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Abstract: This paper examines the cubic-quintic nonlinear Schrodinger equation (CQNLSE) with an
additional anti-cubic nonlinear term, by using Stainberg’s symmetry technique. The CQNLSE with the
additional anti-cubic nonlinear term is a generalized model of higher-order nonlinear effects, offering
a more accurate description of optical pulse propagation in nonlinear media with complex nonlinear
responses, which makes the CQNLSE have a wide range of applications in several fields like optics,
communications, spectroscopy, and computing. In our study, we used symmetry group analysis to
derive a finite Lie group of transformations, and as a result, a novel similarity transformation, not
previously reported in the literature, was obtained from this group. By using this transformation,
the CQNLSE with the anti-cubic term was reduced to a nonlinear ordinary differential equation, which
can be solved using the Jacobi elliptic expansion method, and a variety of wave solutions were obtained.
These solutions include periodic waves, kink solitons, and bright solitons, contain other solutions,
shown in the previous literature. We have also introduced a new solution, which has not been achived
before in studies. The 3D and 2D plots of the periodic sn wave and its limit as a kink solitary wave
were given to declare the dynamical behavior of the wave propagation by controlling the parameters
contained in the solution.
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1. Introduction

The nonlinear Schrodinger equation (NLSE) and its extensions play a vital role in understanding
and modeling the propagation of optical waves in various nonlinear media. This equation, which
incorporates the effects of nonlinearity, dispersion, and attenuation, provides a fundamental framework
for studying phenomena such as solitons, supercontinuum generation, and optical switching [1-3].

Solitons, which are very important for their self-localized optical pulses that maintain their shape
and intensity over long distances, are described by specific solutions of the NLSE. These solitons have
a wide range of applications in optical communication systems, where they can be used to transmit
information efficiently and reliably [4-6].

Supercontinuum generation, the process of generating a broad spectrum of optical frequencies from
a single input pulse, is another area where the NLSE and its extensions are crucial. This phenomenon
provides applications in spectroscopy, optical coherence tomography, and metrology [7].

Optical switching, the ability to control the propagation of light using nonlinear effects, is also
described by the NLSE. This technology has potential applications in optical computing and all-optical
networks [8].

Therefore, the nonlinear Schrodinger equation and its extensions provide a powerful tool for
understanding and modeling the complex behavior of optical waves in nonlinear media. These
equations have broad applications in various fields of optics, including communications, spectroscopy,
and computing.

Regarding the previously highlighted importance for NLSEs extensions, we have chosen to study
the cubic-quintic nonlinear Schrodinger equation (CQNLSE) with an additional anti-cubic nonlinear
term which is consider the generalization form of the CQNLSE that incorporates higher-order nonlinear
effects. It is used to describe the propagation of optical pulses in nonlinear media where the nonlinear
response is more complex than the simple cubic-quintic model and can be written as [9, 10]:

i + g + (B + AP+ [91") 0 =0, (1.1)

where 7 and £ are the time and spatial variables, # = ¥ (7, &) is a complex wave function denoting
the soliton profile, where the first term depicts the temporal evolution, i> = —1, « represents the
group velocity dispersion, and 3, A, and ¢ are anti-cubic, cubic, and quintic nonlinearities, respectively.
When g = 0, it denotes the soliton profile parabolic law nonlinearity [11, 12]. The anti-cubic term
can be introduced to stabilize solutions that would otherwise collapse or blow up in finite time under
the influence of other terms [13]. The CQNLSE with an additional anti-cubic nonlinear term has
been solved by using many traveling wave methodologies like the conservation laws [9], mapping
method [10], tanh-coth scheme, modified simple equation method [11], polynomial method [12], and
Jacobi elliptic function method [14], in addition to classical Lie group analysis [15].

This paper employs symmetry group analysis to derive a novel transformation that reduces
Eq (1.1) to a nonlinear ordinary differential equation (ODE). The traveling wave transformations used
previously were without any references reported in literature, this is the reason why it takes that form.
So in our study, we have chosen the symmetry group due to the evidence in [9-12, 14]. This approach
is distinct from the previous classical Lie group study [15] because it yields a general transformation
that encompasses all the special cases derived in [15], where the authors only solved for specific vector
fields. The reduced ODE is then solved using the Jacobi expansion method to obtain new optical
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solitary wave solutions in various forms, which cover the two cases given in [14] and provide many
other solutions. Finally, we analyze the dynamic behavior of periodic waves, kink solitons, and bright
solitons to highlight their intriguing properties.

2. Symmetry group analysis

Despite  the emergence of various methods for solving nonlinear  partial
differential equations (PDEs), Lie group analysis and its associated symmetry methods remain
a cornerstone [16—18]. Many of these methods rely on transformations to reduce the complexity of
the PDE before proceeding with further steps. These transformations often originate from Lie group
theory, making it a fundamental tool in the field of PDEs. The following shows the main steps of
symmetry group analysis [19-21]:

For any two differential operators I'; and I'; given by

Fl(u) = — - L](I/t, V), (21)
(97’

L) = o L), (2.2)
ot

where u = u(t,¢), v = v(1,€), and Ly, L, are functions on 7, &, u, and v, then the symmetry operators
can be defined as:

Siuw) = C(éu, v)@ + D1, é,u, v)@ v E(nE u,v), (2.3)
ot 0¢

S,(v) = C(t,¢é,u, v)@ + D(1,¢&, u, v)@ + Ex(1, &, u,v). 2.4)
or o0&

The Frechet derivatives f; and f; can be written as
d
ST, u,v) = Erl(u + €S 1)le=0, (2.5)

d
LT, u,v) = grz(\’ + €52)|e=0- (2.6)

Once we obtain the Fréchet derivatives, we substitute the expressions for Z—'; and Z—; (and their
derivatives) from Eqs (2.1) and (2.2). By setting all coefficients for the derivatives of u and v
to be zero, we achive a partial differential system. Solving this system yields the infinitesimal
generators C, D, E|, E,. Finally, we solve the characteristic equations to determine the transformation

and reduce the original system to a nonlinear ordinary differential system.
3. Lie group and novel wave solutions for Eq (1.1)

At first, we assumed that the CQNLSE with an additional anti-cubic nonlinear term has a solution
in the form [19-21]:

P (1,6) = u(r,8) "™, (3.1
By separating the real and imaginary parts, the following partial differential system is obtained:
oud + b — a/u4v§ —utv, + au3u§§ +8 = 0, 3.2)
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au've + 2alugve + wu, = 0. (3.3)

From the symmetry technique steps, Eqs (3.2) and (3.3) can be rewritten in the folllowing form:
ou
or

0
6_: - (5u4 + - av? + %uff + %) 3.5

Iy ()

- (—auvé.-g - 2a/u§v§) , (3.4)

()

Then the Frechet derivatives f; and f> are given by

fi = 80u'S|+64’S | —4auviS | — 2au*veS o,

—4u’v.S | —u*S,, + 3au2u§§S1 + au3S1§§, 3.6)
fo= 4 veS | + autS gz + 6aulusveS | + 2au’S 14ve
+2a10uS 26 + S 10 + 3uluLS . (3.7)

By using the symmetry operators defined in Eqgs (2.3) and (2.4) in Eqgs (3.5) and (3.6), together with
substituting the drivatives of % and % to make the differentaition of u, v with respect to 7 disappear,
then equating all partial drivatives of u, v with respect to & with zero, the following partial differential
system is obtained:

Ce=0,E 1, =0,E1, =0,E 15 =0,2E 14 + Dg = 0,
WEy, + E,, =0, 2aE ¢ — 2uak)y —uD, = 0,
Ei —2uD; — uE,, + uC, =0,
2uD; + ukE,, — Ey —uC. —uk,, =0,

20 AE| + 4u'6E, — ub6C, — uPAE,, — uAC, — uSE,,

4
—£E1 + U’ E e — u'Ey, — BC, — BE,, = 0. (3.8)
» :
C,D, E,, and E, can be determined by solving system (3.8) using Maple:
C=a, D=20ar+a;, £E,=0, E, = a2§ + ay, (39)

where ay, a», as, and a4 are constants, whereas in a physical context, they would typically relate to the
velocity of a soliton or measurable quantities like gain/loss, background potential, or initial conditions.
Therefore, we can construct the following four-vector Lie group:

0 0 0 0 0

= — vy =20T— +&—,y3= —, ¥4 = —, 3.10
X1= 22X aTa§+§avX3 ag)m pw (3.10)

with the commutator relations [y;, x:] = 0, [x1,x2] = —2axs, x1.x3] = 0, xyi,x4] = 0, [x2,x1] =

2axs, Y2, 3] = —xa, Ix2, xal = 0, [y, x1] = 0, [xa, x2l = xas Ixa. xal = 0, [ya, il = 0,Vi=1,2,3,4.
We have taken the general case of all vector fields as a linear combination, which is defined by:

a1 + axxs + asxs + daxs. (3.11)
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Since the similarity variables can be determined by solving the characteristic equation

d d —d —d
ar _ 3 _ T L (3.12)
ai —2a,aT + C3 0 ¢ +ay
we get
n = aé+aaer —ar, u=U®),
2
a
v = V() + %T - a3—a227'2 + —2207'3 - a_; (alf + wat? - a37') T. (3.13)
a 2a; 3a; a

1

By using Eq (3.13) in systems (3.2) and (3.3), this can be reduced to the folllowing nonlinear
ordinary system:

SUS + AU° — 2aU*V™? + a; UV - Z—‘I‘U“ + %nw +adUPU" +B = O, (3.14)
1
aalU*V" +22a?UU'V' —a;UU’ = 0. (3.15)
Integrate Eq (3.15) with respect to 7,
as by
"= —, 3.16
207 U? (3.16)
where b, is the integration constant. Then inserting (3.16) into (3.14), we get
8 6. @ a4y 4, 277377 2,2
oU® + AU +(;T]—a——w)l] +a/a1U U +ﬁ—a/a1b1 =0. (3.17)
1 1
Assume that
1
Un) = F2(n. (3.18)
Therefore, Eq (3.17) becomes
a2 a,al F/Z
SFr+ AP — (B _Lpy SR+ — L FF - |+ - adb? = 0. (3.19)
a a  4add 2 2
To solve Eq (3.19), assume a, = 0, and by using the Jacobi expansion technique [25,26],
M
Fop =) Aig' (), (3.20)

i=0

where A; are constants to be found later. M is an integer determined from the balance between the
terms F* and FF”, so M = 1. Therefore,

F) =Ao+ A, (3.21)

where ¢ (n7) satisfies the following elliptic equation:

(dso (1)

dc (3.22)

-

2
) = ro + rap () + rap ()°
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where ry, r,, r4 are constants with known values. By substituting from (3.21) and (3.22) in Eq (3.19),
sorting the powers of ¢ (17) , and equating it to zero, the following system of algebric equations is given:

3a%alr A + daalsA! = 0,

a’dirahoA| + 4adiSAoA; + aai AN = 0

a’aiNir, + 24aatdAAT + 12aaiAN0AT + daaia,AT — a3AT = 0,
a’aiNoAiry + 8aaiSAIA| + 6aaiANIA| — daaiasAoAy + a3AoA; = 0
0

a’diAiry + 4bia’a) — daalSAy — 4aatd + A} + daaiasAf — 4afat — a3AE = (3.23)
By solving the above system, the following solutions are considered:
S 1 /2 9a’a?
Ay = _W’Al = 1 §r4S,where5 = 2S l,S = (aza‘l‘rz —4daaay +a§),
1
B = —216a3a6/12 (a6a:2 (Srg - 36r0r2r4) + 36a5a?a4 (4r0r4 - r%) + 216b%a4a§/l2 — 9a4a?a§ (4r0r4 — r%)
1
+48a*dSair, - 240’ @} a3asry + 3a’alair, + 64’ alal — 48P aaal + 12aa asay — ag’). (3.24)

By using the known values of ry, r,, and r4 as given in [22-24], the following new Jacobi periodic wave
solutions are obtained for Eq (3.19):

F, = i (m2 +31/2(—:a;aa1a4 — 4 % \/g (a/za‘f (m? + 1) + daa,a, — ag)sn (n,m), (3.25)
F, = i (m2 +313;a;1aa1a4 — 4 + % \/g (aza? (m? + 1) + daaa, — ag)cd (n,m), (3.26)
. _(1’26141t <2m2 _3;)6;1%4aala4 + a% N % \/% (a/za‘]‘ 2m? - 1) - 4aaras + ag)cn (n, m) (3.27)
Fy, = _aZa‘lt (2 _ njla—a;aalm ta + % \/g (a/zadl' (2 - m?) — daajay + a%)dn (n,m), (3.28)
Fs = aza‘l‘ (1 ! nizc;?aalm _ a% + % \/§ (afza‘ll (1 +m?) + daaay — a%)ns (n,m), (3.29)
Fs = a1+ nj/zc;;laam ~ + % \/ % (e2a} (1 +m2) + daaray - a3)de (7.m). (3.30)
F, = a1 - 2’;1;)0;;%“4 ~a + % \/ % (2 = 1) (a2a? 2m? - 1) - daaiag + a)ne (n.m), (3.31)
Fs = @a(m’ _;z:a;aam 4 + % \/ % (1= m?)(e2a} (2 — m?) - daaras + a3 )nd (. m), (3.32)
Fo = @ai (m’ —;):agaam ~a + % \/ % (2 = 1) (a2a? (2 - m?) — daayas + &) sc (g, m), (3.33)
Fio = a1 - 2”311)(;%4(161104 4, % \/ §m2 (1 - m?) (a2at (2m? = 1) - 4aaras +a2)sd (n, m), (3.34)
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?at(m? -2) +4aajas —a: 1 |2
Fii = ! ( 32(1(12 > 1 \/5 (ozza‘l1 (m? - 2) +4aajay - ag)cs (n,m), (3.35)
1
aza‘l1 m* — % + 4aaas - a§ 1 [2 1
Fp, = ( 3/20612 + 21\3 (cxza‘l1 (m2 - E) +daajas - a%)(ns (n,m) + cs (n, m)), (3.36)
1
4a/a1a4—YT(m + 1) ala 4
Fi3 = o 2/l (m2 - 1)( L(m? +1) - 4aayas + az](nc (n, m) + sc (n, m)).
1

When the module of the previous Jacobi functions becomes 1, the following new hyperbolic
functions are obtained:

20%at + daayas —a: 1 |2
Fiy = ! 3/loza; A V3 (2(1/261‘]L +4aa,as — ag) tanh(n), (3.37)
1
daaas —a?at—a: 1 |2
Fis = ——————+ -/3 (a%al ~ daaias + &})sechy) (3.38)
1
20%at + daayas —a: 1 |2
Fig = 1 3/10za; S V3 (205251‘1‘ +4aa,as — a%) coth(n), (3.39)
1
daajas —*at—a: 1 |2
F; = : 43/laa ! 3 + /_l § (4&01614 - aza‘l‘ — a%) CSCh(T]), (3.40)
1
Lo?a* + daayas —a®> 1 |11
Fig = 21 SR (—a/za? + daayas — a%) (coth(n) + csch(p)).  (3.41)
3aal A\6\2

As the module of the Jacobi functions becomes zero, the following periodic functions achieved:

Fio = 4“‘““43;62;“? 4,1 \/ i (4aaas - 207} - a2) tan(), (3.42)
1

F = O +320;‘2f L= 4 % \/ (o?at + daaas — @) sec(), (3.43)
1

Fy = 4056116143—/1232“‘1l _ 03 % \/§ 4aa1a4 - 2a/2a1 - a3) cot(n), (3.44)
1

Fy = i +;;0;C;1a4 — 4 % \/§ (aza‘l‘ + daa,as — ag) cse(n), (3.45)
1

Fy = 4aa1a43—/lc—yzza‘1‘ —4, % \/ é (4cya1a4 - %aza;‘ - ag) (csc() £ cot(m),  (3.46)
1

Fp = 4“““143;5;:2“? ~ 4 % % (4aa1a4 - %aza‘l‘ - ag) (sec(n) + tan(y)).  (3.47)
1

Novel solutions are obtained for the CQNLSE by back substitution from (3.25)—(3.47)
into (3.18), (3.13), and (3.16) under conditions given in (3.24) for ¢ and g; the following solution
are attained:
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1 i3 (@E-asn)t s+

H(1,8) = F; (@& — azT)e ™ A =1,0,24. (3.48)
To physically interpret the obtained solutions given by Eq (3.48), we have found that the traveling
wave transformation n = a,£ — a3, a,is the wave number component and a3 is the frequency. F; can
describe the amplitude envelope of the soliton, where % is proportional to the characteristic width of
the soliton. Moreover, n can be rewritten as n = a;(¢ — Z—;T), and therefore the group velocity of the
soliton’s envelope is given by V, = Z—Z According to that, a;, along with a3, both determine the speed

at which the soliton travels, making it an essential parameter defining the soliton’s motion [9-11].

4. Results and discussion

The ability of solitary waves or solitons to propagate in a non-dispersive manner allows them to be
useful in a range of scientific and engineering application fields. They are used in geophysics and fluid
dynamics to study non-dispersive internal ocean waves and the Morning Glory cloud. They are also
used in condensed matter physics to explain the flow of energy in crystal lattices and the formation of
skyrmions. Furthermore, in the study of acoustics and the propagation of pressured pulses in two-phase
systems, especially bubbly liquids, solitons are of very useful in such areas [25-27].

Optical solitary waves are fascinating phenomena in nonlinear optics that have significant
implications for various applications, including telecommunications, optical computing, and materials
science. These self-sustaining pulses of light can propagate long distances without dispersing or
changing their shape, which can be considered as the most critical commercial application [28-30].

To visualize this unique behavior, we will plot the the intensity of the wave solution |9, (t, &)
obtained in the previous section. This will allow us to investigate the wave’s profile and dynamics.

Figure 1 shows the 3D and 2D plots of the periodic wave amplitude [, (7, &)|*according to the
Jacobi sn function solution given by Eq (3.25), where the parameters are chosen to be a; = a3 = a4 =
by = 1, = A2 = 1,m = 0.3, and according to the consideration of condition (3.24), 8 = 0.872 and
0 =—-0.275.

.
Wy &nR 1

(a) (b)
Figure 1. (a) The intensity of the periodic wave ;. (b) The 2D plot of the intensity of the
periodic wave .

AIMS Mathematics Volume 10, Issue 12, 29595-29606.



29603

Figure 2 shows the 3D and 2D plots of the kink soliton amplitude |4 (7, f)lz, where the module m
et al. tends to 1 in the Jacobi sn function solution given by Eq (3.25), and the parameters are given
asa; =az =a4 =b; =1, = A = 1. Therefore, § = 1.023 and 6 = 0.225.

— lou(EN|*
— 944(£,2) |2
[944(€,3) 12

b L L 1 L L
e )

(b)
Figure 2. (a) The intensity of the kink wave soliton 4. (b) The 2D plot of the intensity kink
wave soliton 4.

Figure 3 shows the bright soliton wave solution |5 (7, §)|2 given by Eq (3.25), and the parameters
are givenas a; = —1l,a3 = a4 = by = 1, = A = 1. Therefore, § = 1 and § = 0.1875.

In all Figures 1-3, the periodic, kink, and bright soliton waves were plotted with fixed values. a; =
as =b;y =1, =4=1,and a; = 1 in Figures 1(a),(b), and 2(a),(b) but a; = —1 in Figures 3(a),(b)
and in every figure, 8 and 6 change according to the condition given in Eq (3.24). The 2D plots were
done corresponding to fixed values of 7 as 1, 2, and 3 and fixed line colors as blue, orange, and green,
respectively. As shown in the figures, the waves exhibit stable propagation. Additionally, our solutions
extend beyond those previously documented in the literature [10-16], offering a more comprehensive
understanding of the system’s behavior. The soliton stability of the CQNLSE with an additional anti-
cubic nonlinear term was discussed recently by Xiang in [30].

— o N1?
[915(€,2) 1%
- |o15(£,3) 17

(a) (b)
Figure 3. (a) The intensity of the bright wave soliton 5. (b) The 2D plot of the intensity
bright wave soliton 5.
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5. Conclusions

This study investigates the cubic-quintic nonlinear Schrodinger equation with an additional anti-
cubic nonlinear term using symmetry analysis. A finite Lie group of transformations is derived,
yielding a general transformation that encompasses the traditional traveling wave transformation
employed in previous studies [9-14]. Applying the general transformation obtained from the linear
combination of the vector fields, the CQNLSE with an additional anti-cubic nonlinear term is reduced
to a nonlinear ordinary differential equation. By solving the reduced equation using the Jacobi
expansion method, various wave solutions are obtained. Comparing those solutions with the previous
solutions in literature, we have found that the solutions cover the solitary wave solutions obtained
before in [9—13] and the Jacobi wave solutions obtained in [14], where ¢}, is the only Jacobi wave
solution obtained. Therefore, the other solutions here are new. Finally, we have plotted the intensity
of the wave solution |t (7, §)|2 in both 3D and 2D plots given by Figures 1(a),(b) to show the periodic
behavior of the wave. Then when the modulus of the wave solution %, (1,&) — 1, it became the kink
soliton solution ¥4, so we have plotted the intensity of [}, (7, §)|2 when a; = 1. It became like a kink
soliton in the 3D and 2D plots given by Figures 2(a),(b) and when a; = —1, it changed to a bright
soliton wave given in Figures 3(a),(b). So the sign of a; is very important and affects the soliton type
as it is physically presents the velocity and shape width of the solitary wave.
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