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Abstract: Leveraging historical control data to augment randomized control data in clinical trials
has become an important strategy for improving the efficiency of statistical inference, particularly
in contexts with limited sample availability. However, potential heterogeneity between historical
and current datasets may introduce bias in treatment effect estimation and compromise inferential
validity. This study proposes a two-stage “Fill-it-up” design for clinical trials with binary endpoints to
enable the rigorous integration of historical control data under controlled statistical risk. Analytical
procedures for sample size determination and practical implementation steps for both stages are
provided. Simulation studies demonstrate that the family-wise error rate can be effectively controlled
below the pre-specified significance level, while the average sample size is substantially reduced
compared with a conventional single-stage design that excludes historical controls. The efficiency
gains become more pronounced as between-group heterogeneity decreases. The proposed two-stage
Fill-it-up design offers a frequentist framework for safely and efficiently incorporating historical control
data into binary endpoint trials. Given that additional recruitment is required when equivalence is not
established, its practical application is best suited for studies where there is strong prior confidence
in the quality and comparability of historical data, such as in rare disease or pediatric settings. This
design provides a pragmatic approach for enhancing the efficiency and ethical sustainability of modern
clinical research.
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1. Introduction

In clinical research, the integration and appropriate use of external historical data have become
topics of growing methodological and regulatory interest. To promote the standardization and
transparency of such practices, the U.S. Food and Drug Administration released a draft guidance
in 2023 on the design and analysis of externally controlled trials [1]. This guidance document
systematically outlines the core principles, design considerations, and statistical recommendations
for externally controlled studies, providing an important regulatory reference for both clinical and
statistical researchers. From a methodological perspective, the incorporation of external controls
(e.g., historical datasets or real-world data) can improve the efficiency of drug development by
enhancing statistical power and reducing the required sample size in randomized controlled trials,
ultimately shortening the overall development timeline. This approach is particularly valuable in
settings where patient recruitment is inherently difficult, such as studies involving rare diseases or
pediatric populations. In these contexts, external historical data can serve as a valuable supplementary
information source, partially mitigating the limitations imposed by small sample sizes. When properly
adjusted for potential heterogeneity between data sources, this integration can provide more robust
evidence for the evaluation of the efficacy and safety of treatment, thus facilitating the evaluation and
development of therapeutics for special populations.

In recent years, there has been a growing methodological interest in approaches that leverage
historical data to enhance the efficiency of clinical research. A critical consideration in this context
is the potential heterogeneity between current and historical datasets, as failure to adequately account
for such differences may compromise the validity and reliability of study inferences. To address
this issue, a variety of Bayesian dynamic borrowing methods have been developed to adaptively
incorporate information from external or historical controls while mitigating potential discrepancies
between data sources. Representative approaches include power prior [2], modified power prior [3–5],
commensurate prior [6], probability-weighted power prior [7], and robust meta-analytic-predictive
(MAP) prior [8, 9].

In addition to the Bayesian approaches described above, frequentist methods are also commonly
employed to evaluate whether historical data should be incorporated into current analyses [10]. The
fundamental principle of these approaches lies in formally testing the consistency between current
and historical datasets. If no statistically significant difference is detected, the two data sets can
be combined to improve statistical efficiency; conversely, if a difference is identified, historical data
are excluded to avoid bias. Li et al. [11] proposed an equivalence-based test-then-pool approach, in
which the degree of similarity between datasets is quantified through the overlap area between their
probability distributions, thus providing an objective criterion for determining the appropriateness of
data pooling.

A central challenge in modern experimental design is how to incorporate external or historical
information while maintaining statistical validity when external and internal data are not fully
exchangeable. Existing approaches such as Bayesian dynamic borrowing (e.g., power priors or
commensurate priors) and test-then-pool strategies provide useful tools, but they often rely on
subjective tuning, introduce discrete decision boundaries, or lack rigorous guaranties for Type I error
control under data heterogeneity. To address these limitations, the objective of this study is to develop
a unified, model-based, and data-adaptive design framework that enables continuous information
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borrowing and provides robust inference even when the compatibility between external and internal
data is uncertain.

More recently, Wied et al. [12] introduced the Fill-it-up design, which evaluates the comparability
of the historical and current control groups through a preliminary equivalence test. If equivalence is
confirmed, the historical controls are incorporated into the ongoing randomized trial; otherwise, they
are excluded, and randomization continues until the planned sample size is achieved. However, the Fill-
it-up design proposed by Wied et al. [12] is limited in applicability, as it was developed specifically
for continuous, normally distributed endpoints and cannot be extended directly to binary endpoints. To
address this limitation, this paper proposes a two-stage Fill-it-up design tailored for binary endpoints,
allowing efficient integration of historical control data while maintaining statistical rigor.

The remainder of this paper is organized as follows. Section 2 presents a motivating clinical trial
example. Section 3 describes the methodology of the proposed two-stage Fill-it-up design. Section 4
examines the frequentist operating characteristics of the method, including sample size determination,
Type I error control, and power evaluation. Section 5 reports the results of the simulation studies
conducted to assess the design’s performance in improving sample efficiency. Section 6 provides a
comparison between our proposed approach and the Bayesian MAP approach. Section 7 illustrates
the practical application of the design in a clinical trial setting. Finally, Sections 8 and 9 conclude the
paper with a summary of key findings and a discussion of limitations.

2. A motivation example

Belimumab, a GlaxoSmithKline-developed biologic agent, specifically targets systemic lupus
erythematosus (SLE). To assess its therapeutic efficacy in pediatric patients, an initial cohort of 124
subjects was screened, of whom 92 met the eligibility criteria and were randomized to a controlled
clinical trial. Among them, 39 patients received placebo (control group) and 53 received belimumab
at a dose of 10 mg/kg (treatment group) [13]. The primary endpoint was SLE Responder Index 4
(SRI4) response rate at Week 52, defined as ≥ 4-point reduction form baseline in SELENA-SLEDD
score. The corresponding observed response rates were 52.83% and 43.55% for treatment and control
groups, respectively. The superiority hypothesis was performed using only current control data, and
the resulting p value was 0.427.

Although PLUTO was designed and analyzed using a frequentist approach without borrowing
historical trial data, the SRI4 response rate from a historical trial from adult clinical studies of
belimumab [14] was available at the time of the PLUTO trial. We would like to see how these
historical trial data may have been used to borrow information for the control group and how it
would have impacted the superiority analysis. In this study, we consider PLUTO as a current trial
to compare the effect of 10 mg/kg of belimumab with placebo on the SRI4 response rate at Week 52
after randomization. The placebo data (control group) from adult clinical studies of belimumab [14]
are used as historical control data in the study. To increase the effective sample size and improve the
power of statistical inference, detailed data from pediatric and adult trials are summarized in Table 1.
In Section 7, we demonstrate how incorporating historical control information can meaningfully
improve the statistical efficiency of the superiority evaluation, thus enhancing the ability to detect
true differences between treatment and control.
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Table 1. Summary of response rates for historical and current trials.

Study Reference Group n Responders Response rate
Current study (PLUTO) [13] Control 39 17 43.55%

Treatment 53 28 52.83%
Historical study [14] Control 287 125 43.59%

3. Methodology

3.1. Notations

Let the ith endpoint for the current treatment group be denoted by yEi (i = 1, . . . , nE), and that
for the current control group by yCi (i = 1, . . . , nC). In addition, suppose that there exists a historical
control group with a sample size of nH, whose ith endpoint is denoted by yHi (i = 1, . . . , nH). It
is generally assumed that the historical control group and the current control group share a certain
degree of similarity in the distribution of their endpoints; this similarity is further evaluated through an
equivalence test.

All endpoints in the above groups are binary outcomes taking values of 0 or 1. The efficacy of the
treatment, current control, and historical control groups are denoted by pE, pC, and pH, respectively,
and can be estimated by their corresponding sample means ȳE, ȳC, and ȳH. If the equivalence between
the current and historical control groups cannot be established, additional samples (n′E and n′C) are
enrolled in the treatment and current control groups, respectively. After supplementation, the total
sample sizes for the treatment and control groups become NE = nE+n′E and NC = nC+n′C, respectively.
The updated mean estimates of the treatment effects based on the expanded samples are then denoted
by ȳ′E and ȳ′C.

3.2. Two-stage Fill-it-up design

The implementation of the proposed two-stage Fill-it-up design consists of two sequential stages.
Stage I begins with a small randomized controlled trial, where the initial sample size is determined
under the assumption that historical control data will be eligible for inclusion in the final analysis. The
equivalence between the current and historical control groups is formally evaluated at this stage. If
equivalence is not established—indicating a statistically significant difference between the two control
groups—the design proceeds to Stage II, during which randomization continues and additional subjects
are enrolled until the pre-specified statistical power for the clinical trial is achieved.

This design framework incorporates three key hypothesis tests. The first test assesses the
equivalence between the current control and historical control groups. If equivalence pre-test (Ept) is
confirmed, the two datasets are pooled and a subsequent superiority test (S 1) is conducted between the
treatment group and the combined control group. In contrast, if equivalence is rejected, the historical
control data are excluded, and Stage II enrollment is triggered. In this stage, an additional n′E + n′C
participants are randomized equally between the treatment and control arms. The data pooled from
both stages are then used to perform the final superiority test (S 2) comparing the treatment and current
control groups. A schematic overview of the two-stage Fill-it-up design and its implementation process
is presented in Figure 1.
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Data

H:Historical 𝑦𝐻𝑖~𝑏 𝑛𝐻, 𝑝𝐻
1 ≤ 𝑖 ≤ 𝑛𝐻

E1:Experimental 𝑦𝐸𝑖~𝑏 𝑛𝐸 , 𝑝𝐸
1 ≤ 𝑖 ≤ 𝑛𝐸

C1:Control 𝑦𝐶𝑖~𝑏 𝑛𝐶 , 𝑝𝐶
1 ≤ 𝑖 ≤ 𝑛𝐶

E2:Experimental 𝑦𝐸𝑖~𝑏 𝑛𝐸
′ , 𝑝𝐸

𝑛𝐸 < 𝑖 ≤ 𝑁𝐸

C2:Control 𝑦𝐶𝑖~𝑏 𝑛𝐶
′ , 𝑝𝐶

𝑛𝐶 < 𝑖 ≤ 𝑁𝐶

Procedure

𝐸𝑝𝑡(H vs C1)

𝑆1(E1 vs C1+H)

Collect E2,C2

Pool E1 and E2

Pool C1 and C2 

𝑍𝐸𝑝𝑡 < −𝑧𝛼𝐸𝑝𝑡
Necessary

Depend on 

𝐸𝑝𝑡

𝑍𝐸𝑝𝑡 ≥ −𝑧𝛼𝐸𝑝𝑡

Pool C1 and H

𝑆2(E1+E2 vs C1+C2)

Figure 1. Flow chart of the procedure of the two-stage Fill-it-up design.

3.3. Equivalence test

We first introduce the initial hypothesis test among the three—the pre-specified equivalence test
between the current control group and the historical control group. To proceed, several key parameters
are defined. Let∆ denote the pre-specified equivalence margin (∆ > 0), whose magnitude is determined
based on clinical considerations and relevant prior studies. Let αEpt represent the significance level for
this pre-test, and zαEpt denote the corresponding 100(1 − αEpt)% percentile of the standard normal
distribution. Without loss of generality, assume that a higher value of pi indicates greater efficacy of
treatment i (i = E,C,H). The equivalence pre-test is therefore formulated as follows:

HEpt
0 : |pC − pH | ≥ ∆ versus HEpt

1 : |pC − pH | < ∆. (3.1)

The equivalence hypothesis (3.1) is equivalent to the following two one-sided hypotheses:

HEpt
01 :pC − pH ≤ −∆ versus HEpt

11 : pC − pH > −∆, (3.2)

HEpt
02 :pC − pH ≥ ∆ versus HEpt

12 : pC − pH < ∆. (3.3)

Schuirmann [15] has demonstrated that a αEpt level test of hypothesis (3.1) has the same decision
rule as two αEpt level tests of hypotheses (3.2) and (3.3). In fact, the equivalence pre-test (3.1) is
an intersection-union test. An interesting feature of intersection-union tests is that no multiplicity
adjustment is necessary to control the size of a test, but individual hypotheses cannot be tested at levels
higher than the nominal significance level [16].

To assess hypotheses (3.2) and (3.3), the Wald-type test statistics are defined as:

ZEpt,1 =
ȳC − ȳH + ∆√
V̂ar(ȳC − ȳH)

and ZEpt,2 =
ȳC − ȳH − ∆√
V̂ar(ȳC − ȳH)

,

where
V̂ar(ȳC − ȳH) =

ȳC(1 − ȳC)
nC

+
ȳH(1 − ȳH)

nH
.
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The null hypothesis HEpt
01 is rejected if ZEpt,1 > zαEpt , and HEpt

02 is rejected if ZEpt,2 < −zαEpt . The null
hypothesis for the equivalence test HEpt

0 is rejected if and only if both HEpt
01 and HEpt

02 are rejected. In
particular, the conditions ZEpt,1 > zαEpt and ZEpt,2 < −zαEpt are equivalent to:

ZEpt =
|ȳC − ȳH | − ∆√

V̂ar(ȳC − ȳH)
< −zαEpt . (3.4)

3.4. Superiority test with historical controls

The second hypothesis test is performed only if the preceding equivalence pre-test confirms
equivalence between the current control group and the historical control group. This test evaluates
the superiority of the treatment group compared to the pooled control group. The treatment group
includes nE subjects, consistent with the sample size of the first-stage randomized trial. The pooled
control group consists of the current control group (nC) and the historical control group (nH), resulting
in a combined sample size of nC + nH. The corresponding superiority hypothesis test (S 1) can be
formulated as follows:

HS 1
0 : pE − [ωpH + (1 − ω)pC] = 0 versus HS 1

1 : pE − [ωpH + (1 − ω)pC] > 0.

Here, ω denotes the weighting coefficient assigned to historical data in estimating the efficacy
of the pooled control group, reflecting the relative contribution of historical information to the
current analysis. The value of ω = nH

nH+nC
should be calibrated according to the reliability and

relevance of historical data. In practice, it is often defined as a proportional weight based on sample
sizes—specifically, the ratio of the sample size of the historical control to the total sample size of the
pooled control group. This weighting scheme provides a pragmatic balance between representativeness
and precision by allowing larger datasets to exert a proportionally greater influence. The corresponding
test statistic for assessing superiority is given by:

ZS 1 =
ȳE −

( nH
nH+nC

· ȳH +
nC

nH+nC
· ȳC
)√

ȳE(1−ȳE)
nE
+

nH ȳH(1−ȳH)+nC ȳC(1−ȳC)
(nH+nC)2

.

3.5. Superiority test without historical controls

Finally, the third test is conducted only when the previously described equivalence pre-test fails to
establish equivalence between the current and historical control groups. In this case, a superiority test
is performed to compare the supplemented treatment group with the supplemented control group. Let
the additional sample sizes for the treatment and control groups be denoted by n′E and n′C, respectively.
After supplementation, the total sample sizes for the treatment and control groups become NE = nE+n′E
and NC = nC +n′C, respectively. Both groups include only data obtained from the ongoing clinical trial,
without the incorporation of historical information. The corresponding superiority hypothesis test (S 2)
is formulated as follows:

HS 2
0 : pE − pC = 0 versus HS 2

1 : pE − pC > 0.
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The corresponding test statistic is given by:

ZS 2 =
ȳ′E − ȳ′C√

ȳ′E(1−ȳ′E)
nE+n′E

+
ȳ′C(1−ȳ′C)

nC+n′C

.

Let ψEpt, ψS 1 , and ψS 2 denote the decision functions corresponding to the three hypothesis tests
described above. Thus, we have

ψEpt =

1 if ZEpt < −zαEpt

0 if ZEpt ≥ −zαEpt

, ψS 1 =

1 if ZS 1 > zαS 1

0 if ZS 1 ≤ zαS 1

, ψS 2 =

1 if ZS 2 > zαS 2

0 if ZS 2 ≤ zαS 2

.

For each test, a decision function value of 1 indicates rejection of the null hypothesis, whereas a value
of 0 indicates failure to reject the null hypothesis. With respect to the aforementioned hypotheses, there
are four possible testing results, which are the following:

Case A: Reject both HEpt
0 and HS 1

0 . Case B: Reject HEpt
0 and accept HS 1

0 .

Case C: Accept both HEpt
0 and HS 2

0 . Case D: Accept HEpt
0 and reject HS 2

0 .

Consequently, the overall decision function for the proposed two-stage Fill-it-up design (TSD) can be
defined as follows:

ψTS D = max
{
ψEpt · ψS 1 , (1 − ψEpt) · ψS 2

}
=

1 if {ZEpt < −zαEpt ,ZS 1 > zαS 1
} or {ZEpt ≥ −zαEpt ,ZS 2 > zαS 2

},

0 otherwise.

The value of the overall decision function of 1 indicates that both null hypotheses HEpt
0 and HS 1

0 are
rejected (Case A), or the null hypothesis HEpt

0 is accepted but the null hypothesis HS 2
0 is rejected

(Case D). In particular, the choice of significance levels αS 1 , αS 2 , and αEpt will be explained in the
following section.

4. Key issues in two-stage Fill-it-up designs

4.1. Sample size determination

In terms of determining the sample size, a key question is how to establish the fraction γ of patients
assigned in the first step. We first revisit the relationship among sample sizes in the two stages, denoted
NE = nE + n′E,NC = nC + n′C, and γNE = nE, γNC = nC. According to the sample size determination
framework proposed by Chow et al. [17], the following equality can be derived for the sample size
required in test S 1:

1
δ2

(
zαS 1
+ zβS 1

)2
=

nE(nH + nC)
(nH + nC)pE(1 − pE) + nE[ωpH(1 − pH) + (1 − ω)pC(1 − pC)]

=
γNE(nH + γNC)

(nH + γNC)pE(1 − pE) + γNE[ωpH(1 − pH) + (1 − ω)pC(1 − pC)]

≥
4γNE(nH + γNC)

(nH + γNC) + γNE
, (as pi(1 − pi) ≤

1
4
, i = E,H,C).

(4.1)
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Here, δ > 0 represents the treatment effect of the experimental group relative to the control group. The
same rationale applies to the test S 2:

1
δ2

(
zαS 2
+ zβS 2

)2
=

NENC

NC pE(1 − pE) + NE pC(1 − pC)
≥

4NENC

NC + NE
(as pi(1 − pi) ≤

1
4
, i = E,C). (4.2)

Since the true values of pE, pC are unknown in real clinical trials, we therefore consider a conservative
approach to determine the sample size, i.e.,

1
δ2

(
zαS 2
+ zβS 2

)2
=

4NENC

NC + NE
. (4.3)

By combining (4.1) and (4.3), we have

NE + NC

NCNE
·
γNE(nH + γNC)

(nH + γNC) + γNE
≤

(zαS 1
+ zβS 1

zαS 2
+ zβS 2

)2
.

Thus, a quadratic inequality in γ with the solutions:

1
2

(
−

nH

NC
+

(zαS 1
+ zβS 1

zαS 2
+ zβS 2

)2
−

√( nH

NC
−

( zαS 1
+ zβS 1

z1−αS 2
+ zβS 2

)2)2
+

4nH

NE + NC
·

(zαS 1
+ zβS 1

zαS 2
+ zβS 2

)2)
≤ γ ≤

1
2

(
−

nH

NC
+

(zαS 1
+ zβS 1

zαS 2
+ zβS 2

)2
+

√( nH

NC
−

(zαS 1
+ zβS 1

zαS 2
+ zβS 2

)2)2
+

4nH

NE + NC
·

(zαS 1
+ zβS 1

zαS 2
+ zβS 2

)2)
. (4.4)

In practical applications, it is reasonable to assume that the Type I and Type II error rates for the two
tests are the same, i.e., αS 1 = αS 2 , βS 1 = βS 2 . Hence,

zαS 1
+ zβS 1

zαS 2
+ zβS 2

= 1.

In this study, we focus mainly on considering the simple balanced design, that is, NE = NC = N.
Consequently, (4.4) reduces to

1
2N

(
N − nH −

√
N2 + n2

H

)
≤ γ ≤

1
2N

(
N − nH +

√
N2 + n2

H

)
.

It should be noted that 1
2N

(
N − nH −

√
N2 + n2

H
)
< 0. However, γ is the positive number and decreases

with increasing nH with a maximum value of γ = 1 in the case where nH is zero. Therefore, the choices
of γ are suggested in the following formula:

γ =
1

2N

(
N − nH +

√
N2 + n2

H

)
.

Here, this formula is exactly the same as in Wied et al. [12]. In addition, γ ≥ 1/2 since N2 + n2
H ≥ n2

H.
This means that at least half of the total sample size is necessary in the randomized trial of the first
step.
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4.2. Relationship between equivalence testing and superiority testing

The equivalence margin, denoted as ∆, serves as the pivotal parameter throughout the two-stage
testing procedure. Its specification directly determines the outcome of the equivalence pre-test and,
consequently, affects both the data integration process and the reliability of the subsequent statistical
inference in the superiority assessment. In the equivalence pre-test, rejection of the null hypothesis
H0 is a necessary condition for merging the historical control group with the concurrent control group.
Once equivalence is established, the superiority test S 1 is conducted based on the combined control
group. The weighted efficacy of treatment compared to the pooled control group can be expressed as:

t = pE − (ω · pH + (1 − ω) · pC) = pE − pC + ω(pC − pH) = δ + ω(pC − pH),

where δ = pE − pC denotes the treatment effect, with δ > 0 assumed for simplicity.
Based on the true efficacy difference between the historical control group and the current control

group, two distinct scenarios can be delineated, each necessitating appropriate control of statistical
inference risk.

Scenario 1: The efficacy of the historical control group exceeds that of the current control group
(pH > pC).

When pH > pC, the weighted efficacy ω · pH + (1 − ω) · pC of the pooled control group becomes
greater than the true efficacy pC of the current control. This inflation of the pooled efficacy estimate,
resulting from the inclusion of superior historical data, leads to an underestimation of the true treatment
effect. Consequently, the apparent difference between the treatment and the pooled control groups
is attenuated, potentially obscuring a genuine treatment benefit. Such bias increases the likelihood
of false-negative conclusions in the subsequent superiority test—that is, misclassifying an effective
treatment as non-effective.

In this context, specifying a smaller equivalence margin (∆) imposes a more conservative
equivalence criterion, thereby reducing the probability of erroneously merging non-equivalent data
(where pH > pC) as equivalent. This adjustment helps mitigate the risk of false-negative outcomes and
improves the robustness of the overall inferential procedure.

Scenario 2: The efficacy of the historical control group is inferior to that of the current control
group (pH < pC).

When pH < pC, the weighted efficacy ω · pH+(1−ω) · pC of the pooled control group becomes lower
than the true efficacy pC of the current control group, as the inclusion of less effective historical data
depresses the overall efficacy estimate. This pooled efficacy underestimation artificially enlarges the
apparent treatment effect, potentially leading to false-positive conclusions in the subsequent superiority
test—that is, classifying a non-superior treatment as superior. Such erroneous inferences can misguide
clinical decision-making by promoting ineffective therapies and, in many contexts, pose greater ethical
and practical risks than false negatives. To mitigate this risk, a more stringent equivalence criterion
should be imposed to prevent the inclusion of non-equivalent historical data (i.e., cases where pH < pC)
in the pooled analysis.

In summary, regardless of whether the historical control group demonstrates higher or lower efficacy
than the current control group, adopting a narrower equivalence margin serves as a safeguard against
inferential bias in the superiority test. The equivalence margin, however, cannot be too small as it might
result in a lack of power for Ept. This balance between sample size efficiency and inferential reliability
represents a fundamental consideration in the design and implementation of two-stage hybrid trials.
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4.3. Determining the range for the equivalence margin

The equivalence margin (∆) is a key design parameter that governs the decision to pool historical
and current control data. In practical applications, ∆ is typically determined based on clinical
judgment regarding the maximum acceptable difference between the historical and concurrent control
response rates that can be regarded as clinically negligible. Historical evidence—such as meta-analytic
summaries of previous control arms—can also inform the expected range of natural variability, thereby
guiding the choice of a plausible and defensible margin. Statistically, the value of ∆ directly influences
both Type I and Type II error rates in the two-stage Fill-it-up design. A larger ∆ increases the likelihood
of declaring equivalence, which enhances sample size efficiency but may inflate the Type I error rate
if heterogeneous historical data are inadvertently incorporated. In contrast, a smaller ∆ enforces a
more conservative equivalence criterion, reducing the risk of false-positive equivalence declarations
but decreasing the probability of pooling and therefore increasing the required sample size and the risk
of Type II errors.

To ensure statistical robustness of the two-stage testing procedure, the equivalence margin (∆) must
simultaneously satisfy both the upper-bound constraint and the lower-bound constraint. The derivation
and underlying rationale are described as follows.

The upper bound of the equivalence margin (∆) is determined by the expected true treatment effect
between the experimental and control groups. Specifically, ∆ must satisfy ∆ < δ, where δ denotes the
theoretical upper limit of the treatment effect. This condition ensures that the equivalence threshold
does not exceed the plausible treatment difference, thereby preventing overly permissive equivalence
declarations.

A lower bound for the margin of equivalence can also be established by examining the test statistic
ZEpt:

∆ ≥

√
ȳH(1 − ȳH)

nH
+

ȳC(1 − ȳC)
nC

· zαEpt .

The failure of this inequality implies that the null hypothesis of equivalence can never be rejected,
regardless of the sample size, thus rendering the equivalence test infeasible. In particular, the following
condition must hold: √

ȳH(1 − ȳH)
nH

+
ȳC(1 − ȳC)

nC
≤

1
2

√
1

nH
+

1
nC
.

Combining these two constraints yields the final feasible range of the equivalence margin, i.e.,

1
2

√
1

nH
+

1
nC
· zαEpt ≤ ∆ < δ.

This range ensures both the practical interpretability and statistical validity of the equivalence testing,
maintaining an appropriate balance between sensitivity to true similarities and protection against false
equivalence.

4.4. Family-wise error rate and power function

In statistical inference for two-stage Fill-it-up designs, strict control of the family-wise error rate
(FWER), is essential to ensure that it does not exceed the pre-specified significance level (α), typically
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set at 0.05 as defined in the clinical trial protocol. Formally, the FWER must satisfy the following
requirements:

FWER = E(ψTS D) = E
(
ψEpt · ψS 1

)︸          ︷︷          ︸
:=αEpt,S 1

+ E
((

1 − ψEpt

)
· ψS 2

)︸                  ︷︷                  ︸
:=αEpt,S 2

≤ α. (4.5)

Within this two-stage framework, hypothesis testing proceeds conditionally. If the null hypothesis of
equivalence is rejected (ψEpt = 1), a superiority test (S 1) is performed to compare the treatment group
and the pooled control group. In this case, the expected rejection probability corresponds to the joint
event ψEpt · ψS 1 . In contrast, if equivalence cannot be established (ψEpt = 0), the procedure advances
to a superiority test (S 2) comparing the augmented treatment and control groups, with the expected
rejection probability represented by (1 − ψEpt) · ψS 2 . The formulas for the calculations of αEpt,S 1 and
αEpt,S 2 can be found in Appendix A.

Next, we evaluate the statistical power of the two-stage Fill-it-up design. To quantify the power, the
true difference δ in efficacy between the experimental treatment and the concurrent control group is first
specified. Under the conditional triggering mechanism of the two-stage Fill-it-up design—where the
outcome of the equivalence pre-test determines which subsequent superiority test is conducted—the
overall power of the design can be expressed as follows:

1 − βTS D = 1 − (βEpt,S 1 + βEpt,S 2).

Here, βEpt,S 1 denotes the Type II error associated with the superiority test S 1, which compares the
treatment group against the pooled control group when equivalence is confirmed in the pre-test.
Conversely, βEpt,S 1 represents the Type II error that occurs when the equivalence pre-test fails to
establish equivalence and the subsequent superiority test S 2 (comparing the supplemented treatment
and supplemented control groups) fails to detect the true treatment difference. The formulas for the
calculations of βEpt,S 1 and βEpt,S 2 can be found in Appendix B.

Assume δ = 0.1, nH = 500, and ∆ = 0.085. Here, we consider two representative scenarios in
which the true efficacy of the current control group was fixed at pC = 0.9 and pC = 0.5, respectively.
The FWER results differ substantially between the scenarios pC = 0.9 and pC = 0.5 due to changes in
the underlying variance of the control-group outcome. In terms of real-world interpretation, the case
pC = 0.5 generally corresponds to moderate control success rates typical in symptomatic or partially
effective treatments, whereas pC = 0.9 represents near-perfect control performance, which is more
common in prophylactic treatments or highly effective standard-of-care settings.

The FWER of the two-stage Fill-it-up design was first evaluated under varying pre-specified
equivalence significance levels (αEpt). FWER depends on the difference in efficacy between the
historical and current control groups pH − pC, denoted as difference (Ept) and on the weighted efficacy
of the pooled control group (denoted as difference(S 1)). The corresponding results are illustrated in
Figure 2 (for pC = 0.9) and Figure 3 (for pC = 0.5). As shown in Figures 2 and 3, the maximum
FWER consistently remains below 5%, aligning well with the pre-specified overall significance level
of α = 0.05. This finding confirms that the proposed two-stage Fill-it-up design provides robust control
of the FWER, thereby meeting the fundamental inferential requirement of clinical trials, namely the
avoidance of false-positive efficacy conclusions.

Furthermore, with all other parameters remaining constant, a smaller αEpt is associated with a lower
FWER. The rationale is that a more stringent equivalence criterion (smaller αEpt) restricts the likelihood
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of the equivalence pre-test incorrectly classifying non-equivalent historical and current control data as
equivalent, thereby preventing their inappropriate inclusion in the pooled analysis. This reduces bias-
induced inflation of the Type I error rate of the superiority test and, consequently, lowers the overall
FWER.

Set nH = 500, αEpt = αS 1 = αS 2 = 0.05 and βS 1 = βS 2 = 0.20. Figure 4 illustrates the statistical
power of the two-stage Fill-it-up design under various parameter configurations. As shown in Figure 4,
when the true difference in treatment effect (δ) and the equivalence margin (∆) are appropriately
specified, the test power achieved remains consistently above 80%, meeting the standard “80% power”
commonly adopted in the design of clinical trial.

Furthermore, with other parameters held constant, when the true treatment difference (δ) between
the experimental and current control groups is relatively small, both a smaller equivalence margin (∆)
and a more stringent equivalence pre-test significance level (αEpt) are required to maintain adequate
statistical power. This finding underscores the inherent trade-off between equivalence stringency and
power efficiency in two-stage design optimization.
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Figure 2. Family-wise error rate testing simultaneously superiority test (S 1) and (S 2) for
different scenarios of the Fill-it-up design depending on the choice of the significance level of
the equivalence pre-test. An effect size δ = 0.1 with pC = 0.9, nH = 500, and an equivalence
margin of ∆ = 0.085 is examined.
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Figure 3. Family-wise error rate testing simultaneously superiority test (S 1) and (S 2) for
different scenarios of the Fill-it-up design depending on the choice of the significance level of
the equivalence pre-test. An effect size δ = 0.1 with pC = 0.5, nH = 500, and an equivalence
margin of ∆ = 0.085 is examined.
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Figure 4. Power functions for different two-stage Fill-it-up design scenarios, depending on
the choice difference of pH, δ, and equivalence margin ∆. Left: Settings are pC = 0.9, nH =

500, αEpt = αS 1 = αS 2 = 0.05, βS 1 = βS 2 = 0.2. Right: Settings are pC = 0.5, nH =

500, αEpt = αS 1 = αS 2 = 0.05, βS 1 = βS 2 = 0.2.
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5. Numerical simulation

The preceding sections addressed the overall Type I error rate and statistical power of the proposed
two-stage Fill-it-up design. This section focuses on the determination of the required sample size and
the evaluation of its performance through numerical simulations. Here, NTotal denotes the total sample
size required when the pre-specified equivalence test fails to reject the null hypothesis—comprising
both the initial Stage I sample and the supplemental Stage II sample. In contrast, γNTotal represents
the total sample size required when the equivalence test rejects the null hypothesis, thus requiring only
the Stage I sample without additional recruitment. To quantify sample size requirements and assess
potential efficiency gains in different scenarios, Monte Carlo simulations were conducted. The average
sample number, ASN, is given by

ASN = γNTotal + (1 − αEpt)(NTotal − γNTotal).

The simulated ASN (ÂSN) was estimated based on 100, 000 replications.
The core parameters used for the initial sample size calculation of the two-stage Fill-it-up design are

first specified. Table 2 summarizes these parameters, including the sample size of the historical control
group (nH), the difference in the true treatment effect between the experimental and current control
groups (δ), the pre-specified significance level for the pre-test of equivalence (αEpt), the two-sided
Type I error rate for the superiority test, and the equivalence margin (∆).

Table 2. Choice of parameters for two-stage Fill-it-up design in simulation study.

Parameter Parameter description Value
nH Sample size of historical control group H 500
δ Effect size 0.1
βS 1 = βS 2 Type II error rate of (S 1) and (S 2) 0.15
αS 1 = αS 2 Significance Level of (S 1) and (S 2) 0.05
αEpt Significance Level of (Ept) {0.025,0.05,0.1,0.2}
∆ Equivalence Margin 0.085

Table 3 presents the corresponding sample size determinations and simulation results. As shown
in Table 3, confirming the equivalence between the current and historical control groups leads to
a substantial reduction in the overall sample size. For example, when the level of significance
equivalence pre-test αEpt is set to 0.05, the total sample size decreases from NTotal = 706 to
γNTotal = 466, representing a reduction of 240 subjects. Compared to the conventional single-step
design that uses only the (S 2) test only with power 1 − βS 2 = 0.8 and significance level αS 2 = 0.05, the
required sample size would be 606 based on a straightforward calculation, still producing a reduction
of approximately 140 subjects. However, if the equivalence pre-test fails to reject the null hypothesis,
an additional 100 subjects would be required compared with conducting the test (S 2) alone.

The results presented in Table 3 further indicate that, with all other parameters kept constant,
increasing the pre-specified equivalence significance level (αEpt) can markedly reduce the ÂSN
required by the design. For example, when pH = 0.5 and pC = 0.5, the ÂSN decreases from 672
at αEpt = 0.025 to 513 at αEpt = 0.20, corresponding to a 23.7% reduction in the sample size.
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Nevertheless, caution is warranted in practice: Setting an overly large αEpt should be avoided, as a too-
permissive equivalence criterion can lead to biased estimation of the treatment effect within the mixed
control population, thus inflating the risk of Type I or Type II errors in the subsequent superiority test.

Table 3. Sample size determination and simulation results.

αEpt pH pC NTotal γNTotal ÂSN
0.025 0.50 0.50 706 466 672
0.05 0.50 0.50 706 466 616
0.10 0.50 0.50 706 466 560
0.20 0.50 0.50 706 466 513
0.025 0.45 0.50 706 466 690
0.05 0.45 0.50 706 466 662
0.10 0.45 0.50 706 466 628
0.20 0.45 0.50 706 466 584
0.025 0.80 0.80 360 212 356
0.05 0.80 0.80 360 212 320
0.10 0.80 0.80 360 212 283
0.20 0.80 0.80 360 212 250
0.025 0.75 0.80 360 212 360
0.05 0.75 0.80 360 212 347
0.10 0.75 0.80 360 212 322
0.20 0.75 0.80 360 212 292

Furthermore, the true difference in efficacy between the historical and current control groups
(pC − pH) exerts a substantial influence on ASN. Across all levels of αEpt, the ÂSN decreases as
the consistency between the two control groups improves (e.g., when pH increases from 0.45 to 0.50,
in accordance with pC = 0.50). The closer the observed consistency approaches the equivalence
threshold, the higher the probability of rejecting the null hypothesis in the pre-test, enabling
the integration of historical control data and thus avoiding second-stage sample supplementation.
Consequently, a smaller efficacy discrepancy leads to greater sample size efficiency. In contrast, when
pC − pH is large, establishing equivalence becomes more difficult, increasing the likelihood of entering
the second stage of the design and resulting in a larger ÂSN. This finding reinforces that the degree of
concordance between historical and current control data is the key determinant of sample size savings
in the two-stage Fill-it-up design—the smaller the discrepancy, the more pronounced the efficiency
gain.

6. Comparison with Bayesian approach

As noted earlier, numerous Bayesian approaches for incorporating historical control data have been
extensively studied. To compare our two-stage Fill-it-up design (TSD) with established methods, we
consider the meta-analytic predictive (MAP) prior approach [18]. In particular, the robust MAP prior
has been shown to provide desirable operating characteristics, making it an appropriate comparator
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for evaluating family-wise error rate and power. For consistency with previous assessments of the
Fill-it-up design, we implement the MAP approach using the RBesT package in R [19].

In this section, we conduct simulation studies to compare the performance of the TSD method
with that of the robust MAP prior in terms of FWER and power. Here, we fixed the sample sizes
at nE = nC = 100, nH = 400, and αEpt = αS 1 = αS 2 = 0.05. The simulation mainly examines
how different treatment effects (pE − pC) influence operating characteristics in the scenario pC = pH.
Tables 4 and 5 report the results for power and FWER, respectively. Here, the simulated results are
based on 10,000 replications. The simulation results presented in Table 4 indicate that our approach
generally outperforms the MAP method. For example, in Case 1, the power achieved by the TSD
approach is approximately 33% higher than that of the MAP approach. With respect to FWER control,
the two approaches show comparable performance, with no substantial differences observed.

Table 4. Simulation power for MAP and TSD approaches.

Power
pE pC pH MAP TSD
0.60 0.50 0.50 0.445 0.592
0.65 0.50 0.50 0.774 0.879
0.70 0.50 0.50 0.957 0.985
0.90 0.80 0.80 0.688 0.862
0.95 0.80 0.80 0.979 0.998
0.975 0.80 0.80 0.998 1.000

Table 5. Simulation FWER for MAP and TSD approaches.

FWER
pE pC pH MAP TSD
0.20 0.20 0.20 0.053 0.040
0.30 0.30 0.30 0.041 0.047
0.40 0.40 0.40 0.049 0.048
0.50 0.50 0.50 0.043 0.048
0.60 0.60 0.60 0.038 0.055
0.70 0.70 0.70 0.043 0.053

7. Application

This section demonstrates the advantage of the proposed two-stage Fill-it-up design in practice.
The two clinical trials discussed in Section 2 are revisited. The data obtained in the two studies (see
Table 1) are used to provide an estimate.

Here, we illustrate the practical implementation of the proposed two-stage Fill-it-up design using
the two real-world examples. In the first stage, an equivalence pilot analysis was conducted with a
pre-specified significance level of αEpt = 0.20 and an equivalence margin of ∆ = 0.085. The null
hypothesis of non-equivalence was rejected (p value = 0.159), indicating that the historical and current
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control groups could be considered comparable. Consequently, the two control datasets were pooled
for the subsequent superiority assessment. In the second stage, a superiority analysis based on the
combined control data yielded a p value of 0.105. As reported in Section 2, using only the current
control group produced a p value of 0.427. These findings suggest that the integration of historical
control information can substantially improve the statistical efficiency of the superiority evaluation,
thus enhancing the ability to detect true differences between treatment and control and to demonstrate
superiority.

8. Conclusions

In this paper, we propose a two-stage “Fill-it-up” design for clinical trials with binary endpoints to
enable the rigorous integration of historical control data under controlled statistical risk. This adaptive
framework enables sample size optimization when historical data are suitable for integration while
minimizing the risk of bias arising from heterogeneous data pooling. The simulation results further
confirm that, under equivalence conditions, data integration substantially reduces the average sample
size. Nevertheless, the maximum required sample size under the two-stage design (corresponding to
scenarios where equivalence is not achieved) may exceed that of a conventional single-stage design
without historical information. In addition, greater heterogeneity between the historical and current
controls increases overall sample requirements. Thus, in practical implementation, ensuring strong
comparability between datasets remains essential, as excessive heterogeneity diminishes the efficiency
gains of the proposed design.

Although the present study focuses on binary endpoints, the conceptual structure of the two-stage
Fill-it-up design can be extended to more complex outcome types such as mixed endpoints (e.g.,
binary–continuous composites) or longitudinal repeated-measures data [20]. Recent methodological
developments also provide mathematical tools that complement the ideas underlying the proposed
two-stage design [21].

In many practical settings, multiple historical datasets are available, differing in quality, relevance,
and sample size. Integrating such heterogeneous data introduces several challenges. Differences
in study design, endpoints, or patient characteristics may lead to non-exchangeability, rendering
naive pooling inappropriate. Small or lower-quality datasets can also exert undue influence if not
properly weighted. Extending the equivalence pre-test to multiple datasets requires sequential or
global multivariate testing, which increases inferential complexity. Potential solutions include data-
driven weighting schemes, sequential or simultaneous equivalence tests to identify suitable datasets
for borrowing, and robust estimators to limit the impact of poorly aligned sources. Developing a
comprehensive multi-source extension of the two-stage Fill-it-up design is an important direction for
future work and may substantially expand its applicability in real-world clinical research.

The proposed two-stage Fill-it-up design relies on normal-approximation–based Wald statistics for
both the equivalence pre-test and the subsequent superiority tests. Although these approximations
perform well in moderate to large samples, their accuracy may degrade in small-population settings or
when the underlying event probabilities are extreme. In such cases, the equivalence test may become
conservative due to inflated standard errors, thereby reducing the probability of pooling historical
controls and consequently lowering the power of the final superiority test. Conversely, when event
probabilities are near 0 or 1, the normal approximation may understate variability, potentially making
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the equivalence test slightly liberal. These effects highlight the importance of evaluating the operating
characteristics of the TSD through simulation when the sample size is limited.

Possible remedies to improve finite-sample performance include using Fisher’s exact test or exact
unconditional tests for the equivalence stage, or applying bootstrap-based calibrations to test statistics.
Although exploring these alternatives is beyond the scope of the present study, they represent promising
extensions for future work and may further enhance the applicability of TSD in small-population
clinical trials.

The heterogeneity between historical and current control data can substantially affect Type I error
and the power of the two-stage Fill-it-up design. Its impact can be assessed through several approaches:
The equivalence pre-test provides a formal comparability check; simulation-based sensitivity analyses
that vary response rates, dispersion, or sample sizes offer empirical evaluation of robustness. To
mitigate heterogeneity-induced Type I error inflation or power loss, several strategies may be used.
These include conservative specification of the equivalence margin ∆, adjustment of the equivalence-
test significance level αEpt. Integrating screening, sensitivity analysis, and robust estimation allows
the design to control Type I error while retaining efficiency when historical data are adequately
comparable.
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Appendix A: Calculation of FWER

The first component of the FWER, αEpt,S 1 , represents the probability of rejecting both the
equivalence test (Ept) and the superiority test (S 1). The second component, αEpt,S 2 , represents the
probability of accepting the equivalence test (Ept) and rejecting the superiority test (S 2). Thus, αEpt,S 1

and αEpt,S 2 , can be expressed as follows:

αEpt,S 1 =

∫ ∞

zαS 1

∫ −zαEpt

−∞

f1(x, y)dxdy +
∫ ∞

zαS 1

∫ ∞

zαEpt

f1(x, y)dxdy, (8.1)

αEpt,S 2 =

∫ ∞

zαS 2

∫ zαEpt

−zαEpt

f2(x, y)dxdy, (8.2)

where f1(x, y) and f2(x, y) denote the joint probability density functions of the bivariate normal
distributions with mean vectors µ1,µ2 and covariance matrices Σ1,Σ2, respectively. Here,

µ1 =

(
|pC − pH | − ∆√

pC(1−pC)
nC

+
pH(1−pH)

nH

,
pE − (w · pH + (1 − w) · pC)√

pE(1−pE)
nE

+
w2 pH(1−pH)

nH
+

(1−w)2 pC(1−pC)
nC

)T
,
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µ2 =

(
|pC − pH | − ∆√

pC(1−pC)
nC

+
pH(1−pH)

nH

,
pE − pC√

pE(1−pE)
nE+n′E

+
pC(1−pC)

nC+n′C

)T
,

and

Σ1 =

[
1 Cov(ZS 1 ,ZEpt)

Cov(ZS 1 ,ZEpt) 1

]
,Σ2 =

[
1 Cov(ZS 2 ,ZEpt)

Cov(ZS 2 ,ZEpt) 1

]
,

where

Cov(ZS 1 ,ZEpt) = C1 ·C2 ·

(
− w ·

pH(1 − pH)
nH

+ (1 − w)
pC(1 − pC)

nC

)
,

Cov(ZS 2 ,ZEpt) = C2 ·C3 ·
pC(1 − pC)

nC + n′C
,

and

C1 =
1√

pE(1−pE)
nE

+
w2 pH(1−pH)

nH
+

(1−w)2 pC(1−pC)
nC

,C2 =
1√

pC(1−pC)
nC

+
pH(1−pH)

nH

,C3 =
1√

pE(1−pE)
nE+n′E

+
pC(1−pC)

nC+n′C

.

Appendix B: Calculation of power

The corresponding expressions for βEpt,S 1 and βEpt,S 2 are given as follows:

βEpt,S 1 =

∫ zαS 1

−∞

∫ −zαEpt

−∞

f1(x, y)dxdy +
∫ zαS 1

−∞

∫ ∞

zαEpt

f1(x, y)dxdy, (8.3)

βEpt,S 2 =

∫ zαS 2

−∞

∫ zαEpt

−zαEpt

f2(x, y)dxdy. (8.4)

All computations presented in Eqs (8.1)–(8.4) were conducted using statistical software R. The
mvtnorm package in R was particularly utilized to evaluate multivariate normal probabilities. Next,
we provide a step-by-step algorithm describing how the mvtnorm package in R was used to compute
βEpt,S 2 .

Step 0. Input: (i) mean: 2-dimensional mean vector µ2; (ii) sigma: 2 × 2 covariance matrix Σ2; (iii)
lower: lower vectors (−Inf,−zαEpt)

T (Here, we use −Inf or Inf for unbounded limits); (iv) upper: upper
integration bounds (zαS 2

, zαEpt)
T .

Step 1. Load the mvtnorm package in R: library (mvtnorm).
Step 2. Compute the multivariate normal probability βEpt,S 2: prob = pmvnorm(lower = lower, upper

= upper, mean = mean, sigma = sigma).
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