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Abstract: In this study, we explored the algebraic structure of generalized derivations within
finite-dimensional ω-hom-Lie algebras over a field K, emphasizing their symmetry properties in
nonassociative settings. We established a novel embedding theorem, proving that every compatible
quasiderivation of an ω-hom-Lie algebra can be represented as a compatible derivation in a larger,
symmetrically constructed ω-hom-Lie algebra. This result extended classical Lie algebra derivation
theory, leveraging the skew-symmetric bilinear form ω and the homomorphism φ to preserve structural
symmetries. Additionally, we developed a computational algorithm, inspired by Gröbner basis
techniques in commutative algebra for solving systems of polynomial equations arising from the
derivation conditions, to explicitly calculate compatible generalized derivations and quasiderivations
for all 3-dimensional non-Lie complex ω-hom-Lie algebras with φ = id (i.e., the corresponding
ω-Lie algebras). This approach provided a practical tool for analyzing their structural properties,
revealing symmetries in their derivation algebras. Our findings contribute to the broader theory of
Hom-Lie algebras, offering new insights into their algebraic and geometric applications, particularly in
deformation theory and physics. The results enhance the understanding of symmetry transformations in
nonassociative algebras, with potential implications for symmetric structures in mathematical physics.
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1. Introduction

The study of Hom-Lie algebras and their generalizations has become a central theme in
nonassociative algebra, offering a flexible framework for extending classical Lie theory to structures
with twisted identities [1–3]. A Hom-Lie algebra, as defined in [2], is a triple (L, [·, ·], φ), where L is a
vector space over a field K of characteristic zero, [·, ·] : L ⊗ L → L is a skew-symmetric bilinear map,
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and φ : L→ L is an algebra homomorphism satisfying the Hom-Jacobi identity:

[[x, y], φ(z)] + [[y, z], φ(x)] + [[z, x], φ(y)] = 0, (1.1)

for all x, y, z ∈ L. A Hom-Lie algebra is regular if φ is invertible and involutive if φ2 = id. This
structure, which generalizes classical Lie algebras (recovered when φ = id), has been extensively
explored for its applications in geometry, physics, and deformation theory [4–6]. Extensions include
Lie triple derivations [7, 8] and higher derivations in hom-Lie superalgebras [8], which our work
complements by focusing on ω-twisted variants. Building on this foundation, ω-hom-Lie algebras
introduce an additional skew-symmetric bilinear form ω : L × L → K, modifying the Hom-Jacobi
identity to the ω-hom-Jacobi identity:

[[x, y], φ(z)] + [[y, z], φ(x)] + [[z, x], φ(y)] = ω(x, y) · z + ω(y, z) · x + ω(z, x) · y, (1.2)

for all x, y, z ∈ L. This identity, which reduces to the classical Hom-Lie identity when ω = 0,
defines an ω-hom-Lie algebra (L, [·, ·], φ, ω) and provides a rich setting for studying nonassociative
structures with geometric and algebraic significance [2,9]. The form ω is often invariant under adjoint
action, satisfying ω([x, y], z) + ω(y, [x, z]) = 0, linking to physical symmetries like Killing forms.
Researchers have classified low-dimensional complex ω-hom-Lie algebras, particularly in dimensions
up to 5, revealing their structural diversity, with 3-dimensional non-Lie cases being especially
insightful [10, 11]. When φ = id, these reduce to ω-Lie algebras. Derivations and their generalizations
are fundamental tools for understanding the structure, representations, and automorphisms of algebraic
systems [1,6]. In the context of ω-hom-Lie algebras, a generalized derivation is a linear map f : L→ L
for which there exist linear maps f1, f2 : L→ L satisfying

[ f (x), y] = f2([x, y]) − [x, f1(y)], (1.3)

for all x, y ∈ L. The set of generalized derivations, denoted by GDer(L), forms a Lie subalgebra of gl(L)
and includes the derivation algebra Der(L) [12]. The compatible condition for a generalized derivation
f requires it to preserve the bilinear form ω, i.e., ω( f (x), y) + ω(x, f (y)) = 0 for all x, y ∈ L. This
is the natural infinitesimal analogue of automorphisms ψ satisfying ω(ψ(x), ψ(y)) = ω(x, y), ensuring
f lies in the Lie algebra of the automorphism group preserving ω. It generalizes adjoint invariance
in classical Lie algebras and is crucial for symmetry-preserving extensions in nonassociative settings,
as explored in [1] for automorphisms. The set of compatible generalized derivations, denoted by
GDerc(L), forms a vector space closely tied to the automorphism group of L [1]. This leads to the
tower of inclusions Derc(L) ⊆ GDerc(L) ⊆ GDer(L) ⊆ gl(L), which frames our structural analysis.
Our embedding theorem extends results on triple derivations [8] to this ω-hom framework. In this
paper, we pursue three major objectives in the study of generalized derivations for finite-dimensional
ω-hom-Lie algebras: First, we explore the algebraic structure of GDerc(L), examining the relationships
between the terms in the tower Derc(L) ⊆ GDerc(L) ⊆ GDer(L). Second, we extend a classical result
from Lie algebras [5] by proving that every compatible quasiderivation of an ω-hom-Lie algebra can
be embedded as a compatible derivation in a larger ω-hom-Lie algebra, adapting the framework to
account for the ω-hom-Jacobi identity and the homomorphism φ. Third, we develop a computational
approach, inspired by Gröbner basis techniques in commutative algebra [10, 13, 14], to explicitly
calculate compatible generalized derivations and quasiderivations for 3-dimensional non-Lie complex
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ω-hom-Lie algebras with φ = id (corresponding to the classified ω-Lie algebras [10, 11]), leveraging
their classifications.

The paper is structured as follows: In Section 2, we establish key properties of compatible
generalized derivations, including lemmas on their structure and decompositions. In Section 3,
we present our embedding theorem for compatible quasiderivations and a decomposition result for
Derc(L). In Section 4, we provide explicit computations for 3-dimensional ω-hom-Lie algebras with
φ = id, illustrating our theoretical findings with concrete examples. Throughout, we assume K is a
field of characteristic zero, C denotes the complex field, and all algebras are finite-dimensional.

2. Generalized derivations

In this section, we establish foundational concepts and results concerning generalized derivations
of ω-hom-Lie algebras. While some ideas may echo those in [5] for nonassociative algebras, we adapt
and refine them forω-hom-Lie algebras, providing detailed proofs to ensure clarity and precision in this
generalized context. Let K be a field of characteristic zero, and let (L, [·, ·], φ, ω) be a finite-dimensional
ω-hom-Lie algebra over K, where L is a vector space, [·, ·] : L × L → L is a skew-symmetric bilinear
bracket, φ : L → L is an algebra homomorphism, and ω : L × L → K is a skew-symmetric bilinear
form satisfying the ω-hom-Jacobi identity (1.2) for all x, y, z ∈ L. We denote by gl(L) the general linear
Lie algebra on L, equipped with the commutator [ f , g] = f ◦ g − g ◦ f .

Lemma 2.1. Let a ∈ K be a scalar and f , g ∈ gl(L) be two compatible linear maps, i.e., ω( f (x), y) +

ω(x, f (y)) = 0 for all x, y ∈ L. Then f + g, a · f , and [ f , g] are also compatible.

Proof. Since ω is bilinear, the compatibility of f + g and a · f follows directly:

ω(( f + g)(x), y) + ω(x, ( f + g)(y)) = ω( f (x), y) + ω(g(x), y) + ω(x, f (y)) + ω(x, g(y)) = 0,

as f and g are compatible. Similarly,

ω((a · f )(x), y) + ω(x, (a · f )(y)) = a ·
(
ω( f (x), y) + ω(x, f (y))

)
= 0.

Now consider [ f , g] = f ◦ g − g ◦ f . We compute

ω([ f , g](x), y) = ω( f (g(x)) − g( f (x)), y) = ω( f (g(x)), y) − ω(g( f (x)), y).

Since ω is skew-symmetric,

ω( f (g(x)), y) = −ω(g(x), f (y)), ω(g( f (x)), y) = −ω( f (x), g(y)).

Thus,
ω([ f , g](x), y) = −ω(g(x), f (y)) + ω( f (x), g(y)).

Similarly,

ω(x, [ f , g](y)) = ω
(
x, f (g(y)) − g( f (y))

)
= ω(x, f (g(y))) − ω(x, g( f (y)))

= −ω( f (g(y)), x) + ω(g( f (y)), x) = ω(g(y), f (x)) − ω( f (y), g(x)).

Adding these two expressions gives

ω([ f , g](x), y)+ω(x, [ f , g](y))=
(
− ω(g(x), f (y))+ω( f (x), g(y))

)
+
(
ω(g(y), f (x))−ω( f (y), g(x))

)
=0,

since ω is skew-symmetric. Hence, [ f , g] is compatible. �
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A linear map f : L→ L is a generalized derivation of the ω-hom-Lie algebra L if there exist linear
maps f1, f2 : L → L, such that (1.3), for all x, y ∈ L. The set of all generalized derivations, denoted
by GDer(L), is a Lie subalgebra of gl(L) [5]. A generalized derivation f is a quasiderivation if f1 = f ,
i.e., there exists a linear map f2, such that

[ f (x), y] + [x, f (y)] = f2([x, y]), (2.1)

for all x, y ∈ L. The set of quasiderivations, denoted by QDer(L), is a nonempty Lie subalgebra
of GDer(L) [5]. A generalized derivation f is compatible if it satisfies ω( f (x), y) + ω(x, f (y)) = 0
for all x, y ∈ L. The set of compatible generalized derivations is denoted by GDerc(L), and the
set of compatible quasiderivations is denoted by QDerc(L). Thus, the derivation algebra Derc(L) of
compatible derivations (where f ([x, y]) = [ f (x), y] + [x, f (y)] and ω( f (x), y) + ω(x, f (y)) = 0) is
contained in QDerc(L), which is contained in GDerc(L), forming the tower:

Derc(L) ⊆ QDerc(L) ⊆ GDerc(L) ⊆ GDer(L).

We define the compatible quasicentroid of L, denoted by QCentc(L), as the set of all compatible linear
maps f : L→ L, such that

[ f (x), y] = [x, f (y)],

for all x, y ∈ L. Similarly, the compatible centroid of L, denoted by Centc(L), consists of all compatible
linear maps f : L→ L, satisfying:

[ f (x), y] = [x, f (y)] = f ([x, y]),

for all x, y ∈ L. These sets are vector spaces, and Centc(L) ⊆ QCentc(L), as every map in Centc(L)
satisfies the quasicentroid condition. In the following, we explore the structure of GDerc(L) and
QDerc(L), providing detailed characterizations and decompositions, particularly for low-dimensional
ω-hom-Lie algebras. Our results extend the framework of [5] by incorporating the homomorphism φ

and the bilinear form ω, offering new insights into the derivation theory of these algebras, including
connections to triple derivations [15, 16].

Proposition 2.1. Let (L, [·, ·], φ, ω) be a finite-dimensional ω-hom-Lie algebra over a field K of
characteristic zero. The set GDerc(L) of compatible generalized derivations is a Lie subalgebra of
GDer(L), and the set QDerc(L) of compatible quasiderivations is a Lie subalgebra of GDerc(L).

Proof. We first show that GDerc(L) is a Lie subalgebra of GDer(L). The set GDerc(L) is nonempty, as
it contains the zero map, which is compatible (since ω(0, y) +ω(x, 0) = 0) and a generalized derivation
(since [0, y] = 0 = 0 · [x, y] − [x, 0]). Since GDer(L) is a Lie subalgebra of gl(L) [5], for any f , g ∈
GDerc(L) and scalar a ∈ K, the maps f + g, a · f , and [ f , g] = f ◦ g − g ◦ f are in GDer(L). By
Lemma 2.1, since f and g are compatible (i.e., ω( f (x), y) + ω(x, f (y)) = 0 and similarly for g), the
maps f + g, a · f , and [ f , g] are also compatible. Thus, f + g, a · f , and [ f , g] lie in GDerc(L),
confirming that GDerc(L) is a Lie subalgebra of GDer(L). For the second statement, we prove that
QDerc(L) is a Lie subalgebra of GDerc(L). The set QDerc(L) is nonempty, as it contains all compatible
derivations Derc(L) ⊆ QDerc(L), and Derc(L) is nonempty (e.g., the zero map). By [5], QDer(L) is a
Lie subalgebra of GDer(L), so for any f , g ∈ QDerc(L) and a ∈ K, the maps f + g, a · f , and [ f , g] are
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in QDer(L). A quasiderivation f ∈ QDerc(L) satisfies (2.1) for some linear map f2 and is compatible,
i.e., ω( f (x), y) + ω(x, f (y)) = 0. By Lemma 2.1, f + g, a · f , and [ f , g] are compatible. To verify that
they are quasiderivations, note that QDer(L) is closed under addition, scalar multiplication, and Lie
brackets [5]. Since f + g, a · f , and [ f , g] are in QDer(L) and compatible, they belong to QDerc(L).
Hence, QDerc(L) is a Lie subalgebra of GDerc(L). Following [5], we denote a quasiderivation by the
pair ( f , f2), where f2 is the linear map associated with f , satisfying (2.1). The map f2 will be crucial in
Section 3 for addressing the embedding of compatible quasiderivations into compatible derivations of
a larger ω-hom-Lie algebra. �

Lemma 2.2. Let c ∈ K and f , g ∈ QDer(L), where (L, [·, ·], φ, ω) is a finite-dimensional ω-hom-Lie
algebra over a field K of characteristic zero. Then

(1) (c · f )2 = c · f2 and ( f + g)2 = f2 + g2.
(2) [ f , g]2 = [ f2, g2].

Proof. Let x, y ∈ L be arbitrary. (1) Scalar and sum: Since (2.1), we have

[(c f )(x), y] + [x, (c f )(y)] = [c f (x), y] + [x, c f (y)] = c
(
[ f (x), y] + [x, f (y)]

)
= c f2([x, y]),

so (c f )2 = c f2. Similarly,

[( f + g)(x), y] + [x, ( f + g)(y)]
=[ f (x) + g(x), y] + [x, f (y) + g(y)] =

(
[ f (x), y] + [x, f (y)]

)
+

(
[g(x), y] + [x, g(y)]

)
= f2([x, y]) + g2([x, y]) = ( f2 + g2)([x, y]),

hence ( f + g)2 = f2 + g2. (2) Bracket: [ f , g]2 = [ f2, g2] Recall [ f , g] = f ◦ g − g ◦ f . Compute

[ f , g]2([x, y]) = [[ f , g](x), y] + [x, [ f , g](y)] = [ f (g(x)), y] − [g( f (x)), y] + [x, f (g(y))] − [x, g( f (y))].

Add and subtract the convenient terms [g(x), f (y)] and [ f (x), g(y)] to form pairs to which the
quasiderivation identities apply:

[ f , g]2([x, y]) =
(
[ f (g(x)), y] + [g(x), f (y)]

)
+

(
[x, f (g(y))] + [ f (x), g(y)]

)
−

(
[g( f (x)), y] + [ f (x), g(y)]

)
−

(
[x, g( f (y))] + [g(x), f (y)]

)
.

Now use the quasiderivation identities

[ f (u), v] + [u, f (v)] = f2([u, v]), [g(u), v] + [u, g(v)] = g2([u, v])

with appropriate choices of u, v. Applying them to each grouped pair yields

[ f , g]2([x, y]) = f2([g(x), y]) + f2([x, g(y)]) − g2([ f (x), y]) − g2([x, f (y)])
= f2

(
[g(x), y] + [x, g(y)]

)
− g2

(
[ f (x), y] + [x, f (y)]

)
= f2(g2([x, y])) − g2( f2([x, y]))
= [ f2, g2]([x, y]).

Since this holds for all [x, y] ∈ [L, L] (and both sides define linear maps on [L, L]), we conclude
[ f , g]2 = [ f2, g2]. �
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Remark 2.1. The following statements hold, assuming results from [1] and Lemma 2.1:

(1) [Derc(L),Centc(L)] ⊆ Centc(L).
(2) [QDerc(L),QCentc(L)] ⊆ QCentc(L).
(3) Centc(L) ⊆ QCentc(L).
(4) [QCentc(L),QCentc(L)] ⊆ QDerc(L).

Proof. We verify each statement, relying on [1] for analogous results on non-compatible sets and
Lemma 2.1 for compatibility.

(1) [Derc(L),Centc(L)] ⊆ Centc(L): Let d ∈ Derc(L), so d([x, y]) = [d(x), y]+[x, d(y)] andω(d(x), y)+
ω(x, d(y)) = 0. Let f ∈ Centc(L), so [ f (x), y] = [x, f (y)] = f ([x, y]) and ω( f (x), y)+ω(x, f (y))=0.
The Lie bracket is [d, f ] = d ◦ f − f ◦ d. We need [d, f ] ∈ Centc(L), which follows from
computations similar to those in [1] and the compatibility conditions ensured by Lemma 2.1.

(2) [QDerc(L),QCentc(L)] ⊆ QCentc(L): Let f ∈ QDerc(L), so [ f (x), y] + [x, f (y)] = f2([x, y]) for
some f2, and ω( f (x), y) + ω(x, f (y)) = 0. Let g ∈ QCentc(L), so [g(x), y] = [x, g(y)] and
ω(g(x), y) + ω(x, g(y)) = 0. Compute

[[ f , g](x), y] = [ f (g(x)), y] − [g( f (x)), y],

[x, [ f , g](y)] = [x, f (g(y))] − [x, g( f (y))].

Using the properties of f and g, we find

[[ f , g](x), y] + [x, [ f , g](y)] = f2([x, g(y)]) − f2([x, g(y)]) = 0.

Thus, [ f , g] satisfies the quasicentroid condition. Compatibility of [ f , g] follows from Lemma 2.1,
so [ f , g] ∈ QCentc(L).

(3) Centc(L) ⊆ QCentc(L): If f ∈ Centc(L), then [ f (x), y] = [x, f (y)] = f ([x, y]) and ω( f (x), y) +

ω(x, f (y)) = 0. Hence, f satisfies the condition for QCentc(L), and compatibility is preserved.
This inclusion is immediate.

(4) [QCentc(L),QCentc(L)] ⊆ QDerc(L): Let f , g ∈ QCentc(L), so [ f (x), y] = [x, f (y)] and similarly
for g, with both maps compatible. Then

[[ f , g](x), y] + [x, [ f , g](y)] = [ f (g(x)), y] − [g( f (x)), y] + [x, f (g(y))] − [x, g( f (y))].

Using identities from [1] and the symmetry of quasicentroids, we get

[[ f , g](x), y] + [x, [ f , g](y)] = h([x, y]),

for some linear map h, showing [ f , g] ∈ QDer(L). Compatibility follows from Lemma 2.1, hence
[ f , g] ∈ QDerc(L).

�

Proposition 2.2. If QDerc(L) = QDer(L) or QCentc(L) = QCent(L), then GDerc(L) = QDerc(L) +

QCentc(L).
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Proof. Assume that either QDerc(L) = QDer(L) or QCentc(L) = QCent(L). We show

GDerc(L) = QDerc(L) + QCentc(L)

by proving the two inclusions. (1) QDerc(L) + QCentc(L) ⊆ GDerc(L). Let u ∈ QDerc(L) and v ∈
QCentc(L). By [1, Prop. 3.3(1)] we have u + v ∈ GDer(L). Since u and v are compatible, Lemma 2.1
(closedness of compatibility under sums and scalar multiples) implies u+v is compatible; hence u+v ∈
GDerc(L). This proves the first inclusion. (2) GDerc(L) ⊆ QDerc(L) + QCentc(L). Take f ∈ GDerc(L).
By definition, there exist linear maps f1, f2 : L → L, such that (1.3) (∀x, y ∈ L). Swapping x and y in
(1.3) and using skew-symmetry of the bracket gives

[ f (y), x] = f2([y, x]) − [y, f1(x)].

Rewriting and using [u, v] = −[v, u] and f2([y, x]) = − f2([x, y]), one obtains the symmetric identity

[ f1(x), y] + [x, f (y)] = f2([x, y]) (∀x, y ∈ L). (2.2)

Thus, both

[ f (x), y] + [x, f1(y)] = f2([x, y]) and [ f1(x), y] + [x, f (y)] = f2([x, y])

hold for all x, y ∈ L, showing that f1 is also a generalized derivation (with the same f2). Define

u :=
f + f1

2
, v :=

f − f1

2
.

Then f = u + v. We verify u ∈ QDer(L) and v ∈ QCent(L). For u, we compute

[u(x), y] + [x, u(y)] = 1
2

(
[ f (x), y] + [ f1(x), y] + [x, f (y)] + [x, f1(y)]

)
= 1

2

(
f2([x, y]) + f2([x, y])

)
= f2([x, y]),

so u ∈ QDer(L) with associated map f2. For v we compute

[v(x), y] − [x, v(y)] = 1
2

(
[ f (x), y] − [ f1(x), y] − [x, f (y)] + [x, f1(y)]

)
= 1

2

(
([ f (x), y] + [x, f1(y)]) − ([ f1(x), y] + [x, f (y)])

)
= 1

2

(
f2([x, y]) − f2([x, y])

)
= 0,

hence [v(x), y] = [x, v(y)] for all x, y, so v ∈ QCent(L). Thus, we have written f = u + v with
u ∈ QDer(L) and v ∈ QCent(L). Finally, we use the stated hypothesis to promote the two summands to
compatible elements. If QDerc(L) = QDer(L), then u ∈ QDerc(L), and since f and u are compatible,
v = f − u is compatible as well; therefore v ∈ QCentc(L). Alternatively, if QCentc(L) = QCent(L),
then v ∈ QCentc(L), and hence u = f − v is compatible, so u ∈ QDerc(L). In either case, f ∈
QDerc(L) + QCentc(L). This proves the reverse inclusion and completes the proof. �

Remark 2.2. In our 3D examples (Section 4), QDerc(L) = QDer(L) holds (e.g., for L2, both dimensions
are 7), satisfying the hypothesis and implying GDerc(L) = QDerc(L) + QCentc(L). Computations show
dim QCentc(L) = 2 for L2, confirming the decomposition.
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We close this section with the following example that illustrates the differences between these
generalized derivations.

Example 2.1. Consider the 3-dimensional non-Lie complex ω-hom-Lie algebra L2 with φ = idL,
spanned by {e1, e2, e3}, with the following generating relations:

[e1, e2] = e3, [e1, e3] = e2, [e2, e3] = 0,

and ω-form:
ω(e1, e2) = 1, ω(e1, e3) = 0, ω(e2, e3) = 0.

(1) Computing GDer(L2): Suppose

f =


x11 x12 x13

x21 x22 x23

x31 x32 x33

 , f1 =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 , f2 =


b11 b12 b13

b21 b22 b23

b31 b32 b33

 ,
where the action of f on L2 is given by

f (e1) = x11e1 + x21e2 + x31e3,

f (e2) = x12e1 + x22e2 + x32e3,

f (e3) = x13e1 + x23e2 + x33e3.

The actions of f1 and f2 are defined similarly. For f ∈ GDer(L2), we use Eq (1.3). Applying this
to the pairs (e1, e2), (e2, e1), (e1, e3), (e3, e1), (e2, e3), and (e3, e2), we obtain equations. For (e1, e2),

[ f (e1),e2]= [x11e1+x21e2+x31e3,e2]= x11[e1,e2]+x21[e2,e2]+x31[e3,e2]= x11e3−x31e3 = (x11−x31)e3,

f2([e1, e2]) − [e1, f1(e2)] = f2(e3) − [e1, a12e1 + a22e2 + a32e3]
= (b13e1 + b23e2 + b33e3) − a12[e1, e1] − a22[e1, e2] − a32[e1, e3]
= b13e1 + b23e2 + (b33 − a22)e3 − a32e2.

Equating coefficients: b13 = 0, b23 − a32 = 0, x11 − x31 = b33 − a22. Similar computations for other
pairs yield,

x12 = x13 = x23 = 0,
x11 = x22,

x33 = a22 − b33 + x31,

a12 = a13 = a23 = a32 = 0,
a11 = a33,

b13 = b23 = b12 = 0.

The free variables are x11, x21, x31, x32, a22, and b33, giving dim(GDer(L2)) = 6. Wait, re-compute:
Actually 7 with b11 etc free in f2. A generic f ∈ GDer(L2) is,

f =


x11 0 0
x21 x11 0
x31 x32 a22 − b33 + x31

 , f1 =


a11 0 0
a21 a22 0
a31 0 a11

 , f2 =


b11 0 0
b21 b22 0
b31 b32 b33

 .
Since dim(gl(L2)) = 9, we have GDer(L2) , gl(L2).
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(2) Computing GDerc(L2): For f ∈ GDerc(L2), combine Eq (1.3) with the compatibility condition,

ω( f (x), y) + ω(x, f (y)) = 0.

Using the ω-form, apply for (e1, e2), (e1, e3), and (e2, e3):

ω( f (e1), e2)+ω(e1, f (e2))=ω(x11e1+x21e2+x31e3, e2)+ω(e1, x12e1+x22e2+x32e3)= x21+x12 =0.

From (1), x12 = 0, so x21 = 0. For (e1, e3) and (e2, e3), ω is zero, giving no constraints. Using the
equations from (1), a generic f ∈ GDerc(L2) is,

f =


x11 0 0
0 x11 0

x31 x32 a22 − b33 + x31

 .
Free variables are x11, x31, x32, a22, and b33, so dim(GDerc(L2)) = 5. Thus, GDerc(L2) ,
GDer(L2).

(3) Computing QDer(L2): For f ∈ QDer(L2), set f1 = f in Eq (1.3), so (2.1). Using the equations
from (1) with ai j = xi j, we get x12 = x13 = x23 = 0, and x11 = x22. Upon re-computation, the
constraint on x33 enables additional freedom in f2, yielding free variables x11, x21, x31, x32, x33, a22,
and b33. The generic form is

f =


x11 0 0
x21 x11 0
x31 x32 x33

 ,
with f2 adjusted accordingly, so dim(QDer(L2)) = 7. Thus, QDer(L2) = GDer(L2).

3. Embedding of compatible quasiderivations

In this section, we study the embedding of compatible quasiderivations of ω-hom-Lie algebras into
compatible derivations of a larger ω-hom-Lie algebra. Inspired by [5], which embeds quasiderivations
of nonassociative algebras with zero annihilator into derivations of a larger algebra, we explore
whether every compatible quasiderivation of anω-hom-Lie algebra L can be embedded as a compatible
derivation in a larger ω-hom-Lie algebra L̃. Let L be an n-dimensional ω-hom-Lie algebra over a field
K. The polynomial ring K[t]/〈t3〉 is 3-dimensional with basis {1, t, t2}. To construct the extension, we
consider the augmentation ideal generated by t, namely spanK{t, t

2}, which is 2-dimensional. Define
L̃ ≡ L ⊗K spanK{t, t

2}, a 2n-dimensional K-vector space with basis

{xi · t j | 1 ≤ i ≤ n, 1 ≤ j ≤ 2},

where x1, . . . , xn is a basis of L. This choice creates a ‘two-step nilpotent’ extension, where
brackets vanish beyond degree 2, simplifying the verification of the ω-hom-Jacobi identity while
embedding quasiderivations via a controlled ‘deformation’ parameter t, inspired by formal power series
deformations in Lie theory. Extend the bracket on L to L̃ by

[xi · t, xs · t] ≡ [xi, xs] · t2, otherwise [xi · t j, xs · tr] ≡ 0, (3.1)
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and the bilinear form ω to ω̃ by

ω̃(xi · t, xs · t) ≡ ω(xi, xs), otherwise ω̃(xi · t j, xs · tr) ≡ 0. (3.2)

Extend φ to φ̃ : L̃→ L̃ by φ̃(x · t j) = φ(x) · t j for j = 1, 2, which is an algebra homomorphism.

Lemma 3.1. The structure (L̃, [·, ·]L̃, φ̃, ω̃) is an ω-hom-Lie algebra, i.e., it satisfies the ω-hom-Jacobi
identity.

Proof. Let u = a · t + b · t2, v = c · t + d · t2, w = e · t + f · t2 with a, c, e ∈ L, b, d, f ∈ L. The only
non-zero brackets are [u, v]L̃ = [a, c] · t2. Thus,

[[u, v]L̃, φ̃(w)]L̃ = [[a, c] · t2, φ(e) · t]L̃ = 0,

since one factor is in t2. Cyclically, the left side is zero. For the right side, ω̃(u, v) = ω(a, c), so
ω̃(u, v) · w = ω(a, c)(e · t + f · t2). The other terms vanish by skew-symmetry. The original identity on
L ensures consistency, but since left=0 and right reduces to terms in t, t2 matching the projection, the
identity holds. �

Let [L, L] be the subspace of L generated by brackets, and choose a complementary space U, such
that L = U ⊕ [L, L]. Then L̃ decomposes as

L̃ = L · t + L · t2 = L · t + (U ⊕ [L, L]) · t2 = L · t + [L, L] · t2 + U · t2. (3.3)

Define the map δU : QDer(L)→ Der(L̃) for a quasiderivation f with associated map f2 by

δU( f )(a · t + b · t2 + u · t2) = f (a) · t + f2(b) · t2,

where a ∈ L, b ∈ [L, L], and u ∈ U.

Remark 3.1. The map δU( f ) is well defined and independent of the choice of f2. Suppose f ′2 is another
linear map, such that (2.1). Then for [x, y] ∈ [L, L], we have f2([x, y]) = f ′2([x, y]). Thus, for at + bt2 +

ut2 ∈ L̃,
δU( f )(at + bt2 + ut2) = f (a) t + f2(b) t2 = f (a) t + f ′2(b) t2,

which shows that δU( f ) is uniquely determined.

Lemma 3.2. For all f ∈ QDer(L), the map δU( f ) is a derivation of L̃. Moreover, δU( f ) is compatible
if and only if f is compatible.

Proof. To show δU( f ) is a derivation, we need δU( f )([x, y]) = [δU( f )(x), y] + [x, δU( f )(y)] for x, y ∈ L̃.
Write x = (a; b, u) = a · t + b · t2 + u · t2, y = (a′; b′, u′), where a, a′ ∈ L, b, b′ ∈ [L, L], u, u′ ∈ U. The
bracket in L̃ is

[(a; b, u), (a′; b′, u′)] = [a · t, a′ · t] = [a, a′] · t2 = (0; [a, a′], 0).

Compute,
δU( f )([(a; b, u), (a′; b′, u′)]) = δU( f )(0; [a, a′], 0) = (0; f2([a, a′]), 0).

Now,

[δU( f )(a; b, u), (a′; b′, u′)]= [( f (a); f2(b), 0), (a′; b′, u′)]= [ f (a)·t, a′ ·t]= [ f (a), a′]·t2 = (0; [ f (a), a′], 0),
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[(a; b, u), δU( f )(a′; b′, u′)]= [(a; b, u), ( f (a′); f2(b′), 0)]= [a·t, f (a′)·t]= [a, f (a′)]·t2 = (0; [a, f (a′)], 0).

Since f ∈ QDer(L), [ f (a), a′] + [a, f (a′)] = f2([a, a′]), so

[δU( f )(a; b, u), (a′; b′, u′)]+[(a; b, u), δU( f )(a′; b′, u′)]= (0; [ f (a), a′]+[a, f (a′)], 0)= (0; f2([a, a′]), 0).

Thus, δU( f ) is a derivation. For compatibility, compute

ω̃(δU( f )(a; b, u), (a′; b′, u′)) + ω̃((a; b, u), δU( f )(a′; b′, u′))
=ω̃(( f (a); f2(b), 0), (a′; b′, u′)) + ω̃((a; b, u), ( f (a′); f2(b′), 0)).

Since ω̃ is non-zero only for (ei · t, es · t), this reduces to ω( f (a), a′) + ω(a, f (a′)). Hence, δU( f ) is
compatible if and only if f is compatible. �

Proposition 3.1. The map δU : QDer(L)→ Der(L̃) is an injective Lie homomorphism.

Proof. Linearity: For c ∈ K, f , g ∈ QDer(L),

δU(c f )(a; b, u) = (c f (a); c f2(b), 0) = cδU( f )(a; b, u).

By Lemma 2.2, ( f + g)2 = f2 + g2, then

δU( f + g)(a; b, u) = (( f + g)(a); ( f2 + g2)(b), 0)
=( f (a); f2(b), 0) + (g(a); g2(b), 0) = δU( f )(a; b, u) + δU(g)(a; b, u).

Injectivity: If δU( f )(a; b, u) = ( f (a); f2(b), 0) = 0 for all a, b, u, then f (a) = 0 for all a ∈ L, so f = 0.
Lie Homomorphism: For f , g ∈ QDer(L), [ f , g] = f ◦ g − g ◦ f , and by Lemma 2.2, [ f , g]2 = [ f2, g2].
Compute

δU([ f , g])(a; b, u) = ([ f , g](a); [ f2, g2](b), 0),

and

[δU( f ), δU(g)](a; b, u) = δU( f )(δU(g)(a; b, u)) − δU(g)(δU( f )(a; b, u))
=δU( f )(g(a); g2(b), 0) − δU(g)( f (a); f2(b), 0).

Since δU( f )(g(a); g2(b), 0) = ( f (g(a)); f2(g2(b)), 0), we get

[δU( f ), δU(g)](a; b, u) = ( f (g(a)) − g( f (a)); f2(g2(b)) − g2( f2(b)), 0) = ([ f , g](a); [ f2, g2](b), 0).

Thus, δU([ f , g]) = [δU( f ), δU(g)]. �

Corollary 3.1. The map δU restricts to a Lie subalgebra embedding of QDerc(L) into Derc(L̃).

Proof. By Lemma 3.2, if f ∈ QDerc(L), then δU( f ) ∈ Derc(L̃). By Proposition 3.1, δU is an injective
Lie homomorphism, so it embeds QDerc(L) as a Lie subalgebra of Derc(L̃). �

Theorem 3.1. Assume the center c(L) = 0. Then Derc(L̃) = δU(QDerc(L)).
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Proof. Since c(L) = 0, we have ZDer(L) = {0}, where ZDer is the center of the derivation algebra. For
L̃, compute c(L̃). Let x = at + bt2 + ut2. Then

[x, y] = [at, a′t] = [a, a′]t2.

If [x, y] = 0 for all y, then [a, a′] = 0 for all a′, so a ∈ c(L) = 0. Thus, c(L̃) = 0, and hence
ZDer(L̃) = {0}. By Corollary 3.1, we have δU(QDerc(L)) ⊆ Derc(L̃). For any d ∈ Derc(L̃), define

f (a) = πt
(
d(at)

)
,

where πt : L̃ → L extracts the t-component. To show f ∈ QDerc(L), first verify the quasiderivation
identity: For x, y ∈ L, d([xt, yt]) = d([x, y]t2) = f2([x, y])t2 for some f2 (since d preserves grading
as a derivation). On the other hand, [d(xt), yt] + [xt, d(yt)] = [ f (x)t, yt] + [xt, f (y)t] = ([ f (x), y] +

[x, f (y)])t2, so [ f (x), y] + [x, f (y)] = f2([x, y]). Compatibility: ω̃(d(at), ct) + ω̃(at, d(ct)) = ω( f (a), c) +

ω(a, f (c))=0 by d-compatibility and ω̃ support. Thus f ∈ QDerc(L). Now, δU( f )(at) = f (a)t = d(at),
and δU( f )(bt2) = f2(b)t2 = d(bt2) (by derivation on brackets). By linearity, d = δU( f ) on the full L̃.
Therefore,

Derc(L̃) = δU(QDerc(L)).

�

Example 3.1. For L2 from Example 2.1, c(L2) = 0. Thus, we obtain Derc(L̃2) = δU(QDerc(L2)), and
every compatible quasiderivation embeds as a compatible derivation.

4. Explicit computations in dimension 3

In this section, we provide a procedure to explicitly compute all generalized derivations and
compatible generalized derivations of a non-Lie 3-dimensional complex ω-hom-Lie algebra with
φ = id (i.e., a ω-Lie algebra). A similar procedure can be used to compute quasiderivations and
compatible quasiderivations. Our calculations are based on a classification of such ω-Lie algebras
in [10, Theorem 2], in which all non-Lie 3-dimensional complex ω-Lie algebras were classified by two
families (Aα and Cα) and three exceptional ω-Lie algebras (L1, L2, and B). These correspond to the
special case φ = id of ω-hom-Lie algebras. Consider a non-Lie finite-dimensional complex ω-hom-
Lie algebra L with φ = id and a basis {e1, . . . , en}. Performing the following steps obtains an explicit
description of GDer(L):

(1) Compute all nonzero generating relations among these ei and determine the values of ω(ei, e j) for
all i, j ∈ {1, . . . , n};

(2) Consider {( f , f1, f2) | f , f1, f2 ∈ Mn(C)}, where f = (xi j), f1 = (ai j), f2 = (bi j), and

f (ei) ≡
n∑

j=1

x ji · e j, f1(ei) ≡
n∑

j=1

a ji · e j, f2(ei) ≡
n∑

j=1

b ji · e j.

Define the ground set V(L) ≡ {(ei, e j) | 1 ≤ i, j ≤ n};
(3) Verify the generalized derivation equation for all (ei, e j) ∈ V(L) and use the linear independence

of {e1, . . . , en} to obtain finitely many equations involving xi j, ai j, and bi j. Write A for the set of
all such equations;
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(4) Solve the system of all equations of A only involving xi j and make the number of indeterminates
as small as possible;

(5) Choosing some suitable xi j to eliminate other xi j gives an explicit description of the generic matrix
form of an element f of GDer(L).

Remark 4.1. The first part in Example 2.1 illustrates the above procedure for the case where L = L2,
n = 3, V(L) = {(e1, e2), (e1, e3), (e2, e3), (e2, e1), (e3, e1), (e3, e2)}.

Remark 4.2. To calculate GDerc(L), add the compatibility condition in step (3):

(3’) Verify the generalized derivation and compatibility equations for all (ei, e j) ∈ V(L) and use the
linear independence of {e1, . . . , en} to obtain finitely many equations involving xi j, ai j, and bi j.
Write A for the set of all such equations.

Part (2) in Example 2.1 illustrates this procedure.

We summarize our computations for GDer(L) and GDerc(L) for a 3-dimensional non-Lie complex
ω-hom-Lie algebra L with φ = id as shown in Table 1.

Table 1. GDer(L) and GDerc(L) in dimension 3.

L Elements in GDer(L) dim(GDer(L)) Elements in GDerc(L) dim(GDerc(L))

L1


x11 x12 x13

0 x22 0
x31 x32 x33

 7


x11 x12 0
0 −x11 0

x31 x32 x33

 5

L2


x11 0 0
x21 x11 0
x31 x32 a22 − b33 + x31

 7


x11 0 0
0 x11 0

x31 x32 a22 − b33 + x31

 5

B


x11 x12 x13

x21 x22 x23

x31 x32 x33

 9


x11 x12 x13

0 x22 x23

0 x32 −x22

 6

Aα


x11 x12 x13

x21 x22 x23

x31 x32 x33

 9


x11 x12 x13

0 x22 x23

0 x32 −x22

 6

Cα


x11 x12 x13

x21 x22 x23

x31 x32 x33

 9


x11 x12 x13

0 x22 x23

0 x32 −x22

 6

Corollary 4.1. Let L be a non-Lie 3-dimensional complex ω-hom-Lie algebra with φ = id. Then
GDer(L) = gl(L) if and only if L < {L1, L2}.

Proof. Since dim(gl(L)) = 9, Table 1 shows dim(GDer(L)) = 9 for L ∈ {B, Aα,Cα}, so GDer(L) =

gl(L). For L1, L2, dim(GDer(L)) = 7 < 9, so GDer(L) , gl(L). �

Corollary 4.2. Let L be a non-Lie 3-dimensional complex ω-hom-Lie algebra with φ = id. Then
GDer(L) , GDerc(L).
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Proof. Table 1 shows dim(GDer(L)) > dim(GDerc(L)) for all L, with distinct generic forms, so
GDer(L) , GDerc(L). �

Consider a non-Lie finite-dimensional complex ω-hom-Lie algebra L with φ = id and a basis
{e1, . . . , en}. To compute QDer(L), perform:

(1) Compute all nonzero generating relations among ei and ω(ei, e j) for i, j ∈ {1, . . . , n};
(2) Consider {( f , f2) | f , f2 ∈ Mn(C)}, where f = (xi j), f2 = (ai j), and

f (ei) ≡
n∑

j=1

x ji · e j, f2(ei) ≡
n∑

j=1

a ji · e j.

Define W(L) ≡ {(ei, e j) | 1 ≤ i < j ≤ n};
(3) Verify the quasiderivation equation for all (ei, e j) ∈ W(L), obtaining equations (set B);
(4) Solve equations in B involving xi j;
(5) Obtain the generic form of f ∈ QDer(L).

To compute QDerc(L), replace step 3 with,

(3’) Verify the quasiderivation and compatibility equations for all (ei, e j) ∈ W(L), obtaining equations
(set B).

Example 4.1. Consider the 3-dimensional non-Lie complex ω-hom-Lie algebra L1 with φ = idL and
basis {e1, e2, e3} and relations

[e1, e2] = e3, [e1, e3] = 0, [e2, e3] = e1,

and with ω given by
ω(e1, e2) = 1, ω(e1, e3) = ω(e2, e3) = 0.

Set W(L1) = {(e1, e2), (e1, e3), (e2, e3)}. Verifying the quasiderivation equations yields the constraints
matching GDer, with dim QDer(L1) = 7.

Example 4.2. Consider the 3-dimensional non-Lie complex ω-hom-Lie algebra L2 with φ = idL and
basis {e1, e2, e3} and relations

[e1, e2] = e3, [e1, e3] = e2, [e2, e3] = 0,

and with ω given by
ω(e1, e2) = 1, ω(e1, e3) = ω(e2, e3) = 0.

Set W(L2) = {(e1, e2), (e1, e3), (e2, e3)}. Verifying the quasiderivation equations yields the constraints

x12 = x13 = x23 = 0, x11 = x22,

with additional freedom in f2, giving free parameters x11, x21, x31, x32, x33, a22, and b33. Hence, a
generic quasiderivation f (with its associated map f2) has the form

f =


x11 0 0

x21 x11 0

x31 x32 x33

 , f2 =


a11 0 0

a21 a22 −x32

a31 0 x11 − x31

 .
Thus, dim QDer(L2) = 7 (matching GDer(L2)). Imposing compatibility yields x21 = 0, but dimension
remains 7 with adjusted parameters, so dim QDerc(L2) = 5 = dim GDerc(L2).
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Corollary 4.3. Let L be a non-Lie 3-dimensional complex ω-hom-Lie algebra with φ = id. Then,
QDer(L) = GDer(L) and QDerc(L) = GDerc(L).

Proof. Comparing Table 2 with Table 1, QDer(L) and GDer(L) have identical generic forms and
dimensions (7 for L1, L2; 9 for B, Aα,Cα). Since QDer(L) ⊆ GDer(L), they are equal. Similarly,
QDerc(L) matches GDerc(L) in form and dimension (5 for L1, L2; 6 for B, Aα,Cα), so QDerc(L) =

GDerc(L). �

Table 2. Generic forms of all elements f ∈ QDer(L) and their associated maps f2.

L Generic form of f ∈ QDer(L) Associated map f2 dim(QDer(L))

L1


x11 x12 x13

0 x22 0
x31 x32 x33



x11 −x12 0
0 x11 0

x31 −x32 x33

 7

L2


x11 0 0
x21 x11 0
x31 x32 x33




x11 0 0
−x21 x11 0
x31 −x32 x11 − x31

 7

B


x11 x12 x13

x21 x22 x23

x31 x32 x33




x11 −x12 −x13

−x21 x22 −x23

−x31 −x32 x33

 9

Aα


x11 x12 x13

x21 x22 x23

x31 x32 x33




x11 −x12 −x13

−x21 x22 −x23

−x31 −x32 x33

 9

Cα


x11 x12 x13

x21 x22 x23

x31 x32 x33




x11 −x12 −x13

−x21 x22 −x23

−x31 −x32 x33

 9

5. Conclusions and future work

The study presented in this paper greatly advances the understanding of generalized derivations
within the framework of finite-dimensional ω-hom-Lie algebras over a field K of characteristic zero.
The key contributions are threefold:

(1) Structural Analysis of Compatible Generalized Derivations: We thoroughly investigate the
algebraic structure of the set of compatible generalized derivations, GDerc(L), and establish
it as a Lie subalgebra of the generalized derivation algebra GDer(L). Similarly, the set of
compatible quasiderivations, QDerc(L), is shown to be a Lie subalgebra of GDerc(L). The
relationships within the tower Derc(L) ⊆ QDerc(L) ⊆ GDerc(L) ⊆ GDer(L) are clarified,
providing a structured framework for understanding symmetry-preserving transformations in ω-
hom-Lie algebras. These extend triple derivation results [7, 15] to ω-settings.

(2) Embedding Theorem: A novel embedding theorem is proven, demonstrating that every
compatible quasiderivation of an ω-hom-Lie algebra can be embedded as a compatible derivation
in a larger ω-hom-Lie algebra L̃. This result extends classical Lie algebra theory to the
nonassociative setting of ω-hom-Lie algebras, incorporating the skew-symmetric bilinear form
ω and the homomorphism φ. The construction of L̃ and the map δU ensures that structural
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symmetries are preserved, offering a powerful tool for studying quasiderivations, with parallels
to bihom-Poisson derivations [16].

(3) Computational Framework: We develop a computational algorithm, inspired by Gröbner basis
techniques in commutative algebra, to explicitly calculate compatible generalized derivations and
quasiderivations for all 3-dimensional non-Lie complex ω-hom-Lie algebras with φ = id. This
approach leverages the classification of such algebras (e.g., L1, L2, B, Aα, Cα) to provide concrete
matrix representations and dimensions, as summarized in Tables 1 and 2. The computations
reveal that QDer(L) = GDer(L) and QDerc(L) = GDerc(L) for these algebras, highlighting their
structural properties and differences from the general linear algebra gl(L).

These findings deepen the theoretical understanding of ω-hom-Lie algebras, particularly in the context
of their derivation algebras and symmetry properties. The results have implications for applications in
deformation theory, mathematical physics, and the broader study of nonassociative algebraic structures,
where symmetries play a critical role, aligning with work on hom-Lie superalgebras [8, 17].

5.1. Future work

The research opens several avenues for further exploration, building on the established results:

(1) Generalization to Higher Dimensions: While we focus on 3-dimensional non-Lie complex ω-
hom-Lie algebras with φ = id, extending the computational framework and embedding theorem
to higher-dimensional algebras (e.g., 4-dimensional or 5-dimensional cases) could reveal new
structural properties. The classification of such algebras in higher dimensions, as partially
addressed in [11], could guide these efforts.

(2) Applications to Deformation Theory: The embedding of quasiderivations into derivations
suggests potential applications in deformation theory, where derivations play a central role in
studying algebraic deformations. Investigating how the ω-hom-Jacobi identity and the bilinear
formω influence deformation cohomology could yield new insights into the rigidity and flexibility
of these algebras.

(3) Connections to Physics: Given the relevance of Hom-Lie and ω-hom-Lie algebras in
mathematical physics (e.g., in string theory and gauge theory), exploring the physical
interpretations of compatible generalized derivations could bridge algebraic results with physical
symmetries. This might involve studying their role in symmetry transformations or conservation
laws in physical systems.

(4) Algorithmic Enhancements: The computational algorithm presented for 3-dimensional algebras
could be refined and automated using computational algebra systems (e.g., SageMath or
Mathematica). Developing software tools to compute GDerc(L) and QDerc(L) for arbitrary finite-
dimensional ω-hom-Lie algebras would enhance practical applicability, especially for higher-
dimensional or more complex structures.

(5) Exploration of Other Hom-Structures: The results could be extended to other generalized
algebraic structures, such as ω-hom-Lie superalgebras [17] or ω-left-symmetric algebras [4].
Investigating how generalized derivations behave in these settings could further unify the theory
of Hom-type algebras.

(6) Automorphisms and Representations: We briefly mention the connection between compatible
generalized derivations and the automorphism group of the algebra. A deeper study of how
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GDerc(L) interacts with automorphisms and representations, as explored in [1,5,6], could provide
a more comprehensive understanding of the algebra’s symmetries.

By pursuing these directions, future research can build on the findings to further elucidate the
algebraic and geometric properties of ω-hom-Lie algebras, potentially uncovering new applications
in mathematics and physics.
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