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We derived a new spectral problem starting from the ∂-problem. Then, we obtained the three-coupled
fourth-order NLS hierarchy associated with the spectral problem using a recursive operator. Finally,
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1. Introduction

The nonlinear Schrödinger (NLS) equation contributes greatly to various fields of nonlinear science,
such as nonlinear optics [1–3], plasma physics [4], biological physics [5], hydrodynamics [6], even
finance [7], and atmosphere situations [8]. Over recent decades, a variety of analytical methods
have been developed to study such nonlinear systems. Among these, the Darboux transformation
provides an algebraic iterative procedure for constructing soliton solutions and has been widely
applied to integrable systems such as the NLS family [9, 10], the Sasa-Satsuma equation [11], and
the coupled Fokas-Lenells system [12]. The Hirota bilinear method offers a direct approach for
deriving explicit multi-soliton solutions via a clever variable transformation and remains fundamental
to soliton theory [13,14]. For solving initial-value problems, the inverse scattering transform serves as a
cornerstone technique, offering a nonlinear analog to the Fourier transform and a complete integrability
framework for key equations including the Korteweg-de Vries (KdV) equation [15, 16], and the NLS
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equations [17, 18].
In addition to their fundamental mathematical interest, solitons described by the NLS-type

equations have found a broad range of physical and technological applications in recent years. For
example, the collapse of soliton-like bubbles induced by cavitation has been exploited to launch
microbots in biomedical systems [19]. Optical solitons have also been experimentally realized in
photonic Moir lattices [20]. Moreover, soliton dynamics plays a central role in modern optical
communication and photonics, where solitons are employed for coded signal transmission [21] and
as stable pulse structures in fiber lasers [22]. These advances highlight the practical importance
of solitons and further motivate the theoretical exploration of multi-component and higher-order
integrable systems capable of modeling such nonlinear wave phenomena.

In recent years, the study about generalized NLS equations has garnered significant attention. For
example, Scott [23] first explored the application of coupled NLS equations to alpha-helical proteins.
Veni and Latha [24] proposed generalized model to describe the dynamics of alpha-helical proteins
incorporating inter-spike coupling. This model incorporates excitations of both quadrupole and dipole
types, next-nearest-neighbor and nearest-neighbor interactions, as well as higher-order interspine
couplings. In this article, we focus on the investigation of the following three-coupled fourth-order
NLS systems [24]

iq j,t + q j,xx + 2
3∑
ρ=1

|qρ|2q j + γ

q j,xxxx + 2
3∑
ρ=1

|qρ,x|2q j + 2
3∑
ρ=1

qρqρ,xq j,x + 6
3∑
ρ=1

qρqρ,xq j,x

+4
3∑
ρ=1

|qρ|2q j,xx + 4
3∑
ρ=1

qρqρ,xxq j + 2
3∑
ρ=1

qρqρ,xxq j + 6

 3∑
ρ=1

|qρ|2


2

q j

 = 0, ( j = 1, 2, 3), (1.1)

where q j represents the wave envelopes, γ is the lattice parameter, q represents the complex conjugate
of q, and x and t correspond to the scaled distance and delay time, respectively. Recently, various
methods have been employed to study the three-coupled fourth-order NLS systems given by (1.1).
For instance, Veni and Latha obtained the multi-soliton solutions of the three-coupled fourth-order
NLS systems (1.1) using the Darboux transformation in Ref. [24]; Sun, Tian, Wang, and Zhen
derived the bilinear forms and multi-soliton solutions of the equations (1.1) using the binary Bell-
polynomial approach [25]; Du, Tian, and colleagues investigated semirational rogue waves, rational
and semirational rogue waves, and vector multi-rogue wave solutions of the three-coupled fourth-order
NLS systems (1.1) via the generalized Darboux transformation in 2017 [5, 26, 27]; Dong, Tian, and
Wei obtained infinitely many conservation laws and constructed some semirational solutions of the
equations (1.1) using the Darboux-dressing transformations [28].

Moreover, it is well known that when γ = 0, the three-coupled fourth-order NLS systems (1.1)
reduce to the three-component coupled NLS equation. Zhao and Liu obtained its vector rogue waves
using the Darboux transformation [29], while Wang and Han studied its breather waves and rogue
waves using the Darboux-dressing transformations [30]. When γ = 0 and j = 1, 2, the three-coupled
fourth-order NLS systems (1.1) reduce to the dimensionless vector NLS equation, and Baronio et al.
investigated its semi-rational, multi-parametric vector solutions [31]. Although significant progress has
been made in constructing soliton solutions for the three-component fourth-order NLS system (1.1),
to the best of our knowledge, relatively few studies have addressed the derivation of the full integrable
hierarchy associated with such systems. In this article, we employ the ∂-problem framework to derive
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the three-component fourth-order NLS hierarchy and to investigate the soliton dynamical behaviors
arising in this context.

Although methods such as Darboux and Bäcklund transformations have proven highly effective
for generating soliton solutions in integrable systems, they often rely on specific ansätze and
typically require iterative procedures to construct multi-soliton configurations. Similarly, binary Bell
polynomials and the Hirota bilinear method are effective tools when applied to systems admitting a
bilinear form. However, their applicability becomes limited in the presence of higher-order couplings
or non-standard Lax structures. In contrast, the ∂-dressing method offers significant advantages
in solving nonlocal spectral problems. Notably, this approach does not depend on the existence
of a bilinear form, making it well suited (for more general integrable systems) particularly those
involving higher-order derivatives and strongly coupled multi-component structures. Moreover, the ∂-
dressing method facilitates the construction of the entire integrable hierarchy within a unified spectral
framework, rather than being restricted to isolated solutions. This model not only broadens the
scope of analytical techniques but also provides an influential tool for systematically uncovering the
underlying algebraic and geometric structures of the model, thereby offering a deeper understanding
of its integrability.

The ∂-dressing method, an effective analytical tool for constructing soliton solutions of nonlinear
integrable systems, was first introduced by Zakharov and Shabat in 1974 [32]. Since then, it has
been extensively applied to study various properties of nonlinear equations, including their long-time
asymptotic behavior, transformation structures, and reduction processes [33, 34]. The method remains
active in contemporary research, being employed to derive integrable hierarchies and explicit solutions
for a wide range of systems [35, 36], such as the Kadomtsev-Petviashvili (KP) I equation [37], the
Ablowitz-Barseghyan (AB) equations [38], the Davey-Stewartson II (DS-II) equation [39], the three-
wave interaction system [40], the Kaup-Broer system [41], the coupled Gerdjikov-Ivanov equation
[42], the nonlocal extended modified KdV equation [43], and the differential-difference KP equation
[44, 45].

However, to the best of our knowledge, the application of the ∂-dressing method to coupled multi-
component systems (particularly those of higher order) has not been explored in the existing research.
Motivated by this gap, the present work focuses on extending the ∂-dressing framework analyze the
three-coupled fourth-order NLS systems. Specifically, we construct the associated spectral transform
matrix for the ∂-problem, derive the corresponding integrable hierarchy, and obtain the explicit N-
soliton solutions. In addtion, visualize and investigate the nature of soliton interactions within this
system, we present both three-dimensional plots and characteristic line diagrams of 1-, 2-, and 3-soliton
solutions.

The structure of this article is organized as follows: In Sect. 2, we introduce the ∂-problem and
construct the spatial and time spectral problems using the ∂-problem method. In Sect. 3, we derive the
three-coupled fourth-order NLS hierarchy using recursive operators. In Sect. 4, we derive the N-soliton
solutions of the three-coupled fourth-order NLS systems (1.1), based on the spectral transform matrix
derived from the ∂-problem introduced in Sect. 2. Additionally, we present the 1-, 2- and 3-soliton
solutions, together with their graphical representations, to more effectively illustrate the underlying
dynamical phenomena.
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2. Spectral problems and Lax pair

2.1. The spatial spectral problem

We consider the special ∂-problem

∂Ψ(x, t, λ) = Ψ(x, t, λ)R(x, t, λ), (2.1)

where Ψ(x, t, λ) and R(x, t, λ) are 4 × 4 matrices, λ ∈ C denotes the complex spectral parameter, and ∂
denotes the complex derivative with respect to the conjugate variable λ (i.e. ∂ = ∂

λ
). We suppose that

Ψ(x, t, λ)→ I, as λ→ ∞,

where I means a 4 × 4 identity matrix. Then, the ∂-problem (2.1) satisfies the following solution

Ψ(x, t, λ) = I +
1

2πi

∫ ∫
Ψ(ξ)R(ξ)
ξ − λ

dξ ∧ dξ = I + ΨRCλ, (2.2)

where Cλ means the left Cauchy-Green integral operator and ξ represents the complex conjugate of ξ.
From Eq (2.2), we get the formal solution of the ∂-problem (2.1)

Ψ(λ) = (I − RCλ)−1, (2.3)

where the superscript −1 denotes the inverse of the matrix. To simplify our presentation, we define two
pairings

⟨ f , g⟩ =
1

2πi

∫ ∫
f (λ)g⊤(λ)dλ ∧ dλ, ⟨ f ⟩ = ⟨ f , I⟩ =

1
2πi

∫ ∫
f (λ)dλ ∧ dλ,

where the superscript⊤ denotes the transpose of a matrix, which satisfies the following three properties

⟨ f , g⟩⊤ = ⟨g, f ⟩, ⟨ f R, g⟩ = ⟨ f , gR⊤⟩, ⟨ fCλ, g⟩ = −⟨ f , gCλ⟩. (2.4)

For matrix functions f (λ) and g(λ), our calculation shows that

g(λ)[ f (λ)Cλ]Cλ + [g(λ)Cλ] f (λ)Cλ = [g(λ)Cλ][ f (λ)Cλ].

The Lax pair of nonlinear equations is fundamental to various methods, such as the Darboux
transformation, algebraic geometry method, Riemann-Hilbert method, inverse scattering transform,
and others. If the transformation matrix R(x, t, λ) satisfies a simple linear equation, then the Lax pair
of the three-coupled fourth-order NLS systems (1.1) can be constructed from the ∂-problem (2.1).
Proposition 1 Let the transform matrix R(x, t, λ) satisfy the following form

Rx = −iλ[R, σ], (2.5)

where σ = diag(1,−1,−1,−1), then the solution Ψ of the ∂-problem (2.1) satisfies the spatial spectral
problem of the three-coupled fourth-order NLS systems (1.1) as

Ψx − iλ[σ,Ψ] = PΨ, (2.6)
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with

P =


0 q1 q2 q3

−q1 0 0 0
−q2 0 0 0
−q3 0 0 0

 = i[σ, ⟨ΨR⟩]. (2.7)

Proof Through Eqs (2.3) and (2.5), we have

Ψx = −iλΨRσCλ(I − RCλ)−1 + iλΨσRCλ(I − RCλ)−1. (2.8)

Direct calculation shows that

λΨRCλ = ⟨ΨR⟩ + λ(Ψ − I),
λ2ΨRCλ = ⟨λΨR⟩ + λ⟨ΨR⟩ + λ2(Ψ − I),
λ3ΨRCλ = ⟨λ2ΨR⟩ + λ⟨λΨR⟩ + λ2⟨ΨR⟩ + λ3(Ψ − I),
λ4ΨRCλ = ⟨λ3ΨR⟩ + λ⟨λ2ΨR⟩ + λ2⟨λΨR⟩ + λ3⟨ΨR⟩ + λ4(Ψ − I).

(2.9)

On the basis of RCλ = I − (I − RCλ), we get

RCλ(I − RCλ)−1 = (I − RCλ)−1 − I. (2.10)

Substituting the first formula of Eqs (2.9) and Eq (2.10) into Eq (2.8), we have

Ψx = −i⟨ΨR⟩σΨ + iλσ(I − RCλ)−1 − iλΨσ. (2.11)

Form the first formula of Eq (2.9), it can be found that

λ(I − RCλ)−1 = ⟨ΨR⟩Ψ + λΨ. (2.12)

Substituting Eq (2.12) into Eq (2.11), we obtain

Ψx − iλ[σ,Ψ] = i[σ, ⟨ΨR⟩]Ψ.

By taking P = i[σ, ⟨ΨR⟩], the proof is finished.

2.2. The time spectral problem

Proposition 2 Let the transform matrix R(x, t, λ) satisfy the following form

Rt = [R,Ω], (2.13)

where Ω indicates the dispersion relation depending on x and t. We decompose Ω into the polynomial
part Ωp and the singularity part Ωs, namely,

Ω = Ωp + Ωs = αnλ
nσ +

1
2πi

∫ ∫
ω(ξ)σ
ξ − λ

dξ ∧ dξ, (2.14)

where αn represents constant and ∂Ωs = ω(λ)σ. Then, the solution Ψ of the ∂-problem (2.1) satisfies
time spectral problem of the three-coupled fourth-order NLS systems (1.1) as

Ψt + (8iγλ4 − 2iλ2)[σ,Ψ] = −8γλ3PΨ + 4iγλ2σ(Px − P2)Ψ + 2γλ(Pxx + PPx − PxP − 2P3)Ψ
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+ 2λPΨ + iγσ(−Pxxx + PPxx + PxxP − 3P4 − P2
x + 3P2Px + 3PxP2)Ψ + iσ(P2 − Px)Ψ. (2.15)

Proof We only consider the polynomial dispersion relation Ω = Ωp = 8iγλ4σ − 2iλ2σ. From Eqs
(2.2), (2.3), and (2.14), we have

Ψt = (8iγλ4 − 2iλ2)ΨRσCλ(I − RCλ)−1 − (8iγλ4 − 2iλ2)Ψσ(I − RCλ)−1 + (8iγλ4 − 2iλ2)Ψσ. (2.16)

Then, through Eqs (2.9), Eq (2.16) can be written:

Ψt = −8iγ[σ, ⟨λ3ΨR⟩]Ψ − 8iγ[σ, ⟨λ2ΨR⟩](⟨ΨR⟩ + λI)Ψ − 8iγ[σ, ⟨λΨR⟩](⟨λΨR⟩ + ⟨ΨR⟩2 + λ⟨ΨR⟩

+ λ2I)Ψ − 8iγ[σ, ⟨ΨR⟩](⟨λ2ΨR⟩ + ⟨λΨR⟩⟨ΨR⟩ + λ⟨λΨR⟩ + ⟨ΨR⟩⟨λΨR⟩ + ⟨ΨR⟩3 + λ⟨ΨR⟩2

+ λ2⟨ΨR⟩ + λ3I)Ψ − 8iγλ4[σ,Ψ] + 2i[σ, ⟨λΨR⟩]Ψ + 2iλ2[σ,Ψ] + 2i[σ, ⟨ΨR⟩](⟨ΨR⟩ + λI)Ψ.
(2.17)

Through Eqs (2.5) and (2.6), we get

⟨ΨR⟩x = i[σ, ⟨λΨR⟩] + P⟨ΨR⟩, ⟨λΨR⟩x = i[σ, ⟨λ2ΨR⟩] + P⟨λΨR⟩,

⟨λ2ΨR⟩x = i[σ, ⟨λ3ΨR⟩] + P⟨λ2ΨR⟩.
(2.18)

We decompose 4×4 matrix Q into Q[o] and Q[d] (i.e., Q = Q[o]+Q[d]), where Q[o] and Q[d] are expressed
as

Q[o] =


0 Q12 Q13 Q14

Q21 0 0 0
Q31 0 0 0
Q41 0 0 0

 , Q[d] =


Q11 0 0 0
0 Q22 Q23 Q24

0 Q32 Q33 Q34

0 Q42 Q43 Q44

 .
Therefore, from Eq (2.18), we obtain

⟨ΨR⟩[o]
x = 2iσ⟨λΨR⟩[o] + P⟨ΨR⟩[d], ⟨ΨR⟩[d]

x = P⟨ΨR⟩[o],

⟨λΨR⟩[o]
x = 2iσ⟨λ2ΨR⟩[o] + P⟨λΨR⟩[d], ⟨λΨR⟩[d]

x = P⟨λΨR⟩[o],

⟨λ2ΨR⟩[o]
x = 2iσ⟨λ3ΨR⟩[o] + P⟨λ2ΨR⟩[d], ⟨λ2ΨR⟩[d]

x = P⟨λ2ΨR⟩[o].

(2.19)

Based on Eqs (2.7) and (2.19), we have

4⟨λΨR⟩[o] = −Px + 2iσP⟨ΨR⟩[d],

8⟨λ2ΨR⟩[o] = iσPxx + 4iσP⟨λΨR⟩[d] + 2Px⟨ΨR⟩[d] + 2P2⟨ΨR⟩[o],

16⟨λ3ΨR⟩[o] = Pxxx + 8iσP⟨λ2ΨR⟩[d] + 4Px⟨λΨR⟩[d] + 8P2⟨λΨR⟩[o] − 2iσPxx⟨ΨR⟩[d]

− 4iσPxP⟨ΨR⟩[o] − 2iσPPx⟨ΨR⟩[o] − 2iσP3⟨ΨR⟩[d].

(2.20)

Bringing (2.20) into Eq (2.17) yields Eq (2.15).
In conclusion, we derived that the solution Ψ of the ∂-problem (2.1) satisfies the time spectral

problem.
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3. Recursive operators and three-coupled fourth-order NLS hierarchy

In this section, in order to derive the three-coupled fourth-order NLS hierarchy, we first introduce a
matrix function M(x, t, λ), which is expressed as follows

M(x, t, λ) = ΨσΨ−1.

Letting P =


0 q1 q2 q3

−q1 0 0 0
−q2 0 0 0
−q3 0 0 0

, we can deduce the following proposition.

Proposition 3 The matrix P defined in the Eq (2.7) satisfies a coupled hierarchy with a source M(x, t, λ)

Pt + 2αnσΛ
nP + 2αn+2σΛ

n+2P = −i[σ, ⟨ω(λ)M⟩],
Mx = iλ[σ,M] + [P,M],

(3.1)

where the recursive operator Λ means it is defined as the following form

Λ =
1
2

iσ
(
[P, ∂−1

x [P, ·]] − ∂x

)
.

Remark 1 For the special case of n = 1, we derive the generalized three-coupled third-order NLS
equations with a source term from the coupled hierarchy equations (3.1). These equations are obtained
as follows

iq j,t + α1q j,x −
1
4
α3

q j,xxx + 3
3∑
ρ=1

qρ,xqρq j + 3
3∑
ρ=1

|qρ|2q j,x

 = −2σ⟨ω(λ)M[o]⟩, ( j = 1, 2, 3),

where M = M[o] + M[d] =


0 M12 M13 M14

M21 0 0 0
M31 0 0 0
M41 0 0 0

 +


M11 0 0 0
0 M22 M23 M24

0 M32 M33 M34

0 M42 Q43 M44

.
For n = 2, we derive the generalized three-coupled fourth-order NLS equations with a source term

from the coupled hierarchy equations (3.1). These equations are obtained as follows

q j,t +
1
2
α2q j,xx + α2

3∑
ρ=1

|qρ|2q j −
1
8
α4

q j,xxxx + 6
3∑
ρ=1

qρ,xqρq j,x + 2
3∑
ρ=1

|qρ,x|2q j + 2
3∑
ρ=1

qρqρ,xq j,x

+4
3∑
ρ=1

|qρ|2q j,xx + 4
3∑
ρ=1

qρ,xxqρq j + 2
3∑
ρ=1

qρqρ,xxq j + 6
( 3∑
ρ=1

|qρ|2
)2

q j

 = 2iσ⟨ω(λ)M[o]⟩, ( j = 1, 2, 3).

(3.2)

By selecting α2 = −2i, α4 = 8iγ, and ω(λ) = 0, Eqs (3.2) can be reduced to the three-coupled
fourth-order NLS systems (1.1).
Proof According to the definition of Cλ and A(λ) = 1

2πi
∂

∂λ

∫ ∫
D

A(ξ)
ξ−λ

dξ ∧ dξ, we obtain the following
result

∂ f (λ)Cλ =
1

2πi
∂

∂λ

∫ ∫
D

f (ξ)
ξ − λ

dξ ∧ dξ = f (λ),
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where ∂ can be interpreted as the inverse operator of Cλ. Therefore, we obtain

⟨(ΨR)t⟩ = ⟨ΨRt, I · (I + R⊤Cλ)−1⟩.

Making use of the relevant properties of Eq (2.4), and differentiating P with respect to t, yields the
following result

Pt = i[σ, ⟨ΨR⟩t] = i[σ, ⟨ΨRt, I · (I + R⊤Cλ)−1⟩]. (3.3)

Utilizing the identity ∂(Ψ−1)⊤ = −(Ψ−1)⊤R⊤, together with Eqs (2.2) and (2.3), leads to the following
result

(Ψ−1)⊤ = I · (I + R⊤Cλ)−1. (3.4)

Then, by bringing Eqs (2.13) and (3.4) into Eq (3.3), we have

Pt = i[σ, ⟨(∂Ψ)ΩΨ−1⟩] + i[σ, ⟨ΨΩ∂Ψ−1⟩]. (3.5)

Consider
Ωp = αnλ

nσ + αn+2λ
n+2σ,

and
Ωs → 0, as λ→ ∞.

Furthermore, Eq (3.5) can be simplified to

Pt = 2iαnσ⟨∂(λnM[o])⟩ + 2iαn+2σ⟨∂(λn+2M[o])⟩ − i[σ, ⟨ω(λ)M⟩]. (3.6)

Based on the definition of M(x, t, λ), and with the aid of Eq (2.6), the second equation in Eq (3.1) is
obtained.

Next, by substituting M(x, t, λ) = M[o](x, t, λ) + M[d](x, t, λ) into the second equations of Eq (3.1),
the following result is obtained

M[d]
x = [P,M[o]], M[o]

x = 2iλσM[o] + [P,M[d]]. (3.7)

According to the boundary condition that Ψ(x, t, λ)→ I as λ→ ∞, we have

M(x, t, λ) = ΨσΨ−1 → σ, as λ→ ∞,

and subsequently get the solution of M[d] to

M[d] = σ + ∂−1
x [P,M[o]], (3.8)

where ∂−1
x represents the integral with respect to x. We bring Eq (3.8) into the second equation of Eq

(3.7), and we obtain

λM[o] +
i
2
σ

(
M[o]

x − [P, ∂−1
x [P,M[o]]]

)
= −iP.

Subsequently, the following new recursive operator is introduced

Λ =
1
2

iσ
(
[P, ∂−1

x [P, ·]] − ∂x

)
.
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As a result, the following expression is obtained

M[o] = i(Λ − λ)−1P. (3.9)

Substituting Eq (3.9) into Eq (3.6), we have

Pt = −2αnσ⟨∂(λn(Λ − λ)−1)P⟩ − 2αn+2σ⟨∂(λn+2(Λ − λ)−1)P⟩ − i[σ, ⟨ω(λ)M⟩].

The expansion (Λ − λ)−1 = −
∑∞

j=1
Λ j−1

λ j is considered. Employing the identity ∂λn− j = πδ(λ)δ j,n+1 for
j = 1, 2, · · · , the following result is derived

⟨∂λn− j⟩ =
δ j,n+1

2i

∫ ∫
δ(λ)dλ ∧ dλ = −δ j,n+1.

As a consequence, the following evolution equation arises

Pt = −2αnσΛ
nP − 2αn+2σΛ

n+2P − i[σ, ⟨ω(λ)M⟩].

4. The N-soliton solutions of the three-coupled fourth-order NLS system

In this section, we construct the N-soliton solution of the three-coupled fourth-order NLS systems
(1.1) with the ∂̄-problem (2.1).

4.1. N-soliton solutions

Proposition 4 Suppose that λ j, λ j ( j = 1, 2, · · · ,N) are 2N discrete spectra in the complex plane. In
the case of Eqs (2.5) and (2.13), we choose the spectral transform matrix as

R = πe−iθ(λ)σ
N∑

j=1

R jeiθ(λ)σ, (4.1)

where R j =


0 −c1, jδ(λ − λ j) −c2, jδ(λ − λ j) −c3, jδ(λ − λ j)

c1, jδ(λ − λ j) 0 0 0
c2, jδ(λ − λ j) 0 0 0
c3, jδ(λ − λ j) 0 0 0

, θ(λ) = −λx + (8γλ4 −

2λ2)t, ch, j, ch, j (h = 1, 2, 3, j = 1, 2, · · · ,N) are all constants. Based on Eqs (2.7) and (4.1), we derive
the N-soliton solutions of the three-coupled fourth-order NLS systems (1.1) as

q1 =

(
−2i

det M(1)

det M

)
, q2 =

(
−2i

det M(2)

det M

)
, q3 =

(
−2i

det M(3)

det M

)
, (4.2)

where

M(1) =

(
0 K1N

E M

)
, M(2) =

(
0 K2N

E M

)
, M(3) =

(
0 K3N

E M

)
,

E = (1, 1, · · · , 1)⊤1×N , K1N = (c1,1e−2iθ(λ1), c1,2e−2iθ(λ2), · · · , c1,Ne−2iθ(λN ))1×N ,

K2N = (c2,1e−2iθ(λ1), c2,2e−2iθ(λ2), · · · , c2,Ne−2iθ(λN ))1×N ,

K3N = (c3,1e−2iθ(λ1), c3,2e−2iθ(λ2), · · · , c3,Ne−2iθ(λN ))1×N .
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Proof Based on Eqs (2.7) and (4.1), the following result is obtained

q1(x, t) =

2i
N∑

j=1

c1, je−2iθ(λ j)Ψ11(λ j)

, q2(x, t) =

2i
N∑

j=1

c2, je−2iθ(λ j)Ψ11(λ j)

,
q3(x, t) =

2i
N∑

j=1

c3, je−2iθ(λ j)Ψ11(λ j)

.
(4.3)

Substituting Eq (4.1) into Eq (2.2), we get

Ψ11(λ) = 1 +
N∑

j=1

c1, je2iθ(λ j)Ψ12(λ j) + c2, je2iθ(λ j)Ψ13(λ j) + c3, je2iθ(λ j)Ψ14(λ j)

λ − λ j

 , (4.4)

Ψ12(λ) = −
N∑

k=1

(
c1,k

λ − λk
e−2iθ(λk)Ψ11(λk)

)
, Ψ13(λ) = −

N∑
k=1

(
c2,k

λ − λk
e−2iθ(λk)Ψ11(λk)

)
,

Ψ14(λ) = −
N∑

k=1

(
c3,k

λ − λk
e−2iθ(λk)Ψ11(λk)

)
.

(4.5)

We assume

A j =
c1, j

λ − λ j

e2iθ(λ j), B j =
c2, j

λ − λ j

e2iθ(λ j), C j =
c3, j

λ − λ j

e2iθ(λ j),

and taking λ = λn in Eq (4.4), λ = λn in Eqs (4.5). Therefore, we rewrite Eqs (4.4) and (4.5) as

Ψ11(λn) = 1 +
N∑

j=1

A j(λn)Ψ12(λ j) +
N∑

j=1

B j(λn)Ψ13(λ j) +
N∑

j=1

C j(λn)Ψ14(λ j),

Ψ12(λ j) = −
N∑

k=1

Ak(λ j)Ψ11(λk), Ψ13(λ j) = −
N∑

k=1

Bk(λ j)Ψ11(λk), Ψ14(λ j) = −
N∑

k=1

Ck(λ j)Ψ11(λk).

Furthermore, the following result is obtained

Ψ11(λn) = 1−
N∑

j=1

N∑
k=1

(
A j(λn)Ak(λ j) + B j(λn)Bk(λ j) +C j(λn)Ck(λ j)

)
Ψ11(λk), (n = 1, 2, · · · ,N). (4.6)

We rewrite Eq (4.6) as

M(Ψ11(λ1),Ψ11(λ2), · · · ,Ψ11(λN))⊤ = (1, 1, · · · , 1)⊤, (4.7)

where M means the N × N matrix,

M = I + Fn,k, Fn,k =

N∑
j=1

(
A j(λn)Ak(λ j) + B j(λn)Bk(λ j) +C j(λn)Ck(λ j)

)
.

By solving Eq (4.7), we can get

Ψ11(λn) =
det Mr

n

det M
, (n = 1, 2, · · · ,N), (4.8)

with Mr
n = (M1, · · · ,Mn−1, E,Mn+1, · · · ,MN). We bring Eq (4.8) into Eq (4.3) and get the N-soliton

solutions of the three-coupled fourth-order NLS systems (1.1).
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4.2. Application of N-soliton solutions

4.2.1. 1-soliton solutions

First of all, we consider the 1-soliton solution, and assume that N = 1. According to the definition
of M, we have

M = 1 + A1(λ)A1(λ) + B1(λ)B1(λ) +C1(λ)C1(λ),

M(1) =

(
0 c1,1e−2iθ(λ)

1 M

)
, M(2) =

(
0 c2,1e−2iθ(λ)

1 M

)
, M(3) =

(
0 c3,1e−2iθ(λ)

1 M

)
.

From Eq (4.2), we can get the 1-soliton solutions of the three-coupled fourth-order NLS systems
(1.1) as

q1(x, t) =
(

2ic1,1e2i(λx−8γλ4t+2λ2t)(λ − λ̄)(λ̄ − λ)
(λ − λ̄)(λ̄ − λ) + (c1,1c̄1,1 + c2,1c̄2,1 + c3,1c̄3,1)e2i(−λ̄x+8γλ̄4t−2λ̄2t+λx−8γλ4t+2λ2t)

)
= −ic1,1e−iH−ϱ1−iϱ2sech (iG + ϱ1 + iϱ2),

q2(x, t) =
(

2ic2,1e2i(λx−8γλ4t+2λ2t)(λ − λ̄)(λ̄ − λ)
(λ − λ̄)(λ̄ − λ) + (c1,1c̄1,1 + c2,1c̄2,1 + c3,1c̄3,1)e2i(−λ̄x+8γλ̄4t−2λ̄2t+λx−8γλ4t+2λ2t)

)
= −ic2,1e−iH−ϱ1−iϱ2sech (iG + ϱ1 + iϱ2),

q3(x, t) =
(

2ic3,1e2i(λx−8γλ4t+2λ2t)(λ − λ̄)(λ̄ − λ)
(λ − λ̄)(λ̄ − λ) + (c1,1c̄1,1 + c2,1c̄2,1 + c3,1c̄3,1)e2i(−λ̄x+8γλ̄4t−2λ̄2t+λx−8γλ4t+2λ2t)

)
= −ic3,1e−iH−ϱ1−iϱ2sech (iG + ϱ1 + iϱ2),

(4.9)

where

H = 2(λ2 − 4γλ4 + λ̄2 − 4γλ̄4)t + (λ + λ̄)x, G = 2(λ2 − 4γλ4 − λ̄2 + 4γλ̄4)t + (λ − λ̄)x.

Next, we assume λ = ζ1 + iζ2 and simplify Eq (4.9) to

q1(x, t) = −ic1,1eν1(x,t)sech (ν2(x, t)),
q2(x, t) = −ic2,1eν1(x,t)sech (ν2(x, t)),
q3(x, t) = −ic3,1eν1(x,t)sech (ν2(x, t)),

(4.10)

where
ν1(x, t) = 4i(4ζ4

1γ − 24ζ2
1ζ

2
2γ + 4ζ4

2γ − ζ
2
1 + ζ

2
2 ) − 2iζ1x − ϱ1 − iϱ2,

ν2(x, t) = 8(8ζ3
1ζ2γ − 8ζ1ζ3

2γ − ζ1ζ2)t − 2ζ2x + ϱ1 + iϱ2.

From the explicit one-soliton expression, the phase function ν1(x, t) shows that the oscillation
periods in x and t can be obtained from the argument of the exponential term eν1(x,t). Accordingly,
the time period Tt and spatial period Tx can be approximated as

Tt =
π

|4ζ1(ζ2 − 6β2)γ − 1
2ζ |
, Tx =

π

|ζ |
.

These periods depend on the real part ζ of the spectral parameter and on the higher-order coupling
coefficient γ.
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We analyze the characteristic lines associated with Eq (4.10), which describe the dynamics of the
soliton solutions. In particular, we identify a characteristic line L1 : ν2(x, t) = 0, which corresponds
to the propagation path of the 1-soliton solution. The function ν2(x, t) originally serves to define this
characteristic line; however, since ν2(x, t) generally contains complex-valued terms, it does not directly
represent a physically meaningful (i.e., real-valued) trajectory in the (x, t)-plane.

To better understand the actual motion of the soliton, we focus on the real part of the phase function
ν2(x, t). By isolating the linear terms in x and t fromℜ(ν2(x, t)), we obtain a real-valued approximation
of the characteristic line that captures the soliton’s dominant propagation direction. These linear
components provide insight into the soliton’s trajectory and are used to plot the characteristic line.
The effect of different parameter choices on this characteristic path is illustrated in Figure 1(d) and
2(d), where variations in slope and position reflect changes in soliton velocity and initial phase.

By selecting appropriate parameter values, the dynamic behavior of the 1-soliton solutions are
illustrated in Figures 1 and 2. It is observed that the width and amplitude of a single soliton
remain invariant during propagation. Moreover, singularities in the soliton profiles are located along
the corresponding characteristic lines. A comparison between Figures 1 and 2 further reveals that
variations in the real part of the discrete spectral parameter lead to oscillatory behavior in the wave.

(a) (b)

(c)

(d)

Figure 1. The 1-soliton solution (4.10) for Eq (1.1) with the parameters ζ1 = 1
2 , ζ2 = 1

2 ,
c1,1 = 1, c2,1 = 1, c3,1 = 1, and γ = 4; (a) Three-dimensional plot of q1; (b) Three-dimensional
plot of q2; (c) Three-dimensional plot of q3; (d) The characteristic line L1 : x = −2t.
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(a)
(b)

(c)
(d)

Figure 2. The 1-soliton solution (4.10) for Eq (1.1) with the parameters ζ1 = 1
4 , ζ2 = 1

2 ,
c1,1 = 1, c2,1 = 1, c3,1 = 1, and γ = 4; (a) Three-dimensional plot of q1; (b) Three-dimensional
plot of q2; (c) Three-dimensional plot of q3; (d) The characteristic line L1 : x = −196

27 t.

4.2.2. 2-soliton solutions

Assuming N = 2, and then using the definition of M, we have

M =
(

M11 M12

M21 M22

)
,

M(1) =


0 c1,1e−2iθ(λ1) c1,2e−2iθ(λ2)

1 M11 M12

1 M21 M22

 , M(2) =


0 c2,1e−2iθ(λ1) c2,2e−2iθ(λ2)

1 M11 M12

1 M21 M22

 ,
M(3) =


0 c3,1e−2iθ(λ1) c3,2e−2iθ(λ2)

1 M11 M12

1 M21 M22

 ,
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where

M11 = 1 + A1(λ1)A1(λ1) + B1(λ1)B1(λ1) +C1(λ1)C1(λ1)

+ A2(λ1)A1(λ2) + B2(λ1)B1(λ2) +C2(λ1)C1(λ2),

M12 = A1(λ1)A2(λ1) + B1(λ1)B2(λ1) +C1(λ1)C2(λ1)

+ A2(λ1)A2(λ2) + B2(λ1)B2(λ2) +C2(λ1)C2(λ2),

M21 = A1(λ2)A1(λ1) + B1(λ2)B1(λ1) +C1(λ2)C1(λ1)

+ A2(λ2)A1(λ2) + B2(λ2)B1(λ2) +C2(λ2)C1(λ2),

M22 = 1 + A1(λ2)A2(λ1) + B1(λ2)B2(λ1) +C1(λ2)C2(λ1)

+ A2(λ2)A2(λ2) + B2(λ2)B2(λ2) +C2(λ2)C2(λ2).

Therefore, we conclude that the 2-soliton solutions of the three-coupled fourth-order NLS systems
(1.1) can be described as follows

q1 =

(
−2i

det M(1)

det M

)
, q2 =

(
−2i

det M(2)

det M

)
, q3 =

(
−2i

det M(3)

det M

)
. (4.11)

By setting N = 2 in the general N-soliton expression (4.2), we obtain the 2-soliton solutions of the
three-coupled fourth-order NLS system (1.1). Although the full analytic expressions are not shown
due to their complexity, we visualize the solution in Figures 3–7 by selecting specific parameter values
to illustrate the soliton interactions.

In addition, following the same approach used for the 1-soliton solutions, we assume λ1 = ζ1 + iβ1

and λ2 = ζ2 + iβ2. Under this assumption, we derive that the 2-soliton solutions possess the following
two characteristic lines

L1 : β1x + 4(8ζ1β3
1γ − 8ζ3

1β1γ + ζ1β1)t −
1

2β1
ln(c1,1c1,1 + c2,1c2,1 + c3,1c3,1) = 0,

L2 : β2x + 4(8ζ2β3
2γ − 8ζ3

2β2γ + ζ2β2)t −
1

2β2
ln(c1,2c1,2 + c2,2c2,2 + c3,2c3,2) = 0.

Figures 3–7 illustrate various 2-soliton interaction scenarios of the coupled fourth-order NLS
systems by employing different configurations of the discrete spectral parameters ζ j, β j, and
corresponding polarization components ci, j. These simulations serve to highlight how specific spectral
choices influence the interaction types, degrees of deformation, and propagation geometry of the
solitons.

In Figures 3 and 4, the parameters ζ1 = −1
4 , ζ2 = 1

4 and ζ1 = −11
24 , ζ2 = 15

48 , respectively, ensure that
the two solitons possess distinct velocities and moderate spectral separation. As a result, the solitons
exhibit elastic collisions, characterized by a brief nonlinear interaction and a subsequent restoration of
their initial shapes and velocities. The characteristic lines L1 and L2 further confirm that the trajectories
intersect but then diverge, indicating no permanent deformation or energy trapping.
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(a) (b)

(c)
(d)

Figure 3. The 2-soliton solution (4.11) for Eq (1.1) with the parameters ζ1 = −1
2 , β1 =

3
4 ,

ζ2 =
1
4 , β2 =

5
12 , c1,1 = 1, c1,2 = 1, c2,1 =

1
3 , c2,2 =

1
2 , c3,1 =

1
3 , c3,2 =

1
2 , and γ = 1; (a)

Three-dimensional plot of q1; (b) Three-dimensional plot of q2; (c) Three-dimensional plot
of q3; (d) The characteristic line L1 : x = 7t + 8

9 ln( 11
9 ) and L2 : x = −17

9 t + 72
25 ln(3

2 ).

In Figure 5, the condition ζ1 = −1
2 , ζ2 = 1

4 with identical imaginary parts and smaller spectral
separation results in a more intense interaction. Notably, the two solitons temporarily merge into a
high-amplitude, signaling a singular behavior. This effect stems from constructive interference due
to matching propagation velocities and overlapping phases, which can be interpreted physically as a
momentary energy concentration or soliton fusion.

A comparative analysis of Figures 3–5 reveals that as the distance between the discrete eigenvalues
decreases in terms of either the real or imaginary parts the interaction becomes stronger and longer in
duration. This highlights the sensitivity of nonlinear superposition to spectral proximity, especially in
coupled systems.
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(a) (b)

(c)
(d)

Figure 4. The 2-soliton solution (4.11) for Eq (1.1) with the parameters ζ1 = −11
24 , β1 =

1
4 ,

ζ2 =
15
48 , β2 =

1
4 , c1,1 = 1, c1,2 = 1, c2,1 =

1
3 , c2,2 =

1
2 , c3,1 =

1
3 , c3,2 =

1
2 , and γ = 1; (a)

Three-dimensional plot of q1; (b) Three-dimensional plot of q2; (c) Three-dimensional plot
of q3; (d) The characteristic line L1 : x = −143

432 t + 8 ln(11
9 ) and L2 : x = −115

128 t + 8 ln(3
2 ).

Figures 6 and 7 explore a symmetric setting with parameters ζ1 = −ζ2 = ∓ 7
24 , β1 = −β2 = ∓

7
24

corresponding to solitons with equal and opposite velocities. The characteristic lines L1 and L2 in
these cases are symmetric and perpendicular, which geometrically implies that the solitons travel in
mirror-opposite directions. Despite the head-on collision, the solitons retain their shape and energy,
further reinforcing the elastic nature of these interactions. Interestingly, by comparing subfigures 6(d)
and 7(d), we observe that rotating the characteristic lines by equal angles leads to a rotation in the
interaction frame, but does not affect the qualitative soliton behavior and only their direction of motion
is altered.
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(a) (b)

(c)

(d)

Figure 5. The 2-soliton solution (4.11) for Eq (1.1) with the parameters ζ1 = −1
2 , β1 =

1
4 ,

ζ2 =
1
4 , β2 =

1
4 , c1,1 = 1, c1,2 = 1, c2,1 =

1
3 , c2,2 =

1
2 , c3,1 =

1
3 , c3,2 =

1
2 , and γ = 1; (a)

Three-dimensional plot of q1; (b) Three-dimensional plot of q2; (c) Three-dimensional plot
of q3; (d) The characteristic line L1 : x = −t + 8 ln(11

9 ) and L2 : x = −t + 8 ln(3
2 ).

From a physical perspective, these interaction behaviors carry significance in various nonlinear
media where multi-component soliton dynamics are present, such as optical fiber arrays, plasma
waves, or multi-mode Bose-Einstein condensates. The observed elastic and singular interactions may
correspond to stable transmission channels, energy localization, or directional switching mechanisms,
which have practical applications in signal processing and nonlinear control systems.
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(a) (b)

(c) (d)

Figure 6. The 2-soliton solution (4.11) for Eq (1.1) with the parameters ζ1 = − 7
24 , β1 = −

7
24 ,

ζ2 =
7

24 , β2 =
7

24 , c1,1 = 1, c1,2 = 1, c2,1 =
1
3 , c2,2 =

1
2 , c3,1 =

1
3 , c3,2 =

1
2 , and γ = 1; (a)

Three-dimensional plot of q1; (b) Three-dimensional plot of q2; (c) Three-dimensional plot
of q3; (d) The characteristic line L1 : x = 7

6 t + 288
49 ln( 11

9 ) and L2 : x = −7
6 t + 288

49 ln( 3
2 ).

(a) (b)

(c) (d)

Figure 7. The 2-soliton solution (4.11) for Eq (1.1) with the parameters ζ1 = 7
24 , β1 =

7
24 ,

ζ2 = −
7

24 , β2 = −
7

24 , c1,1 = 1, c1,2 = 1, c2,1 =
1
3 , c2,2 =

1
2 , c3,1 =

1
3 , c3,2 =

1
2 , and γ = 1; (a)

Three-dimensional plot of q1; (b) Three-dimensional plot of q2; (c) Three-dimensional plot
of q3; (d) The characteristic line L1 : x = −7

6 t + 288
49 ln(11

9 ) and L2 : x = 7
6 t + 288

49 ln( 3
2 ).
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4.2.3. 3-soliton solutions

Assuming N = 3, and then using the definition of M, we obtain

M =


M11 M12 M13

M21 M22 M23

M31 M32 M33

 , M(1) =


0 c1,1e−2iθ(λ1) c1,2e−2iθ(λ2) c1,3e−2iθ(λ3)

1 M11 M12 M13

1 M21 M22 M23

1 M31 M32 M33

 ,

M(2) =


0 c2,1e−2iθ(λ1) c2,2e−2iθ(λ2) c2,3e−2iθ(λ3)

1 M11 M12 M13

1 M21 M22 M23

1 M31 M32 M33

 ,

M(3) =


0 c3,1e−2iθ(λ1) c3,2e−2iθ(λ2) c3,3e−2iθ(λ3)

1 M11 M12 M13

1 M21 M22 M23

1 M31 M32 M33

 ,
where

M11 = A1(λ1)A1(λ1) + B1(λ1)B1(λ1) +C1(λ1)C1(λ1) + A2(λ1)A1(λ2) + B2(λ1)B1(λ2)

+C2(λ1)C1(λ2) + A3(λ1)A1(λ3) + B3(λ1)B1(λ3) +C3(λ1)C1(λ3) + 1,

M12 = A1(λ1)A2(λ1) + B1(λ1)B2(λ1) +C1(λ1)C2(λ1) + A2(λ1)A2(λ2) + B2(λ1)B2(λ2)

+C2(λ1)C2(λ2) + A3(λ1)A2(λ3) + B3(λ1)B2(λ3) +C3(λ1)C2(λ3),

M13 = A1(λ1)A3(λ1) + B1(λ1)B3(λ1) +C1(λ1)C3(λ1) + A2(λ1)A3(λ2) + B2(λ1)B3(λ2)

+C2(λ1)C3(λ2) + A3(λ1)A3(λ3) + B3(λ1)B3(λ3) +C3(λ1)C3(λ3),

M21 = A1(λ2)A1(λ1) + B1(λ2)B1(λ1) +C1(λ2)C1(λ1) + A2(λ2)A1(λ2) + B2(λ2)B1(λ2)

+C2(λ2)C1(λ2) + A3(λ2)A1(λ3) + B3(λ2)B1(λ3) +C3(λ2)C1(λ3),

M22 = A1(λ2)A2(λ1) + B1(λ2)B2(λ1) +C1(λ2)C2(λ1) + A2(λ2)A2(λ2) + B2(λ2)B2(λ2)

+C2(λ2)C2(λ2) + A3(λ2)A2(λ3) + B3(λ2)B2(λ3) +C3(λ2)C2(λ3) + 1,

M23 = A1(λ2)A3(λ1) + B1(λ2)B3(λ1) +C1(λ2)C3(λ1) + A2(λ2)A3(λ2) + B2(λ2)B3(λ2)

+C2(λ2)C3(λ2) + A3(λ2)A3(λ3) + B3(λ2)B3(λ3) +C3(λ2)C3(λ3),

M31 = A1(λ3)A1(λ1) + B1(λ3)B1(λ1) +C1(λ3)C1(λ1) + A2(λ3)A1(λ2) + B2(λ3)B1(λ2)

+C2(λ3)C1(λ2) + A3(λ3)A1(λ3) + B3(λ3)B1(λ3) +C3(λ3)C1(λ3),

M32 = A1(λ3)A2(λ1) + B1(λ3)B2(λ1) +C1(λ3)C2(λ1) + A2(λ3)A2(λ2) + B2(λ3)B2(λ2)

+C2(λ3)C2(λ2) + A3(λ3)A2(λ3) + B3(λ3)B2(λ3) +C3(λ3)C2(λ3),
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M33 = A1(λ3)A3(λ1) + B1(λ3)B3(λ1) +C1(λ3)C3(λ1) + A2(λ3)A3(λ2) + B2(λ3)B3(λ2)

+C2(λ3)C3(λ2) + A3(λ3)A3(λ3) + B3(λ3)B3(λ3) +C3(λ3)C3(λ3) + 1.

Therefore, we deduce that the 3-soliton solutions of the three-coupled fourth-order NLS systems (1.1)
take the following form

q1 =

(
−2i

det M(1)

det M

)
, q2 =

(
−2i

det M(2)

det M

)
, q3 =

(
−2i

det M(3)

det M

)
. (4.12)

Similarly, the 3-soliton solutions are derived from the general expression (4.2) by taking N = 3. While
the exact forms of the solution components are lengthy and omitted here, the corresponding dynamics
are clearly demonstrated through the plots in Figures 8–10, confirming the validity of the general
formula.

(a) (b)

(c)

(d)

Figure 8. The 3-soliton solution (4.12) for Eq (1.1) with the parameters ζ1 = − 5
12 , β1 =

1
4 ,

ζ2 =
1
4 , β2 = −

1
4 , ζ3 = −1

4 , β3 =
1
4 , c1,1 =

1
4 , c1,2 =

1
3 , c1,3 =

1
3 , c2,1 =

1
3 , c2,2 =

1
2 ,

c2,3 =
1
3 , c3,1 =

1
3 , c3,2 =

1
4 , c3,3 =

1
4 , and γ = 1; (a) Three-dimensional plot of q1; (b)

Three-dimensional plot of q2; (c) Three-dimensional plot of q3; (d) The characteristic line
L1 : x = 5

27 t + 8 ln( 41
144 ), L2 : x = −t + 8 ln( 61

144 ) and L3 : x = t + 8 ln( 41
144 ).

In addition, following the same approach used for the 1-soliton and 2-soliton solutions, we assume
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that λ1 = ζ1+ iβ1, λ2 = ζ2+ iβ2 and λ3 = ζ3+ iβ3. Under these assumptions, we derive that the 3-soliton
solutions possess the following two characteristic lines

L1 : β1x + 4(8ζ1β3
1γ − 8ζ3

1β1γ + ζ1β1)t −
1

2β1
ln(c1,1c1,1 + c2,1c2,1 + c3,1c3,1) = 0,

L2 : β2x + 4(8ζ2β3
2γ − 8ζ3

2β2γ + ζ2β2)t −
1

2β2
ln(c1,2c1,2 + c2,2c2,2 + c3,2c3,2) = 0,

L3 : β3x + 4(8ζ3β3
3γ − 8ζ3

3β3γ + ζ3β3)t −
1

2β3
ln(c1,3c1,3 + c2,3c2,3 + c3,3c3,3) = 0.

Figures 8–10 illustrate the dynamic behavior of 3-soliton solutions of the coupled fourth-order NLS
system under various parameter settings. These interactions reveal the complex and diverse nature of
multi-soliton collisions, reflecting both the system’s strong nonlinearity and its underlying integrable
structure.

In Figure 8, the spectral parameters are chosen as ζ1 = − 5
12 , ζ2 = 1

4 , and ζ3 = −1
4 , resulting in

an asymmetric distribution in the complex plane. This asymmetry leads to non-uniform propagation
paths and uneven interaction dynamics among the three solitons. The characteristic lines L1, L2, and
L3 reveal that solitons 1 and 2 undergo a direct collision followed by rapid separation, while soliton
3, due to its distinct spectral configuration, experiences a noticeable trajectory shift. Consequently,
the overall three-soliton interaction manifests as a cascade of pairwise collisions. Although the system
eventually restores a multi-soliton structure, slight deformation in the soliton profiles indicates weakly
inelastic behavior during the interaction process.

In Figure 9, the spectral parameters are set as ζ1 = −1
6 , ζ2 = 1

4 , and ζ3 = −1
4 , yielding a configuration

with closer spacing and partial symmetry. From the three-dimensional plots and two-dimensional
density maps, it can be observed that solitons 1 and 2 propagate forward in parallel, while soliton 3
subsequently collides with them, leading to a complex three-soliton coupling effect. This sequence and
timing of collisions can be interpreted as a manifestation of the collective dynamics within the soliton
ensemble. In particular, the phase shifts and trajectory deviations observed during the evolution further
demonstrate the nontrivial interference characteristics intrinsic to the soliton solutions in this system.

In Figure 10, the spectral parameters are set as ζ1 = − 5
12 , ζ2 = 1

12 , and ζ3 = 1
3 . The resulting

interaction initially forms a tightly bound cluster, where all three soliton peaks converge in space-
time, creating a pronounced interference region. The two-dimensional density plots (Figure 10 (d)–(f))
reveal localized zones of high amplitude and interference fringes during the collision phase. This can
be interpreted as a transient resonant structure involving all three solitons. Following the collision, the
solitons rapidly separate and regain their individual profiles and trajectories, indicating a quasi-elastic
scattering process with minimal residual distortion.

The results presented in Figures 8–10 collectively highlight several key physical insights into the
nature of three-soliton interactions within the coupled fourth-order NLS system. These interactions
exhibit pronounced asymmetry, weakly inelastic deformation, and distinct nonlinear interference
patterns, all of which are intricately shaped by the configuration and spacing of the underlying spectral
parameters. The characteristic lines L1, L2, and L3 clearly delineate the geometric structure of soliton
trajectories, serving as a powerful framework for interpreting the observed scattering behavior. These
findings hold potential relevance for practical applications in nonlinear optical wave guides, phase-
controlled beam networks, and coupled quantum field systems, especially in scenarios involving
multimode interference in Bose-Einstein condensates.

AIMS Mathematics Volume 10, Issue 12, 28407–28435.



28428

(a) (b)

(c)

(d)

(e) (f)

Figure 9. The 3-soliton solution (4.12) for Eq. (1.1) with the parameters ζ1 = −1
6 , β1 =

1
4 ,

ζ2 =
1
4 , β2 = −

1
4 , ζ3 = −1

4 , β3 =
1
4 , c1,1 =

1
4 , c1,2 =

1
3 , c1,3 =

1
3 , c2,1 =

1
3 , c2,2 =

1
2 ,

c2,3 =
1
3 , c3,1 =

1
3 , c3,2 =

1
4 , c3,3 =

1
4 , and γ = 1; (a) Three-dimensional plot of q1; (b) Three-

dimensional plot of q2; (c) Three-dimensional plot of q3; (d) Two-dimensional density plot
of q1; (e) Two-dimensional density plot of q2; (f) Two-dimensional density plot of q3.
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(a) (b)

(c)
(d)

(e) (f)

Figure 10. The 3-soliton solution (4.12) for Eq (1.1) with the parameters ζ1 = − 5
12 , β1 =

1
4 ,

ζ2 =
1
12 , β2 = −

1
4 , ζ3 = 1

3 , β3 =
1
4 , c1,1 =

1
4 , c1,2 =

1
3 , c1,3 =

1
3 , c2,1 =

1
3 , c2,2 =

1
2 ,

c2,3 =
1
3 , c3,1 =

1
3 , c3,2 =

1
4 , c3,3 =

1
4 , and γ = 1; (a) Three-dimensional plot of q1; (b) Three-

dimensional plot of q2; (c) Three-dimensional plot of q3; (d) Two-dimensional density plot
of q1; (e) Two-dimensional density plot of q2; (f) Two-dimensional density plot of q3.

4.3. Asymptotic analysis of soliton interactions

In the framework of the ∂-dressing method, the N-soliton solutions of the three-coupled fourth-
order NLS systems are constructed by choosing N discrete spectral points λ j = ζ j + iβ j ( j = 1, . . . ,N)
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in the complex plane, together with associated constant vectors ch, j (the so-called norming data). The
analytic properties of the resulting integral equation allow one to extract physical quantities of each
soliton.

Velocity. In the ∂-formulation, the phase of each exponential term in the reconstructed solution
involves a term of the form

θ j(x, t) = −λ jx + Ω(λ j)t,

where Ω(λ) is the dispersion relation derived from the associated Lax pair. For the three-coupled
fourth-order NLS systems, we have

Ω(λ) = 8γλ4 − 2λ2.

Hence, the trajectory of constant phase satisfies

−x + (8γλ3
j − 2λ j)t = const,

which implies that the velocity of the j-th soliton is given by

v j = 4(8γζ3
j − 8γζ jβ

2
j − ζ j). (4.13)

Amplitude. The amplitude of each soliton is linked to the imaginary part β j of its corresponding
spectral parameter, as well as the residue of the pole in the integral representation. More precisely,
under standard normalization, the peak amplitude A j is proportional to β j

A j ∝ β j,

reflecting the exponential localization in the spatial direction.

Phase Shift. The ∂-dressing method yields nonlinear superposition effects when multiple solitons are
constructed using several discrete spectral points. The interaction-induced phase shift can be computed
from the logarithmic terms appearing in the determinant structure of the solution. In the 2-soliton case,
the phase shift ∆ϕ j of the j-th soliton due to interaction with another soliton at λk is given by

∆ϕ j = ln

∣∣∣∣∣∣∣ (λ j − λk)(λ j − λk)

(λ j − λk)(λ j − λk)

∣∣∣∣∣∣∣ . (4.14)

This expression shows that the shift depends on the spectral parameter difference and hence on both
the velocity and amplitude of the interacting solitons.

This analysis not only confirms the elastic nature of the soliton interactions in this system but
also highlights the nontrivial coupling effects among the three components. Representative plots and
simulations are provided in Figures 1-10. to support the theoretical findings. In conclusion, the ∂-
dressing method not only provides a powerful tool for constructing explicit multi-soliton solutions, but
also offers a clear analytic path to study the internal structure and dynamics of soliton interactions in
the three-component fourth-order NLS system.

AIMS Mathematics Volume 10, Issue 12, 28407–28435.



28431

5. Conclusions and discussions

In this work, we have constructed and analyzed new explicit solutions for the three-coupled fourth-
order NLS systems (1.1) by employing the ∂-dressing method. A 4 × 4 matrix ∂-equation was
introduced to derive the corresponding spatial and temporal spectral problems, from which a special ∂-
problem was formulated and solved using the Cauchy CGreen integral operator. This approach enabled
us to obtain the N-soliton solutions of the three-coupled fourth-order NLS systems, demonstrating the
efficiency and flexibility of the ∂-dressing method in generating soliton solutions for complex nonlinear
evolution equations.

Moreover, by introducing recursive operators, we established the three-coupled fourth-order NLS
hierarchy and derived explicit expressions for the 1-, 2-, and 3-soliton solutions. Their corresponding
three-dimensional visualizations clearly reveal the rich interaction dynamics among multiple soliton
components, providing deeper insight into nonlinear wave propagation in coupled systems.

The present study thus establishes a universal and systematic framework for analyzing higher-
order, multi-component integrable systems through the ∂-dressing method. This framework can be
readily extended to other nonlinear models with similar algebraic structures, serving as a powerful
analytical tool for exploring a broad class of physical systems. In future work, this methodology
may be further extended to systems with non-vanishing boundary conditions or applied to other multi-
component physical models such as coupled nonlinear Schr?dinger equations, spinor Bose CEinstein
condensates, and optical fiber systems. Such investigations would not only deepen our understanding
of nonlinear phenomena in multi-component and higher-order contexts but may also uncover new
aspects of integrable dynamics.
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