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Abstract: In the digital era, rapid developments in interconnected Internet of Things (IoT) devices
and the increasing integration of edge computing have significantly reshaped the current landscape,
allowing a large number of connected systems to manage data quickly and effectively with minimal
latency. On the other hand, cloud computing provides a flexible digital infrastructure in which data
and resources are distributed across multiple locations, enabling users to access them from numerous
industrial settings via the internet. However, the extensive interconnectedness of IoT networks,
combined with the inherently limited security of many devices, creates heightened risks that can
threaten the vital operations of hospitals, cities, and organizations. Reinforcing the security features
of IoT devices before they are used across diverse systems can help reduce the attack surface.
Conventional security systems often fail or are poorly suited to the dynamic and shared nature of cloud
environments, making them insufficient for cloud-based systems. Despite ongoing use and a surge in
complex cyberattacks, cloud platforms have tackled their inherent security challenges and
vulnerabilities in the past three years. The rapid advancement of deep learning in artificial intelligence
has brought numerous benefits for addressing industrial security concerns in the cloud. This
manuscript presents an Advancing Intelligent Cybersecurity through Ensemble Deep Representation
Learning and Feature Dimensionality Reduction (AICEDRL-FDR) technique in cloud-edge-loT
environments. The AICEDRL-FDR technique aims to provide a reliable framework for proactive
threat mitigation in next-generation digital infrastructures. The AICEDRL-FDR method uses data pre-
processing stages—cleaning, normalization, and standardization—to improve dataset consistency and
quality. The maximum relevance minimum redundancy (mRMR) technique is utilized for
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dimensionality reduction to reduce redundant and irrelevant features. Ensemble deep representation
methods, such as deep convolutional autoencoder (DCAE), fuzzy deep belief network (FDBN), and
temporal convolutional network (TCN), are applied to the attack detection procedure. A broad array
of experimental studies was conducted to ensure the AICEDRL-FDR method achieves superior
performance on the Edge-1IoT [1] and ToN-IoT [2] datasets. The comparison analysis of the
AICEDRL-FDR method showed superior accuracy of 99.31% and 99.24% across diverse evaluation
measures on the dual dataset.

Keywords: artificial intelligence; cybersecurity; internet of things; feature selection; deep learning
Mathematics Subject Classification: 68T07, 94A60

1. Introduction

The convergence of edge computing and artificial intelligence (Al) has fundamentally changed
how information is processed, managed, and used across most industries. Traditionally, the data was
sent to a central server for processing [3]. Edge computing shifts data handling closer to the source,
reducing latency and enabling instant decisions [4]. This paradigm leverages the networking
capabilities of computer resources at the network edge, where IoT devices generate a larger volume
of data. Such as approach is essential for achieving faster information processing and response times,
particularly in healthcare monitoring systems, industrial systems, and autonomous vehicles [5]. Edge
computing mitigates the problems of centralized cloud servers, decentralizes information processing,
and optimizes network resources. Al incorporation improves the ability of IoT networks in edge
computing environments [6].

The world is increasingly dependent on technology. A large amount of information is collected
and generated through the widespread adoption of technologies such as cloud computing and IoT [7].
While data is utilized to improve services and meet evolving business requirements, cyber threats
remain a key challenge. A cyber threat is generally defined as a malicious and targeted attempt by a
person or organization to breach another optimizes information system [8]. Denial-of-service (DoS),
phishing, ransomware, malware, Man-in-the-middle, Zero-day exploits, social engineering, SQL
injection, and insider threats. These cybercrimes or security incidents can affect individuals and
organizations, cause disruptions, and result in massive financial losses [9]. Cloud environments have
become increasingly significant as Al-based applications proliferate across industries such as
autonomous systems, finance, and healthcare. Because cloud ecosystems are inherently susceptible to
cybersecurity threats, this dependence creates consistency issues and increased complex security [10].

The rapid digitalization of industries and the increasing reliance on cloud and network
infrastructure have shaped how organizations secure, store, and share data [11]. While these technical
developments have enabled unparalleled scalability and efficiency, they have also introduced
significant cybersecurity vulnerabilities. Cyber-attacks are no longer limited to simple malware or
viruses; they now include complex, rapidly evolving threats [12]. Conventional security measures are
struggling to keep pace with changing attacks, requiring stronger, real-world defense devices. Al has
become a crucial component of next-generation cybersecurity solutions, offering advanced
capabilities for detecting, analyzing, and responding to attacks in real time [13]. Al-powered systems
use machine learning (ML) techniques to recognize patterns, identify anomalies, and detect previously
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unseen attacks. Unlike conventional approaches that rely on static, rule-driven methods, Al systems
continuously learn from novel information, making them more effective against developing cyber-
attacks [14]. Figure 1 illustrates the architecture of cloud-edge-IoT environments.
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Figure 1. Architecture of cloud-edge-loT environments.

This study presents a model called Advancing Intelligent Cybersecurity through Ensemble Deep
Representation Learning and Feature Dimensionality Reduction (AICEDRL-FDR) in cloud-edge-IoT
environments. The AICEDRL-FDR method wuses data pre-processing stages—cleaning,
normalization, and standardization—to improve dataset consistency and quality. The maximum
relevance minimum redundancy (mRMR) technique is utilized for dimensionality reduction to reduce
redundant and irrelevant features. Ensemble deep representation methods, such as deep convolutional
autoencoder (DCAE), fuzzy deep belief network (FDBN), and temporal convolutional network
(TCN), are applied to the attack detection procedure. A broad array of experimental studies is
conducted to ensure the AICEDRL-FDR method achieves superior performance on the Edge-11oT [1]
and ToN-IoT [2] datasets. The key contributions of the AICEDRL-FDR method are listed below.

e The AICEDRL-FDR approach performs data pre-processing, including cleaning, normalization,
and standardization, to enhance dataset quality and consistency. The process also improves data
reliability and prepares it effectively for DL-based cybersecurity modelling. This process also
contributes to more precise attack detection and overall system robustness in intelligent cybersecurity
frameworks.

e The mRMR method is utilized for efficient dimensionality reduction. The model also ensures that
only the most informative features are retained. The process also mitigates redundancy and removes
attributes from the dataset. Additionally, the model improves learning efficiency and assists in faster,
more accurate, and more reliable cybersecurity threat detection.

e Furthermore, an ensemble of deep representation learning models, namely DCAE, FDBN, and
TCN, is employed to capture spatial, fuzzy, and temporal dependencies in cybersecurity data. The
fusion model also improves the ability to learn intrinsic attack patterns and contextual relationships.
It also contributes to achieving robust, adaptive, and highly accurate attack detection across dynamic
cloud-edge-IoT environments.
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e The novelty of the AICEDRL-FDR methodology lies in the ensemble of DL techniques that
synergistically incorporate DCAE, FDBN, and TCN representations. Moreover, by integrating
mRMR-based feature optimization, it ensures the selection of the most relevant and non-redundant
features. This unique incorporation also enhances adaptability and intelligence in threat detection.
Thus, an effective model is presented for dynamic and heterogeneous cloud-edge-IoT environments.

2. Literature review on cybersecurity approaches in cloud-edge-IoT environments

Farzaan et al. [15] introduced an innovative Al-based cyber incident response system specifically
designed for cloud environments. In contrast with traditional techniques, the system uses innovative
ML and Al methods to deliver scalable, precise, and seamlessly integrated results. This system has a
significant impact on the field of Al-driven cybersecurity by demonstrating the effective integration
of cloud infrastructure and Al techniques to address crucial gaps in cyber incident handling. Awan et
al. [16] presented a new DL architecture, SecEdge, intended to improve the actual cybersecurity of
mobile [oT platforms. This framework combines transformer-driven methods to effectively handle
long-range dependencies, GNNs to model relational information, and federated learning to reduce
latency and ensure information privacy. The customized learning mechanism continuously updates
optimization parameters to counter evolving cyber-attacks. Alblehai [17] suggested an Intelligent
Cybersecurity System Utilizing Self-Attention-driven DL and Metaheuristic Optimization Algorithm
(ICSSADL-MHOA). This model is intended to enhance cybersecurity in [oT networks. At first, the
information normalization phase uses min-max normalization to improve reliability, precision, and
efficacy by organizing information into a consistent format. Moreover, the developed tuna swarm
optimization (ITSO) method is applied for the FS procedure for detecting the appropriate attributes in
the information. Dorothy et al. [13] addressed the flaws in conventional cloud attack intelligence
systems, which are often based on static rules and signature-driven detection methods that are
powerless to respond to evolving cyberattacks. These issues highlight the need for a more practical
method, leading to the improvement of a new system that integrates an Al-based method. The work
goes beyond static, rule-driven methods and proposes an Al-based approach to address deficiencies
in current systems. Chaudhary et al. [18] introduced an innovative Al-driven method for improving
cyber-attack detection and justification in cloud environments. By utilizing advanced anomaly
detection and an ML approach, the proposed system continuously examines large volumes of data to
identify and eliminate various threats dynamically. Among the main components are strong pre-
processing, training on repetitive methods, automatic response mechanisms, threat detection, and ML
method selection. Sathupadi et al. [19] addressed these limitations by proposing an edge-cloud hybrid
architecture that utilizes edge tools for anomaly detection and cloud servers for complete failure
prediction. A K-Neural Network (KNN) approach is used on edge tools to detect abnormalities in real
time, reducing the need for continuous information transmission to the cloud. While the Long Short-
Term Memory (LSTM) method in the cloud analyzes time-series data for failure prediction, it
improves maintenance schedules and operational efficiency. Alrowais et al. [20] presented a novel
Mayfly optimization (MFO) with a regularized extreme learning machine (RELM) technique, named
MFO-RELM, for cybersecurity attack classification and recognition in an loT platform. To
accomplish this, the method pre-processes real-time [oT data into a meaningful format. Moreover, this
technique performs classification and obtains pre-processed information.

Bhandari et al. [21] recommended a method for discovering malware threats, utilizing Al
techniques to address diverse and released scenarios. The novel technique enables proactive tracking
of network traffic to detect threats and malware on IoT platforms. Furthermore, the new method makes
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smart settings more aware and secure against potential upcoming attacks. Concurrent and performance
testing of the Deep Neural Network (DNN) approach used in IoT devices is conducted to validate its
applicability. Suryavanshi, Acharya, and Jadhav [22] developed a model by utilizing visual
cryptography, Quality of Service (QoS)-aware optimization, and collaborative security frameworks.
Aouedi and Piamrat [23] developed a scalable and energy-efficient solution for the Cloud-Edge-
Internet of Things (CEI) continuum in industrial environments. It utilizes Hierarchical Federated
Learning (HFL) to enable collaborative model training while conserving data locality and Spiking
Neural Networks (SNN). Ali et al. [24] improved cybersecurity in Al-driven [oT-enabled smart cities
by using advanced ML and DL methods. Xu and Xu [25] proposed a technique by employing Deep
Q-Network (DQN) for optimal resource allocation, Deep Belief Network-Long Short-Term Memory
(DBN-LSTM) technique for accurate patient health prediction, and Frog Leap Optimization (FLO) to
improve model performance. Zang et al. [26] proposed HyperEye, a real-time system, by utilizing
protocol-agnostic numerical features, protocol-specific text features, a cross-term fusion algorithm,
and Genetic Algorithm-based Density-Based Spatial Clustering of Applications with Noise (GA-
DBSCAN) optimization. Singh et al. [27] analyzed and detected botnet-based Distributed Denial of
Service (DDoS) attacks in IoT networks by employing DL techniques. It also employs IoT traffic
analysis, botnet behavior taxonomy, and comparative evaluation of DL-based detection methods.
Saravanan and Santhosh [28] presented a Trustable Block Chain and Bandwidth Sensible-based Task
Offloading (TBBS-TO) technique by employing the E-Poisson Enhanced Federated Trust (E-PEFT)
consensus algorithm, Bi-directional Clustering Algorithm based on Local Density (BCALoD), and
Multi-Agent Double Deep Q-Network (MA-DDQN) techniques. Sahi et al. [29] developed a
lightweight model by using Fog-based Context Aware Feature Extraction using BranchyNET
(FCAFE-BNET) approach. The model also utilizes early-exit Deep Neural Networks (DNNs) for
faster inference, text-to-image data conversion for automated feature learning, and dynamic resource
allocation across cloud and edge devices. Banse et al. [30] utilized Al-based evaluation, European
Cybersecurity Certification Scheme (EUCS) compliance monitoring, and agile re-certification
processes. Nagarjun and Rajkumar [31] introduced a method by utilizing DL and Blockchain (BC)
technologies. The method also used Recurrent Neural Networks (RNN) and Convolutional Neural
Networks (CNN) for multimodal feature analysis. Moreover, Quality of Service (QoS)-aware
blockchain sidechains ensure transparency, immutability, and integrity of cloud data while enhancing
real-time attack prediction. A detailed overview of DL-based attack detection is given in Table 1.

Table 1. Analysis of existing work in deep learning-based cybersecurity.

Authors Purpose Methodology Datasets Evaluations
NSL-KDD,

Farzaan etal. To present an Al-driven cyber incident ML UNSW-NB15,  Accuracy of 90%,

[15] response method and CIC-IDS- 75%, and 99%
2017 Datasets
NSL-KDD,

Awan et al. To provide a comprehensive method for UNSW-NB15,  Accuracy of

[16] improving cybersecurity in mobile IoT SecEdge, GNN and 98.8%, 98.5%,

settings CICIDS2017 and 98.7%

Datasets

Continued on next page
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Authors Purpose Methodology Datasets Evaluations
. ICSSADL- ToN-IoT and
i To develop an extremely effective i Accuracy of
Alblehai [17] . MHOA, Min—  Edge-IloT
platform intended for IoT platforms 99.37%
Max, ITSO Datasets
To present a model that delivers proactive =~ Random Forest
Dorothy et ) ] ) .
L[13] protection measures against dynamic and Isolation - Accuracy of 95%
al.
cyber-attacks Forest Model
To present an innovative Al-based method .
Chaudhary et ] ] o Multiple Accuracy of
for improving cyber-attack recognition ML approaches
al. [18] o } Datasets 98.5%
reduction in cloud environments
Sathupadi et  To present an edge-cloud hybrid platform Multiple Sensor Reduce latency by
. . . . KNN, LSTM
al. [19] for in-depth failure classification Datasets 35%
. To achieve an effective recognition of o
Alrowais et . . N-BaloT Precision of
cybersecurity attacks that are present in the MFO-RELM
al. [20] . Datasets 98.93%
IoT settings
To suggest a method for identifying
Bhandari et malware threats utilizing Al approaches to
) o DNN [0T-23 Datasets  Accuracy of 93%
al. [21] encompass diverse and distributed
scenarios
Visual
Cryptography,
Suryavanshi, ) ) ) ) QoS-Aware Accuracy,
To improve intelligent cybersecurity and L Edge-IIoT, .
Acharya, and ] ; ) Optimization, Precision, Recall,
trust in cloud-edge-IoT industrial systems . ToN-IoT
Jadhav [22] Al-Driven F-Score
Trust
Mechanisms
) . IoT Image Accuracy, Latency
Aouedi and To develop a scalable and energy-efficient ~ CEI, HFL, . . .
i Classification Reduction, Energy
Piamrat [23]  CEI model SNN .
Data Efficiency
To strengthen cybersecurity in Al-driven Real-World
. e : Accuracy,
Alietal. [24] IoT-enabled smart cities within advanced Al, ML, DL Smart City .
L Precision, Recall
communication networks Data
Accuracy,
. Makespan
Xu and Xu To enable real-time and accurate DQN, DBN- IoT Healthcare Reducti
eduction,
[25] healthcare prediction with low latency LSTM, FLO Sensing Data
Resource
Utilization
Cross-Term
. F1-Score 11.95%
o Fusion Open-World
Zang et al. To detect unknown encrypted malicious . Improvement,
) ) Algorithm, and Real-World
[26] traffic in real-time Accuracy,
GA-DBSCAN  Traffic Data B
o Precision, Recall
Optimization
Continued on next page
AIMS Mathematics Volume 10, Issue 12, 28981-29011.



28987

Authors Purpose Methodology Datasets Evaluations
) Accuracy,
Singh et al. To analyze and detect botnet-based DDoS IoT Network .
DL Detection Rate,
[27] attacks Traffic Data
F1-Score
Task Oftloading
TBBS-TO, E- . Efficiency,
Saravanan . Commercial
To enable efficient and trustable task PEFT, ] Resource
and Santhosh ) ] Blockchain o
offloading and resource allocation BCALoD, Utilization,
[28] Platform Data
MA-DDQN Consensus
Accuracy
FCAFE-BNET,
DNN, Text-to-
NSL-KDD, Accuracy,
. . . . Image .
Sahi et al. To develop a lightweight, adaptive IDS . UNSW-NBI15, Inference Time
Conversion, )
[29] model ] ToN-IoT, Reduction,
Dynamic .
ADFA-LD Detection Rate
Resource
Allocation
. . Certification
To enable continuous and harmonized CaaS, EUCS European cloud
Banse et al. . ] ] ] . . i Coverage,
cybersecurity certification using Al-driven ~ Compliance service .
[30] o ) Compliance Rate,
models Monitoring, Al  environments
Trust Level
Multimodal
Feature o
) ) ) Precision: 98.5%,
Nagarjun and To develop a robust anomaly detection Analysis,
. Cloud System Accuracy: 99.4%,
Rajkumar method for cloud-based deployments by RNN, CNN,
o ] Logs Recall: 98.3%,
[31] combining DL and BC technologies QoS-aware
. AUC: 99.2%
Blockchain
Sidechains

The existing studies encounter various limitations, namely high computational overhead, latency
issues, and scalability challenges in dynamic networks. Many methods depend on centralized training
or static rule-based detection, thus mitigating robustness against growing cyber-attacks. Lightweight
and real-time detection for resource-constrained devices remains insufficiently addressed. Also,
integration of multi-layered security, adaptive resource allocation, and trust evaluation mechanisms is
still restricted in heterogeneous environments. A research gap remains in incorporating energy-
efficient computation, low-latency anomaly detection, and collaborative Al-driven mechanisms with
secure and transparent BC frameworks for highly dynamic IoT and cloud ecosystems. Additionally,
adaptive optimization and automated feature selection for heterogeneous datasets have not been
properly explored.

3. Proposed methodology

In this article, the AICEDRL-FDR method is proposed for cloud-edge IoT environments to
provide a reliable framework for proactive threat mitigation in next-generation digital systems. To
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achieve this, the AICEDRL-FDR technique contains pre-processing, feature selection, and ensemble
methods. Figure 2 represents the entire workflow of the AICEDRL-FDR technique.
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Figure 2. Entire workflow of the AICEDRL-FDR method.
3.1. Data pre-processing models

First, the AICEDRL-FDR method uses pre-processing steps, including normalization,
standardization, and cleaning, to improve dataset quality and consistency. Data pre-processing is a
vital stage that converts raw sensor data into a suitable format for effective identification [32]. The
pre-processing procedure initiates with data normalization, transforming the data so that it has a
standard deviation of 1 and a mean of 0, ensuring that features from diverse gadgets are comparable.
The mathematical model of standardization is given in Eq (1).

Xistandardized = %' (1)
Here, p indicates the mean of feature values, ¢ signifies the SD of feature values, and x; depicts
the raw value of the feature. Normalization helps prevent features with wider ranges from
overshadowing others during learning, ensuring that every feature contributes equally to the model.
Afterward, normalization scales the data to the particular range, usually [0,1], to guarantee that
each feature is on the same scale. Standardization helps reduce bias introduced by the original scale
of the data. The equation of normalization is presented in Eq (2).

_ Xi—Xmin
Xinormalized = Xmax—¥min. (2)

Here, xpax and X, denote the maximal and minimal values of the feature, respectively.
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The next step is data cleaning, which addresses issues such as missing values and noise. Missing
values in IoT data are typically handled using mean imputation, which replaces missing values with
the feature’s mean. Mathematically, imputation is specified as in Eq (3).

Ximputed = mean(x). (3)

Here, mean(x) signifies the average of feature values. This approach upholds the integrity of the
dataset and assures that missing values do not skew the identification.

To handle data noise, a moving average smoothing method is utilized. This model reduces short-
term fluctuations and highlights longer-term trends by averaging data points within a window. The
moving average is computed in Eq (4).

1$N
Xsmoothed = NZi:l Xi. “4)

Here, N signifies the number of points in the smoothing window, and x; represents every data point
in the selected window, which is averaged to generate the smoothed value X¢;,00tneq- This approach
effectively filters out random noise, producing a clearer, more consistent signal from sensor data.

3.2. mRMR-based dimensionality reduction technique

For FS, the mRMR method is used to reduce irrelevant and redundant features [33]. This method
demonstrates excellence in balancing maximum relevance to the target variable with minimum feature
redundancy, thereby ensuring an optimal subset of informative attributes. The technique also preserves
the original feature meaning and enhances interpretability, unlike other methods, namely principal
component analysis (PCA) or mutual information. The robustness and computational efficiency of the
model make it well-suited to high-dimensional cybersecurity datasets, thereby enhancing model
accuracy and learning performance.

mRMR is a filtering technique for FS, that uses mutual information (MI) to measure
dependencies between the class variable and the features, and among the features themselves. Its goal
is to identify attributes, that maximize the information from the original dataset while using only a
small subset of it. The optimal feature subset S is gradually built, beginning with only one attribute
that has the highest MI with respect to the class variable Cmaxs,erI(f;, €). Until a predefined feature

count is reached, this model iteratively adds an attribute to the subset.

1(7-C)
fier=s LSl esl(fi; f;)l ©)

It should be noted that, in this paper, rather than utilizing the traditional mRMR as observed in
Eq (5), we apply the variation provided in Eq (6). Another approach was to transform the denominator
into an absolute connection; however, this would result in the redundancy properties being entirely
gone, as it would link a pair of features through a single unrelated feature. Ultimately, a value of 1
was added to the denominator rather than, for example, values such as 0, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7,
or 0.8, as extensive experimentation proved that it performed better than the other values. For the new
estimator, Eq (6) although it was not required. This ensured that the comparison was completed on
equivalent terms, as the main aim was to estimate how the selection of the MI estimator affects the
efficiency and reliability of mRMR. To properly investigate this, all parameters must be consistent.
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I(fi;'c)
, ff)l' (6)

1
fi€F-S L+Ezf].651(fi:

3.3. Ensemble deep representation methods

Additionally, ensemble deep representation methods such as DCAE, FDBN, and TCN are applied
to the attack detection procedure. The fusion model is chosen for its complementary strengths: the
DCAE effectively captures spatial patterns, FDBN models uncertainty with fuzzy logic, and the TCN
shows effectiveness in learning temporal dependencies in sequential data. This integration provides a
more comprehensive understanding of intrinsic attack behaviors than single-model approaches.
Unlike conventional DL techniques, the ensemble improves detection accuracy, robustness, and
adaptability in dynamic cloud-edge-IoT environments.

3.3.1. DCAE model

The DCAE utilizes deconvolutional and convolutional layers instead of fully connected layers,
as in the DAE model [34]. Because of its use of CNN attributes, DCAE could also be suitable for
image-processing applications. It achieves self-correction by isolating via a translation feature for
latent features, local connections, and parameter sharing.

In this encoding method, convolutional layers are mapped to the internal layer to serve as a
feature extractor. The concealed type of the n‘"* layer and the feature map are displayed below.

h, = o(x*WT, + b,). (7)

Here, W represents the filter, b indicates the apposite n‘" feature maps bias, o represents a
function of the activation (namely, sigmoid or ReLU), and * means a 2D convolution procedure. This
procedure was formerly used to transform the resulting features, whereas the deconvolutional layers
implement the opposite task: rebuilding the latent model and restoring it to its original state.

Yn = O'(ZnEH hy, * I/|7an + b)- (8)

The DCAE reduces reconstruction errors, thereby revealing latent representations within its
internal layers. It selects the cross-entropy (logistic) loss function, which is consistent with research
recommendations stating that systems trained with perceptive loss perform much better. The final
layer often shows reduced performance, particularly in CNNs with deconvolutional layers. The
backpropagation (BP) model, equivalent to that of classic networks, is applied to compute the error
gradient.

1 — —~
Ey = =~ Xn=1(¥n log ¥ + (1 = y) log (1 = 7,). ©)

Here, the targeted pixel value of the image is represented by J, and the reconstructed pixel value of
the image is represented by y.
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3.3.2. FDBN method

The FDBN method extends the basic perception of the processes involved in DBN learning [35].
Next, fuzzy set (FS) formulations are developed to improve the DL model. Each RBM is linked to a
few biases and weights that define the energy of the visible layer (VL) and the hidden layer (HL). The
step-by-step description of this model is clarified as follows:

Step-1: In a DBN, the inner RBMs are initialized randomly. The Bernoulli distribution is measured
for an RBM.

Step-2: The RBM is pre-trained to pre-train the DBN using the contrastive divergence learning model.
Here, the biases and weights are fuzzified.

Step-3: In the unsupervised method, the system is pre-trained utilizing the CD model.

Step-4: The RBM, linked to the linear map, is assigned to the final layer of the DBN.

Step-5: Lastly, the backpropagation model is employed to fine-tune the system. For an RBM, the
function of energy formulation is assumed as shown below:

E(v,h;W,b,¢) = —hTWv — cTv — bTh (10)
= — 2 2k Wikhjvi — Xk kv — Xj 6v;. (11)

Here, W denotes a weight, & and v are vectors representing the VL and HL, and h; and vy
represent the jth and kth units. The biases associated with HL and VL are denoted by b and c,
respectively.

For all pairs of VL and HL, the network likelihoods are set as:

p(v,h:W,b,c) = %e‘E(”’h‘W'b'C). (12)

Here, Z = Zv e~ E@RW.bo) denotes the function of crisp partition, which totals over all probable HL

and VL. The inferences employed are the conditional inference of both h given v or v provided
h.

p(hlv) =T1;p (h|v). (13)

For an individual distribution, p(h;|v), h; represents randomly generated variables. The
likelihood of h; being equivalent to 1 is defined as

p(hj = 1|v) = a(bj + W]v) (14)

Here, o(x) = represents the activation function of the sigmoidal.

1+e™*

Likewise, the conditional distribution for v assuming h is given below:

p(vlh) = Ik p (wi|h). (15)
p(vg = 1|h) = o(c, + h"Wy). (16)

The inference projected equation is given below:
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P(0u+1 = 1) = EP(ﬁu)(O_(WuT[ﬁu]) + bu) (17)

The biases and weights are set at random with real numerals, which often leads to hesitation due
to the numerous possible values.

This might delay the DBN’s overall performance. FSs are categorized by their membership
functions, which are termed grades. In an FS, if the membership grades are expressed as crisp values,
the FS is called a normal or type-1 (T1) FS. An FS “F” is expressed in the mathematical formulation
as below:

F ={(x, ur(x))|vx € X}, (18)

or
F = ke (/. (19)

While pug(x) denotes a membership grade of x for every x € X, in reality, trapezoidal and
triangular MFs are employed for perfecting the FSs. Given the uncertainty about the biases and
weights, four diverse MFs are selected for examination.

Assume “w” represents the crisp weight at random, and m;, and mg represent the left and
proper range of the MF. The membership value is denoted by u, with u € [0,1]. Therefore, W, b,
and ¢ are re-expressed as w, E, and ¢. These associations between VL and HL create a matrix.

Now, an initial RBM output is employed as the input to the following RBM, and novel weights
are acquired as the transpose of preceding layer weights. The complete training ensues, and the
weights are adjusted until the optimal weights are obtained.

E(v,,h:W,b,¢) = —hTWv — b"h — ¢Tv. (20)
Here, W, b, and é denote fuzzy weights and biases.
7 R A — l —E(v,hi;W.,b,é
p(v.h:W,b,&) = - ). 21)
While, Z = Yoh eE(hW.be) g expressed as a function of fuzzy partition, which is the summary of
each probable HL and VL vectors.

The conditional probability of HL and VL is stated as:

p(hj = 1|v) = o(b; + Wv). (22)

p(v = 1|h) = o(& + hKTW,,). (23)
Here, 6(-) represents the function of fuzzy logistic with fuzzy arguments.

P(ﬁu+1 = 1) = Eﬁ(ﬁu) (5-(WuT[79u]) + Eu) (24)
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While 6,, denotes an associated dual variable at random. Besides, the conditional probabilities
of the (u + 1)th node are evaluated for every probable integration of dual states. Figure 3 indicates
the framework of the FDBN model.

Output Layer Top Level Units

(Hiddcn Units

RBMs

Qi(‘k{cll Units

| A S ,'/);—'1 i;v J
KX et X K X
( TS PSSR 5 S S\ \
Hidden Units I‘. Il
A <4 N5 2
N e/
RBMs KX e S X CORR

\\"isihlc Units

— S N e
InputLayer { ) ( ) [ ) cccecece

Figure 3. Framework of FDBN model.

Here, the basic perception of the contrastive divergence (CD) model used to train RBMs is
described. Initially, the training vector is predetermined based on the RBM’s VL. Next, the dual states
of HLs are computed. The likelihood in Eq (14) was employed for the reconstruction procedure.
Therefore, in fuzzy weights, an alteration between dual units i and j is described as below:

Aw;; =€ (K v'hl > < v*TAM ). (25)

Here, € denotes the learning rate n + 1, and n represents the reconstruction step.

In CD training, the HL h, from v, is computed first, followed by v,;. Therefore, h, is
assessed using an inference. Nowadays, as an average probability is an inference output, v; and h;
are computed appropriately. After training the CD, typical backpropagation is employed to complete
the DBN. Now, in the learning stage, parameters such as biases and weights play a vital role.

3.3.3. TCN model

The TCN model is intended for time-series data processing [36]. Compared with conventional
CNNs, TCNs use causal convolution to ensure that the output at any time step does not depend on
future time steps, preserving the temporal sequence of the data. The receptive area of the TCN with
diverse dilation factors is also represented.
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y(®) =XiSo f (k) - x(t —d - k). (26)

Here, f depicts the convolutional kernel, x(t) signifies the sequence of input, d represents the rate
of dilation, K depicts the size of the kernel, and y(t) refers to the sequence of output.

To alleviate overfitting and improve model performance, factors such as the learning rate, model
architecture, and techniques such as activation functions, batch normalization, and dropout are often
employed. Furthermore, to safeguard the steadiness of connections in deep TCN methods, a residual
connection is presented.

Leaky ReLU (L-ReLU) is used as the activation function rather than conventional ReL.U, as it
retains a smaller slope on the negative axis, allowing a few negative values to move.

x,x > 0;

ax,x < 0. 27)

flx) = {
Here, a represents the slope for the negative input area, and x refers to the value of the input. The
“ax” part indicates that the input x is negative, and “a” refers to a smaller constant.

4. Performance assessment and metrics

In this section, the performance assessment of the AICEDRL-FDR methodology is verified under
the Edge-IloT [1] and ToN-IoT [2] datasets.

4.1. Result analysis on the edge-IloT dataset

The Edge-IloT dataset is a complete set of network event records intended for intrusion detection
and cybersecurity studies in IIoT settings. It comprises 24,000 records, uniformly distributed across
12 event types, with 2,000 records per event type. The dataset includes both normal network activity
and various cyberattack scenarios, including DDoS attacks (UDP, TCP, ICMP, and HTTP), SQL
injection, password attacks, file upload attacks, backdoor intrusions, cross-site scripting (XSS),
ransomware, and fingerprinting attempts. This balanced dataset enables practitioners and researchers
to develop, test, and benchmark security methods for identifying a broad range of malicious actions
in [IoT networks. The number of attributes is 63, but only 31 were selected.

Figure 4 presents the classifier result of the AICEDRL-FDR model on the Edge-IloT dataset.
Figure 4(a) shows the PR study, which represents maximal performance across all classes. Finally,
Figure 4(b) presents the ROC analysis, showing that skilled outcomes have higher ROC values across
various classes.
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Figure 4. Edge-IloT dataset: (a) PR curve, (b) ROC curve.

Table 2 and Figure 5 demonstrate the parameters of attack detection of the AICEDRL-FDR
methodology on the Edge-IloT dataset. Under 70%TRPHE, the AICEDRL-FDR model attains
average accur,, preciy, recal;, Fyeqsure» MCC, and Kappa 0f99.31%, 95.89%, 95.89%, 95.89%,

95.52%, and 96.19%, respectively. Moreover, on 30%TSPHE, the AICEDRL-FDR approach achieves
average accur,, preciy, recal;, Fyeqsure» MCC, and Kappa 0f 99.30%, 95.81%, 95.81%, 95.80%,

95.42%, and 96.07%, respectively.

Table 2. Attack detection of the AICEDRL-FDR model on the Edge-IloT dataset.

Class labels Accur, Preci, Recal, Fuyeasure McCC Kappa
TRPHE (70%)

Normal 99.29 94.71 96.76 95.72 95.34 96.03
DDoS-UDP 99.29 95.54 96.08 95.81 95.42 96.12
DDoS-ICMP 99.23 96.15 94.57 95.35 94.94 95.61
SQL injection 99.33 95.64 96.51 96.08 95.71 96.51
DDoS-TCP 99.30 95.87 95.66 95.77 95.39 96.12
Password 99.46 96.67 96.60 96.64 96.34 97.01
DDoS-HTTP 99.30 95.73 95.87 95.80 95.41 96.14
Uploading 99.32 96.07 95.73 95.90 95.53 96.21
Backdoor 99.51 97.13 97.00 97.07 96.80 97.32
XSS 99.41 96.16 96.65 96.41 96.09 96.72
Ransomware 99.14 95.05 94.72 94.89 94.41 95.01
Fingerprinting 99.21 95.98 94.55 95.26 94.83 95.49
Average 99.31 95.89 95.89 95.89 95.52 96.19

Continued on next page
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Class labels Accur, Preci, Recal, Freasure MccC Kappa
TSPHE (30%)
Normal 99.15 95.39 94.61 95.00 94.53 95.26
DDoS-UDP 99.31 95.47 95.80 95.64 95.26 95.97
DDoS-ICMP 99.36 96.80 95.51 96.15 95.80 96.45
SQL injection 99.42 95.65 97.00 96.32 96.01 96.55
DDoS-TCP 99.11 95.10 94.48 94.79 94.30 94.92
Password 99.40 96.18 97.22 96.69 96.37 96.87
DDoS-HTTP 99.26 95.48 95.64 95.56 95.16 95.70
Uploading 99.31 95.33 96.30 95.81 95.44 96.22
Backdoor 99.35 94.98 97.34 96.14 95.80 96.55
XSS 99.28 96.59 95.05 95.81 95.42 96.08
Ransomware 99.33 96.34 95.34 95.84 95.48 96.27
Fingerprinting 99.33 96.38 95.39 95.88 95.52 96.04
Average 99.30 95.81 95.81 95.80 95.42 96.07
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Figure 5. Average values of the AICEDRL-FDR model on the Edge-IIoT dataset.

Figure 6 displays the training (TRAN) and validation (VALD) accu,, of the AICEDRL-FDR
method on the Edge-IloT dataset across 50 epochs. Both curves gradually rise and converge slowly,
indicating that the model is successfully learning. The VALD accu,, consistently remains greater
than the TRAN accu,,, suggesting that the method is not overfitting and is simplifying well to the
hidden data. The variations in accu,, are predictable due to task complexity, but the overall upward
tendency determines the robustness and stability of the method.
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Figure 6. Accur, curve of the AICEDRL-FDR method on the Edge-IIoT dataset.

Figure 7 represents the TRAN and VALD loss of the AICEDRL-FDR model on the Edge-11oT
dataset across 50 epochs. Both curves show a steady downward trend, indicating that the method is
successfully reducing the learning error. The VALD loss remains lower than the training loss
throughout the maximum epochs, suggesting excellent generalization and no signs of overfitting. Any
variations seen are becoming increasingly stable and reliable.

Training and Validation Loss - Edge-lloT Dataset
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Figure 7. Loss curve of the AICEDRL-FDR method on the Edge-IloT dataset.

Table 3 and Figure 8 provide a comparative outcome of the AICEDRL-FDR model on the Edge-
IToT dataset. The findings underscore that the variational autoencoders (VAEs), GB Machines, SVM
Classifier, and Rule-Based IDS techniques yielded poor results. In the meantime, Autoencoder+LSTM,
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CNN-RNNs, and Bi-directional LSTM techniques achieved faster results. Additionally, the
AICEDRL-FDR method provided a higher outcome, with maximum accu,,, prec,, recal;, and

Fyeasure 0f99.31%, 95.89%, 95.89%, and 95.89%, respectively.

Table 3. Comparative analysis of the AICEDRL-FDR technique on the Edge-IloT dataset.

Edge-IloT dataset

Models Accur, Preci, Recal, Fuyreasure
VAE 91.61 91.69 91.61 91.60
GB machines 91.45 93.43 89.12 91.22
SVM classifier 91.61 91.68 91.61 91.61
Rule-based IDS 89.00 85.40 79.10 72.80
Autoencoder+LSTM 94.24 93.30 91.20 92.20
CNN-RNNs 96.00 93.21 94.95 92.89
Bi-directional LSTM 99.00 88.72 92.46 84.59
AICEDRL-FDR 99.31 95.89 95.89 95.89

Edge-lloT Dataset

Il Variational autoencoders [ Autoencoder+LSTM
1 GB Machines —31 CNN-RNNs
[ SVM Classifier I Bi-directional LSTM
@ Rule-Based IDS mmm AICEDRL-FDR
100 -
)
S 951 -
w M s
[\ 1] o — o
=2 901
]
>
85 1
80 -
75 1
70 1 MR il 1
Accuracy Precision Recall F-Measure

Figure 8. Comparative analysis of the AICEDRL-FDR method on the Edge-IloT dataset.

Table 4 and Figure 9 present the computational time (CT) evaluation of the AICEDRL-FDR
method relative to existing models under the Edge-IloT dataset. These results indicate the average
time each model takes to process and analyze the data from the Edge-11oT dataset. The CT of the
different methods was as follows: variational autoencoders (VAE), 4.28 seconds; GB Machines, 6.46
seconds; SVM Classifier, 8.47 seconds; Rule-Based IDS, 6.68 seconds; Autoencoder (AE) combined
with LSTM, 5.21 seconds; CNN-RNNs, 8.54 seconds; and Bi-directional LSTM, 6.29 seconds. The
AICEDRL-FDR model achieved the lowest CT at 2.24 seconds, illustrating its superior efficiency in
handling cybersecurity tasks in cloud-edge-IoT environments.
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Table 4. CT comparison of the AICEDRL-FDR method with existing models on the Edge-
[IoT dataset.

Edge-11oT dataset

Models CT (sec)
VAE 4.28
GB Machines 6.46
SVM Classifier 8.47
Rule-Based IDS 6.68
AE+LSTM 5.21
CNN-RNNs 8.54
Bi-directional LSTM 6.29
AICEDRL-FDR 2.24
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Figure 9. CT comparison of the AICEDRL-FDR method with existing models on the
Edge-110T dataset.

Table 5 and Figure 10 present the error assessment of the AICEDRL-FDR method relative to
existing techniques. The VAE model illustrated an accu,, of 8.39%, prec, of 8.31%, recal; of

8.39%, and Fyeqsure Of 8.40%, highlighting consistent but moderate performance. GB Machines
depicted an accu,, of 8.55%, prec, of 6.57%, recal; of 10.88%, and Fyeqsyre 0f 8.78%, with
slightly higher deviation in recall. SVM Classifier emulated VAE performance with an accu,, of
8.39%, prec, of 8.32%, recal; of 8.39%, and Fyeqsure Of 8.39%. Rule-Based IDS presented the
highest errors with an accu, of 11.00%, prec, of 14.60%, recal; of 20.90%, and Fuyeqsyre Of
27.20%, showing lower reliability. AE integrated with LSTM had moderate errors with an accu,, of
5.76%, prec, of 6.70%, recal; of 8.80%, and Fyeqsure Of 7.80%. CNN-RNNs presented an
accuracy of 4.00%.
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Table 5. Error assessment of the AICEDRL-FDR methodology compared with existing
techniques on the Edge-IloT dataset.

Edge-11oT dataset

Methodology Accur, Preci, Recal, Fuyreasure
VAE 8.39 8.31 8.39 8.40

GB Machines 8.55 6.57 10.88 8.78
SVM Classifier 8.39 8.32 8.39 8.39
Rule-Based IDS 11.00 14.60 20.90 27.20
AE+LSTM 5.76 6.70 8.80 7.80
CNN-RNNs 4.00 6.79 5.05 7.11
Bi-directional LSTM 1.00 11.28 7.54 15.41
AICEDRL-FDR 0.69 4.11 4.11 4.11
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Figure 10. Error assessment of the AICEDRL-FDR methodology compared with existing
techniques on the Edge-1loT dataset.

4.2. Result analysis on the ToN-IoT dataset

The ToN-IoT dataset is a large-scale dataset intended for cybersecurity studies in loT networks.
It includes 119,957 instances, comprising both normal and malicious actions. The dataset consists of
78,369 standard instances and several threat types, such as MiTM (336 instances), DoS (5,440
instances), DDoS (5,987 instances), password attacks (6,016 instances), injection attacks (5,867
instances), XSS (5,951 instances), ransomware (5,976 instances), and backdoor attacks (6,015
instances). This dataset provides a comprehensive source for developing and evaluating intrusion
detection methods and other security mechanisms for IoT settings. From the 42 features available,
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only 27 were selected.

Figure 11 presents the classifier outcomes of the AICEDRL-FDR method on the ToN-IoT dataset.
Figure 11(a) illustrates the PR investigation, showing improved performance across each class. Figure
11(b) shows the ROC analysis, demonstrating efficient performance with higher ROC values across

various classes.
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Figure 11. ToN-IoT dataset: (a) PR curve, (b) ROC curve.

Table 6 and Figure 12 portray the attack detection parameters of the AICEDRL-FDR approach
on the ToN-IoT dataset. Under 70%TRPHE, the AICEDRL-FDR model achieves average accur,,
preciy,, recal;,Fyeasure, MCC, and Kappa of 99.18%, 91.97%, 85.31%, 87.16%, 87.25%, and
87.90%, respectively. Moreover, on 30%TSPHE, the suggested AICEDRL-FDR model achieves
average accur,, precin, recal;, Fyeqsyre» MCC, and Kappa 0f'99.24%, 91.31%, 87.22%, 88.74%,

88.43%, and 89.07%, respectively.

Table 6. Attack detection of the AICEDRL-FDR model on the ToN-IoT dataset.

Class labels Accur, Preci, Recal; Fureasure McC Kappa
TRPHE (70%)

Normal 98.29 98.27 99.12 98.70 96.23 96.88
MiTM 99.76 81.18 27.49 41.07 47.16 47.82
DoS 99.33 93.49 91.40 92.43 92.09 92.62
DDoS 99.27 92.80 92.65 92.73 92.34 93.10
Password 99.09 92.01 89.74 90.86 90.39 91.17
Injection 99.18 93.34 89.52 91.39 90.98 91.58
XSS 99.23 92.39 92.12 92.25 91.85 92.44
Ransomware 99.26 92.69 92.31 92.50 92.11 92.88
Backdoor 99.23 91.59 93.39 92.48 92.08 92.63
Average 99.18 91.97 85.31 87.16 87.25 87.90
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Class labels Accur, Preci, Recal, Freasure MccC Kappa
TSPHE (30%)

Normal 98.32 98.45 99.01 98.73 96.28 96.87
MiTM 99.82 72.34 40.00 51.52 53.72 54.25
DoS 99.37 93.13 93.24 93.19 92.85 93.57
DDoS 99.34 93.31 92.99 93.15 92.81 93.45
Password 99.15 92.56 90.14 91.34 90.90 91.57
Injection 99.23 93.71 90.31 91.97 91.59 92.34
XSS 99.24 92.47 91.95 92.21 91.81 92.48
Ransomware 99.36 93.96 93.28 93.62 93.29 93.96
Backdoor 99.31 91.85 94.11 92.96 92.61 93.15
Average 99.24 91.31 87.22 88.74 88.43 89.07
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Figure 12. Average values of the AICEDRL-FDR model on the ToN-IoT dataset.

Figure 13 displays the TRAN and VALD accur, of the AICEDRL-FDR approach on the ToN-
IoT dataset across 50 epochs. Both curves progressively rise and slowly converge, which illustrates
that the method is successfully learning. The VALD accur, remains marginally better than the
TRAN accur,, suggesting that the technique is not overfitting and is simplifying well to the
undetected data. The variations in accur, are assumed to be due to task complexity; nevertheless,
the overall upward trend indicates strong performance and stability of the methodology.
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Figure 13. Accur, curve of the AICEDRL-FDR technique on the ToN-IoT dataset.

Figure 14 illustrates the TRAN and VALD loss of the AICEDRL-FDR method on the ToN-IoT
dataset across 50 epochs. Both curves show a reliable downward trend, indicating that the technique
is successfully reducing learning errors. The VALD loss remains worse than the training loss
throughout most epochs, suggesting strong generalization and no signs of overfitting. Any variations
that are detected are becoming progressively steady and reliable.

Training and Validation Loss - ToN-loT Dataset
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Figure 14. Loss curve of the AICEDRL-FDR technique on the ToN-IoT dataset.
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Table 7 and Figure 15 illustrate the comparison between the AICEDRL-FDR technique on the
ToN-IoT dataset with recent methodologies [37,38]. The empirical results show that the AICEDRL-
FDR model has improved performance. According to accury, the AICEDRL-FDR model achieved
the highest accur, at 99.24%. In contrast, the Feedforward NN, XGBoost, LR, Autoencoder Only,
LSTM+CNN, Adversarial DBN-LSTM, and GA in SDN techniques achieved an accur, of 99.41%,

91.36%, 68.11%, 87.40%, 93.14%, 91.23%, and 80.00%, respectively.

Table 7. Comparative analysis of the AICEDRL-FDR technique on the ToN-IoT dataset.

ToN-IoT dataset

Methods Accur, Preci, Recal, Fuyreasure
Feedforward NN 90.41 82.89 85.46 80.09
XGBoost 91.36 90.45 81.35 81.35
LR Model 68.11 68.13 68.11 68.10
Autoencoder Only 87.40 88.90 77.20 88.00
LSTM+CNN 93.14 90.20 81.90 83.00
Adversarial DBN-LSTM 91.23 83.75 85.21 83.75
GA in SDN 80.00 86.01 84.98 84.77
AICEDRL-FDR 99.24 91.31 87.22 88.74

ToN-loT Dataset

[ Feedforward NN I LSTM+CNN
mm XGBoost B Adversarial DBN-LSTM
@ LR Model ™ GAin SDN
) B Autoencoder Only == AICEDRL-FDR
100 -
£ g0
m p
Q .
E —
© ]
> 80- _
70 -
60 -

Accuracy Precision Recall F-Measure

Figure 15. Comparative analysis of the AICEDRL-FDR technique on the ToN-IoT dataset.

Finally, the AICEDRL-FDR method achieved a greater Fyoqsure Of 88.74%. In contrast, the
Feedforward NN, XGBoost, LR, Autoencoder Only, LSTM+CNN, Adversarial DBN-LSTM, and GA
in SDN models have achieved Fyoqsure Values of 90.09%, 91.35%, 68.10%, 88.00%, 93.00%,
83.75%, and 84.77%, respectively. These results confirmed that the proposed model outperforms
existing approaches.
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Table 8 and Figure 16 present the computational time (CT) evaluation of the AICEDRL-FDR
method relative to existing models. The Feedforward NN needed a CT of 6.34 seconds, XGBoost
required 7.30 seconds, LR Model 7.33 required seconds, AE Only required 4.52 seconds, LSTM
incorporated with CNN required 3.17 seconds, Adversarial DBN-LSTM required 3.81 seconds, GA
in SDN required 5.75 seconds, and the AICEDRL-FDR model achieved the lowest CT of 1.08 seconds,
highlighting its superior efficiency in handling cybersecurity tasks in cloud-edge-loT environments.

Table 8. CT evaluation of the AICEDRL-FDR method compared with existing models on
the ToN-IoT dataset.

ToN-IoT dataset

Technique CT (sec)
Feedforward NN 6.34
XGBoost 7.30
LR Model 7.33
AE Only 4.52
LSTM+CNN 3.17
Adversarial DBN-LSTM 3.81
GA in SDN 5.75
AICEDRL-FDR 1.08
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Figure 16. CT evaluation of the AICEDRL-FDR method compared with existing models
on the ToN-IoT dataset.

Table 9 and Figure 17 present the error assessment of the AICEDRL-FDR methodology relative
to existing techniques. The Feedforward NN illustrated moderate deviations with slightly higher error
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in recall, while XGBoost depicted more balanced performance across metrics. The LR Model had the
highest deviations with an accu, of 31.89% and Fyeqsure Of 31.90%, indicating lower reliability.
AE Only attained moderate deviations with an Fy.qgure Of 12.00%, whereas LSTM combined with
CNN had relatively lower errors but modest overall performance. Adversarial DBN-LSTM depicted
higher deviations in prec, at 16.25% and recal; at 14.79%. GA in SDN attained improved
performance with Fyeqsure Of 15.23%. The AICEDRL-FDR model showed minimal overall
deviation with an accu,, of 0.76% and Fyeqsyre Of 11.26%, demonstrating robust reliability and
efficiency.

Table 9. Error assessment of the AICEDRL-FDR methodology with existing techniques
on the ToN-IoT dataset.

ToN-IoT dataset

Methodology Accur, Preci, Recal, Fuyreasure
Feedforward NN 9.59 7.11 12.54 9.91
XGBoost 8.64 8.55 8.65 8.65

LR Model 31.89 31.87 31.89 31.90
Autoencoder Only 12.60 11.10 12.80 12.00
LSTM-+CNN 6.86 5.80 8.10 7.00
Adversarial DBN-LSTM 8.77 16.25 14.79 16.25
GA in SDN 20.00 13.99 15.02 15.23
AICEDRL-FDR 0.76 8.69 12.78 11.26
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Figure 17. Error assessment of the AICEDRL-FDR methodology compared with existing
techniques on the ToN-IoT dataset.
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Table 10 presents the computational efficiency of the AICEDRL-FDR approach [39]. LeNet
required 0.2860 GFLOPs, 3330 MB of GPU memory, and 4.68 seconds for inference, while CNN
used 0.0968 GFLOPs, 4420 MB, and 4.90 seconds. ResNet and VGG required 456.7600 GFLOPs and
398.2900 GFLOPs, 3783 MB and 4553 MB of GPU memory, and inference times of 3.78 and 3.56
seconds, respectively. Moreover, NAS-Net achieved improved efficiency with 14.9763 GFLOPs,
3981 MB GPU usage, and 2.68 second of inference time. The AICEDRL-FDR model presented the
highest efficiency with only 0.0176 GFLOPs, 589 MB GPU memory, and 1.00 seconds of inference
time, making it highly appropriate for fast and resource-efficient cybersecurity deployment.

Table 10. Computational efficiency of the AICEDRL-FDR approach including FLOPs,
GPU memory usage, and inference time.

Model FLOPs (G) GPU (M) Inference time (sec)
LeNet 0.2860 3330 4.68
CNN 0.0968 4420 4.90
ResNet 456.7600 3783 3.78
VGG 398.2900 4553 3.56
NAS-Net 14.9763 3981 2.68
AICEDRL-FDR 0.0176 589 1.00

5. Conclusions

In this paper, the AICEDRL-FDR method is presented for cloud-edge IoT environments to
provide a reliable framework for proactive threat mitigation in next-generation digital systems. First,
the AICEDRL-FDR method uses pre-processing steps, including normalization, standardization, and
cleaning, to improve dataset quality and consistency. For FS, the mRMR method is used to reduce
irrelevant and redundant features. Additionally, ensemble deep representation methods such as DCAE,
FDBN, and TCN are applied to the attack detection procedure. A broad array of experimental studies
is conducted to ensure the enhanced performance of the AICEDRL-FDR technique on the Edge-11oT [1]
and ToN-IoT [2] datasets. A comparison analysis of the AICEDRL-FDR technique showed superior
accuracy of 99.31% and 99.24% across diverse evaluation measures on both datasets. Some limitations
include challenges posed by highly dynamic, real-world cyber threats that were not represented during
training. The model’s applicability may also be limited by a lack of detailed guidance on practical
deployment in cloud-edge-1oT environments, as factors such as resource constraints, integration with
legacy systems, and real-time monitoring are not fully addressed. Moreover, the model's scalability
and ability to handle high-velocity, large-scale data streams remain unclear, which could affect its
performance under heavy network traffic or in large, heterogeneous IoT networks. These gaps
highlight the need for further analysis to assess robustness, optimize resource management, and ensure
seamless real-world deployment. Future work should focus on optimizing computational overhead
and mitigating latency for real-time attack detection. Incorporating adaptive learning mechanisms to
handle zero-day attacks and continuously changing network behaviors is also recommended. The
practical applicability and robustness may also be improved by computing the framework across
diverse IoT devices and heterogeneous edge-cloud configurations.
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