periodic wave ϑ1. (b) The 2D plot of the intensity of the
periodic wave ϑ1.
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Figure 2 shows the 3D and 2D plots of the kink soliton amplitude |ϑ14 (τ, ξ)|2, where the module m
et al. tends to 1 in the Jacobi sn function solution given by Eq (3.25), and the parameters are given
as a1 = a3 = a4 = b1 = 1, α = λ = 1. Therefore, β = 1.023 and δ = 0.225.

(a) (b)
Figure 2. (a) The intensity of the kink wave soliton ϑ14. (b) The 2D plot of the intensity kink
wave soliton ϑ14.

Figure 3 shows the bright soliton wave solution |ϑ15 (τ, ξ)|2 given by Eq (3.25), and the parameters
are given as a1 = −1, a3 = a4 = b1 = 1, α = λ = 1. Therefore, β = 1 and δ = 0.1875.

In all Figures 1–3, the periodic, kink, and bright soliton waves were plotted with fixed values. a3 =

a4 = b1 = 1, α = λ = 1, and a1 = 1 in Figures 1(a),(b), and 2(a),(b) but a1 = −1 in Figures 3(a),(b)
and in every figure, β and δ change according to the condition given in Eq (3.24). The 2D plots were
done corresponding to fixed values of τ as 1, 2, and 3 and fixed line colors as blue, orange, and green,
respectively. As shown in the figures, the waves exhibit stable propagation. Additionally, our solutions
extend beyond those previously documented in the literature [10–16], offering a more comprehensive
understanding of the system’s behavior. The soliton stability of the CQNLSE with an additional anti-
cubic nonlinear term was discussed recently by Xiang in [30].

(a) (b)
Figure 3. (a) The intensity of the bright wave soliton ϑ15. (b) The 2D plot of the intensity
bright wave soliton ϑ15.
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5. Conclusions

This study investigates the cubic-quintic nonlinear Schrödinger equation with an additional anti-
cubic nonlinear term using symmetry analysis. A finite Lie group of transformations is derived,
yielding a general transformation that encompasses the traditional traveling wave transformation
employed in previous studies [9–14]. Applying the general transformation obtained from the linear
combination of the vector fields, the CQNLSE with an additional anti-cubic nonlinear term is reduced
to a nonlinear ordinary differential equation. By solving the reduced equation using the Jacobi
expansion method, various wave solutions are obtained. Comparing those solutions with the previous
solutions in literature, we have found that the solutions cover the solitary wave solutions obtained
before in [9–13] and the Jacobi wave solutions obtained in [14], where ϑ1 is the only Jacobi wave
solution obtained. Therefore, the other solutions here are new. Finally, we have plotted the intensity
of the wave solution |ϑ1 (τ, ξ)|2 in both 3D and 2D plots given by Figures 1(a),(b) to show the periodic
behavior of the wave. Then when the modulus of the wave solution ϑ1 (τ, ξ) → 1, it became the kink
soliton solution ϑ14, so we have plotted the intensity of |ϑ1 (τ, ξ)|2 when a1 = 1. It became like a kink
soliton in the 3D and 2D plots given by Figures 2(a),(b) and when a1 = −1, it changed to a bright
soliton wave given in Figures 3(a),(b). So the sign of a1 is very important and affects the soliton type
as it is physically presents the velocity and shape width of the solitary wave.
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