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Abstract: This article mainly investigated the three-coupled fourth-order nonlinear Schrodinger
(NLS) systems, which characterized the alpha-helical proteins with interspine coupling at the fourth-
order interaction. By the 5—dressing method, we studied the three-coupled fourth-order NLS systems.
We derived a new spectral problem starting from the E-problem. Then, we obtained the three-coupled
fourth-order NLS hierarchy associated with the spectral problem using a recursive operator. Finally,
we analyzed the N-soliton solutions of the three-coupled fourth-order NLS systems by determining the
spectral transform matrix in the g—problem. We also provided detailed descriptions of the 1-, 2-, and
3-soliton solutions, along with dynamic features and graphical illustration.
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1. Introduction

The nonlinear Schrédinger (NLS) equation contributes greatly to various fields of nonlinear science,
such as nonlinear optics [1-3], plasma physics [4], biological physics [5], hydrodynamics [6], even
finance [7], and atmosphere situations [8]. Over recent decades, a variety of analytical methods
have been developed to study such nonlinear systems. Among these, the Darboux transformation
provides an algebraic iterative procedure for constructing soliton solutions and has been widely
applied to integrable systems such as the NLS family [9, 10], the Sasa-Satsuma equation [11], and
the coupled Fokas-Lenells system [12]. The Hirota bilinear method offers a direct approach for
deriving explicit multi-soliton solutions via a clever variable transformation and remains fundamental
to soliton theory [13,14]. For solving initial-value problems, the inverse scattering transform serves as a
cornerstone technique, offering a nonlinear analog to the Fourier transform and a complete integrability
framework for key equations including the Korteweg-de Vries (KdV) equation [15, 16], and the NLS
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equations [17, 18].

In addition to their fundamental mathematical interest, solitons described by the NLS-type
equations have found a broad range of physical and technological applications in recent years. For
example, the collapse of soliton-like bubbles induced by cavitation has been exploited to launch
microbots in biomedical systems [19]. Optical solitons have also been experimentally realized in
photonic Moir lattices [20]. Moreover, soliton dynamics plays a central role in modern optical
communication and photonics, where solitons are employed for coded signal transmission [21] and
as stable pulse structures in fiber lasers [22]. These advances highlight the practical importance
of solitons and further motivate the theoretical exploration of multi-component and higher-order
integrable systems capable of modeling such nonlinear wave phenomena.

In recent years, the study about generalized NLS equations has garnered significant attention. For
example, Scott [23] first explored the application of coupled NLS equations to alpha-helical proteins.
Veni and Latha [24] proposed generalized model to describe the dynamics of alpha-helical proteins
incorporating inter-spike coupling. This model incorporates excitations of both quadrupole and dipole
types, next-nearest-neighbor and nearest-neighbor interactions, as well as higher-order interspine
couplings. In this article, we focus on the investigation of the following three-coupled fourth-order
NLS systems [24]

3 3 3 3
iqj,t + Qj,xx +2 Z |Qp|2qj +y qj,xxxx +2 Z |Qp,x|ZCIj +2 Z Qpap,xqj,x +6 Z qup,xqj,x

p=1 p=1 p=1 p=1

3 3 3 3 2
+4Z|qp|2q,~,xx+4Zapqp,mq,+22qpap,quj+6(Z |qp|2J q,~]=o, (=123, (LD
p=1 p=1

p=1 p=1

where g represents the wave envelopes, 7 is the lattice parameter, g represents the complex conjugate
of g, and x and ¢ correspond to the scaled distance and delay time, respectively. Recently, various
methods have been employed to study the three-coupled fourth-order NLS systems given by (1.1).
For instance, Veni and Latha obtained the multi-soliton solutions of the three-coupled fourth-order
NLS systems (1.1) using the Darboux transformation in Ref. [24]; Sun, Tian, Wang, and Zhen
derived the bilinear forms and multi-soliton solutions of the equations (1.1) using the binary Bell-
polynomial approach [25]; Du, Tian, and colleagues investigated semirational rogue waves, rational
and semirational rogue waves, and vector multi-rogue wave solutions of the three-coupled fourth-order
NLS systems (1.1) via the generalized Darboux transformation in 2017 [5, 26,27]; Dong, Tian, and
Wei obtained infinitely many conservation laws and constructed some semirational solutions of the
equations (1.1) using the Darboux-dressing transformations [28].

Moreover, it is well known that when y = 0, the three-coupled fourth-order NLS systems (1.1)
reduce to the three-component coupled NLS equation. Zhao and Liu obtained its vector rogue waves
using the Darboux transformation [29], while Wang and Han studied its breather waves and rogue
waves using the Darboux-dressing transformations [30]. When y = 0 and j = 1, 2, the three-coupled
fourth-order NLS systems (1.1) reduce to the dimensionless vector NLS equation, and Baronio et al.
investigated its semi-rational, multi-parametric vector solutions [31]. Although significant progress has
been made in constructing soliton solutions for the three-component fourth-order NLS system (1.1),
to the best of our knowledge, relatively few studies have addressed the derivation of the full integrable
hierarchy associated with such systems. In this article, we employ the d-problem framework to derive
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the three-component fourth-order NLS hierarchy and to investigate the soliton dynamical behaviors
arising in this context.

Although methods such as Darboux and Bécklund transformations have proven highly effective
for generating soliton solutions in integrable systems, they often rely on specific ansitze and
typically require iterative procedures to construct multi-soliton configurations. Similarly, binary Bell
polynomials and the Hirota bilinear method are effective tools when applied to systems admitting a
bilinear form. However, their applicability becomes limited in the presence of higher-order couplings
or non-standard Lax structures. In contrast, the é—dressing method offers significant advantages
in solving nonlocal spectral problems. Notably, this approach does not depend on the existence
of a bilinear form, making it well suited (for more general integrable systems) particularly those
involving higher-order derivatives and strongly coupled multi-component structures. Moreover, the -
dressing method facilitates the construction of the entire integrable hierarchy within a unified spectral
framework, rather than being restricted to isolated solutions. This model not only broadens the
scope of analytical techniques but also provides an influential tool for systematically uncovering the
underlying algebraic and geometric structures of the model, thereby offering a deeper understanding
of its integrability.

The 5—dressing method, an effective analytical tool for constructing soliton solutions of nonlinear
integrable systems, was first introduced by Zakharov and Shabat in 1974 [32]. Since then, it has
been extensively applied to study various properties of nonlinear equations, including their long-time
asymptotic behavior, transformation structures, and reduction processes [33, 34]. The method remains
active in contemporary research, being employed to derive integrable hierarchies and explicit solutions
for a wide range of systems [35, 36], such as the Kadomtsev-Petviashvili (KP) I equation [37], the
Ablowitz-Barseghyan (AB) equations [38], the Davey-Stewartson II (DS-II) equation [39], the three-
wave interaction system [40], the Kaup-Broer system [41], the coupled Gerdjikov-Ivanov equation
[42], the nonlocal extended modified KdV equation [43], and the differential-difference KP equation
[44,45].

However, to the best of our knowledge, the application of the é—dressing method to coupled multi-
component systems (particularly those of higher order) has not been explored in the existing research.
Motivated by this gap, the present work focuses on extending the g-dressing framework analyze the
three-coupled fourth-order NLS systems. Specifically, we construct the associated spectral transform
matrix for the 5—problem, derive the corresponding integrable hierarchy, and obtain the explicit N-
soliton solutions. In addtion, visualize and investigate the nature of soliton interactions within this
system, we present both three-dimensional plots and characteristic line diagrams of 1-, 2-, and 3-soliton
solutions.

The structure of this article is organized as follows: In Sect. 2, we introduce the é—problem and
construct the spatial and time spectral problems using the 5—problem method. In Sect. 3, we derive the
three-coupled fourth-order NLS hierarchy using recursive operators. In Sect. 4, we derive the N-soliton
solutions of the three-coupled fourth-order NLS systems (1.1), based on the spectral transform matrix
derived from the 5—pr0blem introduced in Sect. 2. Additionally, we present the 1-, 2- and 3-soliton
solutions, together with their graphical representations, to more effectively illustrate the underlying
dynamical phenomena.
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2. Spectral problems and Lax pair
2.1. The spatial spectral problem
We consider the special 5—problem
AW (x,1,2) = ¥(x, 1, DR(x,1, ), (2.1)

where ¥(x, ¢, 1) and R(x, 1, 1) are 4 X 4 matrices, A € C denotes the complex spectral parameter, and 0
denotes the complex derivative with respect to the conjugate variable A (i.e. d = ’9) We suppose that

Y(x,t,1) > I, as A — oo,

where I means a 4 X 4 identity matrix. Then, the E—problem (2.1) satisfies the following solution
Y(é)R -
Y(x,t,) =1+ ff ©) (g)df ANdé =1+YRC,, (2.2)

where C, means the left Cauchy-Green integral operator and & represents the complex conjugate of &.
From Eq (2.2), we get the formal solution of the d-problem (2.1)

Y1) = (I -RC)™!, (2.3)

where the superscript —1 denotes the inverse of the matrix. To simplify our presentation, we define two
pairings

0= [ [ rwg@wand. ;=¢n=o- [ [radnd
where the superscript T denotes the transpose of a matrix, which satisfies the following three properties

(f.8)" =48 f) (fRg)=(f.gR"), (fCi8)=—(f.8C). (2.4)

For matrix functions f(4) and g(4), our calculation shows that

DL (DCAICL + [g(DCF(DCh = [EDCULF(DCal.

The Lax pair of nonlinear equations is fundamental to various methods, such as the Darboux
transformation, algebraic geometry method, Riemann-Hilbert method, inverse scattering transform,
and others. If the transformation matrix R(x,?, 1) satisfies a simple linear equation, then the Lax pair
of the three-coupled fourth-order NLS systems (1.1) can be constructed from the é—problem 2.1).
Proposition 1 Let the transform matrix R(x, t, A) satisfy the following form

R, = —1l[R, o], (2.5)

where o = diag(1, -1, -1, —1), then the solution ¥ of the 8-problem (2.1) satisfies the spatial spectral
problem of the three-coupled fourth-order NLS systems (1.1) as

—il[o,¥] = PY, (2.6)
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with o
0 4 9 4
|l =¢x 0 0 0 | .
P= 5 0 0 0 = i[o, (¥YR)].
—q3 0 0 0

Proof Through Egs (2.3) and (2.5), we have
¥, = —iAYRoC(I— RC))™ + iA¥oRC, (I - RC))™".

Direct calculation shows that

AYRC, = (YR) + A(¥ - 1),
PWRC, = (APR) + A(YR) + (¥ - D),
PYRC, = (PR + {AYR) + (YR + (¥ - 1),

A'WRC, = (PYR) + H{A2YR) + 12(APR) + (¥R) + 21*(¥ - D).

On the basis of RC, =1— (I — RC,), we get
RC,(I-RC)™'=1-RC)' -
Substituting the first formula of Eqs (2.9) and Eq (2.10) into Eq (2.8), we have
¥, = —-i(¥YR)c¥ +ido(I - RC,)™' —id¥o.
Form the first formula of Eq (2.9), it can be found that
AT-RC)™ = (YRYY + AV.
Substituting Eq (2.12) into Eq (2.11), we obtain
—idlo, VY] = i[o, (PR)]Y.
By taking P = i[o, (YR)], the proof'is finished.
2.2. The time spectral problem
Proposition 2 Let the transform matrix R(x, t, 1) satisfy the following form

R, = [R,Q],

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

where Q indicates the dispersion relation depending on x and t. We decompose € into the polynomial

part Q, and the singularity part Q, namely,

Q- Q+Q_anﬂna+—ff@d§ dz,

2

(2.14)

where a, represents constant and EQS = w(A)o. Then, the solution ¥ of the E—problem (2.1) satisfies

time spectral problem of the three-coupled fourth-order NLS systems (1.1) as

¥, + (8iyd* = 2i%)[0, ¥] = =8y’ PY¥ + 4iy P (P, — PH)¥ + 2yA(P,, + PP, — P,P — 2P*)¥
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+2APY + iyo (=P, + PPy + P P — 3P* — P2 + 3P*P, + 3P, P)¥ +io(P* — P,)¥. (2.15)

Proof We only consider the polynomial dispersion relation Q = Q, = 8iyd*c — 2iA’c. From Egs
(2.2), (2.3), and (2.14), we have

¥, = (8iyA* — 2112)PRoC (I — RC,y)™! — (8iyA* — 2iA)WPo (I — RC) ™ + Biyd* - 2i°)¥o. (2.16)
Then, through Egs (2.9), Eq (2.16) can be written:

¥, = —8iy[o, (PYR)]Y - 8iy[c, (PFPRY((¥R) + ADY — 8iy[c, (AFRI((AFR) + (¥R)? + A(¥R)
+ DY - Siy[o, (PRYI(APPR) + (APR)(FR) + HAPR) + (¥YRYAPR) + (FR)’ + A(PR)*

+ A2(PR) + LD — 8iyA*[o, ] + 2i[0, (APR)]Y + 2i* [0, ¥] + 2i[c, (PRII((PR) + ADP.
(2.17)

Through Egs (2.5) and (2.6), we get

(PR), = ilo, (I¥YR)] + P(YR), (APR), = i[o, (A*FR)] + P(A¥R),

(APWRY, = i[o, (PPR)] + P(1>PR). (2.18)

We decompose 4 x4 matrix Q into Q' and Q¥ (i.e., Q = Q"'+ Q!¥), where Q') and Q'“! are expressed
as

0 Q12 Q13 Q14 Qll 0 0 0

0 = Qyx 0 0 O Ol = 0 Oxn 0xn 0O

O3 0 0 0 | 0 OQOn 0On 0O

Oq 0 0 O 0 Qun Ou QOu

Therefore, from Eq (2.18), we obtain

(PR = 2i(APR)! + POPRY, (PR = POPRY,
(APR)! = 2ig(*PRY! + P(APRY, (APRY = P(AYR)Y, (2.19)
(BPYRY! = 2o (APPRY! + PAPWRY, (PYR) = PPYR).

Based on Egs (2.7) and (2.19), we have

4QAPRY = —P, + 2ic P(PRY,

S(IPPRY! = ig Py, + 4ic PLAYRYY + 2P (PR + 2P (PR,

16(PPRY! = Py + 8ic PLPYRY + 4P (APRY + 8P2(APRY — 2ig P, (PR)¥
— 4ic P P(YR)’! — 2ic PP (¥R)! — 2ic P*(¥R)“.

(2.20)

Bringing (2.20) into Eq (2.17) yields Eq (2.15).
In conclusion, we derived that the solution ¥ of the d-problem (2.1) satisfies the time spectral
problem.
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3. Recursive operators and three-coupled fourth-order NLS hierarchy

In this section, in order to derive the three-coupled fourth-order NLS hierarchy, we first introduce a
matrix function M(x, t, 1), which is expressed as follows

M(x,t,1) = YoV .

0 a1 4 g
. -¢1 0 0 O . .
Letting P = , we can deduce the following proposition
-¢2 0 0 O
-g3 0 0 O

Proposition 3 The matrix P defined in the Eq (2.7) satisfies a coupled hierarchy with a source M(x,t, 1)

P, + 20,0 N"P + 20,0 N"? P = —i[0, {w()M)]

) (3.1
M, =id[o, M] + [P, M],

where the recursive operator A means it is defined as the following form

A= i (127 (P11 - 0.).

Remark 1 For the special case of n = 1, we derive the generalized three-coupled third-order NLS
equations with a source term from the coupled hierarchy equations (3.1). These equations are obtained
as follows

3
. 1 _ o
iq) + @140 = 703 | Qo +3 > Gppdi +3 ) gl g | = 20((OMY), (j=1,2,3),
p=1

p=1

0 My Mz My M, O 0 0

M 0 0 0 0 My Mx M

_ glol [dl _ 21 22 23 24

where M = M'"%' + M My 0 0 0 + 0 My My M
My 0 0 0

0 My Qi My
For n = 2, we derive the generalized three-coupled fourth-order NLS equations with a source term

from the coupled hierarchy equations (3.1). These equations are obtained as follows

3 3 3
Gju + 502G jex + X ; lgp"q; — g (Qj,xxxx +6 Z Qpxdpdjx + 2 Z |9p.21"q; +2 Z RUPRLIE:

p=1 p=1 p=1

3 3 3 5
+4 Z 19 qjcx + 4 Z Gpxxdpdj + 2 Z Ap9px9i + 6( Z qulz) qj) = i {w(HMY, (j=1,2,3)
p=1 p=1 p=1 p=1

(3.2)
By selecting a, = 21, ay = 8y, and w(d) = 0, Egs (3.2) can be reduced to the three-coupled
fourth-order NLS systems (1.1).

Proof According to the definition of C, and A(1) = 27“ 5 f fD 49 Zdé A dé, we obtain the following
result

arC, = -2 f &df/\df £,

AIMS Mathematics
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where 8 can be interpreted as the inverse operator of C,. Therefore, we obtain
((PR))) = (YR, 1- I+ R"C)™).

Making use of the relevant properties of Eq (2.4), and differentiating P with respect to t, yields the

following result
P, =i[o, (YR),] = i[o, (¥R, 1- 1+ R"C)™M]. (3.3)

Utilizing the identity 0(¥~")T = —(Y"Y)TRT, rogether with Egs (2.2) and (2.3), leads to the following
result
P HT=I-T+R"CY". (3.4)

Then, by bringing Eqs (2.13) and (3.4) into Eq (3.3), we have
P, = i[o, (@P)QP )] + i[o, (PQAP ). (3.5)

Consider
Q, = "0 + @, "0,

and
Q,—>0, as 41— oo.

Furthermore, Eq (3.5) can be simplified to
P, = 2i@, 03" M) + 2iat, 1,0 (DA 2 M) — i[o, (w()M)]. (3.6)

Based on the definition of M(x,t, 1), and with the aid of Eq (2.6), the second equation in Eq (3.1) is
obtained.

Next, by substituting M(x,t,A) = M"\(x,t, 1) + M'9(x,t, A) into the second equations of Eq (3.1),
the following result is obtained

MY =P MY, MY = 2ido M + [P, MY, (3.7)
According to the boundary condition that ¥Y(x,t,1) — L as A — oo, we have
M(x,t,) =Po¥ ! 50, as 11— o,
and subsequently get the solution of M'“! to
MY = o+ 0;'[P, M), (3.8)

where 07! represents the integral with respect to x. We bring Eq (3.8) into the second equation of Eq
(3.7), and we obtain

AM) + Sor (ML) = [P0 [P, MI"1) = =iP.

Subsequently, the following new recursive operator is introduced
1, .
A = io ([P.3;'[P. 1] - y).

AIMS Mathematics Volume 10, Issue 12, 28407-28435.
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As a result, the following expression is obtained
MY =i(A - )7'P. (3.9)
Substituting Eq (3.9) into Eq (3.6), we have
Pi = =2a,0(0(A" (A = )™YP) = 20,420 (A = )THP) — i[o, (w(D)M))].

The expansion (A — )™! = — P %_l is considered. Employing the identity A = 186 in+1 for

j=1,2,---, the following result is derived

A n—] 6j,n+1 -
@y = = S(OAAA A = =61

As a consequence, the following evolution equation arises

P, = —2a,0A"P — 20,120 A"**P — i[o, (w(A)M)].
4. The N-soliton solutions of the three-coupled fourth-order NLS system

In this section, we construct the N-soliton solution of the three-coupled fourth-order NLS systems
(1.1) with the 0-problem (2.1).

4.1. N-soliton solutions

Proposition 4 Suppose that A, bl i (G=1,2,---,N) are 2N discrete spectra in the complex plane. In
the case of Eqs (2.5) and (2.13), we choose the spectral transform matrix as

N
R = pe @0 Z R, el 4.1)
j=1
0 _ —Cl’j(S(/l - /lj) —Cz,j(S(/l - /lj) —C3’j5(/l - /lj)

c1,;0(1 =245 0 0 0

R, = J A - _ 4 _
where R & 00— 1) 0 0 0 , 0() Ax + (8yA
C3,0(4 = 2)) 0 0 0

200, chj» Chj(h=1,2,3, j=1,2,---,N) are all constants. Based on Eqs (2.7) and (4.1), we derive
the N-soliton solutions of the three-coupled fourth-order NLS systems (1.1) as

det M det M@ det M®
= —21 . = —21 5 = —21 N 42
7 ( det M ) © ( det M ) % ( det M ) )
where
0 K]N 0 KZN 0 K}N

MDY = M = MO =

( E M ) E M| E M|
E=(,1,--, D)y Kiy=(cp e 2% ¢, 2% ... ¢ e 20y
Koy = (02,16_219(11), Cz,ze_m(b), e cone T,
Ky = (€316 2% 03,67 201) v oy ne 20Ny
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Proof Based on Eqs (2.7) and (4.1), the following result is obtained

N N
qi1(x, 1) = 2iZ ¢y, 0D (2)) |, @ (x, 1) = ZiZ c2,je_2i9(/lj)\yll(/1j)],
= = (4.3)
N
g3(x,1) = |21 ) €560 (4)) |
j=1

Substituting Eq (4.1) into Eq (2.2), we get

N (= _2i6(2) 3 = .2i6(1)) 3 = .2i0(25) 3
€W (A7) + ¢y 7P 3(A5) + ¢3 67 4(A
WL =1+ Z(Cl,j 12(4)) + 2 _13( RSN 14( 1)), 4.4)
Y[ e Y e
- _ _Lk -2i6(4) _ G2k 2iacy)
¥in(d) = Z(ﬂ_ﬂke k%(@)), ¥i5(0) = Z(ﬂ_ﬂke kT11<Ak)),
k=1 k=1
N 4.5)
_ C3k  —2igy)
Yis(A) = — _— PP (A0 ]
14(A) kzz;(’l_ ﬂke 1( k))
We assume _ _ _
A = L) ialy, B, = _2J_iet)). C,= _B_2ied))
A- 1 A- 1 -1,
and taking A = A, in Eq (4.4), 1 = A, in Eqs (4.5). Therefore, we rewrite Eqs (4.4) and (4.5) as
N B N B N B
i) = 1+ ) A Pn) + D BP0 + ) Ci()P1s(l),
j=1 j=1 j=1
B N B N B N
¥i(l) = = D A, Yis@) = - ) B@)¥u(k), P = = > Cu@)¥n ().
=1 k=1 =1

Furthermore, the following result is obtained

N N -
Vi) = 1= 3 " (AAD) + BB + CANCA) | i, (1= 1,2, N). (4.6)

=1 k=1
We rewrite Eq (4.6) as
M¥11(4), P11(A2), - - ,‘Pu(/lN))T =1, l)T, 4.7)

where M means the N X N matrix,

N

M =14 Foy Fuo= ) (A0A) + BB, + CiAC(A,)).
=1

By solving Eq (4.7), we can get

det M}

detM’

with M), = (My,--+ ,M,_1,E,M,.1,--- ,My). We bring Eq (4.8) into Eq (4.3) and get the N-soliton

solutions of the three-coupled fourth-order NLS systems (1.1).

Y (4,) = (n=12,---,N), (4.8)

AIMS Mathematics Volume 10, Issue 12, 28407-28435.
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4.2. Application of N-soliton solutions
4.2.1. 1-soliton solutions

First of all, we consider the 1-soliton solution, and assume that N = 1. According to the definition
of M, we have

M =1+A,(DA,Q) + By (DB, + CL(HC, (D),

0 ¢ e—2i6(/l) 0 ¢ e—2i9(/l) 0 ¢ e—ZiG(/l)
1 _ L1 2 _ 2,1 3 — 3,1
M ‘( oo M E Ty MR )

From Eq (4.2), we can get the 1-soliton solutions of the three-coupled fourth-order NLS systems
(1.1) as

2icl’1eZi(/lx—Sy/l4t+2/lzt)(/l _ /'1)(/'1 -
%(X’ 1) = ((/1 _ /_l)(/_l -+ (01,151,1 + 018y + C3’l53’1)e2i(—/_1x+8y/_l4t—2/_12t+/1x—8)//l4t+2/12t))
= —ic; e H07%gech (iIG + o) + i0),
2i62, 162i(/lx—8y/l4t+2/lzt)( A1— /'1)(2 _ /1)
q2(x, 1) = ((/1 _ /_l)(/_l — )+ (c11C11 + €18y + (:3’l53’1)e2i(—/_1x+8y/_l4t—2/_12t+/1x—8)//l4t+2/12t)) 4.9
= —ic, e 07%gech (iIG + o) + i0),
2ic3’1eli(/lx—87/14t+2/lzt)(/1 _ /'1)(/’1 -
q3(x,1) = ((/1 _ /_l)(/_l -+ (Cl,lf'l,l + 018y + (:3’l53’1)e2i(—/_lx+8y/_l4t—2/_12t+/1x—8)//l4t+2/12t))

= —icy e 07 %gech (iIG + 01 + i0),
where
H=2 4y + 2 =4yt + A+ Dx, G =21 —4y2* = 22 +4y2Ht + (A - Dx.
Next, we assume A = ) + 1, and simplify Eq (4.9) to

q1(x, 1) = —icy 1" “sech (v (x, 1)),
g2(x, 1) = —icy 1€ ™sech (va(x, 1)), (4.10)
g3(x, 1) = —ic3 1€ “sech (vo(x, 1)),
where
vi(x, 1) = M4y = 2455y + 44y — 4 + &) = 2ihx — 01 — o,
valx. 1) = 8B41day = 80143y = {ida)t = 26x + 01 + g,
From the explicit one-soliton expression, the phase function v;(x, ) shows that the oscillation

periods in x and ¢ can be obtained from the argument of the exponential term "™, Accordingly,
the time period 7, and spatial period T, can be approximated as

T T

- . T.=—.
441(22 - 68y — 3 14

These periods depend on the real part ¢ of the spectral parameter and on the higher-order coupling
coeflicient y.

T,
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We analyze the characteristic lines associated with Eq (4.10), which describe the dynamics of the
soliton solutions. In particular, we identify a characteristic line L; : v,(x,t) = 0, which corresponds
to the propagation path of the 1-soliton solution. The function v,(x, ¢) originally serves to define this
characteristic line; however, since v,(x, f) generally contains complex-valued terms, it does not directly
represent a physically meaningful (i.e., real-valued) trajectory in the (x, 7)-plane.

To better understand the actual motion of the soliton, we focus on the real part of the phase function
v2(x, t). By isolating the linear terms in x and 7 from R (v,(x, 1)), we obtain a real-valued approximation
of the characteristic line that captures the soliton’s dominant propagation direction. These linear
components provide insight into the soliton’s trajectory and are used to plot the characteristic line.
The effect of different parameter choices on this characteristic path is illustrated in Figure 1(d) and
2(d), where variations in slope and position reflect changes in soliton velocity and initial phase.

By selecting appropriate parameter values, the dynamic behavior of the 1-soliton solutions are
illustrated in Figures 1 and 2. It is observed that the width and amplitude of a single soliton
remain invariant during propagation. Moreover, singularities in the soliton profiles are located along
the corresponding characteristic lines. A comparison between Figures 1 and 2 further reveals that
variations in the real part of the discrete spectral parameter lead to oscillatory behavior in the wave.

-10-5 0 5 10 15
t
(@)

Figure 1. The 1-soliton solution (4.10) for Eq (1.1) with the parameters {; = % O o= %,
cii=1,¢c1 =1,c3, =1, and y = 4; (a) Three-dimensional plot of ¢;; (b) Three-dimensional

plot of ¢,; (c) Three-dimensional plot of ¢g3; (d) The characteristic line L, : x = —2t.
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5 10 15

(d)

Figure 2. The 1-soliton solution (4.10) for Eq (1.1) with the parameters {; = i, $H o= %,

cii=1,¢c1 =1,c3; =1, andy = 4; (a) Three-dimensional plot of ¢;; (b) Three-dimensional

plot of ¢,; (¢) Three-dimensional plot of ¢3; (d) The characteristic line L; : x = —%t.
4.2.2. 2-soliton solutions
Assuming N = 2, and then using the definition of M, we have
My, My )
M - s
( My M
0 ¢ e 20 o e 200k 0 ¢y e 20 () e 200k)
MV =11 My, M, , MP=|1 My, My )
1 M, M>, 1 M, M,
0 3,0 200 (g e 2600)
M =1 My, M ,
1 M>, M>,
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where

My =1+ A1 (A)DAI(A) + Bi(A)Bi(4) + C1(4)C1 (1))

+ A2 (A)A1(A2) + Ba(A) B () + Co(2)C1(A2),

My = Ay(A)A(4)) + B1(4)Ba(4)) + C1(4)Ca(A))

+ Az(/ll)Az(zz) + Bz(/ll)Bz(zz) + Cz(/ll)cz(zz),

My = A(2)A (A1) + Bi(A2)B1(A) + C1()C1(A;)

+ A2 (A2)A1 (1) + Ba(A2) B () + Ca(2)C1(Aa),

My =1+ Aj(1)A2(A,) + Bi(A2)Ba()) + C1(A2)Ca(2y)

+ A2(A2)A2(A2) + Ba(A2) Ba(A2) + Ca(A2)Ca(Ar).

Therefore, we conclude that the 2-soliton solutions of the three-coupled fourth-order NLS systems
(1.1) can be described as follows

.det M® .det M® .det M®
a= (_21 det M )’ 4= (_21 det M )’ = (_21 det M ) (“411)

By setting N = 2 in the general N-soliton expression (4.2), we obtain the 2-soliton solutions of the
three-coupled fourth-order NLS system (1.1). Although the full analytic expressions are not shown
due to their complexity, we visualize the solution in Figures 3—7 by selecting specific parameter values
to illustrate the soliton interactions.

In addition, following the same approach used for the 1-soliton solutions, we assume A; = {; + 16
and A, = { +16,. Under this assumption, we derive that the 2-soliton solutions possess the following
two characteristic lines

1 _ _ _
Ly:Bix+ 4(8{1,3?7 - 8513,317 + Bt - ﬁ In(cy ¢11 + c1€21 +c31631) =0,
1

1 _ _ _
Ly : Box + 4B8LByy — 8Ly + (o)t — ﬁ In(c12C12 + 22620 + €32C32) = 0.
P

Figures 3-7 illustrate various 2-soliton interaction scenarios of the coupled fourth-order NLS
systems by employing different configurations of the discrete spectral parameters ¢;, B;, and
corresponding polarization components c; ;. These simulations serve to highlight how specific spectral
choices influence the interaction types, degrees of deformation, and propagation geometry of the
solitons.

In Figures 3 and 4, the parameters {; = —1, (> = ; and {; = —11, &, = 2, respectively, ensure that
the two solitons possess distinct velocities and moderate spectral separation. As a result, the solitons
exhibit elastic collisions, characterized by a brief nonlinear interaction and a subsequent restoration of
their initial shapes and velocities. The characteristic lines L, and L, further confirm that the trajectories

intersect but then diverge, indicating no permanent deformation or energy trapping.

AIMS Mathematics Volume 10, Issue 12, 28407-28435.



28421

“10-5 0 5 10 15
t

(d)

Figure 3. The 2-soliton solution (4.11) for Eq (1.1) with the parameters {; = —%, B = %,

H = %,ﬁz = 15—2, cii =1l cip=1¢c4 = %, Cp = %, 31 = %, C3p = %, andy = 1; (a)
Three-dimensional plot of g;; (b) Three-dimensional plot of g;; (c) Three-dimensional plot
of g3; (d) The characteristic line L; : x = 7t + $In(4) and L, : x = —=H1+ Z1n(3).

In Figure 5, the condition ¢, = —%, $H o= i with identical imaginary parts and smaller spectral
separation results in a more intense interaction. Notably, the two solitons temporarily merge into a
high-amplitude, signaling a singular behavior. This effect stems from constructive interference due
to matching propagation velocities and overlapping phases, which can be interpreted physically as a

momentary energy concentration or soliton fusion.

A comparative analysis of Figures 3-5 reveals that as the distance between the discrete eigenvalues
decreases in terms of either the real or imaginary parts the interaction becomes stronger and longer in
duration. This highlights the sensitivity of nonlinear superposition to spectral proximity, especially in
coupled systems.
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30 -10 0 10 20 30
t
(d)

Figure 4. The 2-soliton solution (4.11) for Eq (1.1) with the parameters {; = —%, B = %,
L=2B=1c1=Lca=1c1=%cr=301=102=3ady=1; ()
Three-dimensional plot of g;; (b) Three-dimensional plot of g,; (c) Three-dimensional plot

of g3; (d) The characteristic line L; : x = —%t +8 ln(lg—l) and L, : x = —%t +8 ln(%).

Figures 6 and 7 explore a symmetric setting with parameters {; = —{;, = ¢27—4, B =B = 1%
corresponding to solitons with equal and opposite velocities. The characteristic lines L; and L, in
these cases are symmetric and perpendicular, which geometrically implies that the solitons travel in
mirror-opposite directions. Despite the head-on collision, the solitons retain their shape and energy,
further reinforcing the elastic nature of these interactions. Interestingly, by comparing subfigures 6(d)
and 7(d), we observe that rotating the characteristic lines by equal angles leads to a rotation in the
interaction frame, but does not affect the qualitative soliton behavior and only their direction of motion

is altered.
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20 -10

@

Figure 5. The 2-soliton solution (4.11) for Eq (1.1) with the parameters {; = —%, B = %,
L=tB=tca=Lea=1c1=130r=301=10=3ady=1;(@
Three-dimensional plot of g;; (b) Three-dimensional plot of g,; (c) Three-dimensional plot
of gs; (d) The characteristic line L; : x = —t + 8 ln(%) and L, : x =-t+38 ln(%).

From a physical perspective, these interaction behaviors carry significance in various nonlinear
media where multi-component soliton dynamics are present, such as optical fiber arrays, plasma
waves, or multi-mode Bose-Einstein condensates. The observed elastic and singular interactions may
correspond to stable transmission channels, energy localization, or directional switching mechanisms,
which have practical applications in signal processing and nonlinear control systems.
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AIMS Mathematics

x 20 20 -10
© @

Figure 6. The 2 soliton solution (4.11) for Eq (1.1) with the parameters {; = —%, B = —%,
é/ = 24’ ﬁZ = 24’ Cl,l = 17 C1,2 = 1’ c2,1 = %a C2,2 = %7 c3,l = %’ C3,2 = %’ and?’ = 17 (a)
Three-dimensional plot of g;; (b) Three-dimensional plot of g,; (c) Three dimensional plot

of g3; (d) The characteristic line L; : x = 2t + 28 In(4) and L, : x = =11+ 22 In(3).

)

Figure 7. The 2-soliton solution (4.11) for Eq (1.1) with the parameters {; = 27—4, B = 2—74,
H=—FB=—5nca=Lca=1c61=3,02=35 01 =35 ¢c2=3andy = 1;(a)
Three-dimensional plot of g;; (b) Three-dimensional plot of ¢,; (c) Three-dimensional plot
of g3; (d) The characteristic line L; : x = =t + 22 In({}) and L, : x = I+ 22 In(3).
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4.2.3. 3-soliton solutions

Assuming N = 3, and then using the definition of M, we obtain

where

AIMS Mathematics

0 ¢ o200 o o20) o o200
My, My, M 1 l’lM 1,2M 1’3M
M=| My My My |, MV = ! 12 B ,
My My Mo 1 My, M>, M3
1 M5, M3, M3
0y e 200 () e 2001) ) =201
MO = 1 M, M, M3
1 M, My, M>; ’
1 M5, Ms, M3
0 302000 (e 2001) oy =21
MO = 1 M, M, M
1 My, M>, M3 ’
1 M5, M3, M3

My, = Aj(ADA () + B1(4)B1(A)) + C1(4)C1(A1) + Az (A1)A () + By(A1)B1(2,)
+ Co()C1(A2) + A3(A1)A1(A3) + B3(A1)By(A3) + C3(4)C1(A3) + 1,

My = Aj(4)Ay(A)) + Bi(41)Ba()) + C1(4)Ca(A1) + Az (A1) A2(A2) + Ba(A1)Ba(A2)

+ C2(2)Ca(A2) + A3(21)A2(23) + B3(1)Ba(A3) + C3(11)Ca(23),

M3 = Ay (A)A3(4)) + Bi(4)B3(A;) + C1(4)C3(A;) + Az (A1)A3(A2) + Ba(A,)B3(2,)

+ Co(1))C3(y) + A3(A))A3(A3) + B3(1))B3(13) + C3(1))C3(A3),

My, = A{(1)A(4)) + Bi(1)Bi(A)) + Ci(1)C1(A)) + Ay(A2)A () + Br(A2)B1 (1)
+ Ca(1)C1 () + A3(A2)A (A3) + B3(A2)B(13) + C3()C1(A3),

My, = A(1)A5(1)) + Bi(12)By(A)) + C1(1)Ca(A)) + Ay(A2)Ar(A2) + Br(A2) By (1)

+ Ca(2)Ca(A2) + A3(A2)Ar(43) + B3(A2)Ba(A3) + C3(A2)Ca(3) + 1,

My; = A(1)A3(4)) + Bi(12)B3(4)) + C1(1)C3(A)) + Ay(A2)A3(A;) + Byr(A2)B3(1,)
+ Co(A2)C3(A2) + A3(A2)A3(A3) + B3(A2)B3(43) + C3(A2)C3(A3),
M3 = Aj(A3)A1(4) + Bi(A3)B1(A)) + C1(A3)C1 () + Az(A3)A1 (1) + Ba(A3)B1 (L)

+ Ca(A3)C1 () + A3(A3)A1(A3) + B3(3)B1(A3) + C3(43)C1(23),
Mz, = A(13)A2(4)) + Bi(A13)By(A)) + C1(A3)Ca(A)) + Ay(A3)A2(A2) + Byr(A3)Ba(1,)
+ C2(23)C2(A2) + A3(23)A2(23) + B3(A3)Ba(A3) + C3(13)Ca(23),
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M3 = A1(A3)A3(A)) + Bi(43)B3()) + C1(A3)C5(A1) + Ax(13)A3(22) + Ba(A3)B3(A2)

+ C2(23)C3(A2) + A3(23)A3(3) + B3(A3)B3(A3) + C3(A3)C3(23) + 1.

Therefore, we deduce that the 3-soliton solutions of the three-coupled fourth-order NLS systems (1.1)
take the following form

det MO det M@ det M®
q: = (—2' ¢ ), qr = (—2' © ), qs = (—2i © ) (4.12)

i— i—
det M detM detM

Similarly, the 3-soliton solutions are derived from the general expression (4.2) by taking N = 3. While
the exact forms of the solution components are lengthy and omitted here, the corresponding dynamics
are clearly demonstrated through the plots in Figures 8—10, confirming the validity of the general
formula.

(b)

10 20

20 (d)

X 20

(©)
Figure 8. The 3-soliton solution (4.12) for Eq (1.1) with the parameters {; = —15—2, B =
H=1B=-1.06=-1.8=101=10C2=1303=101 =1 0=
€23 = 3,031 = 3,632 = 4, ¢33 = 1, and ¥ = 1; (a) Three-dimensional plot of ¢;; (b)
Three-dimensional plot of g,; (c¢) Three-dimensional plot of ¢3; (d) The characteristic line

Li:x=2t+8In(:), Lyt x = —r+8In(LL) and Ly : x = 1 + 8In(3).

1
42
1
2

In addition, following the same approach used for the 1-soliton and 2-soliton solutions, we assume
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that 4, = {1 +iBy, 4, = { +16, and A3 = {3 +1B3. Under these assumptions, we derive that the 3-soliton
solutions possess the following two characteristic lines

1 _ _ _
Ly : Bix + 488y — 84iBiy + (i)t — ﬁ In(cyic11 + ¢21€21 +¢3,1€31) =0,
|

1 _ _ _
Ly : Box + 48LByy — 8L3Bay + Loffa)t — ﬁ In(ci2¢12 + 22022 + €32C32) =0,
P

1 _ _ _
Ly : Bsx + 4838y — 8LBsy + (Bs)t — ﬁ In(ci3¢13 + c23¢23 + ¢33¢33) = 0.
3

Figures 8-10 illustrate the dynamic behavior of 3-soliton solutions of the coupled fourth-order NLS
system under various parameter settings. These interactions reveal the complex and diverse nature of
multi-soliton collisions, reflecting both the system’s strong nonlinearity and its underlying integrable
structure.

In Figure 8, the spectral parameters are chosen as {; = —%, OH = i, and {3 = —i, resulting in
an asymmetric distribution in the complex plane. This asymmetry leads to non-uniform propagation
paths and uneven interaction dynamics among the three solitons. The characteristic lines L, L,, and
L; reveal that solitons 1 and 2 undergo a direct collision followed by rapid separation, while soliton
3, due to its distinct spectral configuration, experiences a noticeable trajectory shift. Consequently,
the overall three-soliton interaction manifests as a cascade of pairwise collisions. Although the system
eventually restores a multi-soliton structure, slight deformation in the soliton profiles indicates weakly
inelastic behavior during the interaction process.

In Figure 9, the spectral parameters are set as {; = —%, OH = }P and &3 = —‘—1‘, yielding a configuration
with closer spacing and partial symmetry. From the three-dimensional plots and two-dimensional
density maps, it can be observed that solitons 1 and 2 propagate forward in parallel, while soliton 3
subsequently collides with them, leading to a complex three-soliton coupling effect. This sequence and
timing of collisions can be interpreted as a manifestation of the collective dynamics within the soliton
ensemble. In particular, the phase shifts and trajectory deviations observed during the evolution further
demonstrate the nontrivial interference characteristics intrinsic to the soliton solutions in this system.

In Figure 10, the spectral parameters are set as {; = —15—2, OH o= é, and {3 = % The resulting
interaction initially forms a tightly bound cluster, where all three soliton peaks converge in space-
time, creating a pronounced interference region. The two-dimensional density plots (Figure 10 (d)—(f))
reveal localized zones of high amplitude and interference fringes during the collision phase. This can
be interpreted as a transient resonant structure involving all three solitons. Following the collision, the
solitons rapidly separate and regain their individual profiles and trajectories, indicating a quasi-elastic
scattering process with minimal residual distortion.

The results presented in Figures 8—10 collectively highlight several key physical insights into the
nature of three-soliton interactions within the coupled fourth-order NLS system. These interactions
exhibit pronounced asymmetry, weakly inelastic deformation, and distinct nonlinear interference
patterns, all of which are intricately shaped by the configuration and spacing of the underlying spectral
parameters. The characteristic lines L;, L, and L; clearly delineate the geometric structure of soliton
trajectories, serving as a powerful framework for interpreting the observed scattering behavior. These
findings hold potential relevance for practical applications in nonlinear optical wave guides, phase-
controlled beam networks, and coupled quantum field systems, especially in scenarios involving
multimode interference in Bose-Einstein condensates.
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Figure 9. The 3-soliton solution (4.12) for Eq. (1.1) with the parameters {; = —%, B = %,
H=1B=-106=-1.8=101=15C2=1%03=101 =1, 01=73,

€23 =3, 031 = 3,032 = 3,633 = 4, and y = 1; (a) Three-dimensional plot of g;; (b) Three-
dimensional plot of ¢;; (c) Three-dimensional plot of g3; (d) Two-dimensional density plot
of gi; (e) Two-dimensional density plot of ¢,; (f) Two-dimensional density plot of g;.
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Figure 10. The 3-soliton solution (4.12) for Eq (1.1) with the parameters {; = —%, B =
H=1.P=-5G=%PF=1.01=1C2=130C3=73 01 =73 Cp =
€23 =3, 031 = 3,032 = 3,633 = 3, and y = 1; (a) Three-dimensional plot of g;; (b) Three-
dimensional plot of ¢;; (c) Three-dimensional plot of g3; (d) Two-dimensional density plot

of g;; (e) Two-dimensional density plot of ¢,; (f) Two-dimensional density plot of g;.

2

N I—= 4 =
-

4.3. Asymptotic analysis of soliton interactions

In the framework of the 5-dressing method, the N-soliton solutions of the three-coupled fourth-
order NLS systems are constructed by choosing N discrete spectral points 4; = {; +i8; (j=1,...,N)
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in the complex plane, together with associated constant vectors ¢, ; (the so-called norming data). The
analytic properties of the resulting integral equation allow one to extract physical quantities of each
soliton.

Velocity. In the d-formulation, the phase of each exponential term in the reconstructed solution
involves a term of the form
Hj(x, 1= —/ljx + Q(/lj)t,

where Q(A) is the dispersion relation derived from the associated Lax pair. For the three-coupled
fourth-order NLS systems, we have
Q1) = 8ya* — 2%

Hence, the trajectory of constant phase satisfies
—-Xx+ (8)//1; —24;)t = const,
which implies that the velocity of the j-th soliton is given by

v; =48y - 8y B — ). (4.13)

Amplitude. The amplitude of each soliton is linked to the imaginary part §; of its corresponding
spectral parameter, as well as the residue of the pole in the integral representation. More precisely,
under standard normalization, the peak amplitude A; is proportional to S;

Aj o By,

reflecting the exponential localization in the spatial direction.

Phase Shift. The g—dressing method yields nonlinear superposition effects when multiple solitons are
constructed using several discrete spectral points. The interaction-induced phase shift can be computed
from the logarithmic terms appearing in the determinant structure of the solution. In the 2-soliton case,
the phase shift Ag; of the j-th soliton due to interaction with another soliton at A, is given by

(A = ) = )

Ag; =1n —
R (OIS  CTE

. (4.14)

This expression shows that the shift depends on the spectral parameter difference and hence on both
the velocity and amplitude of the interacting solitons.

This analysis not only confirms the elastic nature of the soliton interactions in this system but
also highlights the nontrivial coupling effects among the three components. Representative plots and
simulations are provided in Figures 1-10. to support the theoretical findings. In conclusion, the -
dressing method not only provides a powerful tool for constructing explicit multi-soliton solutions, but
also offers a clear analytic path to study the internal structure and dynamics of soliton interactions in
the three-component fourth-order NLS system.
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5. Conclusions and discussions

In this work, we have constructed and analyzed new explicit solutions for the three-coupled fourth-
order NLS systems (1.1) by employing the d-dressing method. A 4 x 4 matrix d-equation was
introduced to derive the corresponding spatial and temporal spectral problems, from which a special -
problem was formulated and solved using the Cauchy CGreen integral operator. This approach enabled
us to obtain the N-soliton solutions of the three-coupled fourth-order NLS systems, demonstrating the
efficiency and flexibility of the 8-dressing method in generating soliton solutions for complex nonlinear
evolution equations.

Moreover, by introducing recursive operators, we established the three-coupled fourth-order NLS
hierarchy and derived explicit expressions for the 1-, 2-, and 3-soliton solutions. Their corresponding
three-dimensional visualizations clearly reveal the rich interaction dynamics among multiple soliton
components, providing deeper insight into nonlinear wave propagation in coupled systems.

The present study thus establishes a universal and systematic framework for analyzing higher-
order, multi-component integrable systems through the 5—dressing method. This framework can be
readily extended to other nonlinear models with similar algebraic structures, serving as a powerful
analytical tool for exploring a broad class of physical systems. In future work, this methodology
may be further extended to systems with non-vanishing boundary conditions or applied to other multi-
component physical models such as coupled nonlinear Schr?dinger equations, spinor Bose CEinstein
condensates, and optical fiber systems. Such investigations would not only deepen our understanding
of nonlinear phenomena in multi-component and higher-order contexts but may also uncover new
aspects of integrable dynamics.
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