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Abstract: It is reasonable to use uncertain nonlinear differential equations to model systems that are
subject to noise disturbances of unstable frequency, such as uncertain financial systems, biological
population systems, infectious disease systems, and pharmacokinetic systems. Due to the coupling
effect of nonlinearity and uncertainty, it is challenging to directly solve the responses of these equations.
This paper addressed the challenge of studying the responses of these systems, especially the changes
in steady-state behavior caused by parameter variations, known as "bifurcation” phenomena. We
defined the concept of Hopf bifurcation in uncertain differential equations using cross-entropy and
investigated the bifurcation phenomena in a class of second-order uncertain nonlinear differential
equations. An efficient algorithm was designed to verify uncertain Hopf bifurcation and quantify the
bifurcation threshold, with the validity of our definition confirmed through numerical simulations. This
paper extended the classical Hopf bifurcation of ordinary differential equations to uncertain differential
equations via the a-path, thereby proposing a theoretical framework for uncertain bifurcation within
uncertain dynamics.

Keywords: Hopf bifurcation; uncertain nonlinear differential equation; cross-entropy
Mathematics Subject Classification: 34A12, 47E05

1. Introduction

Nonlinear vibration is a critical area of study in the field of dynamics and has wide-ranging
applications across various disciplines. The phenomenon of nonlinear vibration is observed in a
variety of natural and man-made systems, including earthquakes, mechanical systems, and biological
structures. In order to capture the essence of nonlinear vibrations, nonlinear differential equations are
employed. These equations are fundamental to the field of mathematics and provide a mathematical
framework to model and analyze the behavior of such complex systems. The solutions to these
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equations can reveal important information about the system’s response to various inputs, including its
stability, resonance, and chaotic behavior. One of the key challenges in studying nonlinear vibrations
is the presence of noise disturbances. Noise can come from various sources, such as environmental
factors, manufacturing imperfections, or inherent uncertainties in the system’s parameters. These
disturbances can significantly affect the system’s dynamics, complicating the accurate prediction of
its behavior. To address this challenge, researchers have turned to the theories of stochastic calculus.
By incorporating randomness into the models, stochastic calculus allows for the analysis of systems
under the influence of noise. This approach is grounded in probability theory, which provides the
necessary tools to quantify and understand the probabilistic nature of the system’s response to noise.
The framework of stochastic dynamic models has been instrumental in advancing our understanding
of nonlinear vibrating systems. By considering the system as a stochastic process, researchers can
account for the uncertainties and random fluctuations in the system’s behavior. This has led to the
development of sophisticated models that can accurately capture the complex interactions between
the deterministic dynamics of the system and the stochastic influences of noise. The success of this
approach is evident in its widespread application across various fields. In physics, stochastic models
have been used to study phenomena such as turbulence and phase transitions. In finance, they have
been applied to model the fluctuations in stock prices and other financial instruments. In biology, they
have helped to understand the dynamics of complex biological systems, such as neural networks and
ecosystems. The extensive development of stochastic dynamic models has yielded fruitful results, as
evidenced by the numerous studies and publications on the topic [1-3]. The continued research in this
area is crucial for further enhancing our ability to understand and predict the behavior of nonlinear
vibrating systems under various conditions. This, in turn, can lead to improved designs and control
strategies for engineering applications, as well as a deeper understanding of natural phenomena.

A prerequisite for the application of stochastic theory is that the distribution function closely
approximates the actual frequency based on a sufficient amount of data. However, in most cases, the
frequency is unstable, such as stock fluctuations, infectious disease models, etc., where most of the time
the frequency is unstable when data is scarce, for example, during military conflicts, extreme weather
conditions, or even rumors, where only limited or no data is available [4]. In practical problems where
sample data is insufficient or non-existent, an expert’s level of confidence can be obtained by consulting
a domain expert. It is important to note that the degree of belief, influenced by human conservatism
and subjectivity, as demonstrated by Kahneman and Tversky [5], can significantly differ from the true
frequency. Liu [6] highlighted that employing probability theory to handle experts’degrees of belief
may lead to counterintuitive outcomes, which has prompted the development of uncertainty theory.

Furthermore, stochastic differential equation models often exhibit paradoxes. For instance, when
considering heat sources that are frequently influenced by noise, Walsh [7] proposed a stochastic
heat equation driven by the Wiener process. Subsequent studies by Chow [8], Peter [9], Peszat and
Zabczyk [10], and other researchers have explored the stochastic heat equation. However, it raises
doubts about the appropriateness of employing random heat equations to depict actual heat conduction
processes. Many scholars have recognized the presence of paradoxes in modeling with stochastic
differential equations. Yang and Yao introduced another related to the stochastic heat equation [11],
both highlighting the impracticality of using random heat equations to accurately describe actual heat
conduction. The essence of these paradoxes is rooted in the fact that the variance of the independent
increments of Brownian motion corresponds to the time interval, that is, B(t + At) — B(¢t) ~ N(0, At). In
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response to these challenges, Liu proposed an uncertainty theory founded on four axioms: normality
axiom, duality axiom, subadditivity axiom, and product axiom [6]. Liu emphasized that, in the absence
of known frequency, substituting the uncertain differential equations driven by the Wiener process
with the uncertain Liu process can enhance the simulation of real-world phenomena and avoid the
aforementioned paradoxes.

Liu [6] demonstrated that due to personal preferences and cognitive limitations, individuals tend
to conservatively estimate belief degrees for uncertain events, resulting in a larger interval of belief
degrees. In situations where decision information is limited, relying solely on probability theory may
not lead to reasonable decisions. Additionally, the subjectivity of belief degrees makes the imposition
of objective attributes through probability inappropriate, diverging from actual circumstances. Thus, it
is more appropriate to use uncertainty theory to describe reliability when system information is limited.

Liu [6] established uncertainty theory based on uncertainty measures and defined uncertain
variables. To better characterize uncertain variables, Liu [6] introduced the concept of uncertain
distribution. Furthermore, Peng and Iwamura [12] proposed sufficient and necessary conditions for
the existence of uncertain distributions. Liu [13] introduced the concept of independence for uncertain
variables and developed the uncertainty calculus theory for the Liu process. Liu [14]proposed a
novel uncertain process as an alternative to the Wiener process, known as the Lipschitz continuous
uncertain process with steady independent normal increments. In 2008, Liu [15] pioneered the concept
of UDEs (uncertain differential equations) based on the Liu process, which became a fundamental tool
for handling uncertain dynamic systems. Subsequently, Chen and Liu [16] proved the existence and
uniqueness theorem for solutions of UDEs under linear growth and Lipschitz continuity conditions.
This work sparked further investigations by numerous researchers. For instance, Yao [17] explored
various stability properties, while Yao [18] and Liu [19] provided analytical solutions for certain
types of UDEs. Additionally, researchers have investigated stability in different forms for universal
uncertain differential equations [20, 21], and others have delved into parameter estimation [22, 23].
Recently, researchers have begun to extend UDEs to higher-order cases. For example, Wang et al. [24]
systematically studied second-order and a class of higher-order UDEs. Thereby further refining
the analytical framework for higher-order uncertain systems. However, finding analytical solutions
remains challenging for universal UDEs.

Fortunately, Yao proposed the Yao-Chen formula, which, in collaboration with Chen, establishes the
relationship between UDEs and ordinary differential equations(ODEs) [25]. Specifically, the inverse
distribution function of the solutions of UDE:s is determined by the solutions of a family of ODEs. This
formulation enables numerical simulations and related studies of UDEs. Building upon this formula,
Yao introduced the Euler method to solve UDEs [26]. Subsequently, various numerical methods
have been devised, including the Runge-Kutta and Adams methods by Yang [27, 28], the Adams-
Simpson method by Wang [29], and the Milne method by Gao [30], to obtain numerical solutions
for UDEs. Thanks to the Lipschitz continuity property inherent in the Liu process, the existence and
uniqueness theorem established for solutions of deterministic differential equations can be extended
to UDEs. As a result, significant advancements have been made both in theoretical understanding
and practical applications of UDEs.With the advancements in high-order UDEs, Yao [31] introduced
high-order UDE:s as a tool to deal with high-order uncertain differentiable systems in 2016. However,
obtaining analytical solutions for universal UDEs remains a challenging task. To address this, Yao [31]
introduced the Euler method, Hou [32] proposed the Adams-Simpson method, Jin [33] presented
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the Runge-Kutta method, and Kuang [34] proposed the improved Milne-Hamming method and other
numerical techniques to obtain numerical solutions.

While obtaining analytical solutions for higher-order NDEs (nonlinear differential equations) is
difficult, substantial progress has been made in understanding their dynamical properties, particularly
bifurcation and chaos [35-37]. Based on these developments, significant achievements have also
been made in studying the bifurcation of stochastic differential equations [38—40]. In light of these
findings, researchers have explored whether UNDEs(uncertain nonlinear differential equations) have
similar counterparts to stochastic nonlinear differential equations(SNDEs), such as bifurcation and
chaos, in the context of uncertainty theory. This paper proposes to study “uncertain bifurcation” based
on cross-entropy. The study draws the definition of cross-entropy in uncertain processes [41]. The
aim of this study is to extend research on NDEs to the field of UNDEs, with a particular focus on
bifurcation. While this paper provides only a preliminary exploration, it offers a quantitative definition
of an uncertain Hopf bifurcation.

The structure of this paper is given as follows: Section 2 reviews related concepts and conclusions of
the uncertainty theory; Section 3 gives the concept of Hopf bifurcation for UNDEs; Section 4 designs
an efficient algorithm to illustrate the rationality of the proposed concept and method; Section 5 gives
the main conclusions.

2. Preliminaries

In this section, this paper will introduce some basic concepts, cross-entropy and other related
concepts of uncertainty theory.

Definition 2.1 (Liu 2024 [6]). The uncertainty distribution ® of an uncertain variable & is defined by
DO(x) = M{¢ < x}
for any real number x.

Definition 2.2 (Liu 2024 [6]). An uncertainty distribution ®(x) is said to be regular if it is a continuous
and strictly increasing function with respect to x at which 0 < ®(x) < 1, and

lim ®(x) = 0, lim ®(x) = 1.
X—+00

X——00

Definition 2.3 (Liu 2024 [6]). Let ¢ be an uncertain variable with regular uncertainty distribution
®(x). Then, the inverse function ®~'(a) is called the inverse uncertainty distribution of & .

Following that, the definition of uncertain process will be given, which is composed of a series of
uncertain variables indexed by time 7 as follows.

Definition 2.4 (Liu 2024 [6]). An uncertain process C, is said to be a Liu process if
(i) Co = 0 and almost all sample paths are Lipschitz continuous,
(ii) C, has stationary and independent increments,
(iii) every increment C,, — C, is a normal uncertain variable with expected value 0 and variance .

Theorem 2.1 (Chen-Liu Existence and Uniqueness Theorem [6]). The UDE

dX, = (1, X,)dt + g(t, X,)dC,
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has a unique solution if the functions f(t, x) and g(t, x) satisfy the linear growth condition
|f (2, )1+ |g(t, )| < L(1 + |x]),Vx € R, 1> 0
and Lipschitz condition
|f(t, %) = f&, 9| + Ig(t, x) = g(t, )| < L(lx — ¥]), YVx,y € R, 1 > 0.

Without loss of generality, suppose L. Moreover, the solution is sample-continuous.

Theorem 2.2 (Yao-Chen [6]). Let a be a number between O and 1. An UDE
dX, = f(t, X,)dt + g(¢, X,)dC,
is said to have an a-path X' if it solves the corresponding ODE
dX® = f(t, X")dt + |g(t, X*)| O (a)dt

where ®~'(a) is the inverse standard normal uncertainty distribution, i.e.,

O (a) = V3,
T

1-a

According to Theorem 2.2, the inverse distribution of the UDE can be determined. Do such second-
order UDEs also have conclusions similar to Theorem 2.2? We discussed this issue in another article

and found that second-order differential equations have similar conclusions.

Definition 2.5. Let a be a number between 0 and 1. An UDE

dr? b dr bode /7 de 2

Xt dX;

{dZX[ = f(t. X, S0 + g(1, X, Sy <
0:X07E

= Y0
t= t=0 ’

is said to have an a-path X' if it solves the corresponding ODE

dxe
> Tdr

2 ya @
X = fe, x2, 25 4 1g(e, X

o dr
dXﬂ/
(3 _ aas —
Xt 0 - XOa dr (=0 - Y(),

IO~ (@),

1=

where ®~'(a) is the inverse standard normal uncertainty distribution, i.e.,

() = ﬁln ad
T

1-a

Remark 2.1. The definition of a second-order UDEs corresponds to a determinate equations whose
solution, when certain conditions are met for f and g, is the inverse distribution of the UDEs. This

conclusion allows us to study UDEs through the research methods of determinate equations.

Entropy is used to measure the uncertainty associated with a variable whose value cannot be exactly
predicated in information sciences. The definition of cross-entropy of uncertain variables was proposed

by Gao [41].
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Definition 2.6 (Xin Gao, 2018 [41]). Let & and n be two uncertain variables with uncertainty
distributions ® and ¥, respectively. Then, the cross-entropy of & from n is defined by

—+00
DI¢,nl = f |D(x) — ¥ (x)ldx. (2.1)
Theorem 2.3 (Xin Gao, 2018 [41]). Let & and n be two uncertain variables with regular uncertainty
distributions ® and ¥ , respectively. Then, the cross-entropy of & and 1 is

1
D[S,ﬂ]=f @7 (@) ~ ¥ (a)lda. (2.2)
0

3. Hopf bifurcation of uncertain differential equtions

The Hopf bifurcation is an important feature of nonlinear dynamical systems. How can the
bifurcation in uncertain nonlinear systems be described and measured? This section aims to intuitively
understand the Hopf bifurcation of uncertain nonlinear equtions, starting with a simple example.
According to the characteristics of deterministic systems, at least a second-order system is required
to potentially produce a Hopf bifurcation. Therefore, the discussion begins with a simple second-
order UDE.

X + (szz = el f(t, x;, %, &) + g(t, x4, X4, f)Ct]» 3.1

where f(¢, x;, X;, £),8(t, x;, X;, ) are two given functions, C; is a normal Liu process, € is an arbitrarily
small positive number, and ¢ represents the physical parameter of the system.

o () = V3,
T

l-«a

is the inverse uncertainty distribution of standard normal uncertain variables.
According to Definition 2.5, we have

B+ 0’x = e[ (1,20, 10, 8) + |g(t, 17, 10, 8D ()] (3.2)

Obviously, Eq (3.2) is a family of deterministic equations, and its solution determines the inverse
distribution of Eq (3.1). Next, we discuss the conditions for a Hopf bifurcation about the deterministic
equation (3.2). Let

x; =A% cos g,
X = —A%wsin g, (3.3)
Y =wt+6
Using the average theory
A = —gF (A%, 0°,t,&)sin g, (3.4a)
A0 = —gF(A”,0°,t,&) cos @, (3.4b)
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where
F(A“,0%1,&) =f(t,A” cos g, —A%w sin @, &) (3.5)
+|g(t, A” cos ¢, —A%w sin ¢, &) D~ (a). ’
Averaging the formula (3.4a-3.4b) in the period [0, 27], we get:
27
Ar=—Z | FA®, 60,1, ) sin pde, (3.6a)
2 0
) € o
A% = - = F(A®, 6% t,&) cos pde. (3.6b)
2w Jy

According to Definition 2.5, an uncertain nonlinear differential equation(UNDE) (3.1) can be
transformed into a deterministic equation (3.2). The Hopf bifurcation of the deterministic nonlinear
equation is a phenomenon of dynamic system bifurcation, where the equilibrium point of the system
transitions from a stable state to an unstable state as the system parameters pass through a critical value,
simultaneously giving rise to a periodic solution (i.e., a limit cycle). This type of bifurcation is usually
associated with the system’s transition from a stationary state to an oscillatory state.

According to the Hopf bifurcation theory of deterministic systems, the existence of periodic
solutions can be determined using the averaging method.The stability of the limit cycle of Eq (3.2)
in the vicinity of (x, X) = (0, 0) can be analyzed in the following ways:

(1) As the parameter changes, when the parameter ¢ passes through &, it will result in A” going
from A” > 0 to A® < 0, and a subcritical Hopf bifurcation occurs. The solution changes from an
unstable focus to an asymptotically stable focus and produces an unstable periodic solution.

(2) As the parameter changes, when the parameter ¢ passes through &, it will result in A” going
from A” < 0 to A” > 0, and a supercritical Hopf bifurcation occurs. The solution changes from an
asymptotically stable focus to an unstable focus, and an asymptotically stable limit cycle is generated.

In Eq (3.2), if for any V 0 < @ < 1, each corresponding determined system undergoes a Hopf
bifurcation at the same &, and a limit cycle with a period of T appears. Hence, for V¥ ¢, @, the inverse
distribution of the solution of system (3.2) at time ¢ satisfies qb,‘l(a/) = xy, ¢I‘+1T(a) = x7,,. Given the
assumption from the previous context that x7' = x7 ., it follows that </),‘1(a/) = </>;+1T(a), which implies
that the inverse distribution is a periodic function with a period of 7. Is it possible to describe the
state transitions of the uncertain equation (3.1) using the periodicity of ¢;'(@)? When& =0, T = 2;”
However, since we are studying a nonlinear system where € # 0, the values of &, and T differ from
those in the determined system. From the previous derivations, it can be observed that for each a-path
in the nonlinear system, the corresponding values of £. and 7 may not be the same, when & # 0,
T(a)) = T(@) + 0(8), &) = é(@) + O(e). ¢, (@) and ¢, () are not necessarily equal, and they
may differ by an infinitesimal of the same order as €. However, even though they are not strictly equal,
the states of the uncertain system are different when &€ > £, and ¢ < &, and the behavior of the inverse
distribution function is also different, where &, is the supremum of &.(«). Therefore, to describe the
state transitions of an uncertain system, we introduce the concept of cross-entropy to measure the state
transitions of the uncertain system.

Definition 3.1 (Cross-entropy of the reference-containing system). A containing parameters & € R
UNDEs

d'X, dX; dtx, dX; d" X, N (e

dr" :f(t’Xh_ —;é:)_'_g(t’Xt,_s' g)Ea

At 3.7
de’ 7 de! dr Tde-t 7
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where )
t7X s T 4. 0" " —7 s
f@ X o P 3]
and 4 g1
X, "X
t’X’ _’ s ; b
URY de dr-! &)

are measurable functions, and C, is a Liu process. A solution is an uncertain process X, that
satisfies (3.7) identically in t. Then, define the function

O Na;&,0) — D N &, 1+ Ab)|da (3.8)

1
HE tt+ Ar) = f
0

as the parameter-containing cross-entropy of the (3.7) solution at t and t + At.

Remark 3.1. The solution of (3.7) is an uncertain process. When the time t is determined, the uncertain
process becomes an uncertain variable, so two uncertain variables given time t and t + At are obtained.
In essence, the parameter-containing cross entropy at time t and t+ At in (3.8) is the same cross entropy
as in the literature [41].

Remark 3.2. If t(¢), when t > (&), for VAL, H(é,t,t + At) = 0, indicating that the uncertainty
process stabilizes, i.e., the inverse distribution of X, is invariant with respect to time t. This is similar to
the existence of gradually stable attractors, which gives implications for our definition of uncertainty
bifurcation.

Definition 3.2 (Hopf bifurcation). Considering the UNDEs (3.7) when & < &, Ve > 0,YAr >
0, d1(&, ), has
H( tt+ Ar) < et > t(é, ), (3.9a2)

when & > &, Am € Z, Au(&), AT (&) > 0, satisfied

H¢ e+ T ¢) <e,

1 _ (3.9b)
HE e+ ET(g, e)) > 10", t > t(¢, e).

When (3.9a) (3.9b) are satisfied, the parameter-containing & UNDEs (3.7) at ¢ = &, experience an
uncertain Hopf bifurcation (m-Hopf bifurcation).

Remark 3.3. It is defined as “a kind of quantification” bifurcation, which is mainly reflected in m. In
general, the larger the value of m, the more pronounced the state transitions in the system.

Remark 3.4. In practice, the verification of definition (3.9a) is difficult. (Due to the arbitrariness of
the time interval At, which makes us want to verify the incomputable function H(&,t,t + At).) Using
the density of rational numbers, for any arbitrary t, we seek a sequence t; that tends to t as a limit,
such that H(¢é, t;,t; + At) tends to H(E, t,t + At) as a limit. Therefore, we adopt the following plan: For
a given &, g, select a At, choose a large enough n € Z (say n=1000), select a moment t > t(¢, €), let
t=to+iALi=0,1,2,...,n let Hy((n) = maxicis oot f) |07 @€, = 07 (@361 + At}lda, and
use Hy(é(n)) < € instead of the two inequalities in the definition (3.9a) to judge. In fact, Hy(£(n))
still needs to adopt appropriate algorithms. See algorithm 1 for details.
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Remark 3.5. Because of the various quantifications and approximations described above, the
“bifurcation value” we obtain is often not a value, but an interval with a smaller range of values.
When passing through this interval, the system completes the state transition, as shown in Figure 1 for
details.

Remark 3.6. The characteristic of Hopf bifurcation in determined system is the transition from
asymptotically stable to periodic solution of the limit cycle (or vice versa). Similarly, we define the
Hopf bifurcation in uncertain system in terms of the state transitions of its inverse distribution. (3.9a)
means that when t is sufficiently large, the inverse distribution of the uncertain system does not change
with t, which is referred to as “asymptotically stable”; (3.9b) means that the inverse distribution of the
uncertain system is “periodic". They reflect the dynamic transition behavior of the uncertain system.

If the UNDE:s satisfies the aforementioned two conditions (3.9a) (3.9b) during parameter changes,
there is reason to believe that an uncertain system generates some form of Hopf bifurcation with
a confidence level of 1. This is defined as a supercritical Hopf bifurcation similar to deterministic
systems, where a limit cycle is generated from a steady-state solution. Conversely, when parameters
increase and the limit cycle disappears, this is similar to a subcritical Hopf bifurcation in deterministic
systems, and is considered a Hopf bifurcation in uncertain systems. In order to more clearly
demonstrate the dynamical behavior of uncertain systems that satisfy the conditions, we designed an
effective algorithm for visualization and provided numerical analysis of the existence of bifurcations
in Section 4.

4. Algorithm design and numerical simulation

This part provides numerical experiments of the improved order 4 Runge-Kutta method(RK-4),
additionally, the effectiveness and efficiency of which will be demonstrated. The equation is

dc
i+ wx+e (§+yx2))'c—F0 coth+g(t,x)d—tt] = 0. “4.1)
According to Definition 2.5, the @ — path(0 < a < 1) corresponds to the equation of system(4.1)
. 3
X+ a)zx‘f =¢ [Fo cosQt — (¢ + y(xf)Z)xf + Ig(t, x7, )'cf‘)li In 7 d ] , “4.2)
n -a

where f(t, x, x) = Foycos Qt — (¢ + yx*)x, g(t, x) = 1.

4.1. Algorithm of improved order 4 Runge-Kutta method

Based on the a-path in formula (4.2), discretizing a from 0 to 1 as @y, as,...,a, will lead to an
exponential increase in the time complexity of finding the a-path. Consequently, this paper examines
the properties of uncertain distributions by integrating a using formulas (4.2). This presents a conflict
between accuracy and computational complexity: to ensure accuracy, p needs to be as large as possible,
which is one issue. Furthermore, the high spatial complexity presents another challenge. As shown
in the example below, the convergence of the a-path near the Hopf bifurcation point is very slow,
requiring longer simulation times to discover the asymptotic stable trend (¢t > e*s). Therefore, a large
amount of memory is required to store the results of the time sequence. Each a-path needs to store a
large amount of time data, making storage a huge challenge.
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Algorithm 1 Calculating the Threshold H (&)

1:

— e = =
W N = O

14:
15:

©°°\‘°\U‘">“°N

Initialization of a bifurcation parameter sequence &;, j = 1,2,...,m; given a time range t € (0, #,,4,) and a time interval
At
Discretize time into t; = ty + iAt,i =0,1,2,...,n.
N = tyax/AL;
Discretize uncertain measure @ € (0, 1) with intervals of has oy = kh,k =1,2,....,p=(1 - h)/h.
for £ =&1,6,...,&,do
fora=a,a,...,a,do

Calculate @-path through ODE:
dX = f(t, X;™)de+
lg(2, X;/)I®™ (ax)dr,  XG* = Xo
Obtain the inverse uncertainty distribution ®~!(ay; &, #;) of X through Theroem x.
end for
Numerical integration using the trapezoidal method:

-1
Hy(¢) = max Z(|<D Naws &, )= O & i) + 107 (@rs3 €, 1) = O (@rs3 €, 1i41)DR/ 2

,,,,,,

end for

Olltpllt! HM (é:])

Algorithm 2 Simulating the a-path

10: &~

12:

14:

16:

18:

20:

For any differential equation, we first transform it into a system of first-order differential equations.Given a a-path
through ODE:
dX® = f(t, X¥)dt + |g(t, XO)| D~ (a)dt,
X5 =Xo = (Xl,Xé,...,X(’)")
The moment #4,;, represents the commencement of data storage.
Discretize time ¢ € (0, t,,4,) into t; = ty + iAt,
i=0,1,2,...,0.n =ty /AL
Discretize uncertain measure @ € (0, 1) with intervals of has oy = kh,k =1,2,...,p = —-h)/h,
a=(a,q,...,qp).
Construct matrix X = I« Xo, where [ is a vector with all elements of 1, it is equivalent to copying Xy to k rows.
Construct matrix
@) = (@ (a1), @ (@), ..., D7 (@)
fort=1,i=1,2,...,ndo

Ky = f(t,X) + g1, X)| © @' (a)

K=ft+58.X+5) +1g¢+£.X+E)od ()

Ky=f+ 3. X+5) + g+ 4, X+ &) o0

Ky = f(t+ AL, X + K3) + |g(t + At, X + K3)| 0 O~ ()

X =X+ 1(K) + 2K, + 2K3 + Ky)At

if 1 > 100, then

save X to res.

end if

end for

Output: res
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Taking the numerical experiment in this paper as an example, in the case of n = 99,£ : —0.5 : 0.005 :
0.5, = 2 % 10%, and step=0.01, as shown in Tables 1 and 2, if the traditional ode45 solver is used to
solve each a-path, it requires 1.49G of memory, which is too expensive. Therefore, this paper designs
an order4 a-path Runge-Kutta algorithm, which introduces the discrete sequence of the a-path into
the RK-4 algorithm, taking advantage of the efficiency of vector operations on computers to improve
computational efficiency by up to 100 times. At the same time, during the process of solving the a-
path in the RK algorithm, the convergence of the a-path is judged to truncate the solution sequence and
only retain part of the time sequence, reducing the memory requirement to below 20M. This allows a
regular computer to obtain simulation results within 1 hour.

Table 1. Time and space complexity comparisons.

ODE45 order 4 a-path Runge-Kutta
Time complexity O(k™?) o™
Spatial complexity O(n) o(1)

Table 2. Specific numerical comparisons.

ODEA45 order 4 a-path Runge-Kutta
Time 47255s 9335s
Spatial 1.49G 18M

4.2. Application of improved order 4 Runge-Kutta method

Using parameters & and y to represent the nonlinear damping & + yx? in Eq (4.1), and applying the
averaging method described in the third section to Eq (4.2), the average equation of the system can be
obtained.

AY = —eF (A%, 0%, 1,&)sin g, (4.3a)

A%6” = —eF(A®, 0% 1, &) cos g, (4.3b)
where

F(A®,67,1,&,7) =A%(& + yA?® cos® @) sin @ + Fjy cos Qt

3 (4.4)
+ |g(t, A" cos ¢, —Aw sin ¢, &, 7)|£ In—2 .
m l-a
Averaging the formula (4.3a—4.3b) in the period [0, 27], we get:
. Fo (™ 1 A%
Ao =2 f sin(p — Qt)dp — =(A“¢ + y), (4.52)
ar Jo 2 4
. Fy (7
A%Gr = —— cos(¢ — Qt)de. (4.5b)
Ar 0

The use of the a-path average equation allows for the determination of bifurcation patterns along the
a-path.
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1) ¥ > O: Figure 1 is the bifurcation diagram of Eq (4.2). Zone 1 represents a stable limit cycle, zone 2
depicts a gradually decreasing limit cycle, and zone 3 signifies asymptotic stability. For y > 0, the
a-path exhibits characteristics akin to a supercritical Hopf bifurcation. As the bifurcation parameter
changes, the system transitions from a stable limit cycle to asymptotic stability gradually, with zone 2
indicating the shrinking of the limit cycle. Furthermore, due to the slow decay near the bifurcation
point, it is challenging to discern small-amplitude periodic motion from asymptotic stability accurately
through numerical methods. Hence, the boundary between periodic motion and asymptotic stability is
not distinctly defined.

-

one 2 Zone 3

I |
o
j

lg Hy(€)

45—

0.

oo

02 03 04 05

Figure 1. Bifurcation diagram of Eq (4.1), where At = 0.01;n = 2 X 10°.

In Figure 2, for the parameter values & = [-0.1,0, 0.1, 0.2], the a -path exhibits a gradual decrease
in amplitude leading to convergence.
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(a) &= -0.1 (b) =0 (©&=0.1 d¢e=02

Figure 2. The 3D plot of the a-path depicts the behavior of the path for the parameter values
¢ = [-0.1,0,0.1,0.2]. The plot reveals a uniform tendency in all a-path as & increases,
transitioning from periodic motion to gradual decay and ultimately to asymptotic stability.

Figures 3 (@=0.01), 4 (@=0.45), and 5 (@=0.99) display different a-paths, with their two-
dimensional trajectories providing important findings that complement the three-dimensional
representation in Figure 2 . All visualization results consistently identify & ~ 0.1 as a critical
bifurcation point where the system undergoes a qualitative transition from periodic oscillation to
asymptotic stability. This bifurcation behavior remains remarkably consistent across different « values,
indicating that the parameter ¢ is the primary determinant triggering this fundamental behavioral
transformation. However, they exhibit significantly different convergence characteristics: the trajectory
in Figure 4 shows more pronounced transient oscillations and slower convergence speed after
bifurcation, while the path in Figure 5 demonstrates a significantly accelerated stabilization process.

(a) &= -0.1 (b) =0 (©&=0.1 d¢e=02

Figure 3. The 2D plot of the a -path for the parameter values ¢ = [-0.1,0,0.1,0.2] at
a =0.01.

AIMS Mathematics Volume 10, Issue 12, 28243-28263.



28256

TR~ ] = [
— F F———J F ]
(a)¢é=-0.1 b)é=0 ©¢é=0.1 deé=02

Figure 4. The 2D plot of the a-path for the parameter values ¢ = [-0.1,0,0.1,0.2] at a =
0.45.

_ F F* J F ]
(@) & = 0.1 (b)&=0 ©&=0.1 @& =02

Figure 5. The 2D plot of the a-path for the parameter values ¢ = [-0.1,0,0.1,0.2] at @ =
0.99.

Figure 6 illustrates the periodic results computed using the spectral method based on Eq (4.1). The
left column displays the variations of errors with respect to the event sequence, while the right column
corresponds to the power spectral density of the left images, with the unique peak value indicating the
period.
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Figure 6. The period of a-path for the parameter values ¢ = [-0.5, -0.4,-0.3, -0.2] .

Figure 7 demonstrates that the uncertainty distribution at intervals of one period is nearly identical,
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while the distribution at intervals of 7'/2 exhibits significant differences. This observation provides
evidence for the periodic characteristics of the uncertainty distribution.

Remark 4.1. In fact, in Figure 7, the inverse distribution of uncertain variables at moments like
T/3,T/4 could be taken. Considering the differences are most evident at the T |2 moment, the inverse
distribution at the T |2 moment was chosen for comparison.

The results in Figure 8 demonstrate a substantial overlap among the three, confirming the stability
of the uncertainty distribution.

2) ¥ < 0: In Figure 9, zone 1 exhibits divergence, zone 3 represents asymptotically stable behavior,
and zone 2 signifies the transitional zone. In theory, zone 1 should be infinite; however, for the purpose
of numerical simulation, it is truncated to 100, resulting in a logarithmic value of 2. When y < 0,
the characteristic variation of the a-path resembles a subcritical Hopf bifurcation, accompanied by the
gradual disappearance of an unstable limit cycle. The a-path demonstrates a transition from divergence
to asymptotic stability, and due to the clear transition from divergence to asymptotic stability, the
boundary between the unstable and stable zones is also distinct. Similarly, the attraction basin in
Figure 10 also confirms the existence of unstable limit cycles.

In Figure 11, the a-path under parameter & = [-0.1,0, 0.1, 0.2] reveals a transition from divergence
to stability in the amplitude.

=05 =04
5000

exp(10@7'(a))
0

Figure 7. Inverse distribution plot. The inverse distribution at #y, o + 7'/2, ty + T moments of
uncertainty were plotted for the periodic solutions corresponding to Figure 1 Zeonl, which
were obtained using Eq (4.1) for bifurcation points(-0.5,-0.4,-0.3,—-0.2).This figure is
computed from Eq (3.9b), where T ~ 5.46 s.
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=04

a

0.2

a a

Figure 8. Inverse distribution plot. In the case of bifurcations at (0.5,0.4,0.3,0.2), this
section corresponds to asymptotic stability, as depicted in Figure 1 Zeon3. Similarly, inverse
uncertainty distribution plots were generated at moments ty, o + 7/2,ty + T. This figure is
computed from Eq (3.9b), where T =~ 5.46s.

A= Zone 1 Zone 2 Zone 3 —

Figure 9. Bifurcation diagram. This figure is computed from Eq (3.9b), where At = 0.01;n =
2 x 108,
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08

Figure 10. Attracting basin. The blue zone represents the basin of attraction around the
origin, while the yellow zone represents the basin of attraction extending to infinity, and the
boundary between the yellow and blue zones depicts an unstable limit cycle.

(a) € = —0.1 (b)&=0 (©&=0.1 (dé&=02

Figure 11. The three-dimensional plot of the @ — path. The three-dimensional plot of the
a-path under the parameter ¢ = [-0.1,0,0.1,0.2]. The plot reveals a consistent trend in all
a — path as £ increases: a transition from divergence to asymptotic stability.

Figures 12 (@=0.01), 13 (@=0.45), and 14 (@=0.99) display different a-paths, with their
two-dimensional trajectories providing important findings that complement the three-dimensional
representation in Figure 12. Collectively, they reveal the following pattern: although all a-paths
undergo a unified bifurcation behavior transitioning from unstable periodicity to asymptotic stability
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near £=0.1, indicating that £ is the key parameter controlling the stability transition of the system, the
value of « significantly influences the convergence characteristics after bifurcation. As « increases
from 0.01 to 0.99, the system demonstrates a clear progression from slow decay with persistent
oscillations to rapid stabilization.

I~ AR e {

(a) € = —0.1 (b)&=0 (©&=0.1 (dé=02

Figure 12. The 2D plot of the a-path for the parameter values & = [-0.1,0,0.1,0.2] at
a =0.01.

AVAYAYAY i ]
| i e ) —
(a) € = —0.1 (b)&=0 (©&=0.1 (dé=02

Figure 13. The 2D plot of the a-path for the parameter values & = [-0.1,0,0.1,0.2] at
a = 045.

] \ [
“ | P —— I
(@) & = —0.1 (b)é=0 ©&=0.1 @)é=02

Figure 14. The 2D plot of the a-path for the parameter values & = [-0.1,0,0.1,0.2] at
a = 0.99.

5. Conclusions

This study extends the classical Hopf bifurcation theory of deterministic differential equations
to UDEs by utilizing the cross-entropy of the inverse distribution, where the inverse distribution is
determined through the a-path. The paper designs an efficient algorithm to verify the uncertain
Hopf bifurcation and quantify the bifurcation threshold, and the validity of the defined uncertain
Hopf bifurcation is confirmed through numerical simulations. The paper also proposes an improved
fourth-order Runge-Kutta method to solve high-order UDEs, and the effectiveness and efficiency of
this method are demonstrated through numerical experiments.

This paper initiates the study of Hopf bifurcation in UDEs, representing an effective integration
of uncertain theory with nonlinear dynamics theory, thereby expanding the application of uncertain
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theory. At the same time, it provides a method for studying dynamic transition problems involving
frequency instability in practical engineering. Building on the research presented in this paper, we will
also delve into the chaos theory of uncertain systems in the future, such as extending chaos criteria like
the Lyapunov method and the Melnikov method to higher-order UDE:s.
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