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problem into a one-dimensional optimization problem, we find that the optimal refinancing strategy
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1. Introduction

The interest-only (IO) mortgage is one of the important products in real estate finance. It requires
borrowers to pay only the interest during the loan term, with the principal repaid at the end. Due to
their repayment structure that helps reduce borrowers’ financial pressure, interest-only mortgages are
favored by investors and home buyers with limited loan budgets. As noted by Barlevy and Fisher [1],
interest-only mortgages are more prevalent in cities with hot housing markets, and their share exceeded
40% at the peak in some cities, such as Phoenix. Lenders, borrowers, and investors continue to pay
close attention to this type of mortgage.

Historically, due to the important role of interest-only mortgages in the mortgage market, many
studies have examined and discussed them from various perspectives. Aghili [2] provided a brief
overview of the mechanics of adjustable-rate mortgages and considered the advantages and caveats of
interest-only adjustable mortgages. Seay et al. [3] explored the relationship between financial literacy
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and the use of interest-only mortgages, and indicated that the individuals who incorrectly answered
questions related to basic finance were more likely to be using an interest-only mortgage. Barlevy and
Fisher [4] developed a model to investigate the reasons behind the popularity of interest-only mortgages
during the U.S. housing boom. Results of Bäckman and Lutz [5] found that the introduction of IO loans
led to an increase in housing turnover and transactions. Using Danish mortgage data, Larsen et al. [6]
examined how interest-only mortgages affect consumption and savings over households’ lifetimes.
They found that young and old households are more likely to use interest-only mortgages compared
with middle-aged households, and discussed the differences in consumption between households with
IO mortgages and households with repayment mortgages. Similarly, Bäckman and Khorunzhina [7]
explored the impact of interest-only mortgages on consumption.

If the borrower repays the loan according to the terms specified in the contract, the resulting cash
flow is predictable. However, the borrower has the right to refinance when the market mortgage
rate falls below the rate agreed upon in the contract in order to reduce future interest payments.
This refinancing behavior not only reduces the lender’s interest income but also complicates risk
measurement and asset valuation. Therefore, it is essential for lenders to predict and mitigate
refinancing risk before issuing a mortgage. Meanwhile, the issue of refinancing has attracted
widespread attention from researchers. The review article by Krainer and Marquis [8] surveys research
literature on factors influencing refinancing decisions and discusses developments in the mortgage
refinancing market. For interest-only mortgages, Kimura and Makimoto [9] developed a model of
rational mortgage refinancing where the drift and volatility of the interest rate process switch between
two regimes and found that the optimal refinancing strategy is a threshold type. Agarwal et al. [10]
assumed that the mortgage rate and inflation follow Brownian motion and derived a closed-form
optimal refinancing strategy for housing mortgages. Xie et al. [11] used a Monte Carlo algorithm
to study borrowers’ refinancing behavior, where they modeled market mortgage rates with a two-
dimensional Vasicek-type stochastic process. Wu et al. [12] examined optimal refinancing for fixed-
rate mortgages based on the Vasicek interest rate model.

Due to the unique repayment structure of interest-only mortgages, the market mortgage rate
significantly influences borrowers’ refinancing behavior. To accurately capture the changing
characteristics of the market mortgage rate and provide an appropriate refinancing strategy, we assume
that the market mortgage rate follows a jump-diffusion process. This approach is chosen for two
reasons: First, jump-diffusion processes are widely used in insurance and risk theory, which provides
a solid theoretical foundation; second, the properties of the jump-diffusion process align well with the
changes of market rate—particularly the jump component, which can capture large, sudden changes in
rate over short periods.

Based on this foundation, our paper makes three contributions. First, the paper’s main contribution
lies in modeling mortgage rate dynamics using a jump-diffusion framework. Second, we transform the
complex two-dimensional optimal stopping problem into a tractable one-dimensional problem, proving
that the optimal strategy is of the threshold type. Finally, we derive explicit solutions for the optimal
refinancing threshold under specific jump-size distributions.

Assuming that the state variable and production technology follow jump-diffusion processes, Ahn
et al. [13] examined the term structure of interest rates. They revealed that bond prices are strictly
higher under jump risks than in models without such risks. Using a double exponential jump-diffusion
process to model the asset price, Kou [14] considered the option pricing problem. Using a stochastic
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impulse control approach, and considering the presence of fixed and proportional transaction costs,
Zou et al. [15] discussed the dividend optimization problem for an insurer with a jump diffusion risk
process. Under the condition that the dynamics of the risky underlying asset are driven by a Markov-
modulated jump-diffusion model, Elliott et al. [16] considered the pricing of options. Assuming that the
LIBOR interest rate follows a geometric Brownian motion with jump-diffusion terms, Mohamadinejad
et al. [17] constructed a suitable model for pricing the spread options. By constructing a multi-
dimensional jump-diffusion model, Melnikov and Nejad [18] calculated the upper and lower hedging
prices. Other relevant studies include [19–22].

The content of this chapter is arranged as follows. In Section 2, we introduce a refinancing model
for interest-only mortgages, in which a jump-diffusion process is used to model the mortgage rate. In
Section 3, the optimal refinancing strategy and the system of equations that the value function satisfies
are presented. In Section 4, we derive the optimal refinancing threshold and the mortgage valuation
under the optimal refinancing strategy by considering different distributions for the jump sizes. Finally,
numerical results are provided to examine the impact of some parameters on the optimal refinancing
threshold and mortgage valuation.

2. The model

In this section, we construct a repayment model to determine the borrower’s optimal refinancing
strategy. We assume that the borrower is risk-neutral and that the risk-free interest rate is a constant
ρ. The borrower repays the full principal M at the termination time Θ, which follows an exponential
distribution with parameter η. The contractual borrowing rate is defined as the process m(t). Until
time Θ, the borrower only pays interest at the rate m(t)M. The borrower may choose to refinance at
any time; however, the mortgage borrowing rate is reset to the current market mortgage rate, and a
transaction cost δ is incurred at refinancing time.

If the mortgage holder does not have a refinance option, the expected present value of total payments
with the initial borrowing rate m is given by

E
[
mM

∫ Θ

0
e−ρtdt + e−ρΘM

]
= (η + m)ω, (1)

where ω = M
ρ+η

.
We assume that the market mortgage rate process is defined as

r(t) = r(0) + µt + σBt +

N(t)∑
i=1

Yi, (2)

where Bt is a standard Brownian motion with B0 = 0, {N(t)}t≥0 is a Poisson process with rate λ, constant
µ and σ > 0 are the drift and volatility of the diffusion part, respectively, and the jump sizes {Y1,Y2, ...}

are independent and identically distributed (i.i.d.) random variables. The distribution function and
density function are respectively defined as FY(y) and fY(y). Assuming that {Bt}t≥0, {N(t)}t≥0, and
random variables {Y1,Y2, ...} are independent. The linear drift and the Brownian motion in Eq(2)
represent the continuous and normal changes in the market mortgage rate, while the compound Poisson
process characterizes abnormal jumps.

AIMS Mathematics Volume 10, Issue 12, 28436–28450.



28439

Note that r(t) is a continuous-time Markov process. When the initial market mortgage rate r(0) =

r1 > 0, the market mortgage rate r(t) is denoted as r(r1)(t). If r(r1)(t) and r(r2)(t) are constructed via the
same paths of {Bt}t≥0 and {N(t)}t≥0, random variables Y1,Y2, ..., we have

r(r1)(t) − r(r2)(t) = r1 − r2, ∀t ≥ 0. (3)

Denote τ = (τ1, τ2, ..., τN) as the refinancing time sequence. Specifically, τ0 = 0, and N is the
number of refinances before time Θ, and τ j, j = 1, ...,N, is the j-th refinancing time. Note that N = 0
means the mortgage holder does not refinance before Θ. Borrowing rate and mortgage rate process
{rt}t≥0 at initial time t = 0 are denoted by (m, r) if m(0) = m and r(0) = r. Thus, the present value of
total payments starting with initial state (m, r) under refinancing time sequence τ = (τ1, ..., τN) is given
by

Uτ(m, r) =I{N,0}mM
∫ τ1

0
e−ρtdt +

N−1∑
k=1

r(τk)M
∫ τk+1

τk

e−ρtdt + I{N,0}r(τN)M
∫ Θ

τN

e−ρtdt

+ I{N=0}mM
∫ Θ

0
e−ρtdt +

N∑
k=1

δe−ρτk + e−ρΘM. (4)

Equation (4) shows the present value of different parts of the mortgage. The first four terms are the
present value of the interest paid by the borrower, the fifth term is the present value of the refinancing
penalty, and the last term is the present value of the mortgage principal M. We use the indicator
function I{·} so that Eq (4) holds when N = 0. The objective is to find a refinancing time sequence
τ that minimizes E [Uτ(m, r)]. We denote the expected present value under the optimal refinancing
strategy by

V(m, r) = min
τ

E [Uτ(m, r)] , (5)

which is also called the value function.

3. Optimal refinancing strategy and equations value function satisfied

In this section, we will show that optimal refinancing strategy and the system of equations H(x) =

V(0, x) satisfied.

Proposition 3.1. Value function V(m + z, r + z) satisfies the following equation:

V(m + z, r + z) = V(m, r) + ωz. (6)

Proof. From Eqs (2) and (4), for the same refinancing time sequence τ, terminate time Θ, {N(t)}t≥0,
{r(t)}t≥0, and Y1, ...,YN(t), we have

Uτ(m + z, r + z) = Uτ(m, r) + zM
∫ Θ

0
e−ρtdt. (7)

Taking expectation on both sides of Eq (7), we obtain

E [Uτ(m + z, r + z)] = E [Uτ(m, r)] + E
[
zM

∫ Θ

0
e−ρtdt

]
= E [Uτ(m, r)] + ωz. (8)
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If τ is the optimal refinancing strategy of Uτ(m, r), it follows from Eq (8) that

V(m + z, r + z) ≤ E [Uτ(m + z, r + z)] ≤ V(m, r) + ωz. (9)

Similarly, let τ be the optimal refinancing strategy of Uτ(m + z, r + z), we can obtain that

V(m + z, r + z) ≥ V(m, r) + ωz. (10)

From Eqs (9) and (10), we note that Eq (6). �

From Proposition 3.1, we can rewrite V(m, r) as

V(m, r) = V(m,m + x) = H(x) + mω, (11)

where x = r − m is the difference between the initial market interest rate and the initial borrowing
rate, and H(x) := V(0, x). Then, we reduce the two-dimensional optimal refinancing problem to a one-
dimensional problem, i.e., the optimization problem for V(m, r) is transformed into the optimization
problem for H(x). We assume that H(x) is a continuous and integrable function. The expressions
H′(x), H′′(x), H′′′(x), and H(4)(x) denote the first, second, third, and fourth derivatives of the function
H(x), respectively.

By following the approach of Kimura and Makimoto [9], we obtain the following proposition,
which presents the optimal refinancing strategy.

Proposition 3.2. The optimal refinancing strategy is of threshold type, i.e., refinance when the
difference between the market mortgage rate and the borrowing rate falls below a negative threshold
θ, where θ is a constant to be determined.

Proof. We prove this proposition by contradiction. For x1 > x2, suppose that an immediate refinance
is optimal for the initial state (m,m + x1) and it is not optimal for (m,m + x2). Thus, from the definition
of value function V(m, r), we have

V(m,m + x1) =V(m + x1,m + x1) + δ = V(0, 0) + ω(m + x1) + δ, (12)
V(m,m + x2) <V(m + x2,m + x2) + δ = V(0, 0) + ω(m + x2) + δ. (13)

We consider the first refinancing time τ1 in the optimal strategy when the initial state is (m,m + x2).
It is obvious that this strategy is not an optimal refinancing time for the initial state (m,m + x1). Then
we have

V(m,m + x1) <Em+x1

[
Vτ1 + I{τ1<Θ}e−ρτ1 (V(r(τ1), r(τ1)) + δ)

]
, (14)

V(m,m + x2) =Em+x2

[
Vτ1 + I{τ1<Θ}e−ρτ1 (V(r(τ1), r(τ1)) + δ)

]
, (15)

where
Ex[·] = E[·|r(0) = x]

and

Vτ1 =

∫ τ1∧Θ

0
mMe−ρtdt + I{τ1>Θ}e−ρΘM.
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By Eqs (12)–(15), we have

Em+x1

[
Vτ1 + I{τ1<Θ}e−ρτ1 (V(r(τ1), r(τ1)) + δ)

]
− Em+x2

[
Vτ1 + I{τ1<Θ}e−ρτ1 (V(r(τ1), r(τ1)) + δ)

]
>V(m,m + x1) − V(m,m + x2) > ω(x1 − x2). (16)

However, Eqs (14) and (15) have the same τ1, Θ and Vτ1 which are independent of x1, we can obtain
that

Em+x1

[
Vτ1 + I{τ1<Θ}e−ρτ1 (V(r(τ1), r(τ1)) + δ)

]
− Em+x2

[
Vτ1 + I{τ1<Θ}e−ρτ1 (V(r(τ1), r(τ1)) + δ)

]
=E

[
I{τ1<Θ}e−ρτ1ω

(
r(x1)(τ1) − r(x2)(τ1)

)]
=E

[
I{τ1<Θ}e−ρτ1ω(x1 − x2)

]
< ω(x1 − x2). (17)

Since (16) contradicts (17), the proof has been completed. �

Remark 3.1. The optimal refinancing threshold θ has a straightforward economic interpretation as
the minimum required interest rate spread to justify modifying a contract under uncertainty. If the
spread is above θ, the interest savings from a new contract are insufficient to cover the transaction
cost, making it optimal to wait for market rates to decrease. If the spread falls below θ, the reduced
interest is enough to compensate for the transaction cost, triggering the optimal action to refinance
immediately. A lower value of θ indicates a more conservative refinancing strategy, while a higher
value suggests a more aggressive one.

Proposition 3.3. Value function H(x) satisfies the following system of equations:
H(x) = H(0) + δ + ωx, x ≤ θ,

σ2

2
H′′(x) + µH′(x) − (ρ + λ + η)H(x) + λ

∫ +∞

−∞

H(x + y)dFY(y) + ηM = 0, x > θ,
(18)

where H(x) is defined in Eq (11).

Proof. Under the optimal strategy, the mortgage holder should refinance immediately for x ≤ θ, then

V(m,m + x) = V(m + x,m + x) + δ. (19)

By Eq (6), we have

V(m + x,m + x) = V(0, 0) + ω(m + x). (20)

Substituting Eqs (11) and (20) into Eq (19), we can obtain that

H(x) = H(0) + δ + ωx, x ≤ θ.

For x > θ, the mortgage holder should not refinance immediately under the optimal strategy. We
consider an infinitesimal time interval [0, dt] and separate the four possible cases as follows:

(1) Θ ≤ dt (the probability is 1 − e−ηdt);
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(2) Θ > dt and no jump of the process N(t) occurs in [0, dt] (the probability is e−(λ+η)dt);
(3) Θ > dt and one jump of the process N(t) occurs in [0, dt] (the probability is λdte−λdte−ηdt);
(4) Θ > dt and more than one jump of the process N(t) occurs in [0, ε] (the probability is o(dt)).

Then we get

H(x) =e−ρdt {(ηdt + o(dt)) M + (1 − (λ + η)dt + o(dt))E
[
H(x + µdt + σdBt)

]
+(λdt + o(dt))E

[
H(x + µdt + σdBt + Y1)

]
+ o(dt)

}
,

where, as usual, o(dt) means that o(dt)/dt → 0 as dt → 0. Thus, we have

σ2

2
H′′(x) + µH′(x) − (ρ + λ + η)H(x) + λ

∫ +∞

−∞

H(x + y)dF(y) + ηM = 0. (21)

�

Remark 3.2. After obtaining the solution to the system of equations in Eq (18), we apply the relevant
boundary conditions to determine the unknown constants in the solution. From the value matching and
the smooth pasting conditions, which are widely known as optimality conditions, we have

lim
x↑θ

H(x) = lim
x↓θ

H(x), lim
x↑θ

H′(x) = lim
x↓θ

H′(x). (22)

4. Optimal refinancing threshold value and valuation of mortgage

In this section, we derive the explicit expression of the value function H(x) and the value of the
optimal refinancing threshold θ for the distribution FY(y) of some common forms.

4.1. Exponential distribution

Suppose that the jump sizes Yi are exponential distribution with density function

fY(y) =

αe−αy, y > 0,
0, y ≤ 0,

where α > 0. Equation (21) can be rewritten as

σ2

2
H′′(x) + µH′(x) − (ρ + λ + η)H(x) + λα

∫ +∞

0
H(x + y)e−αydy + ηM = 0, x > θ. (23)

Let

U(x) =

∫ +∞

0
H(x + y)e−αydy = eαx

∫ +∞

x
H(y)e−αydy.

Equation (23) becomes

σ2

2
H′′(x) + µH′(x) − (ρ + λ + η)H(x) + λαU(x) + ηM = 0. (24)
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After differentiate Eq (24) with respect to x, we get

σ2

2
H′′′(x) + µH′′(x) − (ρ + λ + η)H′(x) + λαU′(x) = 0.

From U′(x) = αU(x) − H(x), we obtain

σ2

2
H′′′(x) + µH′′(x) − (ρ + λ + η)H′(x) + λα (αU(x) − H(x)) = 0. (25)

We multiply Eq (24) by −α and add Eq (25) and obtain

σ2

2
H′′′(x) + (µ −

1
2
ασ2)H′′(x) − (ρ + λ + η + µα)H′(x) + α(ρ + η)H(x) − αηM = 0. (26)

Function g1(u) is given by

g1(u) =
σ2

2
u3 + (µ −

1
2
ασ2)u2 − (ρ + λ + η + µα)u + (ρ + η)α.

From the fact that

g1(0) = (ρ + η)α > 0, g1(α) = −λα < 0, lim
u→+∞

g1(u) > 0, lim
u→−∞

g1(u) < 0,

we know that g1(u) = 0 has three real roots, u1, u2, and u3 with u1 < 0 < u2 < α < u3.
Then for x > θ, the solution of Eq (26) is given by

H(x) = C1eu1 x + C2eu2 x + C3eu3 x + ωη,

where C1,C2, and C3 are constants. Together with condition that lim
x→+∞

H(x) = ωη, it obvious that
C2 = C3 = 0, i.e.,

H(x) = C1eu1 x + ωη.

By Eq (22), we have C1 + δ + ωθ = C1eu1θ,

ω = C1u1eu1θ.
(27)

By substituting C1 = ω/(u1eu1θ) into the first equation of Eq (27) and performing a simplification, we
have

e−u1θ = 1 −
u1δ

ω
− u1θ = ν − u1θ, (28)

where ν = 1 − u1δ/ω. Equation (28) can be rewritten as (u1θ − ν) eu1θ−ν = −e−ν, i.e.,

u1θ − ν = W(−e−ν), (29)
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where W(·) is the Lambert W function and satisfies W(x)eW(x) = x. Therefore, we can obtain that

θ =
1
u1

(
ν + W(−e−ν)

)
.

From Eq (29) and the equation W(−e−ν)eW(−e−ν) = −e−ν, we have

eu1θ = eνeW(−e−ν) = −
1

W(−e−ν)
.

Then, we obtain that

C1 =
ω

u1eu1θ
= −

ω

u1
W

(
−e−ν

)
.

4.2. Double exponential distribution

Suppose that Yi follows the double exponential jump diffusion process, i.e., the density function is

fY(y) = pα1e−α1yI{y≥0} + qα2eα2yI{y<0}, (30)

here p, q ≥ 0 are constants, p + q = 1, and α1, α2 > 0. Therefore, for x > θ, we have

σ2

2
H′′(x) + µH′(x) − (ρ + λ + η)H(x) + λpα1

∫ +∞

0
H(x + y)e−α1ydy

+λqα2

∫ 0

−∞

H(x + y)eα2ydy + ηM = 0, x > θ. (31)

From ∫ 0

−∞

H(x + y)eα2ydy =

∫ 0

θ−x
H(x + y)eα2ydy +

∫ θ−x

−∞

H(x + y)eα2ydy

=

∫ 0

θ−x
H(x + y)eα2ydy +

∫ θ−x

−∞

(H(0) + δ + ω(x + y)) eα2ydy

=

∫ 0

θ−x
H(x + y)eα2ydy +

[
H(0) + δ

α2
+
ω

α2

(
θ −

1
α2

)]
eα2(θ−x)

:=
∫ 0

θ−x
H(x + y)eα2ydy + Je−α2 x,

where

J =

[
H(0) + δ

α2
+
ω

α2

(
θ −

1
α2

)]
eα2θ,

Eq (31) can be rewritten as

σ2

2
H′′(x) + µH′(x) − (ρ + λ + η)H(x) + U1(x) + U2(x) + λqα2Je−α2 x + ηM = 0, (32)

where

U1(x) = λpα1

∫ +∞

0
H(x + y)e−α1ydy = λpα1eα1 x

∫ +∞

x
H(y)e−α1ydy,

AIMS Mathematics Volume 10, Issue 12, 28436–28450.



28445

U2(x) = λqα2

∫ 0

θ−x
H(x + y)eα2ydy = λqα2e−α2 x

∫ x

θ

H(y)eα2ydy.

It can be found that

U′1(x) = α1U1(x) − λpα1H(x),
U′2(x) = −α2U2(x) + λqα2H(x).

After different Eq (32) with respect to x, we get

σ2

2
H′′′(x) + µH′′(x) − (ρ + λ + η)H′(x) + (λqα2 − λpα1)H(x)

+α1U1(x) − α2U2(x) − λqα2
2Je−α2 x = 0. (33)

After multiply Eq (32) by α2 and add Eq (33), we have

σ2

2
H′′′(x) + (µ +

1
2
α2σ

2)H′′(x) − (ρ + λ + η − µα2)H′(x) + (α1 + α2)U1(x)

+(λqα2 − λpα1 − (ρ + λ + η)α2)H(x) + ηα2M = 0. (34)

Different Eq (34) again with respect to x, we obtain

σ2

2
H(4)(x) + (µ +

1
2
α2σ

2)H′′′(x) − (ρ + λ + η − µα2)H′′(x) + α1(α1 + α2)U1(x)

−λpα1(α1 + α2)H(x) + (λqα2 − λpα1 − (ρ + λ + η)α2)H′(x) = 0. (35)

Similarly, we multiply Eq (34) by −α1 and add Eq (35) and have

σ2

2
H(4)(x) + (µ +

1
2
α2σ

2 −
1
2
α1σ

2)H′′′(x)

−(ρ + λ + η − µα2 + µα1 +
1
2
α1α2σ

2)H′′(x)

+(λqα2 − λpα1 − (ρ + λ + η)α2 + (ρ + λ + η − µα2)α1)H′(x)
+ (ρ + η)α1α2H(x) − ηα1α2M = 0. (36)

Let

g2(u) = a4u4 + a3u3 + a2u2 + a1u + a0,

where

a4 =
σ2

2
, a3 = µ +

1
2
α2σ

2 −
1
2
α1σ

2, a2 = −ρ − λ − η + µα2 − µα1 −
1
2
α1α2σ

2,

a1 = λqα2 − λpα1 − (ρ + λ + η)α2 + (ρ + λ + η − µα2)α1, a0 = (ρ + η)α1α2.

From the fact that the function g2(u) satisfies

lim
u→−∞

g2(u) > 0, lim
u→+∞

g2(u) > 0, g2(0) = (ρ + η)α1α2 > 0,
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g2(α1) = −λpα1(α1 + α2) < 0, g2(−α2) = −λqα2(α1 + α2) < 0,

we know that g2(u) = 0 has four real roots, u1, u2, u3, and u4 with u1 < −α2 < u2 < 0 < u3 < α1 < u4.
Therefore, the solution to Eq (36) is given by

H(x) = D1eu1 x + D2eu2 x + D3eu3 x + D4eu4 x + ωη,

where D1, D2, D3, and D4 are constants to be determined. Together with condition that lim
x→+∞

H(x) =
η

ρ+η
M, it obvious that D3 = D4 = 0, i.e.,

H(x) = D1eu1 x + D2eu2 x + ωη. (37)

By the conditions Eqs (18) and (22), we haveD1 + D2 + δ + ωθ = D1eu1θ + D2eu2θ,

ω = D1u1eu1θ + D2u2eu2θ.
(38)

After substituting Eq (37) into Eq (32), from the coefficient of e−α2 x, we obtain(
1 −

α2

u1 + α2
eu1θ

)
D1 +

(
1 −

α2

u2 + α2
eu2θ

)
D2 + ω

(
θ −

1
α2

)
+ δ = 0. (39)

From Eqs (38) and (39), we obtain that θ is the negative root of equation

(u1 + α2)u2

(u2 − u1)u1α2
e−u1θ +

(u2 + α2)u1

(u1 − u2)u2α2
e−u2θ + θ +

δ

ω
−

1
u1
−

1
u2
−

1
α2

= 0,

and

D1 =
(u1 + α2)u2ω

(u2 − u1)u1α2
e−u1θ, D2 =

(u2 + α2)u1ω

(u1 − u2)u2α2
e−u2θ.

5. Numerical illustration

Since mortgage rates can experience both upward and downward jumps in reality, we present some
numerical results for the case where the jump size follows a double exponential distribution introduced
in Section 4.2. The parameters in Eq (30) are set to p = 0.45, q = 0.55, α1 = 400, and α2 = 400.
Without loss of generality, we set M = 1. Other parameters are set to ρ = 0.03, µ = 0.003, σ = 0.012,
η = 0.05, δ = 0.02, λ = 2*.

The parameter δ represents the transaction costs that the borrower must pay when refinancing. When
refinancing costs rise, borrowers need to wait longer for a lower mortgage rate to offset these costs.
Figure 1 also shows that −θ increases with higher transaction costs. This indicates that transaction
costs have a significant impact on the optimal refinancing threshold†.

*The parameter values employed in this section are chosen for illustrative purposes to conduct a sensitivity analysis. They are not
based on empirical estimation.

†Since refinancing is triggered when the interest rate spread falls below θ, a higher value of −θ implies a more conservative strategy
and a longer expected waiting time. Thus, plotting the change in −θ directly illustrates the trend in the expected waiting time until
refinancing.
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By setting the parameter η, we can obtain the expected time until future full repayment (i.e., 1/η).
A larger η implies that the borrower is more likely to repay the mortgage early. Figure 2 shows the
relationship between η and −θ. Compared to long-term mortgages (with smaller η), borrowers with
short-term loans (larger η) tend to wait longer before refinancing. The reason is that the economic
benefit of a lower post-refinancing rate requires time to build up, whereas a short-term loan might be
repaid soon after refinancing. As a result, borrowers with short-term loans require a lower mortgage
rate to achieve a larger interest rate spread.

The parameter λ represents the average number of mortgage rate jumps per unit of time. Therefore,
a larger λ implies more jumps occurring during the mortgage period. As shown in Figure 3, −θ is
monotonically increasing with λ. Under our parameter settings, more frequent jumps in interest rate
will lead to a longer waiting period for the borrower before refinancing. Figure 4 shows how the jump
affects the mortgage valuation, where m(0) = r(0) = 0.06. It can be observed that the valuation V
decreases as the parameter λ increases, which means the mortgage valuation decreases when jumps are
more frequent.
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Figure 1. The relationship between δ and
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6. Conclusions

This paper examines the optimal refinancing strategy for interest-only mortgages under a jump-
diffusion mortgage rate model. Unlike traditional short-rate models such as Vasicek or CIR processes
that primarily describe the continuous evolution of the mortgage rate, the jump-diffusion process
incorporates a jump component. This addition is critical for capturing the sudden, sharp movements in
the mortgage rate that often occur in response to macroeconomic shocks or policy announcements.
By transforming the two-dimensional optimization problem into a one-dimensional problem, it is
shown that the optimal refinancing strategy is of a threshold type. Furthermore, a system of equations
concerning the value function and the optimal refinancing threshold is derived. When the jump size
follows an exponential distribution, we obtain an explicit formula for the optimal refinancing threshold;
when it follows a double exponential distribution, we derive the equation that the threshold must satisfy.
Finally, numerical examples are used to explore the effects of transaction costs, mortgage term, and
jump frequency on the borrower’s optimal refinancing strategy and mortgage valuation.

Under some simplifying assumptions (such as a constant risk-free rate), the paper derives several
results related to mortgage refinancing. However, given the complex market environment and
real-world economic conditions, these simplified assumptions have certain limitations. By these
assumptions, the existing model can be extended to yield refinancing strategies that are more aligned
with market fluctuations. For instance, the evolution of the risk-free rate could be modeled using
a stochastic process, or we could assume that N(t) is a Cox process to capture the changes in the
frequency of shocks.
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