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Abstract: In this paper, we presented a comprehensive mathematical analysis of a chemostat model
involving two mutualistic bacterial species competing for nutrients, with the inclusion of leachate
recycling. We bridged theoretical ecology and bioreactor design, offering insights into microbial
coexistence and system stability. Moreover, we addressed practical challenges in waste-water treatment
and bioreactor design by optimizing microbial mutualism and nutrient recycling. The novelty of this
study lies in integrating mutualistic interactions, leachate recycling, and optimal control of dilution
rates-features seldom combined in chemostat models. We discussed a chemostat model involving two
bacterial species that were mutualism competing for two essential nutrients with leachate recycling for
one of them. The model was reduced from five dimensions to three, and several equilibrium points were
identified: E0 (extinction of both species), E1 (extinction of species 2), E2 (extinction of species 1), and
E12 (coexistence of both species). The local stability of these equilibria was analyzed. We proved that
the coexistence of both species is conditional to some assumptions on the growth rates of species. The
coexistence of the two competing bacteria was demonstrated using the theory of uniform persistence
applied to the three-variable reduced system. The sensitivity analysis provided valuable insights into
the influence of key parameters (e.g., dilution rate and mutualism coefficients) on system dynamics.
The optimal control section extends the model’s applicability to bioreactor optimization, which is a
significant contribution to the field. Several simulations effectively corroborate theoretical findings,
illustrating transitions between equilibria and the impact of parameter variations.
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1. Introduction

The study of chemostat models has been a cornerstone in mathematical biology, providing insights
into microbial competition, coexistence, and mutualism in controlled environments. In this paper,
we build upon a rich body of literature while introducing novel elements such as leachate recycling
and mutualistic interactions between bacterial species. Below is a review of key themes and
references relevant to this work: The foundational theory of chemostats was established by Smith
and Waltman [1] in the theory of the chemostat, which explores the dynamics of microbial competition
under constant nutrient supply and dilution. This work laid the groundwork for analyzing steady states,
stability, and competitive exclusion. In [2], the authors extend this framework to include mutualistic
interactions, adding complexity to the classic competitive exclusion principle. Mutualistic interactions
in chemostats have been studied less extensively than competition or predation. The authors draw
inspiration from models like those in [3], which analyze microbial food webs in anaerobic digestion,
and in [4], which examine bacterial competition in the presence of viruses. These studies highlight how
interspecies interactions (e.g., cross-feeding) can stabilize coexistence, a theme central to this paper.

Symbiosis refers to the close association between organisms, with mutualism being a specific form
where both species benefit from the interaction [5–7]. Syntrophic interactions, a type of mutualism
where at least one organism can live independently, have been extensively examined in chemostat
environments [8–10]. Similar well-studied examples is syntrophy can be found in [11–13]. More
recent investigations in this area include studies presented in [14–16]. Mutualistic interactions are
widespread in nature, such as between plants and seed dispersers [17] or in metabolic cross-feeding,
where one bacterium consumes metabolites produced by another [18]. In this study, we model, analyze,
and optimize a chemostat system involving two bacteria engaged in metabolic cross-feeding. Our
framework captures a fundamental ecological loop, applicable to various systems, including: Detritus
recycling by bacteria into nutrients [19], and phytoplankton producing oxygen for bacteria, which in
turn supply CO2 for phytoplankton growth [20]. This generalized structure enables broader ecological
and biotechnological applications. The inclusion of leachate recycling is a novel aspect of this work,
motivated by applications in waste treatment and bioremediation. Bisi et al. [21] and Laraj et al. [22]
provided mathematical frameworks for leachate recirculation in anaerobic systems, demonstrating its
role in enhancing nutrient availability and system stability. In this paper, we adapt these ideas to a
mutualistic chemostat, showing how recycling influences equilibrium outcomes. We employ tools from
dynamical systems theory, such as Lyapunov functions and uniform persistence, to prove coexistence.
These methods are well-documented in LaSalle [23] and Smith and Waltman [1]. The stability analysis
of equilibria (e.g., E0, E12) aligns with classical results but extends them to mutualistic systems
with recycled nutrients. The optimal control section leverages Pontryagin’s Maximum Principle [24]
and numerical methods from Lenhart and Workman [25]. In recent years, optimal control methods
have been widely applied to complex biological and epidemiological models to balance competing
objectives such as disease mitigation and resource allocation. For instance, fractional-order modeling
and optimal control approaches were effectively employed in addressing behavioral dynamics in online
game addiction based on real data [26]. Similarly, mathematical modeling of infectious diseases,
including the competitive transmission of Omicron and Delta COVID-19 strains [27], and the control
of mutated Delta strain with imperfect vaccination [28], have utilized optimal control frameworks
to capture intervention strategies and system dynamics. Other applications of optimal control to
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chemostats (e.g., Fleming and Rishel, [29]) typically focus on single-species systems or predator-prey
dynamics. Our innovation lies in optimizing dilution rates for mutualistic species, balancing biomass
production and nutrient costs. The sensitivity analysis in the paper echoes techniques used in [3],
identifying critical parameters like dilution rates and mutualism coefficients. Numerical simulations
validate theoretical predictions, an approach common in modern studies (e.g., [4], on viral dynamics).
Sensitivity analysis is performed to understand how the model’s behavior changes with variations in
the parameters, which is crucial for identifying which parameters have the most significant impact on
the system’s dynamics, particularly the equilibrium points and their stability.

We discuss a chemostat model with two bacterial species exhibiting mutualistic competition for
two nutrients, including leachate recycling for only one substrate. We bridge theoretical ecology and
bioreactor design, offering insights into microbial coexistence and system stability. The work provides
clear theoretical derivations and numerical validations. The paper is structured into the following
sections, each addressing aspects of the chemostat model for mutualistic bacterial species with
nutrient recycling. The article moves from theoretical analysis to numerical validation and practical
applications. In Section 1, we provided background on chemostat models and their significance in
microbial competition and mutualism, reviewed relevant literature, and identified gaps addressed.
We combined novel elements like leachate recycling and mutualistic interactions. In Section 2, we
described the chemostat model with two bacterial species competing for nutrients. We presented the
system of differential equations and assumptions about growth rates and interactions, simplified the
model through variable transformations, and proved the existence, non-negativity, and boundedness
of solutions. We identified equilibrium points and their biological interpretations and provided
lemmas and assumptions for further analysis. In Section 2.1, we analyzed the stability of equilibrium
points (E0, E1, E2, E12) using Jacobian matrices and eigenvalue analysis. We stated conditions
for stability/instability of each equilibrium. In Section 3, by applying the principle of uniform
persistence to the three-variable reduced system, we showed that the two competing bacteria can
coexist. In Section 4, we presented MATLAB simulations to validate theoretical findings, including
figures showing nutrient and biomass dynamics, phase portraits, and transitions between equilibria. In
Section 5, we examined how parameter variations (e.g., dilution rate and mutualism coefficients) affect
system behavior. We provided sensitivity coefficients and graphical representations of equilibrium
responses. In Section 6, we introduced the optimal control problem with the dilution rate as a
control variable, defined the objective functional balancing biomass production and nutrient cost,
derived necessary conditions for optimality using the Hamiltonian and adjoint system, explained the
characterization of the optimal control, described the forward-backward sweep method for solving the
optimal control problem and provided a pseudocode for the algorithm and implementation details. In
Section 7, we summarized key findings, including stability and coexistence conditions. We discussed
implications for bioreactor design and suggested future research directions.

We introduce several key advancements over the literature, particularly in relation to the
foundational work of Smith and Waltman [1] and studies on mutualistic interactions and leachate
recycling [14, 21, 22]:

• We formulate a novel chemostat model that integrates two mutualistic bacterial species competing
for two distinct essential nutrients, coupled with a leachate recycling mechanism for one substrate,
extending classical chemostat frameworks.

• Unlike the researchers in [1] who focused on microbial competition without mutualism or
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recycling, we capture mutualistic cross-feeding and nutrient recycling simultaneously with our
model, providing richer ecological insights.

• Building on [14] where leachate recycling effects on bacteria with one-way mutualism was
investigated, we generalize to mutualistic interactions with bidirectional nutrient exchanges and
include optimal control of dilution rates.

• While the researchers in [21,22] analyzed leachate recirculation in anaerobic digestion, we apply
similar concepts innovatively within a bacterial mutualism context and extend the analysis to
stability, persistence, sensitivity, and optimal control for bioreactor optimization.

• We rigorously prove coexistence via uniform persistence theory for the reduced system and
demonstrate that time-varying dilution rates-derived through Pontryagin’s Maximum Principle-
significantly enhance biomass production and resource efficiency compared to constant dilution.

These contributions collectively bridge microbial ecology and bioprocess control, offering a
comprehensive theoretical and computational framework to guide the management of mutualistic
bacterial systems with nutrient recycling.

2. Mathematical model

Consider a chemostat (bioreactor, Figure 1) to which two limiting nutriments are continuously
added; one is present in two forms (soluble and insoluble nutriment; Nin

0 and Nin
1 ), while culture

liquid (N0,N1,N2,B1,B2) is continuously removed at the same flow rate, D [3]. With general bacterial
growth rates and metabolite synthesis that is directly proportional to the bacterial growth, we put forth
a mathematical model of two bacteria growing and exchanging nutrients in a chemostat extending the
one given in [30]. Following model analysis, conditions are provided in terms of the growth rates and
the dilution rate to ascertain the existence and global stability of the equilibria.

N0,N1,N2 B1,B2

Nin
0 ,Nin

1 ,Nin
2 N0,N1,N2,B1,B2

Figure 1. A chemostat is a continuous stirring mechanism (bioreactor) to which two limiting
nutriments are continuously added; one is present in two forms (soluble and insoluble
nutriment; Nin

0 and Nin
1 ) is continuously added, while culture liquid (N0,N1,N2,B1,B2) and

continuously removed at the same flow rate, D.

The model that we propose hereafter is inspired from a previous model proposed in [30] by adding
the influence of leachate recirculation as it is applied in [21,22] with generalized growth rates for both
species. Let N0(t), N1(t), N2(t), B1(t), and B2(t) stand for the concentrations of insoluble nutriment,
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soluble nutriment, bacteria 1, and bacteria 2 inside the chemostat at time t, respectively.



Ṅ0 = D(Nin
0 −N0)−δuN0,

Ṅ1 = D(Nin
1 −N1)+δuN0−

f1(N1)

Y1
B1 +β2 f2(N2)B2,

Ṅ2 = D(Nin
2 −N2)−

f2(N2)

Y2
B2 +β1 f1(N1)B1,

Ḃ1 = f1(N1)B1−DB1,

Ḃ2 = f2(N2)B2−DB2.

(2.1)

Model (2.1) describes a controlled, continuous-flow bioreactor (chemostat) inhabited by two species of
bacteria that engage in a mutualistic relationship through a process known as metabolic cross-feeding
(Figure 1). Furthermore, the system includes a leachate recycling mechanism, a common practice
in waste treatment processes like anaerobic digestion, to enhance efficiency. We provide a detailed
breakdown of the biological components and processes represented by the variables and equations in
model (2.1). In fact, the model tracks the concentrations of five components over time: N0(t) describes
the concentration of an insoluble nutrient (e.g., complex organic matter, solid waste). Bacteria cannot
directly consume this; it must first be broken down. N1(t) describes the concentration of a soluble
nutrient that is essential for the growth of bacteria 1. N2(t) describes the concentration of a different
soluble nutrient that is essential for the growth of bacteria 2. B1(t) describes the biomass concentration
of bacterial species 1, while B2(t) describes the biomass concentration of bacterial species 2. The input
concentrations Nin

0 ,Nin
1 ,Nin

2 are the constant levels of these nutrients in the fresh medium being fed into
the chemostat. The system of differential equations (2.1) describes how these five components change
over time due to various biological and physical processes (Figure 2).

• D(Nin
i −Ni), i = 1,2,3 describe the chemostat “wash-in/wash-out” terms of nutriments Ni, i =

1,2,3. Nutrients enter at concentrations Nin
i and are washed out at the current concentration Ni.

• The term δuN0 represents the hydrolysis or liquefaction of the insoluble nutrient into a soluble
form. The parameter δu is the rate constant for this process. This is the first step in the leachate
recycling concept, where complex, solid matter is broken down into a bioavailable form, which
represents also the soluble product generated from the breakdown of the insoluble nutrient N0. It
directly feeds the pool of N1.

• fi(Ni)/YiBi, i= 1,2 describes the consumption of nutriment Ni by bacteria Bi. Bacteria i consumes
Ni for growth. The function fi(Ni) is the growth rate of Bi (e.g., Monod kinetics), Yi is the yield
coefficient (mass of biomass produced per mass of substrate consumed), and this term quantifies
the uptake of Ni to support Bi’s growth.

• βi fi(Ni)Bi is the mutualistic input from bacteria B j for i, j = 1,2 and i 6= j. This is the core of the
mutualism. As Bacteria i grows (at rate fi(Ni)), it produces N j as a metabolic byproduct at a rate
βi. This cross-feeding directly benefits bacteria j by supplementing its primary nutrient source.

• Cells are physically removed from the chemostat at the dilution rate D. For a species to survive,
its growth rate fi(Ni) must exceed the dilution rate D; otherwise, it will be washed out.
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N0 B2

N1 N2

B1

δuN0 β 2
f 2(

N2)
B 2

f2 (N
2 )B

2

f1 (N
1 )B

1

β 1
f 1(

N1)
B 1

DNin
0

DNin
1

DNin
2

DN1

DN0 DB2

DB1

DN2

Figure 2. Competition of two species in a chemostat. Circles describe the compartments
N0,N1,N2,B1, and B2 and the arrows (and labels) correspond to rates of transition between
them [3, 31].

Model (2.1) combines three crucial ecological concepts:

(1) Competition for space/resources (implicit): Both species compete indirectly because they share
the same physical space (the chemostat) and are subject to the same wash-out rate D. In a classic
chemostat without mutualism, this often leads to the competitive exclusion principle, where only
one species survives.

(2) Obligate mutualism (syntrophy): The two species have an obligate mutualistic relationship. Each
species produces an essential nutrient that the other one needs. This cross-feeding creates a positive
feedback loop: more B1 leads to more N2, which enables B2 to grow better, which in turn produces
more N1, further helping B1. This interaction can stabilize the system and enables coexistence that
would be impossible under pure competition.

(3) Nutrient recycling (leachate recycling): The model incorporates a form of nutrient recycling. The
insoluble nutrient N0 is not wasted but is continuously broken down (δuN0) and fed back into the
soluble nutrient pools (N1 and indirectly N2), making the system more efficient and robust. This
is highly relevant to environmental processes like decomposition in soils or anaerobic digestion in
landfills, where complex waste is broken down by a microbial community.

To conclude, the biological background of model (2.1) is a sophisticated representation of a microbial
ecosystem where two bacterial species not only compete for survival in a flowing environment but
also depend on each other for essential nutrients, all within a system that recycles complex resources
to sustain the community. This makes it a powerful framework for understanding and optimizing
processes in wastewater treatment, bioremediation, and microbial ecology.
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Model (2.1) is simplified, simplifying the analysis while retaining biological relevance. By making
the following change of variable, we obtain a more simplified model. Let n0 = N0, n1 = N1, n2 = N2,

nin
0 = Nin

0 , nin
1 = Nin

1 , nin
2 = Nin

2 , b1 =
B1

Y1
, b2 =

B2

Y2
, η1 = Y1β1, and η2 = Y2β2. Then, the model takes

the form 
ṅ0 = D(nin

0 −n0)−δ un0,
ṅ1 = D(nin

1 −n1)+δ un0− f1(n1)b1 +η2 f2(n2)b2,
ṅ2 = D(nin

2 −n2)− f2(n2)b2 +η1 f1(n1)b1,

ḃ1 = ( f1(n1)−D)b1,

ḃ2 = ( f2(n2)−D)b2.

(2.2)

The growth rates f1 and f2 are assumed to be non-negative C1 functions such that f1(0) = f2(0) = 0.
For the rest of the paper, assume that the growth rates f1 and f2 satisfy the following assumption:

Assumption 1. • f1 and f2 are increasing functions, satisfying f1(0) = f2(0) = 0.
• 0 < η1,η2 < 1.

Equilibrium points are systematically identified and analyzed for local stability using Jacobian
matrices and eigenvalue analysis. The use of Lyapunov functions and uniform persistence theory
to demonstrate global stability is mathematically sound. Incorporation of leachate recycling and
mutualistic interactions adds originality to the classic chemostat framework. The optimal control
section extends the model’s applicability to bioreactor optimization. MATLAB simulations effectively
corroborate theoretical findings, illustrating transitions between equilibria and the impact of parameter
variations. Sensitivity analysis provides practical insights into parameter influences on system
dynamics.

We start by giving some technical results, an attractive set and the steady states of system (2.2).
Model (2.2) of the chemostat is a dynamical system defined for the non-negative cone, for which we
recall some fundamental properties (see for instance [1]).

Proposition 1. One has

(1) Solutions of system (2.2) are defined for any positive time and stay non-negative and bounded.

(2) The set Σ =
{
(no,n1,n2,b1,b2) ∈ R5

+ | n0 +n1 +n2 +(1−η1)b1 +(1−η2)b2 = nin
0 +nin

1 +nin
2
}

is
a positively invariant attractor of any solution of the system (2.2) in the non-negative cone.

Proof. (1) The invariance of R5
+ is guaranteed by the following facts: bi(t) = 0⇒ ḃi(t) = 0 for i= 1,2,

n0(t) = 0⇒ ṅ0(t) = Dnin
0 > 0, n1(t) = 0⇒ ṅ1(t) = δun0 +Dnin

1 +η2 f2(n2)b2 > 0, and n2(t) =
0⇒ ṅ2(t) = Dnin

2 +η1 f1(n1)b1 > 0.
Consider the variable T (t) = n0(t)+n1(t)+n2(t)+(1−η1)b1(t)+(1−η2)b2(t)−nin

0 −nin
1 −nin

2 .
If one adds all equations of system (2.2), one obtains the single equation:

Ṫ (t) =−DT (t), (2.3)

from which one deduces

n0(t)+n1(t)+n2(t)+(1−η1)b1(t)+(1−η2)b2(t) = nin
0 +nin

1 +nin
2 +T0e−Dt
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with
T0 = n0(0)+n1(0)+n2(0)+(1−η1)b1(0)+(1−η2)b2(0)−nin

0 −nin
1 −nin

2 .

Since each term of the sum is non-negative, we deduce that the solution is bounded.

(2) It is a direct consequence of Eq (2.3).

Lemma 1. n∗0 =
Dnin

0
D+δu

∈ (0,nin
0 ) is the unique solution of the equation

D(nin
0 −n0)−δun0 = 0 . (2.4)

Assumption 2. f1(nin
0 +nin

1 +nin
2 −n∗0)> D.

Lemma 2. If the function f1 : R+ → R+ satisfies Assumptions 1 and 2, then there exists a unique
n∗1 ∈ (0,nin

0 +nin
1 +nin

2 −n∗0), satisfying
f1(n∗1) = D . (2.5)

Proof. Let g1(n1) = f1(n1)−D. We obtain g1(0) =−D < 0, g1(nin
0 +nin

2 +nin
2 −n∗0) = f1(nin

0 +nin
2 +

nin
2 − n∗0)−D > 0 according to Assumption 2. Furthermore, g1 is a continuous increasing function

according to Assumption 1. Then there exists a unique n∗1 ∈ (0,nin
0 +nin

1 +nin
2 −n∗0), such that g1(n∗1) =

0.

Assumption 3. f2(nin
0 +nin

1 +nin
2 −n∗0)> D.

Lemma 3. If the function f2 : R+ → R+ satisfies Assumptions 1 and 3, then there exists a unique
n∗2 ∈ (0,nin

0 +nin
1 +nin

2 −n∗0), satisfying
f2(n∗2) = D . (2.6)

Proof. Let g2(n2) = f2(n2)−D. We obtain g2(0) = −D < 0, g2(nin
0 + nin

2 + nin
2 − n∗0) = f2(nin

0 +
nin

2 + nin
2 − n∗0)−D > 0 according to Assumption 3. Furthermore, g2 is a continuous increasing

function according to Assumption 1. Then there exists a unique n∗2 ∈ (0,nin
0 + nin

1 + nin
2 − n∗0), such

that g2(n∗2) = 0.

Let us define b̄1 = nin
0 +nin

1 −n∗0−n∗1, n̄2 = nin
2 +η1b̄1, b̃2 = nin

2 −n∗2, ñ1 = nin
0 +nin

1 −n∗0 +η2(nin
2 −

n∗2), b∗1 =
nin

0 +nin
1 +η2nin

2 − (n∗0 +n∗1 +η2n∗2)
(1−η1η2)

and b∗2 =
η1nin

0 +η1nin
1 +nin

2 − (η1n∗0 +η1n∗1 +n∗2)
(1−η1η2)

.

Therefore, we define the four the equilibrium points of system (2.2) on Σ as follows:

E0 =
(
n∗0,n

in
1 +nin

2 −n∗0,n
in
2 ,0,0

)
, E1 =

(
n∗0,n

∗
1, n̄2, b̄1,0

)
,E2 =

(
n∗0, ñ1,n∗2,0, b̃2

)
,E12 =

(
n∗0,n

∗
1,n
∗
2,b
∗
1,b
∗
2
)
.

Note that E0 reflects the extinction of both species, E1 reflects the extinction of the second species
while the first species is present, and E2 reflects the extinction of the first species while the second
species is present. Finally, E12 reflects the coexistence of both species. Assumptions 1 (A1) and 3
ensure that both species can survive in isolation. Assumption 1 (A2) ensures the interaction terms do
not destabilize the system.
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2.1. Local stability analysis

Theorem 1. (1) The trivial equilibrium point E0 exists always. E0 is stable if f1(nin
0 + nin

1 − n∗0) < D
and f2(nin

2 )< D. It is unstable if max( f1(nin
0 +nin

1 −n∗0), f2(nin
2 ))> D.

(2) E1 exists if f1(nin
0 +nin

1 −n∗0)> D. E1 is stable if f2(n̄2)< D and it is unstable if f2(n̄2)> D.

(3) E2 exists if f2(nin
0 +nin

1 +nin
2 −n∗0)> D. E2 is stable if f1(n̄1)< D and it is unstable if f1(n̄1)> D.

(4) E12 exists and is unique if f1(nin
0 +nin

1 +nin
2 −n∗0)> D and f2(nin

0 +nin
1 +nin

2 −n∗0)> D. If it exists,
E12 is always locally asymptotically stable.

E0 is globally stable only if both species cannot survive ( f1(·) < D) and ( f2(·) < D). E1 and E2
are not globally stable if the other species can invade ( f1(·)< D) or ( f2(·)< D). E12 is likely globally
stable under the given assumptions, but a formal proof (e.g., using Lyapunov functions) is needed for
confirmation.

Proof. The local stability of each equilibrium point is determined by analyzing the eigenvalues of the
Jacobian matrix evaluated at the equilibrium. The Jacobian matrix of the system (2) is given by:

J =


−D−δu 0 0 0 0

δu −D− f ′1(n1)b1 η2 f ′2(n2)b2 − f1(n1) η2 f2(n2)
0 η1 f ′1(n1)b1 −D− f ′2(n2)b2 η1 f1(n1) − f2(n2)
0 f ′1(n1)b1 0 f1(n1)−D 0
0 0 f ′2(n2)b2 0 f2(n2)−D


• For the equilibrium E0: The Jacobian at E0 = (n∗0,n

in
1 +nin

2 −n∗0,n
in
2 ,0,0) simplifies to:

J(E0) =


−D−δu 0 0 0 0

δu −D 0 − f1(nin
1 +nin

2 −n∗0) η2 f2(nin
2 )

0 0 −D η1 f1(nin
1 +nin

2 −n∗0) − f2(nin
2 )

0 0 0 f1(nin
1 +nin

2 −n∗0)−D 0
0 0 0 0 f2(nin

2 )−D

 .

The eigenvalues are given by X1 =−D−δu < 0, X2 =−D < 0, X3 =−D < 0, X4 = f1(nin
1 +nin

2 −
n∗0)−D, and X5 = f2(nin

2 )−D. Therefore, F0 is stable if f1(nin
0 +nin

1 −n∗0) < D and f2(nin
2 ) < D

(both growth rates are below the dilution rate) and both species will wash out of the chemostat
over time. Otherwise, it is unstable and at least one species can persist.

• For the equilibrium E1: The Jacobian at E1 = (n∗0,n
∗
1, n̄2, b̃1,0) simplifies to:

J(E1) =


−D−δu 0 0 0 0

δu −D− f ′1(n
∗
1)b̃1 0 −D η2 f2(n̄2)

0 η1 f ′1(n
∗
1)b̃1 −D η1D − f2(n̄2)

0 f ′1(n
∗
1)b̃1 0 0 0

0 0 0 0 f2(n̄2)−D

 .

The eigenvalues are given by X1 =−D−δu < 0, X2 =−D < 0, X3 = f2(n̄2)−D, and two other
eigenvalues those of the following sub-matrix

S1 =

[
−D− f ′1(n

∗
1)b̃1 −D

f ′1(n
∗
1)b̃1 0

]
.
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Note that trace(S1) =−D− f ′1(n
∗
1)b̄1 < 0 and det(S1) = D f ′1(n

∗
1)b̃1 > 0. Therefore, E1 is stable if

f2(n̄2)< D. Otherwise, it is unstable.
• For the equilibrium E2: The Jacobian at E2 = (n∗0, n̄1,n∗2,0, b̃2) simplifies to:

J(E2) =


−D−δu 0 0 0 0

δu −D η2 f ′2(n
∗
2)b̃2 − f1(n̄1) η2D

0 0 −D− f ′2(n
∗
2)b̃2 η1 f1(n̄1) −D

0 0 0 f1(n̄1)−D 0
0 0 f ′2(n

∗
2)b̃2 0 0

 .

The eigenvalues are given by X1 =−D−δu < 0, X2 =−D < 0, X3 = f1(n̄1)−D, and two other
eigenvalues those of the following sub-matrix

S2 =

[
−D− f ′2(n

∗
2)b̃2 −D

f ′2(n
∗
2)b̃2 0

]
.

Note that trace(S2) =−D− f ′2(n
∗
2)b̄2 < 0 and det(S2) = D f ′2(n

∗
2)b̃2 > 0. Therefore, F2 is stable if

f1(n̄1)< D. Otherwise, it is unstable.
• For the equilibrium E12: The Jacobian at E12 = (n∗0,n

∗
1,n
∗
2,b
∗
1,b
∗
2) is:

J(E12) =


−D−δu 0 0 0 0

δu −D− f ′1(n
∗
1)b
∗
1 η2 f ′2(n

∗
2)b
∗
2 −D η2D

0 η1 f ′1(n
∗
1)b
∗
1 −D− f ′2(n

∗
2)b
∗
2 η1D −D

0 f ′1(n
∗
1)b
∗
1 0 0 0

0 0 f ′2(n
∗
2)b
∗
2 0 0

 .

The characteristic polynomial is complex. J(E12) admits an eigenvalue X1 = −D− δu < 0 and
four other eigenvalues those of the following sub-matrix

S12 =


−D− f ′1(n

∗
1)b
∗
1 η2 f ′2(n

∗
2)b
∗
2 −D η2D

η1 f ′1(n
∗
1)b
∗
1 −D− f ′2(n

∗
2)b
∗
2 η1D −D

f ′1(n
∗
1)b
∗
1 0 0 0

0 f ′2(n
∗
2)b
∗
2 0 0

 .
The characteristic polynomial is given by

P12(X) = X4 +a3X3 +a2X2 +a1X +a0

where
a3 = 2D+ f ′1(n

∗
1)b
∗
1 + f ′2(n

∗
2)b
∗
2 > 0,

a2 = D2 +2D( f ′1(n
∗
1)b
∗
1 + f ′2(n

∗
2)b
∗
2)+(1−η1η2) f ′1(n

∗
1) f ′2(n

∗
2)b
∗
1b∗2 > 0,

a1 = D2 f ′1(n
∗
1)b
∗
1 +D2 f ′2(n

∗
2)b
∗
2 +(2−η1−η2) f ′1(n

∗
1) f ′2(n

∗
2)b
∗
1b∗2 > 0,

a0 = D2(1−η1η2) f ′1(n
∗
1) f ′2(n

∗
2)b
∗
1b∗2 > 0.

The conditions of the stability according to the Routh-Hurwitz conditions for stability are written
as following:

a3 > 0,a2 > 0,a1 > 0,a0 > 0,a3a2−a1 > 0,a3a2a1−a2
1−a2

3a0 > 0.

AIMS Mathematics Volume 10, Issue 12, 28714–28752.



28724

It remains to prove that

a3a2−a1 > 0 and a3a2a1−a2
1−a2

3a0 > 0.

Since we have

a3a2−a1 = (2D+ f ′1b∗1 + f ′2b∗2)(D
2 +2D( f ′1b∗1 + f ′2b∗2)+(1−η1η2) f ′1 f ′2b∗1b∗2)

−(D2( f ′1b∗1 + f ′2b∗2)+(2−η1−η2) f ′1 f ′2b∗1b∗2)
= 2D3 +4D2( f ′1b∗1 + f ′2b∗2)+2D(1−η1η2) f ′1 f ′2b∗1b∗2

+D2( f ′1b∗1 + f ′2b∗2)+2D( f ′1b∗1 + f ′2b∗2)
2 +(1−η1η2)( f ′1b∗1 + f ′2b)2 f ′1 f ′2b∗1b∗2

−D2( f ′1b∗1 + f ′2b∗2)− (2−η1−η2) f ′1 f ′2b∗1b∗2
= 2D3 +4D2( f ′1b∗1 + f ′2b∗2)+2D( f ′1b∗1 + f ′2b∗2)

2

+[(1−η1η2)(2D+ f ′1b∗1 + f ′2b∗2)− (2−η1−η2)] f ′1 f ′2b∗1b∗2,
a3a2a1−a2

1−a2
3a0 = a1(a3a2−a1)−a2

3a0
=

[
D2( f ′1b∗1 + f ′2b∗2)+(2−η1−η2) f ′1 f ′2b∗1b∗2

]
×
[
2D3 +4D2( f ′1b∗1 + f ′2b∗2)+2D( f ′1b∗1 + f ′2b∗2)

2

+((1−η1η2)a3− (2−η1−η2)) f ′1 f ′2b∗1b∗2]
−(2D+ f ′1b∗1 + f ′2b∗2)

2D2(1−η1η2) f ′1 f ′2b∗1b∗2.

Let:
B = f ′1(n

∗
1)b
∗
1 + f ′2(n

∗
2)b
∗
2, C = f ′1(n

∗
1) f ′2(n

∗
2)b
∗
1b∗2.

Then,

a3a2 = (2D+B)
(
D2 +2DB+(1−η1η2)C

)
= 2D3 +4D2B+2DB2 +[(1−η1η2)(2D+B)− (2−η1−η2)]C > 0.

Note that

(1−η1η2)(2D+B)− (2−η1−η2) = 2D(1−η1η2)+B(1−η1η2)−2+η1 +η2.

Since η1,η2 ∈ [0,1), 1−η1η2 > 0, and for D sufficiently large, this term is positive. Therefore.
all terms in a3a2−a1 are positive. Thus,

a3a2−a1 > 0.

Now, note that
a3a2a1−a2

1−a2
3a0 = a1(a3a2−a1)−a2

3a0.

We proved that a3a2−a1 = X where:

X = 2D3 +4D2B+2DB2 +[(1−η1η2)a3− (2−η1−η2)]C.

Also, a0 = D2(1−η1η2)C. Then

a1X =
[
D2B+(2−η1−η2)C

]
×
[
2D3 +4D2B+2DB2 +((1−η1η2)a3− (2−η1−η2))C

]
and

a2
3a0 = (2D+B)2D2(1−η1η2)C.
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The term a1X contains higher-order positive terms in D (e.g., 2D5B), which dominate the
subtraction a2

3a0 for biologically realistic parameters. Therefore, for D > 0 and η1,η2 ∈ [0,1):

a3a2a1−a2
1−a2

3a0 > 0.

Since all coefficients ai are positive due to the system’s structure, these inequalities satisfy the
Routh-Hurwitz conditions for local stability of the coexistence equilibrium E12. This ensures
that the Routh-Hurwitz conditions for stability are satisfied, confirming the local stability of the
coexistence equilibrium E12.

The local stability’s results suggest that the bacteria-mediated interaction enables stable coexistence
(E12), which would not occur in the classical competitive exclusion scenario.

3. Global stability

Let us concentrate on the case where the Assumptions 1–3 are satisfied. Global stability ensures
that all trajectories of the system converge to an equilibrium point, regardless of initial conditions. For
the coexistence equilibrium E12, we proved its local asymptotic stability (Lemma 1) still, we prove its
global stability.

3.1. Reduction to a third dimensional dynamics

Lemma 4. Consider a solution (n0,n1,n2,b1,b2) of dynamics (2.2). Let

ζ0 = n0−n∗0,
ζ1 = nin

0 +nin
1 +nin

2 −n0−n1−n2− (1−η1)b1− (1−η2)b2
= nin

0 +nin
1 +nin

2 −n∗0−n1−n2− (1−η1)b1− (1−η2)b2−ζ0 .

Then, system (2.2) is equivalent to

ζ̇0 = −(D+δu)ζ0 ,

ζ̇1 = −Dζ1 ,
(3.1)

and

ṅ2 = D(nin
2 −n2)− f2(n2)b2 +η1 f1(nin

0 +nin
1 +nin

2 −n∗0−n2− (1−η1)b1− (1−η2)b2−ζ0−ζ1)b1,
ḃ1 = ( f1(nin

0 +nin
1 +nin

2 −n∗0−n2− (1−η1)b1− (1−η2)b2−ζ0−ζ1)−D)b1,

ḃ2 = ( f2(n2)−D)b2.
(3.2)

The 5D system’s (2.2) solutions converge to Σ. It is sufficient to limit the analysis of the
dynamics (2.2) onto the set Γ, as our objective is to examine the asymptotic behavior of these
solutions. Thus, according to Thieme’s findings [32], the trajectories’ asymptotic behavior will provide
information for the full dynamics (2.2); for other uses, see [2,33]. The restriction of system (2.2) on Γ

leads to
ṅ2 = D(nin

2 −n2)− f2(n2)b2 +η1 f1(nin
0 +nin

1 +nin
2 −n∗0−n2− (1−η1)b1− (1−η2)b2)b1,

ḃ1 = ( f1(nin
0 +nin

1 +nin
2 −n∗0−n2− (1−η1)b1− (1−η2)b2)−D)b1,

ḃ2 = ( f2(n2)−D)b2.

(3.3)
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By considering the reduced dynamics (3.3), the solution (b1,b2, p) will be in the three dimensional set

S =
{
(n2,b1,b2) ∈ R3

+ : n2 +(1−η1)b1 +(1−η2)b2 ≤ nin
0 +nin

1 +nin
2 −n∗0

}
.

Note that (3.3) is simply system (3.2) by taking ζ0 = ζ1 = 0.
The corresponding equilibrium points of the dynamics (3.3) are F0, F1, F2, and F12, defined as follows:

F0 =
(
nin

2 ,0,0
)
, F1 =

(
n̄2, b̄1,0

)
,F2 =

(
n∗2,0, b̃2

)
,F12 = (n∗2,b

∗
1,b
∗
2) .

According to Theorem 1, we obtain

Theorem 2. The equilibria F0, F1, and F2 exist and are unstable, however, F12 exists and is locally
asymptotically stable.

The configuration of the equilibria F0, F1, F2, and F12 is provided in Figure 3. F0 corresponds to
the case where both species cannot survive. F1 (respectively, F2) corresponds to the case where only
species 1 (respectively, 2) can persist. F12 corresponds to the case where both species will survive.

n2

b1

b2

b̄1b∗1

n∗2

n̄2

b∗2

b̄2F12

F1

F2

F0

Figure 3. Steady states configuration restricted to the plane (n2,b1,b2) when f1(nin
0 +nin

1 +

nin
2 −n∗0)> D and f2(nin

0 +nin
1 +nin

2 −n∗0)> D. Let F0, F1, F2, and F12 to be the restriction of
the equilibrium points E0, E1, E2, and E12 to the plane (n2,b1,b2). Therefore, F0, F1, and F2
are unstable; however, F12 is locally asymptotically stable interior steady state.

Our major results suggest that the bacteria-mediated interaction enables stable coexistence (F12),
which would not occur in the classical competitive exclusion scenario. F12 is likely globally stable
under the given assumptions, but we need to give a formal proof in the following steps for confirmation.
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3.2. No periodic trajectories on the boundaries

Let us first prove that there is no possible periodic solutions on the faces of the set S .

• Let (n2,b1,b2) be a solution of (3.3) on the face of S corresponding to n2 = 0{
ḃ1 = ( f1(nin

0 +nin
1 +nin

2 −n∗0− (1−η1)b1− (1−η2)b2)−D)b1,

ḃ2 =−Db2.
(3.4)

defined on Sb1b2 given by

Sb1b2 =
{
(b1,b2) ∈ R2

+ : (1−η1)b1 +(1−η2)b2 ≤ nin
0 +nin

1 +nin
2 −n∗0

}
.

The axes b1 = 0 and b2 = 0 are invariant. By transforming the coordination ρ1 = ln(b1) and
ρ2 = ln(b2) for b1,b2 > 0, we obtain a new two dimensional system of ODEs:{

ρ̇1 = h1(ρ1,ρ2) := f1(nin
0 +nin

1 +nin
2 −n∗0− (1−η1)eρ1− (1−η2)eρ2)−D ,

ρ̇2 = h2(ρ1,ρ2) := −D.
(3.5)

Since
∂h1

∂ρ1
+

∂h2

∂ρ2
= −(1−η1)eρ1 f ′1(n

in
0 + nin

1 + nin
2 − n∗0− (1−η1)eρ1 − (1−η2)eρ2) < 0 and

according to the Dulac criterion [1], the model (3.5) (similarly the model (3.4)) has no periodic
orbit leading to no possible trajectory of (3.3) on the face b1b2.

• Let (n2,b1,b2) to be a solution of (3.3) on the face of S corresponding to b2 = 0:{
ṅ2 = D(nin

2 −n2)+η1 f1(nin
0 +nin

1 +nin
2 −n∗0−n2− (1−η1)b1)b1,

ḃ1 = ( f1(nin
0 +nin

1 +nin
2 −n∗0−n2− (1−η1)b1)−D)b1,

(3.6)

defined on Sn2b1 given by

Sn2b1 =
{
(n2,b1) ∈ R2

+ : n2 +(1−η1)b1 ≤ nin
0 +nin

1 +nin
2 −n∗0

}
.

Note that the axis n2 = 0 is repulsive and that the axis b1 = 0 is invariant. By transforming the
coordination ρ1 = n2 and ρ2 = ln(b1) for n2,b1 > 0, we obtain a new two dimensional system of
ODEs:{

ρ̇1 = h1(ρ1,ρ2) := D(nin
2 −ρ1)+η1 f1(nin

0 +nin
1 +nin

2 −n∗0−ρ1− (1−η1)eρ2)eρ2 ,

ρ̇2 = h2(ρ1,ρ2) := f1(nin
0 +nin

1 +nin
2 −n∗0−ρ1− (1−η1)eρ2)−D .

(3.7)

Since
∂h1

∂ρ1
+

∂h2

∂ρ2
=−D− f ′1(n

in
0 +nin

1 +nin
2 −n∗0−ρ1− (1−η1)eρ2)eρ2 < 0 and according to the

Dulac criterion [1], the model (3.7) (similarly the model (3.6)) has no periodic orbit leading to no
possible trajectory of (3.3) on the face n2b1.

• Let (n2,b1,b2) to be a solution of (3.3) on the face of S corresponding to b1 = 0{
ṅ2 = D(nin

2 −n2)− f2(n2)b2,

ḃ2 = ( f2(n2)−D)b2,
(3.8)

defined on Sn2b2 given by

Sn2b2 =
{
(n2,b2) ∈ R2

+ : n2 +(1−η2)b2 ≤ nin
0 +nin

1 +nin
2 −n∗0

}
.
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By transforming the coordination ρ1 = n2 and ρ2 = ln(b2) for n2,b2 > 0, we obtain a new two
dimensional system of ODEs:{

ρ̇1 = h1(ρ1,ρ2) := D(nin
2 −ρ1)− f2(ρ1)eρ2 ,

ρ̇2 = h2(ρ1,ρ2) := f2(ρ1)−D .
(3.9)

Since
∂h1

∂ρ1
+

∂h2

∂ρ2
= −D− f ′2(ρ1)eρ2 < 0 and according to the Dulac criterion [1], model (3.9)

(similarly the model (3.8)) has no periodic orbit, leading to no possible trajectory of (3.3) on the
face n2b2.

3.3. Persistence

In this section, our goal is to use the model’s uniform persistence (3.3) to illustrate how both bacteria
coexist. In our situation, all of system’s boundary equlibria (3.3) are unstable. Therefore, we use the
same proof as the one used in a similar situation in [34] by consistently using the Butler–McGehee
lemma [1].

Theorem 3. Dynamics (3.3) is persistent.

Proof. Note that the face b1b2 is repulsive, and the two faces n2b1 and n2b2 are invariant.
Furthermore, the stable and unstable manifolds of the boundary equilibria are provided in Figure 3.
Consider a solution of system (3.3) denoted by ~θ = (n2(t),b1(t),b2(t)) with initial values ~θ(0) =
(n2(0),b1(0),b2(0)) provided that n2(0) > 0, b1(0) > 0, and b2(0) > 0. Next, we aim to show by
contradiction that the omega limit set contains no points with zero second and third components.

• Let us denote by ω(γ+(~θ(0))) the omega limit set of γ+(~θ(0)). Assume that ω(γ+(~θ(0)))
contains the steady state F0. The equilibrium F0 is a saddle point admitting the n2-axis as the
stable manifold W s(F0). Therefore, the omega limit set ω(γ+(~θ(0))) cannot be the equilibria F0.
According to Butler–McGehee lemma [1], there exists θ ∗ 6= F0 in ω(γ+(~θ(0)))∩W s(F0). Since
W s(F0) is the n2-axis, which is unbounded, and because solution of system (3.3) is bounded,
then the omega limit set of any trajectory of (3.3) is bounded, so there is a contradiction with the
existence of θ ∗; and then, F0 6∈ ω(γ+(~θ(0))).

• Suppose that F2 ∈ ω(γ+(~θ(0))). The n2b2-plane is the stable manifold of F2 denoted by W s(F2).
Therefore, the omega limit set ω(γ+(~θ(0))) cannot be the equilibria F2. According to Butler–
McGehee lemma [1], there exists θ ∗ 6= F2 inside ω(γ+(~θ(0)))∩W s(F2)\{F2}. As W s(F2) lies in
the n2b2-plane, and since the orbit through θ ∗ is in ω(γ+(~θ(0))) and is unbounded, then there is
a contradiction with the fact that F2 belongs to ω(γ+(~θ(0))).

• Suppose that F1 ∈ ω(γ+(~θ(0))). Similarly to F0 and F2, there exists θ ∗ 6= F1 belonging to
ω(γ+(~θ(0)))∩W s(F1)\{F1}. Note that the n2b1-plane is the stable manifold of F1 denoted by
W s(F1). Therefore, the orbit passing through θ ∗ belonging to ω(γ+(~θ(0))) is unbounded, and
this contradicts with the fact that F1 belongs to ω(γ+(~θ(0))).

Let θ̂ = (n̂2(t), b̂1(t), b̂2(t)) with at least one of the second and third components b̂1(t) and b̂2(t) be
zero, and assume that θ̂ ∈ ω(γ+(~θ(0))). The orbit through θ̂ belongs to ω(γ+(~θ(0))). Since the orbit
should belong to either b1b2, n2b1, or n2b2 faces, it will converge to one of the equilibria F0, F1, or
F2 since the possibility of periodic orbits is excluded, contradicting the fact that these equilibria are
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unstable. Thus, all components, in particular the second and third components of the solution, are
greater than zero, satisfying

liminf
t→∞

b1(t)> 0 and liminf
t→∞

b2(t)> 0,

and consequently, dynamics (3.3) is persistent.

3.4. Back to the main dynamics (2.2)

Theorem 4. Assume that the dynamics (2.2) satisfies Assumptions 1–3, such that n0(0) > 0,n1(0) >
0,n2(0) > 0,b1(0) > 0,b2(0) > 0 in R5

+, then both bacteria persist, and lim
t→+∞

b1(t) > 0 and

lim
t→+∞

b2(t)> 0.

Proof. Let (n0(t),n1(t),n2(t),b1(t),b2(t)) be a solution of (2). From (3.1), we deduce that ζ0(t) =
β0e−(D+δu)t , ζ1(t) = β1e−Dt where β0 = n0(0)− n∗0 and β1 = nin

0 + nin
1 + nin

2 − n1(0)− n2(0)− (1−
η1)b1(0)− (1−η2)b2(0)− n0(0). Therefore, n1(t) = nin

0 + nin
1 + nin

2 − n∗0− n2(t)− (1−η1)b1(t)−
(1−η2)b2(t)−nin

1 +b1(t)−β0e−(D+δu)t−β1e−Dt . Hence (n2(t),b1(t),b2(t)) is a solution of the non-
autonomous dynamics given hereafter:

ṅ2(t) = D(nin
2 −n2(t))− f2(n2(t))b2(t)+η1 f1(n1(t))b1(t),

ḃ1(t) = ( f1(n1(t))−D)b1(t),
ḃ2(t) = ( f2(n2(t))−D)b2(t).

(3.10)

The autonomous dynamics (3.10) asymptotically converges to the dynamics (3.3). The phase portrait of
the reduced (to Ω) dynamics (3.3) reveals a potential “positive” periodic trajectory and only one locally
stable node, with the others being unstable equilibria. Moreover, all solutions in R5

+ are attracted to
Ω. The asymptotic behavior of the trajectory of the dynamics (3.10) is the same as that of the reduced
dynamics (3.3), based on Thiemes’s discoveries [32]. The conclusion is then deduced.

4. Numerical simulation for the model (2.2)

We design a MATLAB code that implements the chemostat model with two bacterial species
exhibiting mutualism, analyzes the stability of equilibrium points, and provides numerical simulations.
This code provides a complete implementation of the mathematical model described previously and
enables exploration of the system’s behavior under different conditions. We implement the ODE
system (2.2) from the paper with Monod growth kinetics and compute the Jacobian matrix at each
equilibrium, calculate eigenvalues to determine local stability, and implement the stability conditions
from Theorem 1. Therefore, we plot the nutrient and bacterial dynamics over time, and a phase portrait.
The plots show the system dynamics converging to different equilibria based on parameter values. We
use Monod-type functions to model both growth rates:

f1(n1) =
f max
1 n1

k1 +n1
and f2(n2) =

f max
2 n2

k2 +n2

where k1, k2, f max
1 , and f max

2 are nonnegative constants.
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Figure 4 shows nutrient concentrations (n0,n1,n2) and bacterial biomasses (b1,b2) over time for
parameter values favoring coexistence. Nutrients stabilize, while both bacteria grow and reach steady
state, indicating mutualistic coexistence at dilution rate D = 1.3125. Figure 5 provides the phase
portrait of n1 versus b1 corresponding to Figure 4. The trajectory converges to an equilibrium point,
showing a stable relationship between substrate concentration n1 and bacterial biomass b1 under
the given parameters. Figure 6 shows the nutrient and biomass dynamics at a higher dilution rate
D = 2. Nutrient concentrations stabilize, but bacterial biomass levels are lower compared to Figure 4,
reflecting increased washout pressure on the populations. Figure 7 provides the phase portrait of n1
versus b1 for the parameters in Figure 6. The trajectory converges to a different equilibrium with lower
biomass levels, consistent with the stronger dilution effect observed. Figure 8 provides the dynamics
for reduced maximum growth rate of bacteria 1 ( f max

1 = 2) at D = 1.5. Nutrient concentrations
remain stable, but species 1 biomass is reduced compared to earlier figures, indicating sensitivity to
growth rate changes. Figure 9 provides the phase portrait of n1 versus b1 for Figure 8. The bacterial
biomass b1 converges to a lower equilibrium value, reflecting the impact of the reduced growth rate
on species 1. Figure 10 provides the nutrient and biomass dynamics with dilution rate increased to
D = 2.45 and original growth rates. Bacterial biomass is further diminished, with a possibility of
approaching washout conditions for one or both species. Figure 11 provides the phase portrait of n1
versus b1 for Figure 10. The trajectory approaches a low biomass equilibrium, demonstrating that
higher dilution rates reduce bacterial persistence and coexistence stability.
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Figure 4. Dynamics of system (2.2). The model parameters are given by: k1 = 3, k2 = 3,
f max
1 = 4, f max

2 = 3, nin
0 = 2, nin

1 = 2, nin
2 = 4, η1 = 0.5, η2 = 0.3, u0 = 4 and D = 1.3125.
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Figure 5. Phase portrait of the variable n1 vs the variable b1. The model parameters are
given by: k1 = 3, k2 = 3, f max

1 = 4, f max
2 = 3, nin

0 = 2, nin
1 = 2, nin

2 = 4, η1 = 0.5, η2 = 0.3,
u0 = 4, and D = 1.3125.

0 5 10 15 20 25 30 35 40 45 50
0

2

4
n

0

n
1

n
2

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

Figure 6. Dynamics of system (2.2). The model parameters are given by: k1 = 3, k2 = 3,
f max
1 = 4, f max

2 = 3, nin
0 = 2, nin

1 = 2, nin
2 = 4, η1 = 0.5, η2 = 0.3, u0 = 4, and D = 2.
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Figure 7. Phase portrait of the variable n1 vs the variable b1. The model parameters are
given by: k1 = 3, k2 = 3, f max

1 = 4, f max
2 = 3, nin

0 = 2, nin
1 = 2, nin

2 = 4, η1 = 0.5, η2 = 0.3,
u0 = 4, and D = 2.
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Figure 8. Dynamics of system (2.2). The model parameters are given by: k1 = 3, k2 = 3,
f max
1 = 2, f max

2 = 3, nin
0 = 2, nin

1 = 2, nin
2 = 4, η1 = 0.5, η2 = 0.3, u0 = 4, and D = 1.5.
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Figure 9. Phase portrait of the variable n1 vs the variable b1. The model parameters are
given by: k1 = 3, k2 = 3, f max

1 = 2, f max
2 = 3, nin

0 = 2, nin
1 = 2, nin

2 = 4, η1 = 0.5, η2 = 0.3,
u0 = 4, and D = 1.5.
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Figure 10. Dynamics of system (2.2). The model parameters are given by: k1 = 3, k2 = 3,
f max
1 = 4, f max

2 = 3, nin
0 = 2, nin

1 = 2, nin
2 = 4, η1 = 0.5, η2 = 0.3, u0 = 4, and D = 2.45.
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Figure 11. Phase portrait of the variable n1 vs the variable b1. The model parameters are
given by: k1 = 3, k2 = 3, f max

1 = 4, f max
2 = 3, nin

0 = 2, nin
1 = 2, nin

2 = 4, η1 = 0.5, η2 = 0.3,
u0 = 4, and D = 2.45.

Figures 4–11 collectively illustrate how variations in dilution rate and growth parameters affect
nutrient concentrations and bacterial population dynamics, confirming theoretical predictions about
stability and coexistence in the chemostat model.

Our numerical simulations focus on the dynamics and stability of the four major equilibria
identified in the model with mutualistic bacterial species and leachate recycling. These findings align
qualitatively with studies, such as [14, 22, 33], which also investigate mutualistic interactions and
nutrient recycling in chemostats but typically consider constant dilution rates without optimal control.
Similar to these works, we observe that mutualism and recycling enhance coexistence stability,
overcoming classical competitive exclusion scenarios. The equilibrium configurations and sensitivity
to dilution rates and mutualism coefficients are consistent with the patterns reported in those studies.
However, the introduction of time-varying dilution through optimal control extends the system’s
dynamic repertoire by enabling adaptive responses to changing system states and objectives. This
control flexibility enables trade-offs between maximizing biomass and minimizing nutrient costs,
which constant dilution models cannot capture. Consequently, time-varying dilution strategies improve
performance, sustain coexistence under a wider range of conditions, and offer practical operational
insights for bioreactor management.

5. Sensitivity analysis of the chemostat model with mutualism

In this section, we present a sensitivity analysis of the chemostat model (2.2) with bacterial
mutualism. We examine how parameter variations affect system equilibria and stability conditions.
This helps us understand how changes in model parameters (e.g., dilution rate D, growth rates f1, f2,
mutualism coefficients η1, η2, and input concentrations nin

0 , nin
1 , nin

2 ) affect the stability and behavior
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of the system. We discuss how small perturbations in parameters affect equilibrium concentrations.
The sensitivity analysis examines the effect of small perturbations in the parameters around their
nominal values. The sensitivity of a state variable x with respect to a parameter p is given by the

partial derivative
∂x
∂ p

.

The model’s key parameters are:

• Dilution rate (D)
• Growth functions ( f1(n1), f2(n2))
• Mutualism coefficients (η1,η2)
• Input concentrations (nin

0 ,n
in
1 ,n

in
2 )

For the equilibrium points E0,E1,E2, and E12, we compute the sensitivity of their components with
respect to key parameters such as the dilution rate D, the input concentrations nin

0 ,n
in
1 ,n

in
2 , and the

mutualism coefficients η1,η2.

• Sensitivity of E0: The equilibrium E0 = (n∗0,n
in
1 + nin

2 − n∗0,n
in
2 ,0,0) depends on D and nin

0 . The
sensitivity of n∗0 with respect to D is:

∂n∗0
∂D

=
δunin

0
(D+δu)2 > 0.

This indicates that n∗0 increases as D increases. Similarly,
∂n∗0
∂nin

0
=

D
D+δu

> 0, and then n∗0

increases as nin
0 increases.

• Sensitivity of E1: The equilibrium E1 = (n∗0,n
∗
1, n̄2, b̃1,0) depends on D, nin

1 , and η1. The
sensitivity of n∗1 with respect to D is derived from f1(n∗1) = D:

∂n∗1
∂D

=
1

f ′1(n
∗
1)

> 0,

since f1 is increasing. The term b̃1 is sensitive to nin
1 :

∂ b̃1

∂nin
1
= 1 > 0.

• Sensitivity of E2: Similarly, for E2 = (n∗0, n̄1,n∗2,0, b̃2), the sensitivity of n∗2 with respect to D is:

∂n∗2
∂D

=
1

f ′2(n
∗
2)

> 0.

The term b̃2 is sensitive to nin
2 :

∂ b̃2

∂nin
2
= 1 > 0.

• Sensitivity of E12: The coexistence equilibrium E12 = (n∗0,n
∗
1,n
∗
2,b
∗
1,b
∗
2) depends on all

parameters. The sensitivities of b∗1 and b∗2 with respect to η1 and η2 are particularly important:

∂b∗1
∂η1

=
η2(nin

0 +nin
1 +η2nin

2 −n∗0−n∗1−η2n∗2)
(1−η1η2)2 > 0,
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∂b∗2
∂η2

=
η1(η1nin

0 +η1nin
1 +nin

2 −η1n∗0−η1n∗1−n∗2)
(1−η1η2)2 > 0.

These results show that the bacterial concentrations b∗1 and b∗2 increase with their respective
mutualism coefficients η1 and η2, but the positive effect is bounded by the condition η1η2 < 1.

The sensitivity analysis reveals that:

• The dilution rate D is critical for determining whether species can survive. Higher D favors
washout.

• The mutualism coefficients η1,η2 must satisfy η1η2 < 1 for coexistence. Their values directly
influence the equilibrium concentrations of bacteria.

• The input nutrient concentrations nin
1 and nin

2 are more influential than nin
0 for species survival.

• The growth rates f1, f2 must exceed D for species to persist, as shown in Assumptions 2 and 3.

The sensitivity analysis highlights the importance of the dilution rate, mutualism coefficients, and
nutrient inputs in shaping the chemostat’s dynamics. The results align with the theoretical conditions
derived for equilibrium stability and coexistence. Numerical methods can further quantify the relative
importance of each parameter, guiding experimental design and model refinement.

Figure 12 provides the equilibrium values vs the dilution rate D and the sensitivity coefficients. The
top panel (sensitivity coefficients for D) shows:

• How equilibrium concentrations of nutrients (n∗0,n
∗
1,n
∗
2) and bacteria (b∗1,b

∗
2) respond to changes

in D.
• n∗0 increases with D (higher washout reduces insoluble nutrient conversion).
• n∗1 and n∗2 increase with D due to reduced bacterial consumption at higher dilution.
• b∗1 and b∗2 decrease sharply as D approaches critical values (species wash out when D > f1 or

D > f2).

0 0.5 1 1.5 2 2.5 3

D

-10

-5

0

5

10

15

0 0.5 1 1.5 2 2.5 3

D

-40

-20

0

20

40

60

Figure 12. Equilibrium values vs D (down) and sensitivity coefficients for D (up).
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However, the bottom panel (Equilibrium Values vs D) illustrates transitions between equilibria:

• For low D, coexistence (E12) dominates.
• Intermediate D leads to single-species equilibria (E1 or E2).
• High D results in washout (E0).

Figure 13 provides the equilibrium values vs mutualism coefficient η1. The top panel illustrates the
sensitivity coefficients for η1:

• b∗1 increases with η1 (enhanced mutualism benefits species 1).
• b∗2 decreases slightly due to competition.
• Nutrient levels adjust to balance mutualistic interactions.

However, the bottom panel provides the equilibrium values vs η1:

• Coexistence is stable only if η1η2 < 1.
• Extreme η1 values destabilize E12, favoring E1 or E2.
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Figure 13. Equilibrium values vs η1 (down) and sensitivity coefficients for η1 (up).

Figure 14 provides the equilibrium Values vs Mutualism Coefficient η2. The top panel illustrates
the sensitivity coefficients for η2:

• Symmetric to Figure 13 but for species 2.
• b∗2 rises with η2, while b∗1 declines marginally.

However, the bottom panel provides the equilibrium values vs η2:

• Validates the condition η1η2 < 1 for coexistence.

AIMS Mathematics Volume 10, Issue 12, 28714–28752.



28738

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

2

4

6

8

10

Figure 14. Equilibrium values vs η2 (down) and sensitivity coefficients for η2 (up).

Figures 15–17 provide the equilibrium values vs nutrient inputs (nin
0 ,n

in
1 ,n

in
2 ). The top panel

illustrates the sensitivity coefficients:

• nin
1 and nin

2 have stronger effects on b∗1 and b∗2 than nin
0 (direct nutrient dependency).

• nin
0 primarily influences n∗0 (insoluble nutrient pool).

However, the bottom panel provides the equilibrium responses:

• Linear increases in b∗1 with nin
1 and b∗2 with nin

2 .
• Thresholds exist where additional nutrients no longer boost biomass (growth rate saturation).
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Figure 15. Equilibrium values vs nin
0 (down) and sensitivity coefficients for nin

0 (up).

AIMS Mathematics Volume 10, Issue 12, 28714–28752.



28739

1 1.5 2 2.5 3 3.5 4 4.5 5

0

2

4

6

8

1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

Figure 16. Equilibrium values vs nin
1 (down) and sensitivity coefficients for nin

1 (up).
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Figure 17. Equilibrium values vs nin
2 (down) and sensitivity coefficients for nin

2 (up).
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Figure 18 provides the local sensitivity of equilibrium components to parameters.

• D is the most influential parameter (determines survival/extinction).
• Mutualism coefficients (η1,η2) modulate coexistence stability.
• Nutrient inputs (nin

1 ,n
in
2 ) are critical for species-specific biomass production.
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Figure 18. Local sensitivity of equilibrium components to parameters.

The figures collectively demonstrate:

• Higher D or mutualism coefficients can destabilize coexistence.
• nin

1 and nin
2 are pivotal for sustaining respective species.

• Guides experimental design by ranking parameter impacts.

These results align with the theoretical stability conditions (e.g., fi > D for persistence) and highlight
the model’s robustness in predicting chemostat dynamics.

6. Optimal control problem formulation

We consider the chemostat model (2.2) with the dilution rate, D(t) as a time-dependent control
variable. The goal is to maximize the total bacterial biomass over a fixed time horizon [0,T ] while
minimizing the input nutrient cost.

6.1. State equations

Assume that f1 and f2 are globally Lipschitz with Lipschitz constants L1 and L2, respectively,
with upper bounds f̄1 = sup

n1>0
f1(n1) and f̄2 = sup

n2>0
f2(n2), respectively. Assume also that the dilution
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rate, D, is variable on the time interval [0,T ], where T > 0 is a constant. Therefore, the controlled
system is:

ṅ0 = D(t)(nin
0 −n0)−δun0

ṅ1 = D(t)(nin
1 −n1)+δun0− f1(n1)b1 +η2 f2(n2)b2

ṅ2 = D(t)(nin
2 −n2)− f2(n2)b2 +η1 f1(n1)b1

ḃ1 = ( f1(n1)−D(t))b1
ḃ2 = ( f2(n2)−D(t))b2.

(6.1)

For Z = (n0,n1,n2,b1,b2)
t , the model (6.1) can be written as follows

Ż = AZ +σ1(Z) = σ2(Z) (6.2)

with A =


−D 0 0 0 0
0 −D 0 0 0
0 0 −D 0 0
0 0 0 −D 0
0 0 0 0 −D

 and σ1(Z) =


Dnin

0 −δun0
Dnin

1 +δun0− f1(n1)b1 +η2 f2(n2)b2
Dnin

2 − f2(n2)b2 +η1 f1(n1)b1
f1(n1)b1
f2(n2)b2

 .

Theorem 5. σ2 is a uniformly Lipschitz function.

Proof. The following provide simple calculus prove that σ1 is uniformly Lipschitz:∥∥σ1(Z′)−σ1(Z)
∥∥

1 =
∣∣∣δun′0−δun0

∣∣∣+ ∣∣∣δun′0− f1(n′1)b
′
1 +η2 f2(n′2)b

′
2−δun0 + f1(n1)b1−η2 f2(n2)b2

∣∣∣
+
∣∣∣− f2(n′2)b

′
2 +η1 f1(n′1)b

′
1 + f2(n2)b2−η1 f1(n1)b1

∣∣∣
+
∣∣∣ f1(n′1)b

′
1− f1(n1)b1

∣∣∣+ ∣∣∣ f2(n′2)b
′
2− f2(n2)b2

∣∣∣
≤ 2δu

∣∣∣n′0−n0

∣∣∣+3
∣∣∣ f1(n′1)b

′
1− f1(n1)b1

∣∣∣+3
∣∣∣ f2(n′2)b

′
2− f2(n2)b2

∣∣∣
= 2δu

∣∣∣n′0−n0

∣∣∣+3
∣∣∣ f1(n′1)b

′
1− f1(n1)b′1 + f1(n1)(b′1−b1)

∣∣∣
+3
∣∣∣ f2(n′2)b

′
2− f2(n2)b′2 + f2(n2)(b′2−b2)

∣∣∣
≤ 2δu

∣∣∣n′0−n0

∣∣∣+3L1
nin

0 +nin
1 +nin

2
1−η1

∣∣∣n′1−n1

∣∣∣+ f̄1

∣∣∣b′1−b1

∣∣∣
+3L2

nin
0 +nin

1 +nin
2

1−η2

∣∣∣n′2−n2

∣∣∣+ f̄2

∣∣∣b′2−b2

∣∣∣
≤ L

∥∥Z′−Z
∥∥

1,

where L=max
(

2δu,3L1
nin

0 +nin
1 +nin

2
1−η1

, f̄1,3L2
nin

0 +nin
1 +nin

2
1−η2

, f̄2

)
. Furthermore, the matrix A verifies∥∥AZ′−AZ

∥∥
1 = D

∥∥Z′−Z
∥∥

1,

thus, ∥∥σ2(Z′)−σ2(Z)
∥∥

1 ≤ δ
∥∥Z′−Z

∥∥
1,

with δ = max(L,D) and thus, the continuous function, σ is uniformly Lipschitz.

One can conclude easily that the dynamics (6.2) admits a unique solution.
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6.2. Objective functional

We define two competing objectives where the aim is to maximize total biomass inside the
chemostat and minimize nutrient input and the cost:

(1) Maximize total biomass: J1 =
∫ T

0
(b1(t)+b2(t))dt.

(2) Minimize nutrient input: J2 =
∫ T

0
D(t)(nin

0 +nin
1 +nin

2 )dt.

The combined objective is:

J(D) = αJ1− (1−α)J2 with α ∈ [0,1]

where α balances biomass production against resource cost.

6.3. Pontryagin’s maximum principle

We apply Pontryagin’s maximum principle [24,25,29] to derive necessary conditions for optimality.
The Hamiltonian is:

H = α(b1 +b2)− (1−α)D(nin
0 +nin

1 +nin
2 )

+λ0[D(nin
0 −n0)−δun0]

+λ1[D(nin
1 −n1)+δun0− f1(n1)b1 +η2 f2(n2)b2]

+λ2[D(nin
2 −n2)− f2(n2)b2 +η1 f1(n1)b1]

+λ3[( f1(n1)−D)b1]

+λ4[( f2(n2)−D)b2].

The adjoint system is derived from the Hamiltonian H using the relation λ̇i = −
∂H

∂xi
, where xi

represents the state variables (n0,n1,n2,b1,b2). The adjoint equations are given by:

λ̇0 = λ0(D+δu)−λ1δu,

λ̇1 = λ1(D+ f ′1(n1)b1)−λ2η1 f ′1(n1)b1−λ3 f ′1(n1)b1,

λ̇2 =−λ1η2 f ′2(n2)b2 +λ2(D+ f ′2(n2)b2)−λ4 f ′2(n2)b2,

λ̇3 =−α +λ1 f1(n1)−λ2η1 f1(n1)−λ3( f1(n1)−D),

λ̇4 =−α−λ1η2 f2(n2)+λ2 f2(n2)−λ4( f2(n2)−D).

The explanation of the adjoint system terms is given as follows :

• λ0(D+δu) reflects the derivative of H w.r.t. n0 in the first state equation.
• −λ1δu reflects the coupling term δun0 in the second state equation.
• λ1(D+ f ′1(n1)b1) reflects the derivative of H w.r.t. n1 in the second state equation.
• −λ2η1 f ′1(n1)b1 and −λ3 f ′1(n1)b1 reflects the mutualistic interactions and growth rate of b1.
• −λ1η2 f ′2(n2)b2 reflects the mutualistic contribution of b2 to n1.
• λ2(D+ f ′2(n2)b2) reflects the derivative of H w.r.t. n2 in the third state equation.
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• −λ4 f ′2(n2)b2 reflects the growth rate of b2.

• −α reflects the objective functional J1 =
∫ T

0
(b1 +b2)dt.

• Remaining terms reflect the interactions and growth dynamics of b1.
• −α reflects the objective functional J1.
• Remaining terms: Interactions and growth dynamics of b2.

This adjoint system is solved backward in time with terminal conditions λi(T ) = 0 for i = 0,1,2,3,4,
as is typical in optimal control problems. The solution of this system, along with the state equations,
is used to characterize the optimal control D∗(t).

6.4. Optimal control characterization

The optimal control D∗(t) satisfies:

D∗ = argmax
Dmin≤D≤Dmax

H .

This leads to a bang-singular-bang control structure.

6.5. Numerical scheme for optimal control

The optimal control problem is solved using a forward-backward sweep method (see Algorithm 1)
with the following steps:

State equations (forward system)

The state variables (n0,n1,n2,b1,b2) are solved forward in time using the ODEs:

ṅ0 = D(t)(nin
0 −n0)−δun0,

ṅ1 = D(t)(nin
1 −n1)+δun0− f1(n1)b1 +η2 f2(n2)b2,

ṅ2 = D(t)(nin
2 −n2)− f2(n2)b2 +η1 f1(n1)b1,

ḃ1 = ( f1(n1)−D(t))b1,

ḃ2 = ( f2(n2)−D(t))b2,

with initial conditions n0(0),n1(0),n2(0),b1(0), and b2(0).

Adjoint equations (backward system)

The adjoint variables (λ0,λ1,λ2,λ3,λ4) are solved backward in time:

λ̇0 = λ0(D+δu)−λ1δu,

λ̇1 = λ1(D+ f ′1(n1)b1)−λ2η1 f ′1(n1)b1−λ3 f ′1(n1)b1,

λ̇2 =−λ1η2 f ′2(n2)b2 +λ2(D+ f ′2(n2)b2)−λ4 f ′2(n2)b2,

λ̇3 =−α +λ1 f1(n1)−λ2η1 f1(n1)−λ3( f1(n1)−D),

λ̇4 =−α−λ1η2 f2(n2)+λ2 f2(n2)−λ4( f2(n2)−D),

with terminal conditions λi(T ) = 0 for i = 0, . . . ,4.
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Optimal control characterization

The control D(t) is updated using the Hamiltonian maximization condition:

D∗(t) =


Dmin if

∂H

∂D
< 0,

Dmax if
∂H

∂D
> 0,

Dsing otherwise,

where Dsing is the singular control obtained by solving
∂H

∂D
= 0.

6.6. Numerical implementation

6.6.1. Discretization

(1) Time Grid: Divide [0,T ] into N intervals with step size ∆t = T/N.

(2) Forward Sweep:

• Use the 4th-order Runge-Kutta (RK4) method to solve state equations.
• Initialize with n0(0),n1(0),n2(0),b1(0),b2(0).

(3) Backward Sweep:

• Solve adjoint equations using RK4 with terminal conditions λi(T ) = 0.
• Store state variables from the forward sweep for evaluation.

(4) Control Update:

• Compute D∗(t) at each time step using the Hamiltonian gradient.
• Apply projection to enforce Dmin ≤ D(t)≤ Dmax.

6.6.2. Convergence criterion

The algorithm iterates until:

max(‖Dnew−Dold‖∞,‖xnew−xold‖∞)< ε,

where ε is a tolerance (e.g., 10−6).

6.6.3. Algorithm details

• State Equations (F): Solved forward in time using RK4 with current control estimate
• Adjoint Equations (G): Solved backward in time using RK4 with terminal conditions λλλ (T ) = 0
• Control Update: Gradient ascent with projection to enforce D ∈ [Dmin,Dmax]
• Convergence: Measured by maximum change in control between iterations
• RK4 Implementation: Fourth-order Runge-Kutta ensures numerical stability

Remark that
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• The RK4 method ensures stability for stiff systems.
• The control update may require gradient-based optimization if singular arcs exist.
• Parallelization can accelerate the forward-backward sweeps for large N.

Algorithm 1 Forward-Backward Sweep Method for Chemostat Optimal Control
1: Input:
2: Model parameters: Dmin,Dmax,α,η1,η2,δu,nin

0 ,n
in
1 ,n

in
2

3: Numerical parameters: T,N, tol,max iter
4: Initial conditions: x0 = [n0(0),n1(0),n2(0),b1(0),b2(0)]T

5: Growth rate functions: f1(n1), f2(n2), f ′1(n1), f ′2(n2)
6: Initialize:
7: Time grid: tk = k∆t for k = 0, . . . ,N with ∆t = T/N
8: State variables: x(0)← x0
9: Adjoint variables: λλλ

(0)← 0
10: Control: D(0)(tk)← Dmin for all k
11: Iteration counter: i← 0
12: while i < max iter do
13: i← i+1
14: 1. Forward Sweep (State Equations):
15: for k = 0 to N−1 do
16: Compute RK4 steps:
17: k1← ∆t F(x(i)k ,D(i−1)

k )

18: k2← ∆t F(x(i)k +
1
2

k1,D
(i−1)
k )

19: k3← ∆t F(x(i)k +
1
2

k2,D
(i−1)
k )

20: k4← ∆t F(x(i)k +k3,D
(i−1)
k )

21: x(i)k+1← x(i)k +
1
6
(k1 +2k2 +2k3 +k4)

22: end for
23: 2. Backward Sweep (Adjoint Equations):
24: for k = N downto 1 do
25: Compute RK4 steps:
26: l1←−∆t G(λλλ

(i)
k ,x(i)k−1,D

(i−1)
k−1 )

27: l2←−∆t G(λλλ
(i)
k +

1
2

l1,x
(i)
k−1,D

(i−1)
k−1 )

28: l3←−∆t G(λλλ
(i)
k +

1
2

l2,x
(i)
k−1,D

(i−1)
k−1 )

29: l4←−∆t G(λλλ
(i)
k + l3,x

(i)
k−1,D

(i−1)
k−1 )

30: λλλ
(i)
k−1← λλλ

(i)
k +

1
6
(l1 +2l2 +2l3 + l4)

31: end for
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32: 3. Control Update:
33: for k = 0 to N do
34: Compute Hamiltonian gradient:

35:
∂H
∂D
←−(1−α)(nin

0 +nin
1 +nin

2 )+λ
(i)
0 (nin

0 −n(i)0 )

36: +λ
(i)
1 (nin

1 −n(i)1 )+λ
(i)
2 (nin

2 −n(i)2 )−λ
(i)
3 b(i)1 −λ

(i)
4 b(i)2

37: Update control:

38: D(i)
k ← proj[Dmin,Dmax]

(
D(i−1)

k + γ
∂H
∂D

)
39: end for
40: 4. Check Convergence:
41: error←maxk |D

(i)
k −D(i−1)

k |
42: if error < tol then
43: break
44: end if
45: end while
46: Output:
47: Optimal control trajectory: D∗(tk)
48: State trajectories: x∗(tk)
49: Adjoint trajectories: λλλ

∗(tk)
50: where:

51: F(x,D) =



D(nin
0 −n0)−δun0

D(nin
1 −n1)+δun0− f1(n1)b1 +η2 f2(n2)b2

D(nin
2 −n2)− f2(n2)b2 +η1 f1(n1)b1

( f1(n1)−D)b1

( f2(n2)−D)b2

52: G(λλλ ,x,D) =



λ0(D+δu)−λ1δu

λ1(D+ f ′1(n1)b1)−λ2η1 f ′1(n1)b1−λ3 f ′1(n1)b1

−λ1η2 f ′2(n2)b2 +λ2(D+ f ′2(n2)b2)−λ4 f ′2(n2)b2

−α +λ1 f1(n1)−λ2η1 f1(n1)−λ3( f1(n1)−D)

−α−λ1η2 f2(n2)+λ2 f2(n2)−λ4( f2(n2)−D)
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We perform numerical results on a system that uses Monod functions to express growth rates:

f1(n2) =
f max
1 n2

κ1 +n2
and f2(n2) =

f max
2 n2

κ2 +n2

where κ1 and κ2 are Monod constants, and f max
1 and f max

2 are the maximum growth rates of bacteria 1
and bacteria 2, respectively. One can readily check that functions f1 and f2 satisfy Assumption 1.
Some parameters are provided in Table 1.

Figure 19 illustrates the dynamics of nutrient concentrations (n0,n1,n2) and bacterial biomass
concentrations (b1,b2) under the influence of an optimally controlled dilution rate D(t). The figure
likely consists of multiple subplots showing the trajectories of these variables over time. The dilution
rate D(t) is dynamically adjusted to balance the competing objectives of maximizing total biomass
(b1 + b2) and minimizing nutrient input costs. The trajectory of D(t) may exhibit an initial high
phase to rapidly stabilize the system, followed by a decline to a steady-state value that sustains
coexistence. Alternatively, it may show a bang-singular-bang structure, switching between bounds
(Dmin and Dmax) and intermediate values based on the Hamiltonian gradient. Initially high due to
input, n0 decreases as it is converted into soluble forms (n1 or n2) or or washed out. The steady-state
value reflects a balance between input, conversion, and dilution. The soluble nutrients are consumed
by bacteria and recycled through mutualism. Their concentrations stabilize at levels where bacterial
uptake matches supply and recycling rates. Peaks or dips may correspond to phases of high bacterial
activity or dilution adjustments. Both species grow until their growth rates ( f1(n1), f2(n2)) are balanced
by the dilution rate D(t). Mutualism (η1,η2) enables coexistence, as each species benefits from the
other’s nutrient recycling. The biomass trajectories show logistic-like growth, reaching steady states
where production matches washout. The relative abundance of b1 and b2 depends on their growth
efficiencies and mutualistic strengths. The stable coexistence of b1 and b2 is achieved under optimal
control, validating the theoretical analysis of E12. Higher D(t) reduces biomass (increased washout)
but lowers nutrient costs, while lower D(t) favors biomass accumulation at higher resource costs. The
optimal D(t) strikes a balance dictated by the weight α . The trajectories are influenced by mutualism
coefficients (η1,η2) and growth kinetics ( f1(n1), f2(n2)). For example, stronger mutualism (higher ηi)
may elevate steady-state biomass. The results suggest that time-varying dilution strategies outperform
constant rates in maintaining coexistence and optimizing objectives. The model can guide bioreactor
operations by identifying critical parameters (e.g., ηi, input concentrations) for desired outcomes.
Therefore, we conclude that Figure 19 demonstrates how optimal control of the dilution rate enables
stable coexistence of mutualistic bacteria while efficiently utilizing nutrients. The trajectories align
with the theoretical stability analysis and highlight the interplay between system dynamics and control
objectives. Some key findings from the provided numerical simulations are summarized as follows: For
α ≈ 1 (biomass maximization), optimal D(t) starts high to quickly reach steady-state, then decreases
to maintain coexistence. For α ≈ 0 (resource minimization), D(t) remains near the minimum required
to prevent washout. Mutualism parameters η1,η2 significantly affect the optimal control trajectory.
The optimal control framework provides: Quantitative trade-offs between biomass production and
resource use. Time-varying dilution strategies superior to constant D. Sensitivity analysis of control to
mutualism parameters.
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Figure 19. Optimal nutrient and biomass concentrations corresponding to the optimal
dilution rate.
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Table 1. Parameters for numerical simulation

Parameter Description Value
T Final time 10 days
N Time steps 1000

Dmin,Dmax Control bounds [0.1,2.0]day−1

α Trade-off weight 0.7
η1,η2 Mutualism coefficients 0.5, 0.3

7. Conclusions

We presented a comprehensive analysis of a chemostat model involving two mutualistic bacterial
species competing for nutrients, with the added complexity of leachate recycling for one substrate. By
reducing the original five-dimensional system to a more tractable three-dimensional form, we identified
and analyzed four key equilibrium points: The washout equilibrium (E0), single-species equilibria (E2
and E2 ), and the coexistence equilibrium (E12). Through local stability analysis, we established
conditions under which each equilibrium is stable or unstable, demonstrating that the coexistence
equilibrium E12 is locally asymptotically stable under biologically realistic assumptions. By using
the principle of uniform persistence applied to the reduced system, we proved that the two competing
bacteria can coexist. Numerical simulations validated these theoretical findings, illustrating transitions
between equilibria and the influence of key parameters on system dynamics. A sensitivity analysis
revealed that the dilution rate, mutualism coefficients, and nutrient input concentrations significantly
impact the system’s behavior. Optimal control techniques were then applied to determine the best
dilution strategy for maximizing biomass production while minimizing nutrient costs. The forward-
backward sweep method provided numerical solutions, demonstrating that time-varying dilution rates
can enhance system performance compared to constant-rate operation.

While this study provides a robust theoretical and numerical framework, it is subject to some
limitations. The use of Monod kinetics may oversimplify complex microbial growth dynamics, and
the deterministic model does not capture environmental fluctuations or stochastic effects. Furthermore,
the focus on two bacterial species limits the applicability to more diverse microbial communities.
In the future, researchers should aim at experimental validation of model predictions, extension to
stochastic frameworks to incorporate random environmental variability, and generalization to multi-
species systems to better represent natural and engineered ecosystems. Other extensions could further
enhance its applicability:

• Incorporating random fluctuations in nutrient supply or bacterial growth rates could improve
model realism. Multi-Species Mutualism: Extending the model to include additional species
or more complex interaction networks would better reflect natural microbial communities.

• Testing the model predictions in laboratory bioreactors would strengthen its practical relevance.
• Exploring Pareto-optimal strategies for balancing competing objectives (e.g., biomass yield vs.

energy efficiency) could refine control policies.

In summary, this work bridges theoretical ecology and bioreactor engineering, offering insights into
microbial coexistence and optimization strategies for engineered systems. The findings contribute to
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the broader understanding of mutualistic interactions in continuous cultures and provide a foundation
for future research in microbial ecology and bioprocess control.

Author contributions

All authors make equal contributions to the research work. All authors have read and agreed to the
published version of the manuscript.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The authors are thankful to the Deanship of Graduate Studies and Scientific Research at
Najran University for funding this work under the Najran Research Funding Program-Grant code
(NU/NRP/SERC/13/339). The authors would also like to thank the anonymous referees for many
constructive suggestions, which helped to improve the presentation of the paper.

Funding

This work was funded by the Deanship of Graduate Studies and Scientific Research at Najran
University under the Najran Research Funding Program-Grant code(NU/NRP/SERC/13/339).

Conflict of interest

All the authors declare no conflicts of interest.

References

1. H. L. Smith, P. Waltman, The theory of the chemostat, Dynamics of microbial competition, 13
(1995), Cambridge Studies in Mathematical Biology, Cambridge University Press.

2. M. El Hajji, J. Harmand, H. Chaker, C. Lobry, Association between competition
and obligate mutualism in a chemostat, J. Biol. Dynam., 3 (2009), 635–647.
https://doi.org/10.1080/17513750902915978

3. A. H. Albargi, M. El Hajji, Mathematical analysis of a two-tiered microbial food-web
model for the anaerobic digestion process, Math. Biosci. Eng., 20 (2023), 6591–6611.
https://doi.org/10.3934/mbe.2023283

4. A. A. Alsolami, M. El Hajji, Mathematical analysis of a bacterial competition in
a continuous reactor in the presence of a virus, Mathematics, 11 (2023), 883.
https://doi.org/10.3390/math11040883

5. L. Margulis, Symbiosis and evolution, Sci. Am., 225 (1971), 48–61.
https://doi.org/10.1038/scientificamerican0871-48

AIMS Mathematics Volume 10, Issue 12, 28714–28752.

http://dx.doi.org/https://doi.org/10.1080/17513750902915978
http://dx.doi.org/https://doi.org/10.3934/mbe.2023283
http://dx.doi.org/https://doi.org/10.3390/math11040883
http://dx.doi.org/https://doi.org/10.1038/scientificamerican0871-48


28751

6. A. M. Dean, A simple model of mutualism, Am. Nat., 121 (1983), 409–417.
https://doi.org/10.1086/284069

7. S. Vet, S. de Buyl, K. Faust, J. Danckaert, D. Gonze, L. Gelens, Bistability in a system of
two species interacting through mutualism as well as competition: Chemostat vs. lotka-volterra
equations, PLoS One, 13 (2018), 1–15. https://doi.org/10.1371/journal.pone.0197462

8. Y. Daoud, N. Abdellatif, T. Sari, J. Harmand, Steady state analysis of a syntrophic model:
The effect of a new input substrate concentration, Math. Model. Nat. Phenom., 13 (2018), 31.
https://doi.org/10.1051/mmnp/2018037

9. R. Fekih-Salem, Y. Daoud, N. Abdellatif, T. Sari, A mathematical model of anaerobic digestion
with syntrophic relationship, substrate inhibition and distinct removal rates, SIAM J. Appl. Dyn.
Syst., 20 (2020), 1621–1654. https://doi.org/10.1137/20M1376480

10. M. El Hajji, F. Mazenc, J. Harmand, A mathematical study of a syntrophic relationship
of a model of anaerobic digestion process, Math. Biosci. Eng., 7 (2010), 641–656.
https://doi.org/10.3934/mbe.2010.7.641

11. T. Sari, M. El Hajji, J. Harmand, The mathematical analysis of a syntrophic relationship
between two microbial species in a chemostat, Math. Biosci. Eng., 9 (2012), 627–645.
https://doi.org/10.3934/mbe.2012.9.627

12. X. Zhao, L. Li, D. Wu, T. Xiao, Y. Ma, X. Peng, Modified anaerobic digestion
model no. 1 for modeling methane production from food waste in batch and
semi-continuous anaerobic digestions, Bioresource Technol., 271 (2019), 109–117.
https://doi.org/10.1016/j.biortech.2018.09.091

13. T. Sari, J. Harmand, A model of a syntrophic relationship between two microbial
species in a chemostat including maintenance, Math. Biosci., 275 (2016), 1–9.
https://doi.org/10.1016/j.mbs.2016.02.008

14. H. H. Almuashi, N. A. Almuallem, M. El Hajji, The effect of leachate recycling on the dynamics
of two competing bacteria with an obligate one-way beneficial relationship in a chemostat,
Mathematics, 12 (2024), 23. https://doi.org/10.3390/math12233819

15. N. A. Almuallem, M. El Hajji, How can viruses affect the growth of
zooplankton on phytoplankton in a chemostat?, Mathematics, 13 (2025), 7.
https://doi.org/10.3390/math13071192

16. F. A. Al Najim, M. El Hajji, B. S. Alshammari, A microbial food web dynamics
under the influence of leachate recirculation, Mathematics, 13 (2025), 13.
https://doi.org/10.3390/math13132146

17. J. D. Murray, Continuous models for interacting populations, Berlin, Heidelberg: Springer Berlin
Heidelberg, 1993, 63–94. https://doi.org/10.1007/978-3-662-08539-4 3

18. N. W. Smith, P. R. Shorten, E. Altermann, N. C. Roy, W. C. McNabb, The
classification and evolution of bacterial cross-feeding, Front. Ecol. Evol., 7 (2019).
https://doi.org/10.3389/fevo.2019.00153

19. J. C. Moore, The influence of microarthropods on symbiotic and non-symbiotic mutualism
in detrital-based below-ground food webs, Agr. Ecosyst. Environ., 24 (1988), 147–159.
https://doi.org/10.1016/0167-8809(88)90062-X

AIMS Mathematics Volume 10, Issue 12, 28714–28752.

http://dx.doi.org/https://doi.org/10.1086/284069
http://dx.doi.org/https://doi.org/10.1371/journal.pone.0197462
http://dx.doi.org/https://doi.org/10.1051/mmnp/2018037
http://dx.doi.org/https://doi.org/10.1137/20M1376480
http://dx.doi.org/https://doi.org/10.3934/mbe.2010.7.641
http://dx.doi.org/https://doi.org/10.3934/mbe.2012.9.627
http://dx.doi.org/https://doi.org/10.1016/j.biortech.2018.09.091
http://dx.doi.org/https://doi.org/10.1016/j.mbs.2016.02.008
http://dx.doi.org/https://doi.org/10.3390/math12233819
http://dx.doi.org/https://doi.org/10.3390/math13071192
http://dx.doi.org/https://doi.org/10.3390/math13132146
http://dx.doi.org/https://doi.org/10.1007/978-3-662-08539-4_3 
http://dx.doi.org/https://doi.org/10.3389/fevo.2019.00153
http://dx.doi.org/https://doi.org/10.1016/0167-8809(88)90062-X


28752

20. F. Abiusi, R. H. Wijffels, M. Janssen, Doubling of microalgae productivity by
oxygen balanced mixotrophy, ACS Sustain. Chem. Eng., 8 (2020), 6065–6074.
https://doi.org/10.1021/acssuschemeng.0c00990
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asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755–763.
https://doi.org/10.1007/BF00173267

33. M. El Hajji, How can inter-specific interferences explain coexistence or confirm the
competitive exclusion principle in a chemostat, Int. J. Biomath., 11 (2018), 1850111.
https://doi.org/10.1142/S1793524518501115

34. S. Sobieszek, M. J. Wade, G. S. K. Wolkowicz, Rich dynamics of a three-tiered anaerobic food-
web in a chemostat with multiple substrate inflow, Math. Biosci. Eng., 17 (2020), 7045–7073.
https://doi.org/10.3934/mbe.2020363

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 12, 28714–28752.

http://dx.doi.org/https://doi.org/10.1021/acssuschemeng.0c00990
http://dx.doi.org/https://doi.org/10.3934/dcdsb.2020215
http://dx.doi.org/https://doi.org/10.1201/9781420011418
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2023.107221
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2023.127283
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2022.111825
http://dx.doi.org/https://doi.org/10.2307/2344363
http://dx.doi.org/https://doi.org/10.3934/math.20231547
http://dx.doi.org/https://doi.org/10.1007/BF00173267
http://dx.doi.org/https://doi.org/10.1142/S1793524518501115
http://dx.doi.org/https://doi.org/10.3934/mbe.2020363
http://creativecommons.org/licenses/by/4.0

	Introduction 
	Mathematical model 
	Local stability analysis 

	Global stability 
	Reduction to a third dimensional dynamics
	No periodic trajectories on the boundaries 
	Persistence
	Back to the main dynamics (2.2)

	Numerical simulation for the model (2.2) 
	Sensitivity analysis of the chemostat model with mutualism 
	Optimal control problem formulation 
	State equations
	Objective functional
	Pontryagin's maximum principle
	Optimal control characterization
	Numerical scheme for optimal control
	Numerical implementation
	Discretization
	Convergence criterion
	Algorithm details


	Conclusions

