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Abstract: We investigate linear and cyclic codes over the ring F2[u, v,w]/〈u2 = v2, uv = 0, w2 = w〉.
This is a commutative Frobenius non-chain ring, which, to the best of our knowledge, is studied here
for the first time in the literature. We define a homogeneous weight on the ring and, with respect to
a Gray map induced by this weight, obtain the optimal Reed-Muller code RM (1, 7). We analyze the
algebraic structure of the ring in detail, determine its ideals, and present code constructions together
with their Gray images.
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1. Introduction

Algebraic coding theory studies error-correcting codes built from algebraic structures such as finite
fields and finite rings. Since the early 2000s, this perspective has remained a central theme of the
field, with cyclic codes playing a distinguished role thanks to their rich algebraic structure and efficient
description via ideals.

The seminal work of Hammons et al. [11] revealed connections between non-binary linear codes
and non-linear binary codes, and motivated extensive research on codes over finite rings. Subsequent
studies have investigated chains [1, 6] and non-chains of ideals [12, 14] (chain and non-chain rings),
Gray maps, and homogeneous weights [9, 13]. There has also been sustained interest in Frobenius
chain and non-chain rings and their applications, including DNA code constructions [3, 14].

In recent years, cyclic codes have been constructed over Frobenius rings of order 16 [12, 14].
Dougherty et al. [7] defined a Gray map on a local Frobenius non-chain ring of order 16 and described
the corresponding binary images with respect to the Lee weight. Constantinescu and Heise [5]
introduced homogeneous weights on rings, while Greferath and Schmidt [8] developed Gray isometries
for finite chain rings. Gray maps based on homogeneous weights for non-chain rings were studied
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further in [12].
In this paper, we focus on the Frobenius non-chain ring

R = F2[u, v,w]/〈u2 = v2, uv = 0, w2 = w〉,

with a commutative ring of characteristic 2 and order 256. We determine the structure of R, construct
linear and cyclic codes over R, and define a Gray map associated with a homogeneous weight, yielding
optimal binary images.

2. Linear codes over the Frobenius non-chain ring F2 + uF2 + vF2 + v2F2 + wF2 + wuF2 + wvF2

+wv2F2

In this section, the basic definitions and concepts needed in this paper will be provided. Throughout,
let

R = F2 + uF2 + vF2 + v2F2 + wF2 + wuF2 + wvF2 + wv2F2

be the quotient ring F2[u, v,w]/〈u2 = v2, uv = 0,w2 = w〉, which is a commutative non-chain ring.
Every element can be written uniquely as a0 + a1u + a2v + a3v2 + a4w + a5wu + a6wv + a7wv2, with
u2 = v2, uv = 0, and w2 = w, where ai ∈ F2, 0 ≤ i ≤ 7.

R has 48 ideals. All ideals of R are given in Tables 1 and 2 located in the Appendix. It has two
maximal ideals and many principal ideals. The set of units of R is UR = {1, 1 + u2, 1 + w, 1 + u2 + w}.
We observe that UR is isomorphic to the Klein four group, Z2 × Z2.

The ideal hierarchy is illustrated in Figure 1. There are eight levels; the ideal with the ID number 31
lies at the eighth level. The arrows show which lower-level ideal is encompassed by a higher-level
ideal.

R is a three-variable residue ring. It can be simplified as follows:

R = F2 + uF2 + vF2 + wF2 + uwF2 + vwF2 + u2F2 + wu2F2,

u2 = v2, uv = 0,w2 = w.

R = (F2 + uF2 + vF2 + v2F2) + w(F2 + uF2 + vF2 + v2F2),
u2 = v2, uv = 0,w2 = w.

R = R+wR, w2 = w.

Here R is a local Frobenius non-chain ring F2 + uF2 + vF2 + v2F2 with u2 = v2 and uv = 0.
Let C be a linear code over R with length n, in which case C is an R-submodule of Rn. An element

of a linear code is a codeword. A linear code C with length n is defined as a cyclic code if, for
all c = (c0, c1, . . . , cn−1) in C, its cyclic shift (cn−1, c0, . . . , cn−2) is also a codeword in C. In a cyclic
code, for each codeword c = (c0, c1, . . . , cn−1) ∈ C , there is a corresponding polynomial c(x) =

c0 + c1x + . . . + cn−1xn−1 ∈ Rn = R[x]/〈xn − 1〉. In the polynomial representation of a cyclic code, there
is a one-to-one correspondence with an ideal of Rn. In this paper, the quotient ring R[x]/〈xn − 1〉 will
be denoted as Rn.

Yilgor et al. [14] constructed cyclic codes in the ring F2 + uF2 + vF2 + v2F2. R is not isomorphic to
this ring. However, the code construction performed here is used in constructing R.

Let R be a ring and a ∈ R. If a is different from 0 the Hamming weight of a is wH(a) = 1; otherwise
wH(a) = 0. In the case of a ∈ Rn, any element will be a vector like a = (a1, a2, ...an) and the Hamming
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weight of the vector a is the sum of the Hamming weights of its terms; that is, wH(a) =
∑n

i=1 wH(ai).
The Hamming distance between two codewords a and b in Rn is given by d(a, b) = wH(a − b). It is
important to note that d is a distance-preserving map.

Figure 1. Hierarchy of ideals of F2 + uF2 + vF2 + u2F2 + wF2 + wuF2 + wvF2 + wu2F2.

Define the Gray map

Φ : R = R + wR −→ R2,

a + wb −→ (a, a + b),
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where R = F2 + uF2 + vF2 + v2F2 + wF2 + wuF2 + wvF2 + wv2F2 and R = F2 + uF2 + vF2 + v2F2 and
a, b ∈ R.

The Lee weight on R is the Hamming weight of the Gray image:

wL(a + wb) = wH(Φ((a + wb)),

where a, b ∈ R.
We record structural facts [2, 4] that justify the lists of ideals displayed in Tables 1–2 in the

Appendix.

Lemma 2.1. Let R = F2 + uF2 + vF2 + v2F2 with u2 = v2 and uv = 0, and let R = R + wR with w2 = w.
The map

Ψ : R −→ R × R, Ψ(a + wb) = (a, a + b)

is a ring isomorphism with the inverse (x, y) 7→ x + w(y − x). In particular, R � R × R.

Proof. A straightforward check shows that Ψ is bijective and multiplicative; note that w2 = w and the
characteristic 2 imply (a + wb)(c + wd) = ac + w(ad + bc + bd), which matches multiplication in R×R
under (a, a + b)(c, c + d) = (ac, ac + ad + bc + bd). �

Corollary 2.1. Under the isomorphism in Lemma 2.1, every ideal I ⊆ R corresponds to a pair of ideals
(I1, I2) of R via I = Ψ−1(I1 × I2). In particular, I is principal if and only if both I1 and I2 are principal,
generated by r1, r2 ∈ R, in which case

I = 〈 r1 + w(r2 − r1) 〉.

Remark 2.1. The maximal ideals of R correspond to pairs where exactly one component is maximal
in R and the other is the whole ring:

Max(R) �
(

Max(R) × {R}
)
∪

(
{R} ×Max(R)

)
.

Concretely, if m ⊂ R is maximal then

Ψ−1(m × R) = { a + wb : a ∈ m, b ∈ R }, Ψ−1(R ×m) = { a + wb : a + b ∈ m }

are maximal in R. This explains the two maximal ideals listed in the paper (obtained from the two
maximal ideals of R) and why their generators have the displayed form.

Remark 2.2. Corollary 2.1 explains why so many ideals of R are principal: Each line in Tables 1–2
located in the Appendix corresponds to a pair of generators (r1, r2) of ideals of R, encoded in R by
r1 + w(r2 − r1).

If A and B are codes, the tensor product of these two codes is defined as A
⊗

B = {(a, b)|a ∈ A, b ∈
B}, and direct sum is defined as A

⊕
B = {a + b|a ∈ A, b ∈ B)}. For a linear code C with a length n

over F2 + uF2 + vF2 + wF2 + uwF2 + vwF2 + v2F2 + wv2F2, we define

C1 = {a + b ∈ R | w(a + b) + (w + 1)a ∈ C, a, b ∈ R},

C2 = {a ∈ R | w(a + b) + (w + 1)a ∈ C, b ∈ R}.

Then C1 and C2 are linear codes over R and C = wC1
⊕

(w + 1)C2.
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Theorem 2.1. [15] Let C be a linear code of length n over F2 + uF2 + vF2 + wF2 + uwF2 + vwF2 +

v2F2 + wv2F2, u2 = v2, uv = 0,w2 = w. Then Φ(C) = C1
⊗

C2 and |C| = |C1||C2|.

Lemma 2.2. [10] If G1 and G2 are generator matrices of C1 and C2, respectively, then a generator
matrix for C is (

wG1

(w + 1)G2

)
.

Corollary 2.2. [15] If Φ(C) = C1
⊗

C2, then C = wC1
⊕

(w + 1)C2.

Proposition 2.1. Let C be a linear code over R and let dH and dL denote the minimum Hamming
and Lee distances of C, respectively. If d(Ci) denotes the minimum distance of Ci, then dH = dL =

min{d(C1), d(C2)}.

Corollary 2.3. Let C = wC1
⊕

(w + 1)C2 be a linear code of length n over R + wR, where Ci is a
linear code over R with dimension ki and minimum Hamming distance d(Ci). In this case, Φ(C) is a
[2n, k1 + k2,min(d(Ci))] linear code over R.

3. Cyclic codes over the ring F2 + uF2 + vF2 + wF2 + uwF2 + vwF2 + v2F2 + wv2F2

Cyclic codes are an important subclass of algebraic codes, characterized by rich algebraic structures
and numerous applications. In this section, we construct cyclic codes over R. Throughout the paper,
we write Iu,v f = 〈u, v〉 f for f ∈ Rn and abbreviate it as Z f .

Definition 3.1. Let C be a linear code with a length n over R. C is called a cyclic code if it is invariant
under the automorphism σ, which is σ(c0, c1, . . . , cn−1) = (cn−1, c0, . . . , cn−2).

Theorem 3.1. [14] Let n be a positive integer. For i = {1, 2, 3} and γ1 = u, γ2 = u + v and γ3 = v, we
define

Mi = 〈 f1,Z f2, γi f3, v2 f4〉

as a cyclic code over R, with f4| f3| f2| f1| (xn − 1).

Theorem 3.2. Let M1 and M2 be cyclic codes of length n over R. Then C = (w)M1
⊕

(w + 1)M2 is a
cyclic code over R.

Proof. Let x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) are in M1 and M2, which are cyclic codes in
R. Suppose that c = (c0, c1, . . . , cn−1) ∈ C, where ci = wxi+(1+w)yi and ci = wxi+yi+wyi = yi+w(xi+yi)
for all i = 0, 1, , , , , n − 1. Then σ(c) = (yn−1 + w(xn−1 + yn−1), y0 + w(x0 + y0), . . . , yn−2 + w(xn−2 + yn−2)
and σ(c) = (yn−1, y0, . . . , yn−2) + w(xn−1 + yn−1, x0 + y0, x1 + y1, . . . , xn−2). σ(c) = σ(y) + w(σ(x) +σ(y)),
and so M1 and M2 are cyclic. �

Theorem 3.3. [14] Let n be a positive integer and Mi = 〈 f1,Z f2, γs f3, v2 f4〉 for s = {1, 2, 3}, and
γ1 = u, γ2 = u + v, and γ3 = v, be a cyclic code of length n over R, where f4| f3| f2| f1| (xn − 1). Let
k1 = n − deg( f1), k j = deg( f j−1) − deg( f j) for j = {2, 3, 4} and

S i
1 = {xt f1 : 0 ≤ t ≤ k1 − 1},

S i
2 = {xtz f2 : 0 ≤ t ≤ k2 − 1, z ∈ Z},
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S i
3 = {xtγi f3 : 0 ≤ t ≤ k3 − 1},

S i
4 = {xtv2 f4 : 0 ≤ t ≤ k4 − 1},

and S i = S i
1 ∪ S i

2 ∪ S i
3 ∪ S i

4 and |C| = 16k18k24k32k4 .

Theorem 3.4. Let Mi and M j be cyclic codes with a length n over R. Then the minimal spanning
set for C = (w)Mi

⊕
(w + 1)M j is S = wS i ∪ (w + 1)S j and |C| = 16ki

1+k j
1 8ki

2+k j
2 4ki

3+k j
3 2ki

4+k j
4 , where

ki
1 = n − deg( f i

1), ki
t = deg( f i

t−1) − deg( f i
t ) t = {2, 3, 4}, and similarly for k j

∗.

Proof. The generator matrix for C over R is constructed using the method described in Lemma 2.2 and
the minimal spanning set presented in Theorem 3.3. The proof is complete with the vectors forming
the minimal spanning set. �

Example 3.1. We know that x3 − 1 = (1 + x)(1 + x + x2) and (1 + x)|x3 − 1 over R. Let C1 = g1(x) =<

(x + 1) > and C2 = g2(x) =< (x + 1) > . C = wg1(x) + (w + 1)g2(x) is a cyclic code over R. In addition,
the generator matrix of C is

G =

(
wG1

(1 + w)G2

)
=


w w 0
0 w w

1 + w 1 + w 0
0 1 + w 1 + w

 .

Row-reducing yields G′ =

(
1 1 0
0 1 1

)
, which has two free rows, so |C| = 164. Therefore, the Gray

image Φ(C) of C generates a [6, 4, 2] linear code over R.

Let x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1) ∈ Rn. In a Euclidean vector space, the inner product
of vectors x and y is defined as [x, y] =

∑n−1
i=0 xiyi, where the calculations are performed in R.

Let C be a linear code of length n over R, the dual code of C is C⊥ = {w ∈ Rn : [x, y] = 0}.
If p(x) ∈ R[x], the reciprocal polynomial is xdeg(p(x)) p(x−1).

Lemma 3.1. Let C⊥ be the dual code of C. Then Φ(C⊥) = Φ(C)⊥. In addition, if C is a self-dual code,
so is Φ(C).

Proof. Let c1 = a1 + wb1 and c2 = a2 + wb2, with c1, c2 ∈ (R + wR)n and ai, bi ∈ R
n, i = 1, 2. If

[c1, c2] = 0 in R,

[c1, c2] = (a1 + wb1).(a2 + wb2) = a1a2 + w(a1b2 + a2b1 + b1b2) = 0,

and a1a2 = 0, and a1b2 + a2b1 + b1b2 = 0. On the other hand, Φ(c1) = (a1, a1 + b1) and Φ(c2) =

(a2, a2 + b2). Then [Φ(c1),Φ(c2))] = a1a2 + a1a2 + a1b2 + a2b1 + b1b2 = 0. Therefore, Φ(C⊥) ⊆ Φ(C)⊥.
Now let C be a linear code with a length n and |C| = 16ki

1+k j
18ki

2+k j
24ki

3+k j
32ki

4+k j
4 =

24(ki
1+k j

1)+3(ki
2+k j

2)+2(ki
3+k j

3)+(ki
4+k j

4). Since Φ is bijective, |Φ(C)| = |C|, and therefore Φ(C) has the parameters
[2n, 4(ki

1 + k j
1) + 3(ki

2 + k j
2) + 2(ki

3 + k j
3) + (ki

4 + k j
4)]. Thus |Φ(C)⊥| = 22n−( 4(ki

1+k j
1)+3(ki

2+k j
2)+2(ki

3+k j
3)+(ki

4+k j
4) ).

On the other hand, using |C⊥| = 22n/|C| and |Φ(C⊥)| = |C⊥| again, we obtain |Φ(C⊥)| = |C⊥| =

22n−( 4(ki
1+k j

1)+3(ki
2+k j

2)+2(ki
3+k j

3)+(ki
4+k j

4) ). Hence, |Φ(C⊥)| = |Φ(C)⊥|.
Since Φ(C⊥) ⊆ Φ(C)⊥ and both sets have the same finite cardinality, we conclude that Φ(C⊥) =

Φ(C)⊥. �
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Theorem 3.5. [14] Let n be a positive integer. Let Mi = 〈 f1,Z f2, γs f3, v2 f4〉 for s = {1, 2, 3}, and let
γ1 = u, γ2 = u + v, and γ3 = v, be a cyclic code of length n over R, where f4| f3| f2| f1| (xn − 1). Then the
dual code of Mi is

M⊥
i =

〈(
xn − 1

f4

)∗
,Z

(
xn − 1

f3

)∗
, γ⊥i

(
xn − 1

f2

)∗
, v2

(
xn − 1

f1

)∗〉
,

where γ⊥1 = v, γ⊥2 = u + v, and γ⊥3 = u.

Using Lemma 3.1 and Theorem 3.5, the following theorem is proven.

Theorem 3.6. Let C be a linear code of length n over R and φ(C) = M1
⊗

M2, and C = wM1
⊕

(w +

1)M2. Then φ(C⊥) = M⊥
1

⊗
M⊥

2 and C⊥ = wM⊥
1

⊕
(w + 1)M⊥

2 .

Proof. By Lemma 3.1, φ(C)⊥ = (M1
⊗

M2)⊥. Therefore, we need to prove that M⊥
1

⊗
M⊥

2 =

(M1
⊗

M2)⊥. M⊥
1

⊗
M⊥

2 ⊆ (M1
⊗

M2)⊥. On the other hand, let M1 and M2 be [n, 4k1 +3k2 +2k3 +k4]
and [n, 4k′1 + 3k′2 + 2k′3 + k′4] codes, respectively. Then M⊥

1 ,M
⊥
2 , and M1

⊗
M2 are [n, n − (4k1 + 3k2 +

2k3 +k4)], [n− (4k′1 +3k′2 +2k′3 +k′4)], and [2n−4(k1 +k′1)+3(k2 +k′2)+2(k3 +k′3)+ (k4 +k′4)] binary linear
codes, respectively. Then |M⊥

1

⊗
M⊥

2 | = |M
⊥
1 |.|M

⊥
2 | = 22n−(4(k1 +k′1)+3(k2 +k′2)+2(k3 +k′3)+(k4 +k′4)).

Hence, M⊥
1

⊗
M⊥

2 = (M1
⊗

M2)⊥. In light of Corollary 2.2, we obtain the last statement. �

4. Homogeneous weight and binary image of linear codes over R

The homogeneous weights of two-variable non-chain rings have been presented in [12, 14]. This
study determines the homogeneous weights of the three-variable non-chain ring R and obtains binary
codes using the Gray map.

Definition 4.1. [9] A real-valued function w on the finite ring S is called a (left) homogeneous weight
if w(0) = 0 and the following are true.

(i) For all x, y ∈ S , S x = S y implies w(x) = w(y).
(ii) A real number γ exists such that ∑

y∈S x

w(y) = γ |S x| .

The number γ is the average value of w on S , and from Condition (ii), we conclude that the average
value of w is constant on all non-zero principal ideals of S .

We define the homogeneous weight for R in the same sense as [9]. For any x ∈ R, we define

whom(x) =


0 i f x = 0,
128 i f x = u2w,
64 otherwise.

In this case, a distance-preserving Gray map from (R,whom) to (F128
2 ,wH), where whom and wH denote

the homogeneous weight and Hamming weight, respectively, can be determined as follows. Let

ϕ(u2w) = (1128),

AIMS Mathematics Volume 10, Issue 12, 28396–28406.
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ϕ(u) = (164, 064),
ϕ(v) = (132, 032, 132, 032),
ϕ(w) = (116, 016, 116, 016, 116, 016, 116, 016),
ϕ(uw) = (18, 08, 18, 08, 18, 08, 18, 08, 18, 08, 18, 08, 18, 08, 18, 08),
ϕ(vw) = (1, 1, 1, 1, 0, 0, 0, 0, . . . , 1, 1, 1, 1, 0, 0, 0, 0),
ϕ(u2) = (1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0 . . . , 1, 1, 0, 0),
ϕ(1) = (1, 0, 1, 0, . . . , 1, 0).

Here, 1n and 0n are vectors of length n that are composed entirely of 1s and 0s, respectively. The
vectors corresponding to the Gray images of the basis elements that generate R have a length 128.

For any element of R, we obtain the Gray images via the following map:

ϕ(a0 + a1u + a2v + a3w + a4uw + a5vw + a6u2 + a7wu2)
=a0ϕ(1) + a1ϕ(u) + a2ϕ(v) + a3ϕ(w) + a4ϕ(uw) + a5ϕ(vw) + a6ϕ(v2) + a7ϕ(wu2),

for all ai ∈ F2.
The Gray images of elements of R form a binary linear code [128, 8, 64]. It is also optimal and

equals RM (1, 7). In addition, C is a self-orthogonal code, since GGT = 0.
The Gray image extended to n-coordinates is obtained by setting

φ(c) = (ϕ(c0), ϕ(c1), . . . , ϕ(cn−1)),

where c = (c0, c1, . . . , cn−1). It is clear that if C is a linear code of length n over R, then φ(C) is a binary
linear code of length 128n.

Theorem 4.1. If C is a linear code over R = F2 + uF2 + vF2 + wF2 + uwF2 + vwF2 + u2F2 + wu2F2, the
Gray image of C is a binary self-orthogonal code.

Proof. ϕ(R) is a self-orthogonal code; therefore, the inner product of the Gray images of any two
elements of R is zero. Let a and b be codewords in C of length n over R. We obtain [φ(a), φ(b)] =
n−1∑
i=0
ϕ (ai)ϕ (bi) = 0. Hence φ(C) is a self-orthogonal code. �

Theorem 4.2. Let C = Rn. Then φ(C) is a binary linear code with the parameters [128n, 8n, 64].

Proof. First, by definition of ϕ, φmaps each coordinate of R to a binary vector of length 128, and hence
the block length is 128n.

Since |R| = 256 = 28, R is an eight-dimensional vector space over F2 via the Gray image. Let
e( j) ∈ Rn be the vector whose j-th coordinate is 1 ∈ R and other coordinates are 0. Then φ(e( j))
occupies the j-th 128-block and spans an eight-dimensional subspace there. The n blocks are disjoint
in support, so the total binary dimension is 8n.

Finally, we show that the minimum distance is 64. Because ϕ is distance-preserving with respect
to whom and wH, the weight of φ(c) equals

∑n−1
i=0 whom(ci). By the definition of whom, every nonzero

coordinate contributes either 64 or 128. Hence, any nonzero codeword has a weight of at least 64.
Moreover, taking c = e( j) with the entry 1 ∈ R (which has whom(1) = 64) gives a codeword of weight 64.
Therefore, dmin = 64. Consequently, we have the result. �

AIMS Mathematics Volume 10, Issue 12, 28396–28406.



28404

5. Conclusions

We investigated the Frobenius non-chain ring R = F2[u, v,w]/〈u2 = v2, uv = 0, w2 = w〉,
determined its ideal structure, and developed linear and cyclic code constructions over R. We defined
a homogeneous weight and showed that the associated Gray image yields optimal binary codes,
including the Reed-Muller code RM (1, 7). Since, to the best of our knowledge, this ring is investigated
here for the first time, we expect further developments on codes over R, including applications to DNA
codes and self-orthogonal code families.
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6. H. Dinh, S. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans.
Inform. Theory, 50 (2004), 1728–1744. https://doi.org/10.1109/TIT.2004.831789

7. S. Dougherty, A. Kaya, E. Salturk, Cyclic codes over local Frobenius rings of order 16, Adv. Math.
Commun., 11 (2017), 99–114. https://doi.org/10.3934/amc.2017005

8. M. Greferath, S. Schmidt, Gray isometries for finite chain rings and a nonlinear ternary (36, 312, 15)
code, IEEE Trans. Inform. Theory, 45 (1999), 2522–2524. https://doi.org/10.1109/18.796395

9. M. Greferath, M. O’Sullivan, On bounds for codes over Frobenius rings under homogeneous
weights, Discrete Math., 289 (2004), 11–24. https://doi.org/10.1016/j.disc.2004.10.002

10. F. Gursoy, I. Siap, B. Yildiz, Construction of skew cyclic codes over Fq +vFq, Adv. Math. Commun.,
8 (2014), 313–322. https://doi.org/10.3934/amc.2014.8.313

AIMS Mathematics Volume 10, Issue 12, 28396–28406.

https://dx.doi.org/https://doi.org/10.1007/s10623-006-9034-5
https://dx.doi.org/https://doi.org/10.48550/arXiv.2506.08537
https://dx.doi.org/https://doi.org/10.3934/math.20231421
https://dx.doi.org/https://doi.org/10.1142/S1793557118500948
https://dx.doi.org/https://doi.org/10.1109/TIT.2004.831789
https://dx.doi.org/https://doi.org/10.3934/amc.2017005
https://dx.doi.org/https://doi.org/10.1109/18.796395
https://dx.doi.org/https://doi.org/10.1016/j.disc.2004.10.002
https://dx.doi.org/https://doi.org/10.3934/amc.2014.8.313


28405

11. A. Hammons, P. Kumar, A. Calderbank, N. Sloane, P. Sole, The Z4-linearity of Kerdock,
Preparate, Goethals, and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301–319.
https://doi.org/10.1109/18.312154

12. B. Yildiz, S. Karadeniz, Cyclic codes over F2 + uF2 + vF2 + uvF2, Des. Codes Crypt., 58 (2011),
221–234. https://doi.org/10.1007/s10623-010-9399-3

13. B. Yildiz, I. Kelebek, The homogeneous weight for Rk, related Gray map a new binary quasi-cyclic
codes, Filomat, 31 (2017), 885–897. https://doi.org/10.2298/FIL1704885Y

14. M. Yilgor, F. Gursoy, E. Oztas, F. Demirkale, Cyclic codes over F2 + uF2 + vF2 + v2F2 with respect
to the homogeneous weight and their applications to DNA codes, AAECC, 32 (2021), 621–636.
https://doi.org/10.1007/s00200-020-00416-0

15. S. Zhu, Y. Wang, M. Shi, Some results on cyclic codes over F2 + vF2, IEEE Trans. Inform. Theory,
56 (2010), 1680–1684. https://doi.org/10.1109/TIT.2010.2040896

Appendix

Table 1. Generators of ideals of R.

No. Size Ideal
1 2 < u2w + u2 >

46 2 < u2w >

3 4 < vw + v + uw + u >
8 4 < vw + v >
17 4 < uw >

18 4 < uw + u >
22 4 < u2 >

32 4 < vw + uw >

37 4 < vw >

10 8 < vw, uw >

16 8 < vw + v, uw + u >
24 8 < vw + u2 + uw >

26 8 < u2w + uw + u >
28 8 < vw + v + u2w >

29 8 < vw + v + u2w + uw + u >
43 8 < u2 + uw >

44 8 < vw + u2 >

4 16 < v >
5 16 < vw + uw + u >
9 16 < vw + u >
12 16 < w >

13 16 < v + u >
14 16 < vw + v + u >
20 16 < vw + v, u2 + uw + u >
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Table 2. Generators of ideals of R (continued).

No. Size Ideal
21 16 < v + uw >

23 16 < w + 1 >
34 16 < vw + v + uw >

41 16 < v + uw + u >
42 16 < vw, u2 + uw >

45 16 < u >
6 32 < u2 + w >

19 32 < vw + v, u >
25 32 < vw, v + u >
27 32 < vw, u >
35 32 < vw, v + uw >

36 32 < u2w + w + 1 >
38 32 < vw + v, vw + u >
48 32 < v, uw + u >
2 64 < v, u >
11 64 < vw + uw + w + 1 >
15 64 < v + w >

30 64 < v + u + w >

39 64 < u + w >

40 64 < uw + w + 1 >
47 64 < vw + w + 1 >
7 128 < v, u + w >

33 128 < vw, uw + w + 1 >
31 256 < w,w + 1 >
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