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Abstract: In the digital era, rapid developments in interconnected Internet of Things (IoT) devices 

and the increasing integration of edge computing have significantly reshaped the current landscape, 

allowing a large number of connected systems to manage data quickly and effectively with minimal 

latency. On the other hand, cloud computing provides a flexible digital infrastructure in which data 

and resources are distributed across multiple locations, enabling users to access them from numerous 

industrial settings via the internet. However, the extensive interconnectedness of IoT networks, 

combined with the inherently limited security of many devices, creates heightened risks that can 

threaten the vital operations of hospitals, cities, and organizations. Reinforcing the security features 

of IoT devices before they are used across diverse systems can help reduce the attack surface. 

Conventional security systems often fail or are poorly suited to the dynamic and shared nature of cloud 

environments, making them insufficient for cloud-based systems. Despite ongoing use and a surge in 

complex cyberattacks, cloud platforms have tackled their inherent security challenges and 

vulnerabilities in the past three years. The rapid advancement of deep learning in artificial intelligence 

has brought numerous benefits for addressing industrial security concerns in the cloud. This 

manuscript presents an Advancing Intelligent Cybersecurity through Ensemble Deep Representation 

Learning and Feature Dimensionality Reduction (AICEDRL-FDR) technique in cloud-edge-IoT 

environments. The AICEDRL-FDR technique aims to provide a reliable framework for proactive 

threat mitigation in next-generation digital infrastructures. The AICEDRL-FDR method uses data pre-

processing stages—cleaning, normalization, and standardization—to improve dataset consistency and 

quality. The maximum relevance minimum redundancy (mRMR) technique is utilized for 
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dimensionality reduction to reduce redundant and irrelevant features. Ensemble deep representation 

methods, such as deep convolutional autoencoder (DCAE), fuzzy deep belief network (FDBN), and 

temporal convolutional network (TCN), are applied to the attack detection procedure. A broad array 

of experimental studies was conducted to ensure the AICEDRL-FDR method achieves superior 

performance on the Edge-IIoT [1] and ToN-IoT [2] datasets. The comparison analysis of the 

AICEDRL-FDR method showed superior accuracy of 99.31% and 99.24% across diverse evaluation 

measures on the dual dataset. 

Keywords: artificial intelligence; cybersecurity; internet of things; feature selection; deep learning 

Mathematics Subject Classification: 68T07, 94A60 

 

1. Introduction 

The convergence of edge computing and artificial intelligence (AI) has fundamentally changed 

how information is processed, managed, and used across most industries. Traditionally, the data was 

sent to a central server for processing [3]. Edge computing shifts data handling closer to the source, 

reducing latency and enabling instant decisions [4]. This paradigm leverages the networking 

capabilities of computer resources at the network edge, where IoT devices generate a larger volume 

of data. Such as approach is essential for achieving faster information processing and response times, 

particularly in healthcare monitoring systems, industrial systems, and autonomous vehicles [5]. Edge 

computing mitigates the problems of centralized cloud servers, decentralizes information processing, 

and optimizes network resources. AI incorporation improves the ability of IoT networks in edge 

computing environments [6]. 

The world is increasingly dependent on technology. A large amount of information is collected 

and generated through the widespread adoption of technologies such as cloud computing and IoT [7]. 

While data is utilized to improve services and meet evolving business requirements, cyber threats 

remain a key challenge. A cyber threat is generally defined as a malicious and targeted attempt by a 

person or organization to breach another optimizes information system [8]. Denial-of-service (DoS), 

phishing, ransomware, malware, Man-in-the-middle, Zero-day exploits, social engineering, SQL 

injection, and insider threats. These cybercrimes or security incidents can affect individuals and 

organizations, cause disruptions, and result in massive financial losses [9]. Cloud environments have 

become increasingly significant as AI-based applications proliferate across industries such as 

autonomous systems, finance, and healthcare. Because cloud ecosystems are inherently susceptible to 

cybersecurity threats, this dependence creates consistency issues and increased complex security [10]. 

The rapid digitalization of industries and the increasing reliance on cloud and network 

infrastructure have shaped how organizations secure, store, and share data [11]. While these technical 

developments have enabled unparalleled scalability and efficiency, they have also introduced 

significant cybersecurity vulnerabilities. Cyber-attacks are no longer limited to simple malware or 

viruses; they now include complex, rapidly evolving threats [12]. Conventional security measures are 

struggling to keep pace with changing attacks, requiring stronger, real-world defense devices. AI has 

become a crucial component of next-generation cybersecurity solutions, offering advanced 

capabilities for detecting, analyzing, and responding to attacks in real time [13]. AI-powered systems 

use machine learning (ML) techniques to recognize patterns, identify anomalies, and detect previously 
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unseen attacks. Unlike conventional approaches that rely on static, rule-driven methods, AI systems 

continuously learn from novel information, making them more effective against developing cyber-

attacks [14]. Figure 1 illustrates the architecture of cloud-edge-IoT environments. 

 

Figure 1. Architecture of cloud-edge-IoT environments. 

This study presents a model called Advancing Intelligent Cybersecurity through Ensemble Deep 

Representation Learning and Feature Dimensionality Reduction (AICEDRL-FDR) in cloud-edge-IoT 

environments. The AICEDRL-FDR method uses data pre-processing stages—cleaning, 

normalization, and standardization—to improve dataset consistency and quality. The maximum 

relevance minimum redundancy (mRMR) technique is utilized for dimensionality reduction to reduce 

redundant and irrelevant features. Ensemble deep representation methods, such as deep convolutional 

autoencoder (DCAE), fuzzy deep belief network (FDBN), and temporal convolutional network 

(TCN), are applied to the attack detection procedure. A broad array of experimental studies is 

conducted to ensure the AICEDRL-FDR method achieves superior performance on the Edge-IIoT [1] 

and ToN-IoT [2] datasets. The key contributions of the AICEDRL-FDR method are listed below. 

• The AICEDRL-FDR approach performs data pre-processing, including cleaning, normalization, 

and standardization, to enhance dataset quality and consistency. The process also improves data 

reliability and prepares it effectively for DL-based cybersecurity modelling. This process also 

contributes to more precise attack detection and overall system robustness in intelligent cybersecurity 

frameworks. 

• The mRMR method is utilized for efficient dimensionality reduction. The model also ensures that 

only the most informative features are retained. The process also mitigates redundancy and removes 

attributes from the dataset. Additionally, the model improves learning efficiency and assists in faster, 

more accurate, and more reliable cybersecurity threat detection. 

• Furthermore, an ensemble of deep representation learning models, namely DCAE, FDBN, and 

TCN, is employed to capture spatial, fuzzy, and temporal dependencies in cybersecurity data. The 

fusion model also improves the ability to learn intrinsic attack patterns and contextual relationships. 

It also contributes to achieving robust, adaptive, and highly accurate attack detection across dynamic 

cloud-edge-IoT environments. 
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• The novelty of the AICEDRL-FDR methodology lies in the ensemble of DL techniques that 

synergistically incorporate DCAE, FDBN, and TCN representations. Moreover, by integrating 

mRMR-based feature optimization, it ensures the selection of the most relevant and non-redundant 

features. This unique incorporation also enhances adaptability and intelligence in threat detection. 

Thus, an effective model is presented for dynamic and heterogeneous cloud-edge-IoT environments. 

2. Literature review on cybersecurity approaches in cloud-edge-IoT environments 

Farzaan et al. [15] introduced an innovative AI-based cyber incident response system specifically 

designed for cloud environments. In contrast with traditional techniques, the system uses innovative 

ML and AI methods to deliver scalable, precise, and seamlessly integrated results. This system has a 

significant impact on the field of AI-driven cybersecurity by demonstrating the effective integration 

of cloud infrastructure and AI techniques to address crucial gaps in cyber incident handling. Awan et 

al. [16] presented a new DL architecture, SecEdge, intended to improve the actual cybersecurity of 

mobile IoT platforms. This framework combines transformer-driven methods to effectively handle 

long-range dependencies, GNNs to model relational information, and federated learning to reduce 

latency and ensure information privacy. The customized learning mechanism continuously updates 

optimization parameters to counter evolving cyber-attacks. Alblehai [17] suggested an Intelligent 

Cybersecurity System Utilizing Self-Attention-driven DL and Metaheuristic Optimization Algorithm 

(ICSSADL-MHOA). This model is intended to enhance cybersecurity in IoT networks. At first, the 

information normalization phase uses min-max normalization to improve reliability, precision, and 

efficacy by organizing information into a consistent format. Moreover, the developed tuna swarm 

optimization (ITSO) method is applied for the FS procedure for detecting the appropriate attributes in 

the information. Dorothy et al. [13] addressed the flaws in conventional cloud attack intelligence 

systems, which are often based on static rules and signature-driven detection methods that are 

powerless to respond to evolving cyberattacks. These issues highlight the need for a more practical 

method, leading to the improvement of a new system that integrates an AI-based method. The work 

goes beyond static, rule-driven methods and proposes an AI-based approach to address deficiencies 

in current systems. Chaudhary et al. [18] introduced an innovative AI-driven method for improving 

cyber-attack detection and justification in cloud environments. By utilizing advanced anomaly 

detection and an ML approach, the proposed system continuously examines large volumes of data to 

identify and eliminate various threats dynamically. Among the main components are strong pre-

processing, training on repetitive methods, automatic response mechanisms, threat detection, and ML 

method selection. Sathupadi et al. [19] addressed these limitations by proposing an edge-cloud hybrid 

architecture that utilizes edge tools for anomaly detection and cloud servers for complete failure 

prediction. A K-Neural Network (KNN) approach is used on edge tools to detect abnormalities in real 

time, reducing the need for continuous information transmission to the cloud. While the Long Short-

Term Memory (LSTM) method in the cloud analyzes time-series data for failure prediction, it 

improves maintenance schedules and operational efficiency. Alrowais et al. [20] presented a novel 

Mayfly optimization (MFO) with a regularized extreme learning machine (RELM) technique, named 

MFO-RELM, for cybersecurity attack classification and recognition in an IoT platform. To 

accomplish this, the method pre-processes real-time IoT data into a meaningful format. Moreover, this 

technique performs classification and obtains pre-processed information. 

Bhandari et al. [21] recommended a method for discovering malware threats, utilizing AI 

techniques to address diverse and released scenarios. The novel technique enables proactive tracking 

of network traffic to detect threats and malware on IoT platforms. Furthermore, the new method makes 
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smart settings more aware and secure against potential upcoming attacks. Concurrent and performance 

testing of the Deep Neural Network (DNN) approach used in IoT devices is conducted to validate its 

applicability. Suryavanshi, Acharya, and Jadhav [22] developed a model by utilizing visual 

cryptography, Quality of Service (QoS)-aware optimization, and collaborative security frameworks. 

Aouedi and Piamrat [23] developed a scalable and energy-efficient solution for the Cloud-Edge-

Internet of Things (CEI) continuum in industrial environments. It utilizes Hierarchical Federated 

Learning (HFL) to enable collaborative model training while conserving data locality and Spiking 

Neural Networks (SNN). Ali et al. [24] improved cybersecurity in AI-driven IoT-enabled smart cities 

by using advanced ML and DL methods. Xu and Xu [25] proposed a technique by employing Deep 

Q-Network (DQN) for optimal resource allocation, Deep Belief Network-Long Short-Term Memory 

(DBN-LSTM) technique for accurate patient health prediction, and Frog Leap Optimization (FLO) to 

improve model performance. Zang et al. [26] proposed HyperEye, a real-time system, by utilizing 

protocol-agnostic numerical features, protocol-specific text features, a cross-term fusion algorithm, 

and Genetic Algorithm-based Density-Based Spatial Clustering of Applications with Noise (GA-

DBSCAN) optimization. Singh et al. [27] analyzed and detected botnet-based Distributed Denial of 

Service (DDoS) attacks in IoT networks by employing DL techniques. It also employs IoT traffic 

analysis, botnet behavior taxonomy, and comparative evaluation of DL-based detection methods. 

Saravanan and Santhosh [28] presented a Trustable Block Chain and Bandwidth Sensible-based Task 

Offloading (TBBS-TO) technique by employing the E-Poisson Enhanced Federated Trust (E-PEFT) 

consensus algorithm, Bi-directional Clustering Algorithm based on Local Density (BCALoD), and 

Multi-Agent Double Deep Q-Network (MA-DDQN) techniques. Sahi et al. [29] developed a 

lightweight model by using Fog-based Context Aware Feature Extraction using BranchyNET 

(FCAFE-BNET) approach. The model also utilizes early-exit Deep Neural Networks (DNNs) for 

faster inference, text-to-image data conversion for automated feature learning, and dynamic resource 

allocation across cloud and edge devices. Banse et al. [30] utilized AI-based evaluation, European 

Cybersecurity Certification Scheme (EUCS) compliance monitoring, and agile re-certification 

processes. Nagarjun and Rajkumar [31] introduced a method by utilizing DL and Blockchain (BC) 

technologies. The method also used Recurrent Neural Networks (RNN) and Convolutional Neural 

Networks (CNN) for multimodal feature analysis. Moreover, Quality of Service (QoS)-aware 

blockchain sidechains ensure transparency, immutability, and integrity of cloud data while enhancing 

real-time attack prediction. A detailed overview of DL-based attack detection is given in Table 1. 

Table 1. Analysis of existing work in deep learning-based cybersecurity. 

Authors Purpose Methodology Datasets Evaluations 

Farzaan et al. 

[15] 

To present an AI-driven cyber incident 

response method 
ML 

NSL-KDD, 

UNSW-NB15, 

and CIC-IDS-

2017 Datasets 

Accuracy of 90%, 

75%, and 99% 

Awan et al. 

[16] 

To provide a comprehensive method for 

improving cybersecurity in mobile IoT 

settings 

SecEdge, GNN 

NSL-KDD, 

UNSW-NB15, 

and 

CICIDS2017 

Datasets 

Accuracy of 

98.8%, 98.5%, 

and 98.7% 

Continued on next page 
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Authors Purpose Methodology Datasets Evaluations 

Alblehai [17] 
To develop an extremely effective 

platform intended for IoT platforms 

ICSSADL-

MHOA, Min–

Max, ITSO 

ToN-IoT and 

Edge-IIoT 

Datasets 

Accuracy of 

99.37% 

Dorothy et 

al. [13] 

To present a model that delivers proactive 

protection measures against dynamic 

cyber-attacks 

Random Forest 

and Isolation 

Forest Model 

- Accuracy of 95% 

Chaudhary et 

al. [18] 

To present an innovative AI-based method 

for improving cyber-attack recognition 

reduction in cloud environments 

ML approaches 
Multiple 

Datasets 

Accuracy of 

98.5% 

Sathupadi et 

al. [19] 

To present an edge-cloud hybrid platform 

for in-depth failure classification 
KNN, LSTM 

Multiple Sensor 

Datasets 

Reduce latency by 

35% 

Alrowais et 

al. [20] 

To achieve an effective recognition of 

cybersecurity attacks that are present in the 

IoT settings 

MFO-RELM 
N-BaIoT 

Datasets 

Precision of 

98.93% 

Bhandari et 

al. [21] 

To suggest a method for identifying 

malware threats utilizing AI approaches to 

encompass diverse and distributed 

scenarios 

DNN IoT-23 Datasets Accuracy of 93% 

Suryavanshi, 

Acharya, and 

Jadhav [22] 

To improve intelligent cybersecurity and 

trust in cloud-edge-IoT industrial systems 

Visual 

Cryptography, 

QoS-Aware 

Optimization, 

AI-Driven 

Trust 

Mechanisms 

Edge-IIoT, 

ToN-IoT 

Accuracy, 

Precision, Recall, 

F-Score 

Aouedi and 

Piamrat [23] 

To develop a scalable and energy-efficient 

CEI model 

CEI, HFL, 

SNN 

IoT Image 

Classification 

Data 

Accuracy, Latency 

Reduction, Energy 

Efficiency 

Ali et al. [24] 

To strengthen cybersecurity in AI-driven 

IoT-enabled smart cities within advanced 

communication networks 

AI, ML, DL 

Real-World 

Smart City 

Data 

Accuracy, 

Precision, Recall 

Xu and Xu 

[25] 

To enable real-time and accurate 

healthcare prediction with low latency 

DQN, DBN-

LSTM, FLO 

IoT Healthcare 

Sensing Data 

Accuracy, 

Makespan 

Reduction, 

Resource 

Utilization 

Zang et al. 

[26] 

To detect unknown encrypted malicious 

traffic in real-time 

Cross-Term 

Fusion 

Algorithm, 

GA-DBSCAN 

Optimization 

Open-World 

and Real-World 

Traffic Data 

F1-Score 11.95% 

Improvement, 

Accuracy, 

Precision, Recall 

Continued on next page 
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Authors Purpose Methodology Datasets Evaluations 

Singh et al. 

[27] 

To analyze and detect botnet-based DDoS 

attacks 
DL 

IoT Network 

Traffic Data 

Accuracy, 

Detection Rate, 

F1-Score 

Saravanan 

and Santhosh 

[28] 

To enable efficient and trustable task 

offloading and resource allocation 

TBBS-TO, E-

PEFT, 

BCALoD, 

MA-DDQN 

Commercial 

Blockchain 

Platform Data 

Task Offloading 

Efficiency, 

Resource 

Utilization, 

Consensus 

Accuracy 

Sahi et al. 

[29] 

To develop a lightweight, adaptive IDS 

model 

FCAFE-BNET, 

DNN, Text-to-

Image 

Conversion, 

Dynamic 

Resource 

Allocation 

NSL-KDD, 

UNSW-NB15, 

ToN-IoT, 

ADFA-LD 

Accuracy, 

Inference Time 

Reduction, 

Detection Rate 

Banse et al. 

[30] 

To enable continuous and harmonized 

cybersecurity certification using AI-driven 

models 

CaaS, EUCS 

Compliance 

Monitoring, AI 

European cloud 

service 

environments 

Certification 

Coverage, 

Compliance Rate, 

Trust Level 

Nagarjun and 

Rajkumar 

[31] 

To develop a robust anomaly detection 

method for cloud-based deployments by 

combining DL and BC technologies 

Multimodal 

Feature 

Analysis, 

RNN, CNN, 

QoS-aware 

Blockchain 

Sidechains 

Cloud System 

Logs 

Precision: 98.5%, 

Accuracy: 99.4%, 

Recall: 98.3%, 

AUC: 99.2% 

The existing studies encounter various limitations, namely high computational overhead, latency 

issues, and scalability challenges in dynamic networks. Many methods depend on centralized training 

or static rule-based detection, thus mitigating robustness against growing cyber-attacks. Lightweight 

and real-time detection for resource-constrained devices remains insufficiently addressed. Also, 

integration of multi-layered security, adaptive resource allocation, and trust evaluation mechanisms is 

still restricted in heterogeneous environments. A research gap remains in incorporating energy-

efficient computation, low-latency anomaly detection, and collaborative AI-driven mechanisms with 

secure and transparent BC frameworks for highly dynamic IoT and cloud ecosystems. Additionally, 

adaptive optimization and automated feature selection for heterogeneous datasets have not been 

properly explored. 

3. Proposed methodology 

In this article, the AICEDRL-FDR method is proposed for cloud-edge IoT environments to 

provide a reliable framework for proactive threat mitigation in next-generation digital systems. To 
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achieve this, the AICEDRL-FDR technique contains pre-processing, feature selection, and ensemble 

methods. Figure 2 represents the entire workflow of the AICEDRL-FDR technique. 

 

Figure 2. Entire workflow of the AICEDRL-FDR method. 

3.1. Data pre-processing models 

First, the AICEDRL-FDR method uses pre-processing steps, including normalization, 

standardization, and cleaning, to improve dataset quality and consistency. Data pre-processing is a 

vital stage that converts raw sensor data into a suitable format for effective identification [32]. The 

pre-processing procedure initiates with data normalization, transforming the data so that it has a 

standard deviation of 1 and a mean of 0, ensuring that features from diverse gadgets are comparable. 

The mathematical model of standardization is given in Eq (1). 

𝑥𝑖,𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =
𝑥𝑖−𝜇

𝜎
.                              (1) 

Here, 𝜇 indicates the mean of feature values, 𝜎 signifies the SD of feature values, and 𝑥𝑖 depicts 

the raw value of the feature. Normalization helps prevent features with wider ranges from 

overshadowing others during learning, ensuring that every feature contributes equally to the model. 

Afterward, normalization scales the data to the particular range, usually [0,1], to guarantee that 

each feature is on the same scale. Standardization helps reduce bias introduced by the original scale 

of the data. The equation of normalization is presented in Eq (2). 

𝑥𝑖,𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥𝑖−𝑥min

𝑥max−𝑥min
.                           (2) 

Here, 𝑥max and 𝑥min denote the maximal and minimal values of the feature, respectively. 
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The next step is data cleaning, which addresses issues such as missing values and noise. Missing 

values in IoT data are typically handled using mean imputation, which replaces missing values with 

the feature’s mean. Mathematically, imputation is specified as in Eq (3). 

𝑥𝑖𝑚𝑝𝑢𝑡𝑒𝑑 = 𝑚𝑒𝑎𝑛(𝑥).                            (3) 

Here, 𝑚𝑒𝑎𝑛(𝑥) signifies the average of feature values. This approach upholds the integrity of the 

dataset and assures that missing values do not skew the identification. 

To handle data noise, a moving average smoothing method is utilized. This model reduces short‐

term fluctuations and highlights longer‐term trends by averaging data points within a window. The 

moving average is computed in Eq (4). 

𝑥𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1 .                          (4) 

Here, 𝑁 signifies the number of points in the smoothing window, and 𝑥𝑖 represents every data point 

in the selected window, which is averaged to generate the smoothed value 𝑥𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑. This approach 

effectively filters out random noise, producing a clearer, more consistent signal from sensor data. 

3.2. mRMR-based dimensionality reduction technique 

For FS, the mRMR method is used to reduce irrelevant and redundant features [33]. This method 

demonstrates excellence in balancing maximum relevance to the target variable with minimum feature 

redundancy, thereby ensuring an optimal subset of informative attributes. The technique also preserves 

the original feature meaning and enhances interpretability, unlike other methods, namely principal 

component analysis (PCA) or mutual information. The robustness and computational efficiency of the 

model make it well-suited to high-dimensional cybersecurity datasets, thereby enhancing model 

accuracy and learning performance. 

mRMR is a filtering technique for FS, that uses mutual information (MI) to measure 

dependencies between the class variable and the features, and among the features themselves. Its goal 

is to identify attributes, that maximize the information from the original dataset while using only a 

small subset of it. The optimal feature subset 𝑆 is gradually built, beginning with only one attribute 

that has the highest MI with respect to the class variable 𝐶max𝑓𝑖∈𝐹𝐼(𝑓𝑖 , 𝐶). Until a predefined feature 

count is reached, this model iteratively adds an attribute to the subset. 

max
𝑓𝑖∈𝐹−𝑆

[
𝐼(𝑓𝑖;⋅𝐶)

1

|𝑆|
𝛴𝑓𝑗∈𝑆𝐼(𝑓𝑖;⋅𝑓𝑗)

].                              (5) 

It should be noted that, in this paper, rather than utilizing the traditional mRMR as observed in 

Eq (5), we apply the variation provided in Eq (6). Another approach was to transform the denominator 

into an absolute connection; however, this would result in the redundancy properties being entirely 

gone, as it would link a pair of features through a single unrelated feature. Ultimately, a value of 1 

was added to the denominator rather than, for example, values such as 0, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 

or 0.8, as extensive experimentation proved that it performed better than the other values. For the new 

estimator, Eq (6) although it was not required. This ensured that the comparison was completed on 

equivalent terms, as the main aim was to estimate how the selection of the MI estimator affects the 

efficiency and reliability of mRMR. To properly investigate this, all parameters must be consistent. 
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max
𝑓𝑖∈𝐹−𝑆

[
𝐼(𝑓𝑖;⋅𝐶)

1+
1

|𝑆|
𝛴𝑓𝑗∈𝑆𝐼(𝑓𝑖;⋅𝑓𝑗)

].                              (6) 

3.3. Ensemble deep representation methods 

Additionally, ensemble deep representation methods such as DCAE, FDBN, and TCN are applied 

to the attack detection procedure. The fusion model is chosen for its complementary strengths: the 

DCAE effectively captures spatial patterns, FDBN models uncertainty with fuzzy logic, and the TCN 

shows effectiveness in learning temporal dependencies in sequential data. This integration provides a 

more comprehensive understanding of intrinsic attack behaviors than single-model approaches. 

Unlike conventional DL techniques, the ensemble improves detection accuracy, robustness, and 

adaptability in dynamic cloud-edge-IoT environments. 

3.3.1. DCAE model 

The DCAE utilizes deconvolutional and convolutional layers instead of fully connected layers, 

as in the DAE model [34]. Because of its use of CNN attributes, DCAE could also be suitable for 

image‐processing applications. It achieves self-correction by isolating via a translation feature for 

latent features, local connections, and parameter sharing. 

In this encoding method, convolutional layers are mapped to the internal layer to serve as a 

feature extractor. The concealed type of the 𝑛𝑡ℎ layer and the feature map are displayed below. 

ℎ𝑛 = 𝜎(𝑥 ∗ 𝑊𝑇𝑛 + 𝑏𝑛).                             (7) 

Here,  𝑊  represents the filter, 𝑏  indicates the apposite 𝑛𝑡ℎ  feature maps bias, 𝜎  represents a 

function of the activation (namely, sigmoid or ReLU), and ∗ means a 2D convolution procedure. This 

procedure was formerly used to transform the resulting features, whereas the deconvolutional layers 

implement the opposite task: rebuilding the latent model and restoring it to its original state. 

𝑦𝑛 = 𝜎(∑ ℎ𝑛𝑛∈𝐻 ∗ 𝑊𝑇̃𝑛 + 𝑏).                           (8) 

The DCAE reduces reconstruction errors, thereby revealing latent representations within its 

internal layers. It selects the cross‐entropy (logistic) loss function, which is consistent with research 

recommendations stating that systems trained with perceptive loss perform much better. The final 

layer often shows reduced performance, particularly in CNNs with deconvolutional layers. The 

backpropagation (BP) model, equivalent to that of classic networks, is applied to compute the error 

gradient. 

𝐸1 = −
1

𝑁
∑ (𝑁

𝑛=1 𝑦𝑛 log 𝑦𝑛̂ + (1 − 𝑦𝑛) log (1 − 𝑦𝑛̂)).              (9) 

Here, the targeted pixel value of the image is represented by 𝑦̂, and the reconstructed pixel value of 

the image is represented by 𝑦. 
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3.3.2. FDBN method 

The FDBN method extends the basic perception of the processes involved in DBN learning [35]. 

Next, fuzzy set (FS) formulations are developed to improve the DL model. Each RBM is linked to a 

few biases and weights that define the energy of the visible layer (VL) and the hidden layer (HL). The 

step-by-step description of this model is clarified as follows: 

Step-1: In a DBN, the inner RBMs are initialized randomly. The Bernoulli distribution is measured 

for an RBM. 

Step-2: The RBM is pre-trained to pre-train the DBN using the contrastive divergence learning model. 

Here, the biases and weights are fuzzified. 

Step-3: In the unsupervised method, the system is pre‐trained utilizing the CD model. 

Step-4: The RBM, linked to the linear map, is assigned to the final layer of the DBN. 

Step-5: Lastly, the backpropagation model is employed to fine-tune the system. For an RBM, the 

function of energy formulation is assumed as shown below: 

𝐸(𝑣, ℎ; 𝑊, 𝑏, 𝑐) = −ℎ𝑇𝑊𝑣 − 𝑐𝑇𝑣 − 𝑏𝑇ℎ                     (10) 

= − ∑ ∑ 𝑊𝑗𝑘ℎ𝑗𝑣𝑘𝑘 − ∑ 𝑐𝑘𝑣𝑘𝑘𝑗 − ∑ 𝑐𝑗𝑣𝑗𝑗 .        (11) 

Here, 𝑊  denotes a weight, ℎ and 𝑣  are vectors representing the VL and HL, and ℎ𝑗  and 𝑣𝑘 

represent the 𝑗𝑡ℎ and 𝑘𝑡ℎ units. The biases associated with HL and VL are denoted by 𝑏 and 𝑐, 

respectively. 

For all pairs of VL and HL, the network likelihoods are set as: 

𝑝(𝑣, ℎ: 𝑊, 𝑏, 𝑐) =
1

𝑍̃̃
𝑒−𝐸(𝑣,ℎ;𝑊,𝑏,𝑐).                       (12) 

Here, 𝑍 = ∑  
𝑣,ℎ𝑒−𝐸(𝑣,ℎ;𝑊,𝑏,𝑐) denotes the function of crisp partition, which totals over all probable HL 

and VL. The inferences employed are the conditional inference of both ℎ given 𝑣 or 𝑣 provided 

ℎ. 

𝑝(ℎ|𝑣) = ∏ 𝑝𝑗 (ℎ𝑗|𝑣).                           (13) 

For an individual distribution, 𝑝(ℎ𝑗|𝑣),  ℎ𝑗  represents randomly generated variables. The 

likelihood of ℎ𝑗 being equivalent to 1 is defined as 

𝑝(ℎ𝑗 = 1|𝑣) = 𝜎(𝑏𝑗 + 𝑊𝑗𝑣).                         (14) 

Here, 𝜎(𝑥) =
1

1+𝑒−𝑥 represents the activation function of the sigmoidal. 

Likewise, the conditional distribution for 𝑣 assuming ℎ is given below: 

𝑝(𝑣|ℎ) = ∏ 𝑝𝑘 (𝑣𝑘|ℎ).                           (15) 

𝑝(𝑣𝑘 = 1|ℎ) = 𝜎(𝑐𝑘 + ℎ𝑇𝑊𝑘).                       (16) 

The inference projected equation is given below: 
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𝑃(𝜗𝑢+1 = 1) = 𝐸𝑃(𝜗𝑢)(𝜎(𝑊𝑢
𝑇[𝜗𝑢]) + 𝑏𝑢).                 (17) 

The biases and weights are set at random with real numerals, which often leads to hesitation due 

to the numerous possible values. 

This might delay the DBN’s overall performance. FSs are categorized by their membership 

functions, which are termed grades. In an FS, if the membership grades are expressed as crisp values, 

the FS is called a normal or type-1 (T1) FS. An FS “F” is expressed in the mathematical formulation 

as below: 

𝐹 = {(𝑥, 𝜇𝐹(𝑥))|∀𝑥 ∈ 𝑋},                           (18) 

or 

𝐹 = ∫ 𝜇𝐹(𝑥)/𝑥
∈𝑋

.                               (19) 

While 𝜇𝐹(𝑥)  denotes a membership grade of 𝑥  for every 𝑥 ∈ 𝑋 , in reality, trapezoidal and 

triangular MFs are employed for perfecting the FSs. Given the uncertainty about the biases and 

weights, four diverse MFs are selected for examination. 

Assume “𝑤 ” represents the crisp weight at random, and 𝑚𝐿 , and 𝑚𝑅 represent the left and 

proper range of the 𝑀𝐹. The membership value is denoted by 𝜇, with 𝜇 ∈ [0,1]. Therefore, 𝑊, 𝑏, 

and 𝑐 are re‐expressed as 𝑊̃, 𝑏̃, and 𝑐̃. These associations between VL and HL create a matrix. 

Now, an initial RBM output is employed as the input to the following RBM, and novel weights 

are acquired as the transpose of preceding layer weights. The complete training ensues, and the 

weights are adjusted until the optimal weights are obtained. 

𝐸̃(𝑣, , ℎ: 𝑊̃, 𝑏̃, 𝑐̃) = −ℎ𝑇𝑊̃𝑣 − 𝑏̃𝑇ℎ − 𝑐̃𝑇𝑣.                  (20) 

Here, 𝑊̃, 𝑏̃, and 𝑐̃ denote fuzzy weights and biases. 

𝑝(𝑣, ℎ: 𝑊̃, 𝑏̃, 𝑐̃) =
1

𝑍
𝑒−𝐸̃(𝑣,ℎ;𝑊̃,𝑏̃,𝑐̃).                       (21) 

While, 𝑍̃ = ∑ 𝑒𝐸̃(𝑣,ℎ;𝑊̃,𝑏̃,𝑐̃)
𝑣,ℎ  is expressed as a function of fuzzy partition, which is the summary of 

each probable HL and VL vectors. 

The conditional probability of HL and VL is stated as: 

𝑝(ℎ𝑗 = 1|𝑣) = 𝜎(𝑏̃𝑗 + 𝑊̃𝑗𝑣).                          (22) 

𝑝(𝑣𝑘 = 1|ℎ) = 𝜎(𝑐̃𝑘 + ℎ𝑇𝑊̃𝑘).                         (23) 

Here, 𝜎̃(∙) represents the function of fuzzy logistic with fuzzy arguments. 

𝑃̃(𝜗𝑢+1 = 1) = 𝐸̃𝑃̃(𝜗𝑢)(𝜎̃(𝑊̃𝑢
𝑇[𝜗𝑢]) + 𝑏̃𝑢).                    (24) 
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While 𝜃𝑢 denotes an associated dual variable at random. Besides, the conditional probabilities 

of the (𝑢 + 1)𝑡ℎ node are evaluated for every probable integration of dual states. Figure 3 indicates 

the framework of the FDBN model. 

 

Figure 3. Framework of FDBN model. 

Here, the basic perception of the contrastive divergence (CD) model used to train RBMs is 

described. Initially, the training vector is predetermined based on the RBM’s VL. Next, the dual states 

of HLs are computed. The likelihood in Eq (14) was employed for the reconstruction procedure. 

Therefore, in fuzzy weights, an alteration between dual units 𝑖 and 𝑗 is described as below: 

𝛥𝑤̃𝑖𝑗 =∈ (< 𝑣𝑖
𝑛ℎ𝑗

𝑛 > < 𝑣𝑖
𝑛+1ℎ𝑗

𝑛+1 >).                     (25) 

Here, ∈ denotes the learning rate 𝑛 + 1, and 𝑛 represents the reconstruction step. 

In CD training, the HL ℎ0  from 𝑣0  is computed first, followed by 𝑣1 . Therefore, ℎ0  is 

assessed using an inference. Nowadays, as an average probability is an inference output, 𝑣1 and ℎ1 

are computed appropriately. After training the CD, typical backpropagation is employed to complete 

the DBN. Now, in the learning stage, parameters such as biases and weights play a vital role. 

3.3.3. TCN model 

The TCN model is intended for time‐series data processing [36]. Compared with conventional 

CNNs, TCNs use causal convolution to ensure that the output at any time step does not depend on 

future time steps, preserving the temporal sequence of the data. The receptive area of the TCN with 

diverse dilation factors is also represented. 
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𝑦(𝑡) = ∑ 𝑓𝐾−1
𝑘=0 (𝑘) ⋅ 𝑥(𝑡 − 𝑑 ⋅ 𝑘).                        (26) 

Here, 𝑓 depicts the convolutional kernel, 𝑥(𝑡) signifies the sequence of input, 𝑑 represents the rate 

of dilation, 𝐾 depicts the size of the kernel, and 𝑦(𝑡) refers to the sequence of output. 

To alleviate overfitting and improve model performance, factors such as the learning rate, model 

architecture, and techniques such as activation functions, batch normalization, and dropout are often 

employed. Furthermore, to safeguard the steadiness of connections in deep TCN methods, a residual 

connection is presented. 

Leaky ReLU (L-ReLU) is used as the activation function rather than conventional ReLU, as it 

retains a smaller slope on the negative axis, allowing a few negative values to move. 

𝑓(𝑥) = {
𝑥, 𝑥 > 0;
𝑎𝑥, 𝑥 ≤ 0.

                             (27) 

Here, 𝑎 represents the slope for the negative input area, and 𝑥 refers to the value of the input. The 

“ax” part indicates that the input 𝑥 is negative, and “𝑎” refers to a smaller constant. 

4. Performance assessment and metrics 

In this section, the performance assessment of the AICEDRL-FDR methodology is verified under 

the Edge-IIoT [1] and ToN-IoT [2] datasets. 

4.1. Result analysis on the edge-IIoT dataset 

The Edge-IIoT dataset is a complete set of network event records intended for intrusion detection 

and cybersecurity studies in IIoT settings. It comprises 24,000 records, uniformly distributed across 

12 event types, with 2,000 records per event type. The dataset includes both normal network activity 

and various cyberattack scenarios, including DDoS attacks (UDP, TCP, ICMP, and HTTP), SQL 

injection, password attacks, file upload attacks, backdoor intrusions, cross-site scripting (XSS), 

ransomware, and fingerprinting attempts. This balanced dataset enables practitioners and researchers 

to develop, test, and benchmark security methods for identifying a broad range of malicious actions 

in IIoT networks. The number of attributes is 63, but only 31 were selected. 

Figure 4 presents the classifier result of the AICEDRL-FDR model on the Edge-IIoT dataset. 

Figure 4(a) shows the PR study, which represents maximal performance across all classes. Finally, 

Figure 4(b) presents the ROC analysis, showing that skilled outcomes have higher ROC values across 

various classes. 
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Figure 4. Edge-IIoT dataset: (a) PR curve, (b) ROC curve. 

Table 2 and Figure 5 demonstrate the parameters of attack detection of the AICEDRL-FDR 

methodology on the Edge-IIoT dataset. Under 70%TRPHE, the AICEDRL-FDR model attains 

average 𝑎𝑐𝑐𝑢𝑟𝑦, 𝑝𝑟𝑒𝑐𝑖𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙, 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒, 𝑀𝐶𝐶, and Kappa of 99.31%, 95.89%, 95.89%, 95.89%, 

95.52%, and 96.19%, respectively. Moreover, on 30%TSPHE, the AICEDRL-FDR approach achieves 

average 𝑎𝑐𝑐𝑢𝑟𝑦, 𝑝𝑟𝑒𝑐𝑖𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙, 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒, 𝑀𝐶𝐶, and Kappa of 99.30%, 95.81%, 95.81%, 95.80%, 

95.42%, and 96.07%, respectively. 

Table 2. Attack detection of the AICEDRL-FDR model on the Edge-IIoT dataset. 

Class labels 𝐴𝑐𝑐𝑢𝑟𝑦 𝑃𝑟𝑒𝑐𝑖𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝑀𝐶𝐶 Kappa 

TRPHE (70%)  

Normal 99.29 94.71 96.76 95.72 95.34 96.03 

DDoS-UDP 99.29 95.54 96.08 95.81 95.42 96.12 

DDoS-ICMP 99.23 96.15 94.57 95.35 94.94 95.61 

SQL injection 99.33 95.64 96.51 96.08 95.71 96.51 

DDoS-TCP 99.30 95.87 95.66 95.77 95.39 96.12 

Password 99.46 96.67 96.60 96.64 96.34 97.01 

DDoS-HTTP 99.30 95.73 95.87 95.80 95.41 96.14 

Uploading 99.32 96.07 95.73 95.90 95.53 96.21 

Backdoor 99.51 97.13 97.00 97.07 96.80 97.32 

XSS 99.41 96.16 96.65 96.41 96.09 96.72 

Ransomware 99.14 95.05 94.72 94.89 94.41 95.01 

Fingerprinting 99.21 95.98 94.55 95.26 94.83 95.49 

Average 99.31 95.89 95.89 95.89 95.52 96.19 

Continued on next page 
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Class labels 𝐴𝑐𝑐𝑢𝑟𝑦 𝑃𝑟𝑒𝑐𝑖𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝑀𝐶𝐶 Kappa 

TSPHE (30%)  

Normal 99.15 95.39 94.61 95.00 94.53 95.26 

DDoS-UDP 99.31 95.47 95.80 95.64 95.26 95.97 

DDoS-ICMP 99.36 96.80 95.51 96.15 95.80 96.45 

SQL injection 99.42 95.65 97.00 96.32 96.01 96.55 

DDoS-TCP 99.11 95.10 94.48 94.79 94.30 94.92 

Password 99.40 96.18 97.22 96.69 96.37 96.87 

DDoS-HTTP 99.26 95.48 95.64 95.56 95.16 95.70 

Uploading 99.31 95.33 96.30 95.81 95.44 96.22 

Backdoor 99.35 94.98 97.34 96.14 95.80 96.55 

XSS 99.28 96.59 95.05 95.81 95.42 96.08 

Ransomware 99.33 96.34 95.34 95.84 95.48 96.27 

Fingerprinting 99.33 96.38 95.39 95.88 95.52 96.04 

Average 99.30 95.81 95.81 95.80 95.42 96.07 

 

Figure 5. Average values of the AICEDRL-FDR model on the Edge-IIoT dataset. 

Figure 6 displays the training (TRAN) and validation (VALD) 𝑎𝑐𝑐𝑢𝑦 of the AICEDRL-FDR 

method on the Edge-IIoT dataset across 50 epochs. Both curves gradually rise and converge slowly, 

indicating that the model is successfully learning. The VALD 𝑎𝑐𝑐𝑢𝑦 consistently remains greater 

than the TRAN 𝑎𝑐𝑐𝑢𝑦, suggesting that the method is not overfitting and is simplifying well to the 

hidden data. The variations in 𝑎𝑐𝑐𝑢𝑦 are predictable due to task complexity, but the overall upward 

tendency determines the robustness and stability of the method. 
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Figure 6. 𝐴𝑐𝑐𝑢𝑟𝑦 curve of the AICEDRL-FDR method on the Edge-IIoT dataset. 

Figure 7 represents the TRAN and VALD loss of the AICEDRL-FDR model on the Edge-IIoT 

dataset across 50 epochs. Both curves show a steady downward trend, indicating that the method is 

successfully reducing the learning error. The VALD loss remains lower than the training loss 

throughout the maximum epochs, suggesting excellent generalization and no signs of overfitting. Any 

variations seen are becoming increasingly stable and reliable. 

 

Figure 7. Loss curve of the AICEDRL-FDR method on the Edge-IIoT dataset. 

Table 3 and Figure 8 provide a comparative outcome of the AICEDRL-FDR model on the Edge-

IIoT dataset. The findings underscore that the variational autoencoders (VAEs), GB Machines, SVM 

Classifier, and Rule-Based IDS techniques yielded poor results. In the meantime, Autoencoder+LSTM, 



28998 

AIMS Mathematics  Volume 10, Issue 12, 28981–29011. 

CNN-RNNs, and Bi-directional LSTM techniques achieved faster results. Additionally, the 

AICEDRL-FDR method provided a higher outcome, with maximum 𝑎𝑐𝑐𝑢𝑦 , 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙𝑙 , and 

𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 of 99.31%, 95.89%, 95.89%, and 95.89%, respectively. 

Table 3. Comparative analysis of the AICEDRL-FDR technique on the Edge-IIoT dataset. 

Edge-IIoT dataset 

Models 𝐴𝑐𝑐𝑢𝑟𝑦 𝑃𝑟𝑒𝑐𝑖𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 

VAE 91.61 91.69 91.61 91.60 

GB machines 91.45 93.43 89.12 91.22 

SVM classifier 91.61 91.68 91.61 91.61 

Rule-based IDS 89.00 85.40 79.10 72.80 

Autoencoder+LSTM 94.24 93.30 91.20 92.20 

CNN-RNNs 96.00 93.21 94.95 92.89 

Bi-directional LSTM 99.00 88.72 92.46 84.59 

AICEDRL-FDR 99.31 95.89 95.89 95.89 

 

Figure 8. Comparative analysis of the AICEDRL-FDR method on the Edge-IIoT dataset. 

Table 4 and Figure 9 present the computational time (CT) evaluation of the AICEDRL-FDR 

method relative to existing models under the Edge-IIoT dataset. These results indicate the average 

time each model takes to process and analyze the data from the Edge-IIoT dataset. The CT of the 

different methods was as follows: variational autoencoders (VAE), 4.28 seconds; GB Machines, 6.46 

seconds; SVM Classifier, 8.47 seconds; Rule-Based IDS, 6.68 seconds; Autoencoder (AE) combined 

with LSTM, 5.21 seconds; CNN-RNNs, 8.54 seconds; and Bi-directional LSTM, 6.29 seconds. The 

AICEDRL-FDR model achieved the lowest CT at 2.24 seconds, illustrating its superior efficiency in 

handling cybersecurity tasks in cloud-edge-IoT environments. 
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Table 4. CT comparison of the AICEDRL-FDR method with existing models on the Edge-

IIoT dataset. 

Edge-IIoT dataset 

Models CT (sec) 

VAE 4.28 

GB Machines 6.46 

SVM Classifier 8.47 

Rule-Based IDS 6.68 

AE+LSTM 5.21 

CNN-RNNs 8.54 

Bi-directional LSTM 6.29 

AICEDRL-FDR 2.24 

 

Figure 9. CT comparison of the AICEDRL-FDR method with existing models on the 

Edge-IIoT dataset. 

Table 5 and Figure 10 present the error assessment of the AICEDRL-FDR method relative to 

existing techniques. The VAE model illustrated an 𝑎𝑐𝑐𝑢𝑦 of 8.39%, 𝑝𝑟𝑒𝑐𝑛 of 8.31%, 𝑟𝑒𝑐𝑎𝑙𝑙 of 

8.39%, and 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒  of 8.40%, highlighting consistent but moderate performance. GB Machines 

depicted an 𝑎𝑐𝑐𝑢𝑦 of 8.55%, 𝑝𝑟𝑒𝑐𝑛 of 6.57%, 𝑟𝑒𝑐𝑎𝑙𝑙 of 10.88%, and 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 of 8.78%, with 

slightly higher deviation in recall. SVM Classifier emulated VAE performance with an 𝑎𝑐𝑐𝑢𝑦 of 

8.39%, 𝑝𝑟𝑒𝑐𝑛 of 8.32%, 𝑟𝑒𝑐𝑎𝑙𝑙 of 8.39%, and 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 of 8.39%. Rule-Based IDS presented the 

highest errors with an 𝑎𝑐𝑐𝑢𝑦 of 11.00%, 𝑝𝑟𝑒𝑐𝑛 of 14.60%, 𝑟𝑒𝑐𝑎𝑙𝑙 of 20.90%, and 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 of 

27.20%, showing lower reliability. AE integrated with LSTM had moderate errors with an 𝑎𝑐𝑐𝑢𝑦 of 

5.76%, 𝑝𝑟𝑒𝑐𝑛  of 6.70%, 𝑟𝑒𝑐𝑎𝑙𝑙  of 8.80%, and 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒  of 7.80%. CNN-RNNs presented an 

accuracy of 4.00%. 
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Table 5. Error assessment of the AICEDRL-FDR methodology compared with existing 

techniques on the Edge-IIoT dataset. 

Edge-IIoT dataset 

Methodology 𝐴𝑐𝑐𝑢𝑟𝑦 𝑃𝑟𝑒𝑐𝑖𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 

VAE 8.39 8.31 8.39 8.40 

GB Machines 8.55 6.57 10.88 8.78 

SVM Classifier 8.39 8.32 8.39 8.39 

Rule-Based IDS 11.00 14.60 20.90 27.20 

AE+LSTM 5.76 6.70 8.80 7.80 

CNN-RNNs 4.00 6.79 5.05 7.11 

Bi-directional LSTM 1.00 11.28 7.54 15.41 

AICEDRL-FDR 0.69 4.11 4.11 4.11 

 

Figure 10. Error assessment of the AICEDRL-FDR methodology compared with existing 

techniques on the Edge-IIoT dataset. 

4.2. Result analysis on the ToN-IoT dataset 

The ToN-IoT dataset is a large-scale dataset intended for cybersecurity studies in IoT networks. 

It includes 119,957 instances, comprising both normal and malicious actions. The dataset consists of 

78,369 standard instances and several threat types, such as MiTM (336 instances), DoS (5,440 

instances), DDoS (5,987 instances), password attacks (6,016 instances), injection attacks (5,867 

instances), XSS (5,951 instances), ransomware (5,976 instances), and backdoor attacks (6,015 

instances). This dataset provides a comprehensive source for developing and evaluating intrusion 

detection methods and other security mechanisms for IoT settings. From the 42 features available, 
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only 27 were selected. 

Figure 11 presents the classifier outcomes of the AICEDRL-FDR method on the ToN-IoT dataset. 

Figure 11(a) illustrates the PR investigation, showing improved performance across each class. Figure 

11(b) shows the ROC analysis, demonstrating efficient performance with higher ROC values across 

various classes. 

 

Figure 11. ToN-IoT dataset: (a) PR curve, (b) ROC curve. 

Table 6 and Figure 12 portray the attack detection parameters of the AICEDRL-FDR approach 

on the ToN-IoT dataset. Under 70%TRPHE, the AICEDRL-FDR model achieves average 𝑎𝑐𝑐𝑢𝑟𝑦, 

𝑝𝑟𝑒𝑐𝑖𝑛 , 𝑟𝑒𝑐𝑎𝑙𝑙 ,𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 , 𝑀𝐶𝐶 , and Kappa of 99.18%, 91.97%, 85.31%, 87.16%, 87.25%, and 

87.90%, respectively. Moreover, on 30%TSPHE, the suggested AICEDRL-FDR model achieves 

average 𝑎𝑐𝑐𝑢𝑟𝑦, 𝑝𝑟𝑒𝑐𝑖𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙, 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒, 𝑀𝐶𝐶, and Kappa of 99.24%, 91.31%, 87.22%, 88.74%, 

88.43%, and 89.07%, respectively. 

Table 6. Attack detection of the AICEDRL-FDR model on the ToN-IoT dataset. 

Class labels 𝐴𝑐𝑐𝑢𝑟𝑦 𝑃𝑟𝑒𝑐𝑖𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝑀𝐶𝐶 Kappa 

TRPHE (70%)  

Normal 98.29 98.27 99.12 98.70 96.23 96.88 

MiTM 99.76 81.18 27.49 41.07 47.16 47.82 

DoS 99.33 93.49 91.40 92.43 92.09 92.62 

DDoS 99.27 92.80 92.65 92.73 92.34 93.10 

Password 99.09 92.01 89.74 90.86 90.39 91.17 

Injection 99.18 93.34 89.52 91.39 90.98 91.58 

XSS 99.23 92.39 92.12 92.25 91.85 92.44 

Ransomware 99.26 92.69 92.31 92.50 92.11 92.88 

Backdoor 99.23 91.59 93.39 92.48 92.08 92.63 

Average 99.18 91.97 85.31 87.16 87.25 87.90 

Continued on next page 
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Class labels 𝐴𝑐𝑐𝑢𝑟𝑦 𝑃𝑟𝑒𝑐𝑖𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝑀𝐶𝐶 Kappa 

TSPHE (30%)  

Normal 98.32 98.45 99.01 98.73 96.28 96.87 

MiTM 99.82 72.34 40.00 51.52 53.72 54.25 

DoS 99.37 93.13 93.24 93.19 92.85 93.57 

DDoS 99.34 93.31 92.99 93.15 92.81 93.45 

Password 99.15 92.56 90.14 91.34 90.90 91.57 

Injection 99.23 93.71 90.31 91.97 91.59 92.34 

XSS 99.24 92.47 91.95 92.21 91.81 92.48 

Ransomware 99.36 93.96 93.28 93.62 93.29 93.96 

Backdoor 99.31 91.85 94.11 92.96 92.61 93.15 

Average 99.24 91.31 87.22 88.74 88.43 89.07 

 

Figure 12. Average values of the AICEDRL-FDR model on the ToN-IoT dataset. 

Figure 13 displays the TRAN and VALD 𝑎𝑐𝑐𝑢𝑟𝑦 of the AICEDRL-FDR approach on the ToN-

IoT dataset across 50 epochs. Both curves progressively rise and slowly converge, which illustrates 

that the method is successfully learning. The VALD 𝑎𝑐𝑐𝑢𝑟𝑦  remains marginally better than the 

TRAN 𝑎𝑐𝑐𝑢𝑟𝑦 , suggesting that the technique is not overfitting and is simplifying well to the 

undetected data. The variations in 𝑎𝑐𝑐𝑢𝑟𝑦 are assumed to be due to task complexity; nevertheless, 

the overall upward trend indicates strong performance and stability of the methodology. 
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Figure 13. 𝐴𝑐𝑐𝑢𝑟𝑦 curve of the AICEDRL-FDR technique on the ToN-IoT dataset. 

Figure 14 illustrates the TRAN and VALD loss of the AICEDRL-FDR method on the ToN-IoT 

dataset across 50 epochs. Both curves show a reliable downward trend, indicating that the technique 

is successfully reducing learning errors. The VALD loss remains worse than the training loss 

throughout most epochs, suggesting strong generalization and no signs of overfitting. Any variations 

that are detected are becoming progressively steady and reliable. 

 

Figure 14. Loss curve of the AICEDRL-FDR technique on the ToN-IoT dataset. 
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Table 7 and Figure 15 illustrate the comparison between the AICEDRL-FDR technique on the 

ToN-IoT dataset with recent methodologies [37,38]. The empirical results show that the AICEDRL-

FDR model has improved performance. According to 𝑎𝑐𝑐𝑢𝑟𝑦, the AICEDRL-FDR model achieved 

the highest 𝑎𝑐𝑐𝑢𝑟𝑦 at 99.24%. In contrast, the Feedforward NN, XGBoost, LR, Autoencoder Only, 

LSTM+CNN, Adversarial DBN-LSTM, and GA in SDN techniques achieved an 𝑎𝑐𝑐𝑢𝑟𝑦 of 99.41%, 

91.36%, 68.11%, 87.40%, 93.14%, 91.23%, and 80.00%, respectively. 

Table 7. Comparative analysis of the AICEDRL-FDR technique on the ToN-IoT dataset. 

ToN-IoT dataset 

Methods 𝐴𝑐𝑐𝑢𝑟𝑦 𝑃𝑟𝑒𝑐𝑖𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 

Feedforward NN 90.41 82.89 85.46 80.09 

XGBoost 91.36 90.45 81.35 81.35 

LR Model 68.11 68.13 68.11 68.10 

Autoencoder Only 87.40 88.90 77.20 88.00 

LSTM+CNN 93.14 90.20 81.90 83.00 

Adversarial DBN-LSTM 91.23 83.75 85.21 83.75 

GA in SDN 80.00 86.01 84.98 84.77 

AICEDRL-FDR 99.24 91.31 87.22 88.74 

 

Figure 15. Comparative analysis of the AICEDRL-FDR technique on the ToN-IoT dataset. 

Finally, the AICEDRL-FDR method achieved a greater 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 of 88.74%. In contrast, the 

Feedforward NN, XGBoost, LR, Autoencoder Only, LSTM+CNN, Adversarial DBN-LSTM, and GA 

in SDN models have achieved 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒  values of 90.09%, 91.35%, 68.10%, 88.00%, 93.00%, 

83.75%, and 84.77%, respectively. These results confirmed that the proposed model outperforms 

existing approaches. 
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Table 8 and Figure 16 present the computational time (CT) evaluation of the AICEDRL-FDR 

method relative to existing models. The Feedforward NN needed a CT of 6.34 seconds, XGBoost 

required 7.30 seconds, LR Model 7.33 required seconds, AE Only required 4.52 seconds, LSTM 

incorporated with CNN required 3.17 seconds, Adversarial DBN-LSTM required 3.81 seconds, GA 

in SDN required 5.75 seconds, and the AICEDRL-FDR model achieved the lowest CT of 1.08 seconds, 

highlighting its superior efficiency in handling cybersecurity tasks in cloud-edge-IoT environments. 

Table 8. CT evaluation of the AICEDRL-FDR method compared with existing models on 

the ToN-IoT dataset. 

ToN-IoT dataset 

Technique CT (sec) 

Feedforward NN 6.34 

XGBoost 7.30 

LR Model 7.33 

AE Only 4.52 

LSTM+CNN 3.17 

Adversarial DBN-LSTM 3.81 

GA in SDN 5.75 

AICEDRL-FDR 1.08 

 

Figure 16. CT evaluation of the AICEDRL-FDR method compared with existing models 

on the ToN-IoT dataset. 

Table 9 and Figure 17 present the error assessment of the AICEDRL-FDR methodology relative 

to existing techniques. The Feedforward NN illustrated moderate deviations with slightly higher error 
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in recall, while XGBoost depicted more balanced performance across metrics. The LR Model had the 

highest deviations with an 𝑎𝑐𝑐𝑢𝑦 of 31.89% and 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 of 31.90%, indicating lower reliability. 

AE Only attained moderate deviations with an 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 of 12.00%, whereas LSTM combined with 

CNN had relatively lower errors but modest overall performance. Adversarial DBN-LSTM depicted 

higher deviations in 𝑝𝑟𝑒𝑐𝑛  at 16.25% and 𝑟𝑒𝑐𝑎𝑙𝑙  at 14.79%. GA in SDN attained improved 

performance with 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒  of 15.23%. The AICEDRL-FDR model showed minimal overall 

deviation with an 𝑎𝑐𝑐𝑢𝑦 of 0.76% and 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 of 11.26%, demonstrating robust reliability and 

efficiency. 

Table 9. Error assessment of the AICEDRL-FDR methodology with existing techniques 

on the ToN-IoT dataset. 

ToN-IoT dataset 

Methodology 𝐴𝑐𝑐𝑢𝑟𝑦 𝑃𝑟𝑒𝑐𝑖𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 

Feedforward NN 9.59 7.11 12.54 9.91 

XGBoost 8.64 8.55 8.65 8.65 

LR Model 31.89 31.87 31.89 31.90 

Autoencoder Only 12.60 11.10 12.80 12.00 

LSTM+CNN 6.86 5.80 8.10 7.00 

Adversarial DBN-LSTM 8.77 16.25 14.79 16.25 

GA in SDN 20.00 13.99 15.02 15.23 

AICEDRL-FDR 0.76 8.69 12.78 11.26 

 

Figure 17. Error assessment of the AICEDRL-FDR methodology compared with existing 

techniques on the ToN-IoT dataset. 
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Table 10 presents the computational efficiency of the AICEDRL-FDR approach [39]. LeNet 

required 0.2860 GFLOPs, 3330 MB of GPU memory, and 4.68 seconds for inference, while CNN 

used 0.0968 GFLOPs, 4420 MB, and 4.90 seconds. ResNet and VGG required 456.7600 GFLOPs and 

398.2900 GFLOPs, 3783 MB and 4553 MB of GPU memory, and inference times of 3.78 and 3.56 

seconds, respectively. Moreover, NAS-Net achieved improved efficiency with 14.9763 GFLOPs, 

3981 MB GPU usage, and 2.68 second of inference time. The AICEDRL-FDR model presented the 

highest efficiency with only 0.0176 GFLOPs, 589 MB GPU memory, and 1.00 seconds of inference 

time, making it highly appropriate for fast and resource-efficient cybersecurity deployment. 

Table 10. Computational efficiency of the AICEDRL-FDR approach including FLOPs, 

GPU memory usage, and inference time. 

Model FLOPs (G) GPU (M) Inference time (sec) 

LeNet 0.2860 3330 4.68 

CNN 0.0968 4420 4.90 

ResNet 456.7600 3783 3.78 

VGG 398.2900 4553 3.56 

NAS-Net 14.9763 3981 2.68 

AICEDRL-FDR 0.0176 589 1.00 

5. Conclusions 

In this paper, the AICEDRL-FDR method is presented for cloud-edge IoT environments to 

provide a reliable framework for proactive threat mitigation in next-generation digital systems. First, 

the AICEDRL-FDR method uses pre-processing steps, including normalization, standardization, and 

cleaning, to improve dataset quality and consistency. For FS, the mRMR method is used to reduce 

irrelevant and redundant features. Additionally, ensemble deep representation methods such as DCAE, 

FDBN, and TCN are applied to the attack detection procedure. A broad array of experimental studies 

is conducted to ensure the enhanced performance of the AICEDRL-FDR technique on the Edge-IIoT [1] 

and ToN-IoT [2] datasets. A comparison analysis of the AICEDRL-FDR technique showed superior 

accuracy of 99.31% and 99.24% across diverse evaluation measures on both datasets. Some limitations 

include challenges posed by highly dynamic, real-world cyber threats that were not represented during 

training. The model’s applicability may also be limited by a lack of detailed guidance on practical 

deployment in cloud-edge-IoT environments, as factors such as resource constraints, integration with 

legacy systems, and real-time monitoring are not fully addressed. Moreover, the model's scalability 

and ability to handle high-velocity, large-scale data streams remain unclear, which could affect its 

performance under heavy network traffic or in large, heterogeneous IoT networks. These gaps 

highlight the need for further analysis to assess robustness, optimize resource management, and ensure 

seamless real-world deployment. Future work should focus on optimizing computational overhead 

and mitigating latency for real-time attack detection. Incorporating adaptive learning mechanisms to 

handle zero-day attacks and continuously changing network behaviors is also recommended. The 

practical applicability and robustness may also be improved by computing the framework across 

diverse IoT devices and heterogeneous edge-cloud configurations. 
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