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1. Introduction

Unit schemes form a basis for the algebraic construction and analysis of linear block and
convolutional codes and these are described in [22] and references therein. The non-existence of
general algebraic methods for constructing, designing and studying convolutional codes has often
been a problem and limited very much their size and availability; see for example McEliece [30] and
also [1,2,13,33]. Here methods derived in [22] are extended for use on Hadamard matrices to provide
constructions of linear block and convolutional codes and to construct these to required types, distances
and rates. The work here can be read independently of [22] although the ideas initiated in [22] are in
the background. The types constructed include self-dual, dual-containing, linear complementary dual
and quantum codes and large lengths, rates and distances are achievable. The codes are given over
finite fields and types of code required are constructed in both the linear block and convolutional
cases. Methods using orthogonal units, Fourier/Vandermonde units, group ring units and related
units for constructing and analysing such codes is devised in [21, 22]. The methods are applied to
Hadamard matrices to construct algebraically the linear block and convolutional codes and properties
of Hadamard matrices allows these to be constructed to required length, rate and type. Infinite series
are derived. From a single Hadamard matrix, multiple linear block and convolutional codes are formed
and formed to required types.
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The distances achieved can often be calculated algebraically; for example the distance of a rate 1
2

convolutional code obtained is of the order of twice the distance of the linear block rate 1
2 codes

obtained from the same Hadamard matrix.
C⊥ denotes the dual of the code C. See Section 1.1 for precise definition of dual of a convolutional

code. C is a dual-containing (DC) code if C ∩C⊥ = C⊥; C is a linear complementary dual (LCD) code
if C ∩ C⊥ = 0. C is a self-dual code provided C⊥ = C and is an important type of dual-containing
code. Dual-containing codes, which include self-dual codes, can be used to construct quantum error-
correcting codes (QECC) by the CSS method [5, 6, 36]; here convolutional quantum error-correcting
codes are constructed in this way from Hadamard matrices.

A Hadamard matrix is an n × n matrix H with entries ±1 satisfying HHT = nIn. Such a matrix can
only exist for n = 2 or n = 4m for a positive integer m, [25] Theorem 18.1; see [18] for a beautifully
written book on Hadamard matrices. Here these ±1 entries may be considered as elements in a general
field.

The Walsh-Hadamard codes can be formed from Walsh-Hadamard matrices of size 2k × 2k by
equating the entries (−1) to 0 and then forming binary codes from the (k + 1) linearly independent
rows remaining. Using the unit-derived methods on a general Hadamard n×n matrix gives much more
scope, arbitrary rates, good distances, required types but also both linear block and convolutional codes
are formed. Several algorithms exist for decoding convolutional codes, the most common ones being
the Viterbi algorithm and the sequential decoding algorithm.

Propositions 2.1–2.5 on codes derived from Hadamard are proven and these form a basis for specific
algorithms. The following general algorithms are noted:

• Algorithm 1 constructs LCD rate r
n , for r, 0 < r < n, linear block codes from Hadamard n × n

matrices.
• Algorithm 2 constructs self-dual length 2n codes from Hadamard n × n matrices.
• Algorithm 3 constructs self-dual length n convolutional codes from Hadamard n × n matrices.
• Algorithm 4 constructs dual-containing, length n, rate r

n , (n > r ≥ n
2 ), convolutional codes from

an n × n Hadamard matrices.

The codes are readily implemented once an expression for the Hadamard matrix is available. Large
lengths and rates are obtainable. The brilliant Computer Algebra system GAP with included packages
Guava and Gauss, [38], proves extremely useful in manipulating submatrices, working over finite field,
constructing applications and computing and verifying distances.

Higher memory convolutional codes may also be generated by breaking the Hadamard matrices
further into blocks; see [22] for this. The general process for constructing higher memory convolutional
codes from Hadamard matrices is left for later development; however an example, 2.10, is given for a
small case to show how the process can proceed for Hadamard matrices.

The notation and parameters used in the following applications may be found in Section 1.1. The
notation for linear block codes is standard; however the notation and parameters used for convolutional
codes vary in the literature and the specifics used need to be clarified.

Explicit samples of applications. Applications are obtained by applying the propositions and
algorithms to particular cases. Once the Hadamard matrix is formed, the propositions and algorithms
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may then be applied to produce multiple cases of required codes.
H(n) denotes a Hadamard matrix of size n.
From H(20) the following are formed:

(1) LCD [20, 13, 4]3, [20, 7, 6]3 codes;
(2) Self-dual convolutional (20, 10, 10; 1, 12)32 codes;
(3) DC convolutional (20, 13, 7; 1, 8)32 codes;
(4) Quantum codes of length 20, distance 8 and rate 6

20 over GF(32);
(5) Self-dual [20, 10, 8]5 codes;
(6) (20, 10, 10; 1, 14)72 self-dual convolutional codes;
(7) [40, 20, 12]3 self-dual codes are given directly in systematic form, see Proposition 2.2.

From H(28) the following are formed:

• LCD [28, 16, 6]3, [28, 12, 9]5 codes;
• Convolutional self-dual (28, 14, 14; 1, 12)3 codes over GF(3);
• DC convolutional (28, 18, 10; 1, 8) codes over GF(3);
• Quantum codes of length 28, distance 8, rate 8

28 over GF(3);
• Self-dual convolutional (28, 14, 14; 1, 16) codes over GF(5)
• DC convolutional (28, 16, 12; 1, 14) codes over GF(5);
• [28, 14, 9]7 self-dual codes.

Generally from H(n) with p - n, self-dual (n, n
2 ,

n
2 ; 1, d) convolutional codes and DC (n, r, n−r; 1; d),

r > n
2 , convolutional codes are formed. In prototype Example 2.9, it is shown how the different types

of LCD, self-dual, DC, quantum, linear block and convolutional codes may be derived for a small
Hadamard matrix case. Self-dual codes over GF(p) can often be obtained from a Hadamard matrix of
size n when p | n, p , 2, see Proposition 2.8. For example, self-dual [12k, 6k, d]3 codes are produced
from Paley-Hadamard matrices of size 12k, see Section 2.1.

An understanding of the propositions and algorithms allows one to take a Hadamard matrix and
construct LCD, self-dual, DC and QECC codes therefrom. Section 2.1 is given over to considering
ternary codes and codes over fields of characteristic 3. Codes over GF(5) from Hadamard matrices
may similarly be worked on. Using non-separable Hadamard matrices in applications seems to work
out better.

1.1. Additional notation and background

The notation for linear block codes is standard and may be found in [3,24,26,30] and many others.
GF(q) denotes the finite field with q elements and Zm denotes the integers modulo m; in particular
Zp = GF(p) for a prime p. A [n, r, d] code denotes a linear block code of length n, dimension r, and
(minimum) distance d; the rate is r

n . A [n, r, d]q code denotes a linear block code of length n, dimension
r and distance d over the field GF(q).

Different equivalent definitions for convolutional codes are given in the literature. The notation and
definitions used here follow that given in [34, 35, 37]. A rate k

n convolutional code with parameters
(n, k, δ) over a field F is a submodule of F [z]n generated by a reduced basic matrix G[z] = (gi j) ∈

AIMS Mathematics Volume 10, Issue 12, 28264–28276.



28267

F [z]r×n of rank r where n is the length, δ =
∑r

i=1 δi is the degree with δi = max1≤ j≤r deg gi j. Then
µ = max1≤i≤r δi is known as the memory of the code and the code is then given with parameters
(n, k, δ; µ). The parameters (n, k, δ; µ, d f ) are used for such a code with free (minimum) distance d f .
Further (n, k, δ; µ, d f )q is used to specify that the code is over the field GF(q).

Suppose C is a convolutional code in F [z]n of rank k. A generating matrix G[z] ∈ F [z]k×n of
C having rank k is called a generator or encoder matrix of C. A matrix H ∈ F [z]n×(n−k) satisfying
C = ker H = {v ∈ F [z]n : vH = 0} is said to be a control matrix or check matrix of the code C.

Convolutional codes can be catastrophic or non-catastrophic; see for example [30] for the basic
definitions. A catastrophic convolutional code is prone to catastrophic error propagation and is not
much use. A convolutional code described by a generator matrix with right polynomial inverse is a
non-catastrophic code; this is sufficient for our purposes. The designs given here for the generator
matrices allow for specifying directly the control matrices and the right polynomial inverses. Lack of
algebraic construction methods for designing convolutional codes limited their size and availability,
see McEliece [30] for discussion and also [1, 2, 13, 33]. It is shown here how Hadamard matrices can
be used to construct convolutional codes but see also [22, 23]. Several algorithms exist for decoding
convolutional codes, the most common ones being the Viterbi algorithm and the sequential decoding
algorithm.

Let G(z) be the generator matrix for a convolutional code C with memory m. Suppose G(z)HT(z) =

0, so that HT(z) is a control matrix, and then H(z−1)zm generates the convolutional dual code of C,
see [4] and [12]. This is also known as the module-theoretic dual code.∗ The code is then dual-
containing provided the code generated by H(z−1)zm is contained in the code generated by G(z).

The dual of a code C is denoted by C⊥.
Dual-containing (DC) codes, which contain self-dual codes, are an important class of codes for

theoretical and practical purposes. Besides their direct applications, DC codes are used to construct
quantum error correcting codes (QECC) by the CSS method [5, 6, 36]. Here then quantum error
correcting linear and convolutional codes of different lengths and rates are constructed explicitly from
Hadamard matrices.

Linear complementary dual, LCD, codes have been studied extensively for their theoretical and
practical importance’s by Carlet, Mesnager, Tang, Qi and Pelikaan, [7–9, 31], and were originally
introduced by Massey in [28, 29]. They have been used for improving the security of information on
sensitive devices against side-channel attacks (SCA) and fault non-invasive attacks, see [10, 11], and
in data storage and communications’ systems. Here LCD linear block and convolutional codes are
constructed from Hadamard matrices using the unit-derived and associated methods.

The unit-derived and associated methods for constructing and analysing linear block codes was
initiated in [14–17] and developed further in [19, 20]. The papers [22, 23] and references therein
extend the unit-derived and related methods ideas to form in addition convolutional codes and algebraic
methods for constructing whole series of linear block and convolutional codes to prescribed length,
distance, rate and type are derived. The unit-derived methods give further information on the code
in addition to describing the generator and control matrices. McEliece - see for example [30] -
remarks: ‘A most striking fact is the lack of algebraic constructions of families of convolutional codes’;

∗In convolutional coding theory, the idea of dual code has two meanings. The other dual convolutional code defined is called the
sequence space dual; the generator matrices for these two types are related by a specific formula.
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constructing convolutional codes of reasonable length was beyond computer generation.
Which Hadamard matrix of a particular size n should one work? It is not an issue in cases where

just the main properties of a Hadamard matrix are required. It seems best from practice and intuition to
work with non-separable Hadamard matrices. Here non-separable means the Hadamard matrix is not
a non-trivial tensor product of other Hadamard matrices. The Walsh-Hadamard matrices are separable
except for size 2.

2. Linear block and convolutional codes induced from Hadamard matrices

The Walsh-Hadamard binary linear block codes [2k, k, 2k−1]2 and [2k, k + 1, 2k−1]2 have very small
rates but have found use probably on account of the distances and decoding methods available. Codes
from general Hadamard matrices as now described allow much more scope with much better rates,
good distances, and required types and both linear block and convolutional codes may be formed.

Let H be a Hadamard matrix with HHT = nIn. Break H as H =
( A

B
)

for A an r × n matrix and
then

( A
B
)

( AT BT ) = nIn. When n , 0 in the field under consideration, a code is obtained in which A
is the generator matrix and BT is a check matrix. This is the basic method for producing the linear
block codes from Hadamard matrices. A more general method is to take any r rows of the Hadamard
matrix to generate a code and a check matrix is obtained by eliminating the corresponding columns of
the transpose of the Hadamard matrix. The convolutional codes are essentially obtained from breaking
the Hadamard matrix into blocks and using the blocks as ‘components’ of the generator matrix of a
convolutional code. Properties of the Hadamard matrix are used to construct the type of code required.

The following Propositions 2.1–2.5 form the basis for deriving algorithms with which series of
codes, both linear block and convolutional, are derived. These allow linear block and convolutional
codes of particular types, such as self-dual, DC, LCD and quantum, to be constructed and enables these
to be devised to the required length and rate. Algorithms 1–4 follow from which numerous applications
can be devised.

It is worth noting that arithmetic over GF(p) = Zp is simply modular arithmetic and is easily
implemented. Let d(X) denote the distance of the linear block code generated by the matrix X.

Proposition 2.1. Let H be a Hadamard matrix of size n and n , 0 in a field F . Suppose H has the
form H =

( A
B
)
, where A has size r × n, implying

( A
B
)

( AT BT ) = nIn. Then the code generated by A over
F is an LCD [n, r] codeA and B generates the dual code ofA.

Proof. Both A and B have full ranks as H is invertible. Now ABT = 0 and so BT is a control matrix for
the code A and thus B generates the dual code of A. Since H is invertible in F a combination of the
rows of A cannot be a non-trivial combination of the rows of B and thusA is an LCD code. �

Algorithm 1. Construct LCD rate r
n linear block codes from Hadamard n × n matrices H as follows:

Let F = GF(p) where p - n. Choose any r rows of H to form the generator matrix of an [n, r] code
over F . This code is an [n, r] LCD code.

Proposition 2.2. Let n , 0 in a field F and H be a Hadamard matrix with HHT = nIn. Then there
exists α ∈ F or in a quadratic extension of F such that (In, αH) generates a self-dual code.
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Proof. Let I = In. Now (I, αH)
(

I
αHT

)
= I + α2nI = (1 + α2n)I. Now (1 + x2n = 0) has a solution in

F or else (1 + x2n) is irreducible over F . Thus in F or in a quadratic extension of F there exists an α
such that (1 + α2n) = 0. Then (I, αH)

(
I

αHT

)
= 0 and so KT =

(
I

αHT

)
of rank n is a control matrix. Thus

K = (I, αH) generates the dual of the code and hence the code is self-dual. �

The distance of the codes in Proposition 2.2 may be worked out from Proposition 2.6 but not always
easily. From the self-dual code, by the CSS construction, a quantum error-correcting code may be
constructed with the same distance.

An example of how this Proposition 2.2 works is given with Prototype example 2.9 which uses a
Hadamard matrix of size 12.

Algorithm 2. Construct [2n, n] self-dual codes using Hadamard matrices of size n:
Let F = GF(p) where p - n and A = (In, αH) where α satisfies (1 +α2n = 0) in F or in a quadratic

extension of F . Then the code generated by A is self-dual.

Proposition 2.3. Let H be a Hadamard matrix of size n and n , 0 in a field F . Suppose H has the form
H =

( A
B
)

implying
( A

B
)

( AT BT ) = nIn where n = 2m and A and B have size m × n. Let G(z) = A + iBz
where i =

√
−1 in F or in a quadratic extension of F. Then G(z) generates a self-dual convolutional

(non-catastrophic) code with parameters (2m,m,m; 1, d) where d = d(A) + d(B).

Proof. Now G(z)(iBT +ATz) = (A+ iBz)(iBT +ATz) = 0+nImz−nImz+0 = 0 and so HT(z) = (iBT +ATz)
is a control matrix. Hence H(z−1)z = A + iB generates the dual of the code and so the code is self-dual.
Also (A + iBz)AT = nIm and so (A + iBz) has a right polynomial inverse and thus the code generated by
G(z) is non-catastrophic.

The proof of the distance is straight forward and omitted. �

Algorithm 3. Construct self-dual convolutional codes from Hadamard matrices.
Let H be a Hadamard matrix of size n = 2m and F = GF(p) where p - n. Let A consist of any

m rows of H and B consist of the other m rows of H. Define G(z) = A + iB where i =
√
−1 in F or

in a quadratic extension of F . Then G(z) generates a self-dual convolutional code with parameters
(2m,m,m; 1, d) where d = d(A) + d(B).

Proposition 2.4. Let H be a Hadamard matrix of size n so that HHT = nIn and n , 0 in a field F .
Suppose H has the form H =

( A
B
)

implying
( A

B
)

( AT BT ) = nIn where A has size r × n and B has size
(n − r) × n with r > (n − r). Let t = (2r − n) and define B1 =

( 0t×n
B

)
. Then G(z) = A + iB1z generates a

convolutional dual-containing (n, r, n− r; 1, d) code C where i =
√
−1 in F or in a quadratic extension

of F .

Proof. Define 0t = 0t×n. Thus B1 =
(

0t
B

)
is an r × n matrix. Now AT is an n × r matrix and thus

has the form AT = (X,C1) where C1 has size n × (n − r) and X has size n × (2r − n). As AAT =

nIr then AC1 = n
(
0(2r−n)×(n−r)

I(n−r)×(n−r)

)
and also B1B = n

(
0(2r−n)×(n−r)

I(n−r)×(n−r)

)
. Now A =

(
XT

C1
T

)
, B1 =

(
0t
DT

)
. Then

(A + iB1z)(iBT + C1z) = 0 so HT(z) = (iBT + C1z) is a control matrix and H(z−1)z = C1
T + iB generates

the dual of the code. The code generated by C1
T+iB is easily seen to be contained in the code generated

by (A+iB1) and so the code generated by (A+iB1) is dual-containing. That the code is non-catastrophic
follows in a similar manner to the proof in Proposition 2.3. �
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Suppose H =
(

P
Q

)
so that

(
P
Q

)
( PT QT ) = nIn where P has size r with r > n

2 . Then this can be written( A
B
C

)
( AT BT CT ) = nIn where C has the same size as B. Another way to look at Proposition 2.4 is as

follows:

Proposition 2.5. Let H be a Hadamard n × n matrix and n , 0 in F . Suppose H =
( A

B
C

)
where C has

the same size as B and thus
( A

B
C

)
( AT BT CT ) = nIn.

Then G(z) =
( A

B
)
+i

(
0
C

)
defines a dual-containing convolutional (n, r, n−r; 1, d) code where i =

√
−1

in F or in a quadratic extension of F , 0 is the zero matrix of the same size as A and r × n is the size of( A
B
)
.

This is equivalent to Proposition 2.4 but a proof is given as it’s instructive for the algorithm that
follows.

Proof. Note that BBT = nIt = CCT for some t. Use 0 for a zero matrix whose size is clear from the
context. Now (

( A
B
)

+ i
( 0

C
)

z)(iCT + BTz) = 0 +
(

0
It

)
−

(
0
It

)
+ 0 = 0 and so HT(z) = iCT + BTz is a

control matrix for the code. Hence H(z−1)z = B + iC generates the dual of the code. It is easy to see
that the code is dual-containing. Also a right inverse for G(z) is readily written down and so the code
is non-catastrophic. �

This can be used to find or estimate the distances of the dual-containing codes derived.

Algorithm 4. Construct rate r
n , n > r ≥ n/2, dual-containing convolutional codes from Hadamard

matrices of size n.
Let F = GF(p) where p - n, A consist of r rows of H and B consist of the other (n − r) rows of H.

Define G(z) = A + iB1z where B1 =
(

0t×n
B

)
, t = 2r − n and i =

√
−1 in F or in a quadratic extension of

F . Then G(z) generates a dual-containing convolutional code (n, r, n − r, 1, d).

The distance d in Algorithm 4 can be estimated from Proposition 2.4 as follows: Let A1 be the
matrix of the first (2r − n) of A in Proposition 2.4; the distance of C is then min{d(A1), d(A) + d(

(
A1
B

)
)}.

Note that from a dual-containing code, by the CSS construction, a quantum error-correcting codes,
QECC, of the same length and distance as that of the dual-containing code is constructible.

The Hadamard matrix over GF(3) has entries {1,−1} which are all the non-zero entries of GF(3).
GF(5) has the property that it contains a square root of (−1) as 2 =

√
−1 in GF(5). But also GF(3)

may be extended to GF(32) which has a square root of (−1); the significance of
√
−1 is clear from the

convolutional codes is derived as in Propositions 2.3 and 2.4.
For characteristic dividing n the rank of a Hadamard n × n matrix is then less than n. When the

characteristic does not divide n then the Hadamard n×n matrix has rank n and its rows are independent;
this is used in Propositions 2.3 and 2.4. Proposition 2.2 uses a Hadamard matrix to give a generator
matrix of a self-dual code in systematic form, [3]. The distance can be obtained from the Hadamard
matrix as follows.

Proposition 2.6. (Proposition 3.8 in [22].) Let C be the code generated by G = (In, P). Suppose the
code generated by any s rows of P has distance ≥ (d − s) and for some choice of r rows the code
generated by these r rows has distance exactly (d − r), then the distance of C is d.

AIMS Mathematics Volume 10, Issue 12, 28264–28276.



28271

For a matrix K the following notation, as suggested by [38], is adopted: K[s..t][u..v] is the submatrix
of K consisting of the rows s to t of K and the columns u to v of K.

Lemma 2.7. Let H = H(n) be a Hadamard matrix of size n and and let p , 2 be a prime divisor of n.
Then rank(H) ≤ n

2 in Zp = GF(p).

Proof. Modulo p, HHT = nIn = 0n×n. If A is an m×n matrix and B is n×k, then rank(A)+rank(B)−n ≤
rank(AB). Let H = A, B = HT. Then rank(H)+rank(HT)−n ≤ rank HHT = 0. But rank(H) = rank(HT)
and so 2 rank(H) ≤ n and hence rank(H) ≤ n

2 . �

It is easy to check the rank as required in such cases when p | n. In many cases it works that the
rank is actually n

2 but it’s not necessary that the first n
2 rows are independent.

Proposition 2.8. Let H = H(2n) be a Hadamard matrix of size 2n and p | n, p a prime, p , 2. Suppose
over GF(p) that H has rank n and let A be an n× 2n submatrix of rank n. Then A generates a self-dual
[2n, n]p code over GF(p).

Proof. It may be assumed that A consists of the first n rows of H as interchanging rows of a Hadamard
matrix results in a Hadamard matrix of the same rank. Thus over GF(p), HHT has the form( A

B
)

( AT BT ) = 0. Thus AAT = 0. Now rank(A) = n and thus rank(AT) = n. Hence A generates a
[2n, n] code A and A is a control matrix of this code. Thus the dual code of A is generated by A and
soA is self-dual. �

In Proposition 2.8 any n rows of H that form a matrix of rank n can be used to generate a self-dual
code. In many cases the matrix of the first n rows has rank n and also in many cases a selection of any
n rows has rank n. The distance may be found for lengths up to about a 100 by computer and after that
algebraic methods are required.

Applications/examples Applications are derived by applying the propositions and algorithms. The
introduction lists some applications and the following is a further selection.

The first application is a small prototype example with H = H(12) and this demonstrates how the
different methods for constructing linear block and convolutional codes from Hadamard matrices codes
can be developed.

Prototype Example 2.9. Let H be a 12× 12 Hadamard matrix. This is a good example and is the first
case of a Hadamard matrix with size n > 2 where H cannot be derived as a Walsh-Hadamard matrix
type.

• Then HHT = I12 is broken up as:
( A

B
)

( AT BT ) = 12I12. Let A consist of the first 6 rows of H, A =

K[1..6][1..12], and B consist of the last 6 rows of H. Over GF(3) this becomes
( A

B
)

( AT BT ) = 0.
Now A (and B) have rank 6 as does AT giving AAT = 0. Thus the code generated by A has dual
code generated by ATT = A and so is self-dual. The distance of the code, A, generated by A is 6
and soA is a [12, 6, 6] self-dual code over GF(3). This is best possible. The code can correct up
to 2 errors and thus a combination of one or two rows of AT is unique and can be used to correct
up to two errors in a straight-forward manner.
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• Over GF(5) the code generated by A is an LCD code as is the dual code is generated by B. Both
are [12, 6, 6]5 codes over GF(5).
Over GF(5) define G(z) = A+iBz where i =

√
−1; in this case i = 2 as 22 = 4 = −1 in GF(5). G(z)

generates a convolutional memory 1 code which is non-catastrophic as (A + iBz)AT = 6I6 = I6 so
that A + iBz has a right polynomial inverse. Now (A + iBz)(iBT + ATz) = 0 so KT(z) = iBT + ATz
is a control matrix giving that K(z−1)z = A + iBz generates the dual code code and so the code
is self-dual. The free distance of the code is the sum of the distances of the codes generated by A
and by B which is 12, see Proposition 2.3. Thus a self-dual convolutional (12, 6, 6; 1, 12)5 code
is obtained. From this a quantum error-correcting convolutional code is obtained with length 12
and distance 12 over GF(5) = Z5.
• Let H again be a Hadamard 12 × 12 matrix and let C be the [24, 12] code generated by (I12, αH)

with α to be determined. Then (I, αH)
(

I
αHT

)
= I + 12α2I = (1 + 12α2)I. Require now that

(1 + 12α2) = 0 in a field to be decided. In this case KT =
(

I
αHT

)
, which has rank 12, is a control

matrix and then K = (I, αH) generates the dual code of C and so C is self-dual.
• In item 2.9 require that 1 + 2α2 = 0 in characteristic 5 which requires 2α2 = −1 = 4 which

requires α2 = 2. Now x2 − 2 is irreducible over GF(5) and so extend GF(5) to GF(52) which has
an element α2 = 2. Then over this field (I, αH) generates a self-dual code. The length of the code
turns out to be 8 and thus get a [24, 12, 8] self-dual code over GF(52).
In GF(7) = Z7, α = 2 satisfies 1 + 12α2 = 0 and so (I, 2H) generates a self-dual [24, 12, 8]7 code.

Example 2.10. Hadamard matrices can be used to construct higher memory convolutional codes. Let
H be a Hadamard 12 × 12 matrix, A = H[1.3][1..12], B = H[4..6][1..12],C = H[7..9][1..12],D =

H[10..12][1..12]. Then G(z) = A + Bz + Cz2 + Dz3 gives a (12, 3, 9; 3, 24) convolutional code. The
distance is easily computed as d(A) = 6 = d(B) = d(C) = d(D) and d(

( X
Y
)

= 6 for X,Y different
elements of {A, B,C,D}.

Further applications/examples are given below.

Example 2.11. With H = H(72) any 36 rows generate a [72, 36, 18]3 self-dual code. With H = H[144]
over GF(3), 72 rows of H generate a [144, 72, d]3 code.

Example 2.12. Let H = Hadamard(20). Let A = H[1..10][1..20], B = H[11..20][1..20]. Over
GF(3) the codes generated by both A and B are [20, 10, 6] LCD codes. Using G(z) = A + iBz gives
by Proposition 2.3 a convolutional (20, 10, 10; 1; 12) self-dual code over GF(32) where i =

√
−1 in

GF(32). From this a QECC convolutional code of length 20 and distance 12 is obtained.
Over GF(5) a [20, 10, 8]5 self-dual code is obtained from H. But also A = H[1..10][1..20] and

B = H[11..20][1..20] give [20, 10, 8]5 codes over GF(5).

Example 2.13. H = H(24). Over GF(3) this has rank 12. But also A = H[1..12][1..24] has rank 12
over GF(3) and generates a self-dual [24, 12, 9] code over GF(3).

Let B = H[11..24][1..24]. Then both A and B generate [24, 12, 7]5 codes over GF(5). Let G(z) =

A + iBz where i =
√
−1 = 2 in GF(5). Then by Proposition 2.3, G(z) generates a convolutional

self-dual [24, 12, 12; 1, 14) code over GF(5). From this a QECC convolutional code of length 24 and
distance 14 is derived over GF(5).

Example 2.14. Let H = H(40), A = H[1..20][1..40], B = H[21..40][1..40]. Over GF(5) H has rank 20
but A has rank 10 over GF(5). Now C = H[1..10][1..40] has rank 10 over GF(5) and generates
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a [40, 10, 16] LCD code over GF(5). Over GF(3) define G(z) = A+iBz where i =
√
−1 in GF(32). Then

G(z) generates a self-dual convolutional (40, 20, 20; 1, d) code where d = d(A) + d(B), Proposition 2.3.
From this a QECC convolutional code of length 40 and distance d is obtained.

Example 2.15. H = H(36), A = H[1..18][1..36], B = H[19..36][1..36]. Over GF(3) A generates a
self-dual [36, 18, 12]3 code as does B. Define G(z) = A + iBz where i =

√
−1 = 2 in GF(5) and then

G(z) generates a convolutional self-dual code (36, 18, 18; 1, d) where d = d(A) + d(B) from which a
QECC convolutional code of length 36 and distance d is obtained.

2.1. Ternary codes from Hadamard matrices

Ternary codes, codes over GF(3), have their own interest and are the next are the next obvious cases
after binary; see for example [32] but many more in the literature. Arithmetic in GF(3) = Z3 is easily
implemented. Some applications given previously are ternary codes. The entries of a Hadamard matrix
are the non-zero elements of Z3 = GF(3) and looking at unit-derived codes formed from Hadamard
matrices over GF(3) = Z3 is particularly interesting and beneficial.

Lemma 2.7 shows that when 3 | n then rank(H) ≤ n
2 in Z3 = GF(3) for a Hadamard matrix of size

n. For a Paley-Hadamard matrix H of size n, rank(H) = n
2 . Is it true in other cases? In cases where

the rank is n
2 a self-dual [n, n

2 , d]3 code is constructible from any n
2 independent rows of the Hadamard

matrix.
The following is a consequence of Proposition 2.8:

Proposition 2.16. Let H be a Hadamard matrix of size n such that 3 | n and that rank(H) = n
2 . Then

any submatrix of size n
2 × n of rank n

2 over GF(3) generates a self-dual [n, n
2 , d]3 code.

Corollary 2.17. Let H = H(12k) be a Hadamard matrix of rank 6k over GF(3). Then 6k linearly
independent rows over GF(3) of H generate a self-dual [n, n

2 , d]3 code.

It is interesting to find the distances attained. For a self-dual [n, n
2 , d]3 ternary code it is known that

d ≤ b n
12c + 3 [27]. For n = 12k extremal ternary self-dual codes exist for lengths n = 12, 24, 36, 48, 60

and do not exist for n = 72, 96, 120 and for n ≥ 144. Now by Corollary 2.17 n
2 linearly independent

rows over GF(3) of a Hadamard matrix of size n = 12k generate a self-dual ternary code; when
n = 12, 24, 36, 48, 60 it is verified by computer that these are optimal.

Lemma 2.18. In characteristic 3 a non-zero sum of r rows of a Hadamard n × n matrix is the same as
the sum of the first r rows of a Hadamard n × n matrix.

Proof. In characteristic 3 the non-zero coefficients in a sum of rows are ±1 only. Interchanging rows
of a Hadamard matrix or multiplying any row by −1 results in a Hadamard matrix. Thus taking the
relevant rows and placing them in the first r places and multiplying the row by −1 if the coefficient
is −1 results in a Hadamard matrix whose sum of the first r rows is the same as the vector sum of the
required rows. �

Thus if a lower bound on the support of the sum of the first s rows of a particular type of Hadamard
matrix over Z3 can be obtained then distances of the unit-derived codes from such a matrix H are
calculated and also the distances of the self-dual codes (I, αH) as in Proposition 2.2 are obtained. The
following proposition is a special case of Proposition 2.1.
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Proposition 2.19. Let H be a Hadamard n × n and 3 - n. Then any r rows of H generates an LCD
ternary [n, r, d]3 code over Z3.

Application: With n = 20 the following LCD codes are obtained:
[20, 5, 10]3, [20, 6, 10]3, [20, 10, 6]3, [20, 11, 5]3, [20, 13, 4]3.

With n = 28 the following LCD codes are obtained: [28, 7, 12], [28, 14, 6], [28, 18, 4].
The following proposition is immediate from propositions 2.3–2.5.

Proposition 2.20. Let H = H(n) be a Hadamard matrix of size n where 3 - n.
(i) Suppose A consists of n

2 rows of H and B consists of the other n
2 rows of H. Then G(z) = A + iB

with i =
√
−1 in GF(32) generates a self-dual convolutional (n, n

2 ,
n
2 ; 1, d) code in GF(32) where d =

d(A) + d(B).
(ii) Suppose A consists of r rows of H with r > n

2 and B consists of the other (n−r) rows of H. Define
B1 =

(
0
B

)
where 0 is the zero (2n − r) × n matrix. Then G(z) = A + iB1x generates a dual-containing

convolutional (n, r, n − r; 1, d) code in GF(32) where i =
√
−1.

Proposition 2.5 is used to calculate the distance d in part (ii) of Proposition 2.20.

3. Conclusions

Using units in Hadamard matrices to design and analyse linear block and convolutional codes is a
unique method in coding theory. Infinite new series of both linear block and convolutional are now
available by the methods. Codes, both linear block and convolutiona, can be designed to required
length, rate and type; distances can often be calculated directly. Interesting new examples are given but
the methods are inherently algebraic with no restrctions on size leaving many new codes for particular
purposes yet to be designed by the methods.
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