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1. Introduction

On proper smooth algebraic curves, one can find many finite sets of points that have distinctive
properties. One interesting question is about the subgroup structure of the Jacobian of the curve that
one gets from 0-degree divisors that are supported on such a finite set. The paper defines this finite
set for the total sextactic points on smooth projective plane quartic curves (3-genus curves that are
non-hyperelliptic) that have two or three total sextactic points.

The finite set of 1-Weierstrass points on smooth projective plane quartic curves contains only the
flex points (see, e.g., [1–3]), however the set of 2-Weierstrass points on such curves are divided into
two disjoint subsets {flexes}∪ {sextactic points} [2]. Most of the previous research studied the structure
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of the group generated by the images, under the Abel Jacobi map A0, of 1-Weierstrass points in the
Jacobian JC of a smooth projective plane quartic curve C.

In [4–6] the authors studied the group G generated by the images, under A0, of total sextactic points
in the Jacobian of the quartic curve Kt: X4 + Y4 + Z4 + t(X2Y2 + Y2Z2 + Z2X2) = 0 (where such a
family of quartic curves is called Kuribayashi quartics), when t = 14, P(t) = t3 + 68t2 − 91t + 98 = 0;
and in the Jacobian of superelliptic curves of 3-genus, given by: Y4 = X (X − Z) (X − tZ) Z when the
parameter t satisfies the equation: Q(t) =

(
t2 + 4 t − 4

) (
4 t2 − 4 t − 1

) (
t2 − 6 t + 1

)
= 0, respectively.

More precisely, for the Kuribayashi curve, they found that G � (Z/2Z)⊕(Z/4Z)⊕(Z/8Z)2 if t = 14 [4],
and G � (Z/8Z)3 if P(t) = 0 [5]. In [6], for the superelliptic curves, given above, the authors showed
that if Q(t) = 0, then G � (Z/2Z)2 ⊕ (Z/4Z)2 ⊕ (Z/8Z)2.

We introduce a new concept, the mutual conic, in order to give a complete classification of the group
G generated by two or three total sextactic points on a smooth projective plane quartic curve C, and we
determine the geometric configuration of these points associated with each case.

The main results of the paper are Theorem 4.4, summarized in Table 1, and Theorems 5.3, 5.8,
and 5.9, which correspond, respectively, to Cases I, II, and III in Table 2 and are summarized therein.
More precisely, if C is a smooth projective plane quartic curve with two total sextactic points, then the
cyclic subgroup G generated by the images of these total sextactic points in the Jacobian JC of C can
be completely classified as follows.

Table 1. Group generated by two total sextactic points.

Case Group Geometry
I Z/8Z The tangent lines to C at these points are distinct and the

mutual conics are all imperfect.
II Z/4Z The two total sextactic points have the same tangent line.

Or, the mutual conic for one point with respect to the other
is perfect.

If C is a smooth projective plane quartic curve with three total sextactic points, then the subgroup
G generated by the images of these total sextactic points in the Jacobian JC of C can be fully classified
as follows.

Table 2. Group generated by three total sextactic points.

Case Group Geometry
I (Z/8Z)2 The tangent lines to C at these points are distinct and the

mutual conics are all imperfect.
II Z/4Z ⊕ Z/8Z The tangent lines to C at these points are distinct and only

one of the mutual conics is perfect. Or, two of these points
have the same tangent to C and all the possible mutual
conics are imperfect.

III (Z/4Z)2 The tangent lines to C at these points are distinct and two
(or all) of the mutual conics are perfect. Or, two of these
points have the same tangent to C and at least one of the
mutual conics is perfect.
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In all cases, we support the validity of the results by giving a variety of interesting examples.

2. Preliminaries

Assume that C is an algebraic plane curve of degree d ≥ 3. The Abel Jacobi map with base point
∞ ∈ C from C to its Jacobian JC, denoted by A∞ : C → JC, is defined by P 7→ [P−∞]. One can extend
A∞ linearly to divisors in Div(C), where the class of the divisor D in Pic0(C) is represented by [D], and
Pic0(C) � JC (see, e.g., ( [7], Ch. 5]) or ( [8], Ch. VIII)).

If the tangent line TP at a smooth point P ∈ C intersects C at P with a contact order of at least 3,
i.e., IP(C,TP) ≥ 3, then P is said to be a flex point [9]. Additionally, a flex point P ∈ C is said to
be an i-flex if i = IP(C,TP) − 2. This positive integer i is called the flex multiplicity of C at P. In
particular, by Bézout’s theorem, for a smooth projective plane quartic curve C, i can be either 1 or 2.
Similar to tangent lines and flex points on algebraic plane curves, one can consider osculating conics
and sextactic points. For a non-flex smooth point P on a plane curve C of degree d ≥ 3, one can find
a unique irreducible conic ΛP with a contact order IP(C,ΛP) ≥ 5. This conic ΛP is known as the
osculating conic of C at P. If the osculating conic ΛP intersects C at P with a contact order ≥ 6, i.e., if
IP(C,ΛP) ≥ 6, then the point P ∈ C is called a sextactic point and ΛP is called a sextactic conic in this
context. Moreover, a sextactic point P ∈ C is said to be s-sextactic if s = IP(C,ΛP) − 5, with s being
the sextactic multiplicity of C at P. By Bézout’s theorem, if C is an algebraic quartic plane curve, then
s ∈ {1, 2, 3}. A 3-sextactic point is said to be a total sextactic point, as the sextactic conic ΛP intersects
C only at P, implying that IP(C,ΛP) = 8. In Appendix C of [10], the authors proved that if C has r
flexes with multiplicities m1, ...,mr, then C has 3d(5d − 11) −

∑r
i=1(4mi − 3) sextactic points, including

multiplicities. To construct the osculating conic at a point on a smooth algebraic plane curve of degree
d ≥ 3, see Lemma 4 in [6]. Now, we present the geometric tool that enables us to achieve the aim of
this note.

3. The mutual conic

In this section, we will discover that sextactic points are not only distinguished by the presence of
sextactic conics, but there is a family of distinct conics that play a substantial role in classifying the
groups generated by these points.

Consider an algebraic plane curve C of degree d ≥ 4. It is well known that a conic Λ produces a
divisor div(Λ) on C by linking to P ∈ C the contact order IP(C,Λ) of Λ and C in P. Using Bézout’s
theorem, the degree of div(Λ) is 2d. The set of all such divisors forms a complete linear system K
of dimension 5, i.e., K is a g5

2d. We refer to K(−nP) as the space of divisors in K that meet C in P
with a contact order of at least n. Imposing that ∞ is a non-flex smooth point on C. Let Λ∞ be the
quadratic form defining the osculating conic to the curve C at∞ and let T∞ be the linear form defining
the tangent to C at∞. Then, I∞(C,Λ∞) = µ ≥ 5 and I∞(C,T∞) = 2. Let L0 be a line not passing through
∞, (i.e., I∞(C, L0) = 0), and let L1 be a line passing through ∞ such that I∞(C, L1) = 1. Considering
the intersection of C with each of the conics:

L2
0, L0L1, L2

1 (or L0T∞), L1T∞, T
2
∞, and Λ∞,

we find that their contact orders at∞ are 0, 1, 2, 3, 4, and µ, respectively. Therefore, we have the nested
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sequence

K ⫌ K(−∞) ⫌ K(−2∞) ⫌ K(−3∞) ⫌ K(−4∞) ⫌ K(−5∞) = · · ·
= K(−µ∞ ⫌ K(−(µ + 1)∞) = ∅.

Thus, dimK(−4∞) = 1 and clearly K(−4∞) = {E ∈ K | E ∼ div(T 2
∞ + kΛ∞), k ∈ C}. We call the

conic Ξk∞ = T
2
∞ + kΛ∞, for some constant k ∈ C, the mutual conic with respect to ∞. It is clear that

I∞(C,Ξk∞) = 4 and, for any other point P on C, that IP(C,Ξk∞) ≥ 1 if and only if k = −g∞ (P) where
g∞ =

T 2
∞

Λ∞
. Moreover, if T∞ passes through P (for instance, maybe P and∞ have the same tangent line

to C), then g∞ (P) = 0 and therefore the mutual conic with respect to∞ coincides with T 2
∞.

Definition 3.1. The unique irreducible conic ΞP∞ = T 2
∞ − g∞ (P)Λ∞ is said to be the mutual conic for

P with respect to ∞ if g∞ (P) , 0 (so T∞ does not pass through P). Furthermore, if IP(C,ΞP∞) = 4,
then we say that P has a perfect mutual conic with respect to ∞. Otherwise, we say that P has an
imperfect mutual conic with respect to ∞, that is, if IP(C,ΞP∞) , 4. If IP(C,ΞP∞) = 2, then we say
that P has a semiperfect mutual conic with respect to ∞. If IP(C,ΞP∞) = 1, then we say that P has an
ordinary mutual conic with respect to∞.

Remark 3.2. If P and ∞ are non-flex smooth points of C, then the mutual conics ΞP∞ and Ξ∞P are
often distinct curves. Furthermore, ΞP∞ is perfect if and only if Ξ∞P is perfect. In fact, in this case,
ΞP∞ and Ξ∞P are the same (for this reason, we called it the mutual conic). If P has a semiperfect
mutual conic with respect to ∞ such that IQ(C,ΞP∞) = 2 for some point Q ∈ C \ {P}, i.e., the divisor
of ΞP∞ on C satisfies that div(ΞP∞) ≥ 4∞ + 2P + 2Q, then Q has a semiperfect mutual conic with
respect to∞ and actually ΞQ∞ coincides with ΞP∞. For examples of various types of mutual conics, see
Subsection 6.2.

Geometrically, the family {Ξk∞ = T
2
∞ + kΛ∞}k∈C forms a pencil of conics determined by the tangent

T∞ and the osculating conic Λ∞ at ∞. This pencil illustrates how the local geometry at ∞ interacts

with a varying point P on C, where k = −g∞ (P) =
T 2
∞

Λ∞
(P). Thus, the mutual conic can be interpreted

as a “geometric bridge” connecting the tangent and osculating conics at a given point on C.
In particular, when∞ is a sextactic point on a smooth plane curve C of degree 4, then for any other

point P on C, P has a perfect mutual conic with respect to ∞ if and only if div(ΞP∞) = 4∞ + 4P. By
using the concept of a mutual conic, we classify the subgroup G generated by the images of two or
three total sextactic points in the Jacobian JC of a smooth quartic C. It is clear that the group generated
by one total sextactic point is the trivial group.

4. The group generated by two total sextactic points

Let C be a smooth projective plane quartic curve. Therefore, via the canonical embedding, C is a
non-hyperelliptic curves of genus 3. Then, by using this embedding, H0(C,Ω(1)(C)) � H0(C,OC(1)),
which has a degree 4, according to the Riemann-Roch theorem (or because the curve has degree 4).
Consequently, H0(C, (Ω(1))2(C)) � H0(C,OC(2)) and H0(C, (Ω(1))3(C)) � H0(C,OC(3)), with degrees 8
and 12, respectively (see, for instance, [1]). We will start with some auxiliary results.
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Remark 4.1. For a total sextactic point ∞ ∈ C, there is no cubic curve E∞ satisfying that
I∞(C, E∞) = 12. Indeed, if such a cubic curve exists, then, by Bezout’s theorem, it coincides with the
reducible cubic E := T∞Λ∞, where T∞ and Λ∞, respectively, are the tangent line and the sextactic
conic to C at ∞. But, in this case we already have I∞(C, E) = 10, since I∞(C,T∞) = 2 and
I∞(C,Λ∞) = 8, which is a contradiction.

The Riemann-Roch space associated to any divisor D on C is defined to be

L(D) := { f ∈ C(C)| div( f ) + D ≥ 0}.

The space L(D) will play a crucial role in the following.

Lemma 4.2. Let C be a smooth projective plane quartic curve having two total sextactic points∞ and
P with distinct tangent lines. Then, the tangent line at one of these points does not pass through the
other point.

Proof. Without loss of generality, suppose, for the sake of a contradiction, that the tangent line to C at
the point P, denoted by TP, passes through the point∞. Therefore, its intersection divisor on C equals
div(TP) = 2P+∞+R, where R ∈ C\ {∞,P}. LetΛ∞ be the sextactic conic to C at∞, so div(Λ∞) = 8∞
on C. Hence, there is a rational function f on C satisfying that div( f ) := div(

T 4
P

Λ2
∞

) = 8P + 4R − 12∞. It
follows that [8P+4R−12∞] = 0 in JC. The vector space L(12∞) is of dimension 10, by the Riemann-
Roch theorem. Therefore, f ∈ L(12∞) � H0(C, (Ω(1))3(C)) � H0(C,OC(3)), the space of divisors cut
out by cubics on C. Now, f ∈ L(12∞) implies the existence of a cubic E∞ with div(E∞) = 12∞. This
leads to a contradiction by Remark 4.1. □

Now, let C be a smooth quartic curve with two total sextactic points. We take one of these points
(which we denote as ∞) as a base point of the Jacobian embedding A∞ : C → JC. Let P be the
other total sextactic point and let ΛP (resp., Λ∞) be the quadratic form defining the sextactic conic
to the curve C at P (resp, ∞). The divisor div(ΛP

Λ∞
) = 8P − 8∞ is principal on C, which implies that

[8P − 8∞] = 0 in the Jacobian JC of C. Therefore, the order of [P −∞] in JC divides 8. Thus, the
order of [P −∞] in JC can be either 4 or 8. Indeed, it cannot be 1 because [P − ∞] = 0 means that
P − ∞ is the divisor of a rational function, i.e., C is rational, which is excluded since the genus of C
is 3. Also, it cannot be 2, otherwise, [2P − 2∞] = 0 implies the existence of a degree-2 map C →P1,
which contradicts the fact that C is not hyperelliptic. According to the Lemma 4.2, either P and ∞
have the same tangent to C, or the tangents to C at P and∞ are distinct such that the tangent at one of
them does not pass through the other point. Lemma 4.3 below describes the necessary and sufficient
conditions for which |[P −∞]| = 8 in JC.

Lemma 4.3. Let C be a smooth projective plane quartic curve with two total sextactic points P and
∞. Then, P and∞ have distinct tangent lines and P has an imperfect mutual conic with respect to∞,
if and only if

[4P − 4∞] , 0.

Proof. Let C be a smooth quartic curve that has two total sextactic points P and∞with distinct tangent
lines andP has an imperfect mutual conic with respect to∞. It is known that the canonical linear series
on a smooth plane quartic curve is cut out by lines in P2. Let us assume that [4P− 4∞] = 0. Therefore,
there is a rational function f on C with div( f ) = 4P − 4∞. If E = 4∞ and K is a canonical divisor
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on C, then E cannot be linearly equivalent to K (if E ∼ K, then the tangent line to C at ∞ has a
contact of order 4 and this is impossible since∞ is a total sextactic point on C) and deg(K − 4∞) = 0.
Accordingly, L(K−E) is a zero-dimensional vector space (see Lemma 1.2, page 295 in [11]). It follows
that L(E) is of dimension two, by the Riemann-Roch theorem. Let T∞ be the linear form defining the
tangent to C at ∞. Then, the intersection divisor of T∞ on C equals div(T∞) = 2∞ + R + H, for some
R,H ∈ C\ {∞,P} (note that div(T∞) = 2∞ + 2P is not possible because P and∞ have distinct tangent
lines). Let Λ∞ be the sextactic conic to C at∞. Then div(T

2
∞

Λ∞
) = 4∞+ 2R+ 2H − 8∞ = 2R+ 2H − 4∞.

Taking the rational functions 1 and g∞ =
T 2
∞

Λ∞
as a basis for L(E), it follows that f can be written in the

form:

f = k.1 + g∞ =
T 2
∞ + kΛ∞
Λ∞

,

for some constant k ∈ C. It is evident that f has a zero at the point P if and only if k = −g∞ (P) but
in this case P is not a zero of order four (otherwise the mutual conic for P with respect to ∞ will be
perfect, or P and∞ have the same tangent line), which is a contradiction.

To prove the converse implication, it is enough to show that if P and∞ have the same tangent line,
or P has a perfect mutual conic with respect to ∞, then [4P − 4∞] = 0. If P and ∞ have the same
tangent line T to C, then the intersection divisor of T and C equals div(T ) = 2P + 2∞. Let Λ∞ be the
sextactic conic to C at ∞. Then div( T

2

Λ∞
) = 4P + 4∞ − 8∞ = 4P − 4∞. It follows that [4P − 4∞] = 0

in the Jacobian JC. Finally, if P has a perfect mutual conic ΞP∞ with respect to ∞, then the divisor of
ΞP∞ on C is given by div(ΞP∞) = 4P + 4∞, therefore the divisor div(ΞP∞

Λ∞
) = 4P − 4∞ is principal on

C, which implies that [4P − 4∞] = 0 in the Jacobian JC of C. □

As a consequence of Lemma 4.3 we have:

Theorem 4.4. Let C be a smooth projective plane quartic curve with two total sextactic points. Let G
be the cyclic subgroup generated by the images of these total sextactic points in the Jacobian JC of C.
Then we can classify G as follows:

(i) G � Z/8Z if and only if the tangent lines to C at these points are distinct and the mutual conic for
one point with respect to the other is imperfect.

(ii) G � Z/4Z if and only if the two total sextactic points have the same tangent line, or the mutual
conic for one point with respect to the other is perfect.

Proof. If C has two total sextactic points P and∞ with distinct tangent lines and the mutual conic ΞP∞
for P with respect to∞ is imperfect, then, by the discussion before Lemma 4.3 and by Lemma 4.3, the
order of [P −∞] in JC is exactly 8, so G � Z/8Z.

If P and ∞ have the same tangent line to C or ΞP∞ is perfect, then Lemma 4.3 informs us that the
order of [P −∞] in JC is 4, and therefore G � Z/4Z as required. □

As a summary of Theorem 4.4, we can note down Table 1 in Section 1. Now, we will support the
validity of Theorem 4.4 by providing the following examples. To construct new examples supporting
the classification, or to reproduce the examples discussed below, see the algorithms in Subsection 6.1.

Example 4.5. Let C be the smooth projective plane quartic curve defined by

C : Y4 = (X − Z)
(
X − (−2 + 2

√
2)Z

)
XZ.
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It is not difficult to demonstrate that Q1 =

[
√

2 :
√

2 −
√

2 : 1
]

and Q2 =

[
√

2 : −
√

2 −
√

2 : 1
]

are

total sextactic points on C. We note that the distinct lines

T1 = −X +
√

4 − 2
√

2Y +
(
2 −
√

2
)

Z and

T2 = −X −
√

4 − 2
√

2Y +
(
2 −
√

2
)

Z

are the tangent lines to C atQ1 andQ2, respectively. The equations of the sextactic conicsΛi associated
to Qi (i = 1, 2) are

Λ1 = X2 + 4Y2 + 2Z2 − 2
√

2XZ + 2
√

2 −
√

2
(√

2YZ−
(√

2 + 1
)

XY
)
,

Λ2 = X2 + 4Y2 + 2Z2 − 2
√

2XZ + 2
√

2 −
√

2
((

1 +
√

2
)

XY −
√

2YZ
)
.

Using a computer algebra system, such as Maple, one can verify that the conics Λi satisfy that
div(Λi) = 8Qi on the curve C. Let Ξ21 = T

2
1 − g1 (Q2)Λ1, where g1 (Q2) := T 2

1
Λ1

(Q2) = 2 −
√

2 is
the mutual conic for Q2 with respect to Q1. The divisor of Ξ21 on C is given by div(Ξ21) = 4Q1 + 4Q2,
so Q2 has a perfect mutual conic with respect to Q1. Let us take Q1 as a base point for the Abel Jacobi
map AQ1 : C → JC, from C to its Jacobian JC. Therefore, the subgroup G1 := ⟨[Q2 − Q1]⟩, in the
Jacobian JC, satisfies G1 � Z/4Z. Hence, this example supports the validity of the second part of (ii)
in Theorem 4.4.

Example 4.6. Following the same notations as in Example 4.5, we see that Q3 :=
[
√

2 :
√
√

2 − 2 : 1
]

is also a total sextactic point on C. Indeed, the sextactic conic

Λ3 = X2 − 4 Y2 + 2 Z2 − 2
√

2XZ + 2
√

2 −
√

2i
((

1 +
√

2
)

XY −
√

2YZ
)
,

and the tangent line T3 = −X − i
√

4 − 2
√

2Y +
(
2 −
√

2
)

Z, associated to Q3 on the curve C, satisfy

div(Λ3) = 8Q3 and div(T1) , div(T3). Let Ξ31 = T
2
1 − g1 (Q3)Λ1, where g1 (Q3) := T 2

1
Λ1

(Q3) =
1
2 (1 + i)

(
2 −
√

2
)
, be the mutual conic for Q3 with respect to Q1. The divisor of Ξ31 on C is given

by div(Ξ31) = 4Q1 + 2Q3 + R1 + S 1, where

R1 =

[
−11
√

2 + 16 + 2
√

116 − 82
√

2 : −i
(
−3 + 2

√
2
) (
−2 +

√
2 −
√

2
)

: 1
]
, and

S 1 =

[
−11
√

2 + 16 − 2
√

116 − 82
√

2 : −i
(
−3 + 2

√
2
) (

2 +
√

2 −
√

2
)

: 1
]

.

Therefore, Q3 has an imperfect mutual conic with respect to Q1. Then, the subgroup G2 := ⟨[Q3 − Q1]⟩,
in the Jacobian JC, satisfies G2 � Z/8Z. Hence, this example supports the correctness of (i) in
Theorem 4.4.

Example 4.7. Consider the Kuribayashi quartic curve K14 given by

K14 : X4 + Y4 + Z4 + 14(X2Y2 + Y2Z2 + Z2X2) = 0.
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It is not hard to show that the points P1 =
[
ω : ω2 : 1

]
and P2 =

[
ω2 : ω : 1

]
, where ω = exp(2πi

3 ), are
total sextactic points on K14. Indeed, the equations of the sextactic conic Λi at Pi (i = 1, 2) are

Λ1 : X2 + ω2(Y2 + 5XZ) + ω(Z2 + 5XY) + 5YZ = 0,
Λ2 : X2 + ω(Y2 + 5XZ) + ω2(Z2 + 5XY) + 5YZ = 0.

The line T12 : X + Y + Z = 0 is the tangent line to K14 at both of P1 and P2. Using a computer
algebra system, such as Maple, one can show that the intersection divisors of the conic Λi and the line
T12 on the curve K14 satisfy div(Λi) = 8Pi and div(T 12) = 2P1 + 2P2, respectively. Let us take P1 as
a base point for the Abel Jacobi map AP1 : K14 → JK14 . Then the principal divisor div(T

2
12
Λ1

) implies
that [4P2 − 4P1] = 0 in JK14 . Thus, the subgroup G3 := ⟨[P2 − P1]⟩, in the Jacobian JK14 , satisfies
G3 � Z/4Z. Hence, this example supports the correctness of the first part of (ii) in Theorem 4.4.

5. The group generated by three total sextactic points

Now, we pass to the case when a smooth projective plane quartic curve C has three total sextactic
points P,Q,∞. Take ∞ as a base point of the Jacobian embedding A∞ : C → JC. In this section, we
give a complete classification of the group G = ⟨[P −∞], [Q −∞]⟩ in JC. In the discussion preceding
Lemma 4.3, we explained that the order of any of the generators in JC can be either 4 or 8. Therefore,
we have three possibilities: either G is a quotient of (Z/8Z)2, a quotient of Z/4Z⊕Z/8Z, or a quotient of
(Z/4Z)2. We will start with an auxiliary result, as in Section 4. As a direct consequence of Lemma 4.2,
one gets the following.

Corollary 5.1. Let C be a smooth projective plane quartic curve having three total sextactic points
P,Q, and ∞ with distinct tangent lines. Then, the tangent line at one of these points cannot pass
through the other two points.

Lemma 4.3 specified the conditions under which both generators are of order 8. The following
Lemma 5.2 shows that under these conditions the group G is indeed isomorphic to (Z/8Z)2.

Lemma 5.2. If a smooth projective plane quartic curve C has three total sextactic points P,Q,∞ with
distinct tangent lines and the mutual conics are all imperfect, then

[mP + nQ − (m + n)∞] , 0,

for any m, n ∈ Z8, which both cannot be zero.

Proof. Since the three total sextactic points P,Q,∞ with distinct tangent lines and the mutual conics
are all imperfect, it follows that (by Lemma 4.3) [4P − 4∞] , 0, [4Q − 4∞] , 0, and [4P − 4Q] , 0
in the Jacobian JC of C. So the order of any of the elements [P −∞], [Q −∞], and [P − Q] in JC is 8.
We vary over m ∈ Z8.

(i) Let m = 0. Then [nQ− n∞] , 0, for any n ∈ Z8\{0}, because the order of [Q −∞] is exactly 8, by
the discussion before Lemma 4.3 and by Lemma 4.3.

(ii) Let m = 4. If n = 1, 3, 5, 7 and [4P + nQ − (n + 4)∞] = 0, then [4P − 4∞] = −n[Q − ∞],
which implies that n[2Q − 2∞] = 0 because [8P − 8∞] = 0. Since [8Q − 8∞] = 0, it follows
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that n[2Q − 2∞] = [2Q − 2∞] = 0 when n = 1, 3, 5, 7, which contradicts the non-hyperellipticity
of C. In a similar manner, if n = 0, 2, 6 and [4P + nQ − (n + 4)∞] = 0, then we have
either [4Q − 4∞] = 0 or [4P − 4∞] = 0, which contradicts Lemma 4.3. Finally, if n = 4, then
[4P+ 4Q− 8∞] , 0. Indeed, let ΛQ and Λ∞ be the sextactic conics to C at Q and∞, respectively.
Then div(ΛQ) = 8Q, div(Λ∞) = 8∞, and therefore the divisor div(Λ∞

ΛQ
) = 8∞ − 8Q is principal on

C. Furthermore, let D1 = 4P−4Q and D2 = 4P+4Q−8∞. Then D1−D2 = div(Λ∞
ΛQ

), so D1 ∼ D2.
Hence, the non-principlity of D1 (by Lemma 4.3) implies the non-principlity of D2.

(iii) Let m = 2. If n = 1, 3, 4, 5, 7 and [2P + nQ − (n + 2)∞] = 0, then we get either [4Q − 4∞] = 0
or [4P − 4∞] = 0 (we get it when n = 4), which contradicts Lemma 4.3. If n = 0, 6 and
[2P + nQ − (n + 2)∞] = 0, then we have either [2P − 2∞] = 0 or [2P − 2Q] = 0 (note that
[2Q− 2∞] = −[6Q− 6∞]), which contradicts the non-hyperellipticity of C. Finally, if n = 2, then
[2P + 2Q − 4∞] , 0. Indeed, the divisor 4P + 4Q − 8∞ is twice the divisor 2P + 2Q − 4∞ and
the class [4P + 4Q − 8∞] does not vanish by (ii), therefore neither can [2P + 2Q − 4∞].

(iv) Let m = 1. By exchanging roles between m and n we find that the cases when n = 2, 4 are
excluded by (ii) and (iii). If n = 0, 7 and [P+ nQ− (n+ 1)∞] = 0, then we get either [P−∞] = 0
or [P − Q] = 0 (note that [Q − ∞] = −[7Q − 7∞]), which contradicts the non-rationality of C. If
n = 3, 5 and [P + nQ − (n + 1)∞] = 0, then we get [4P + 4Q − 8∞] = 0, which is impossible by
(ii). If [P + 6Q − 7∞] = 0, then we get [4P − 4∞] = 0, which contradicts Lemma 4.3. Finally,
if [P + Q − 2∞] = 0, then C is hyperelliptic, which is a contradiction (note too that the class
[2P + 2Q − 4∞] is twice that of [P + Q − 2∞] and the former does not vanish by (iii), so neither
can the latter).

(v) Let m = 3. If n = 1, 3, 5, 7 and [3P+ nQ− (n+ 3)∞] = 0, then we get [4P+ 4Q− 8∞] = 0, which
is a contradiction to (ii). If n = 2, 4, 6 and [3P + nQ − (n + 3)∞] = 0, then we get [4P − 4∞] = 0,
which is impossible by Lemma 4.3. Finally, if n = 0, then [3P − 3∞] = 0, which contradicts the
fact that the order of [P −∞] in JC divides 8.

(vi) Let m = 5. If [5P + nQ − (5 + n)∞] = 0, then −[5P − 5∞] = [nQ − n∞], therefore [3P − 3∞] =
[nQ − n∞], so we can apply the same proof as for the case of m = 3. Similarly, if m = 6 or 7,
we can apply the same proof as in the case of m = 2 or 1, respectively (note, for instance, that
if [7P + 7Q − 14∞] = 0, then we get the same contradiction as in [P + Q − 2∞] = 0 because
[7P − 7∞] = −[P −∞] and [7Q − 7∞] = −[Q −∞]).

□

As a direct consequence of Lemma 5.2 we get:

Theorem 5.3. Let C be a smooth projective plane quartic curve with three total sextactic points. Let G
be the subgroup generated by the images of these total sextactic points in the Jacobian JC of C. Then
G � (Z/8Z)2 if and only if the tangent lines to C at these points are distinct and the mutual conics are
all imperfect.

Let us assume that one of the two generators of G is of order 4 and the other is of order 8.
Geometrically, this occurs if and only if two of these points have the same tangent line to the curve
C and all the possible mutual conics are imperfect, or C has distinct tangent lines at these points and
only one of the mutual conics is perfect. Then, G is a quotient of the group Z/4Z ⊕ Z/8Z. In order
to determine which linear combination of generators can be null in JC, we need to prove Lemma 5.4
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below, but the proof of Lemma 5.4 requires us to remember the definition of Weierstrass points on a
smooth quartic C (non-hyperelliptic curves of genus 3). A point Q ∈ C is a Weierstrass point if there
exists a non-constant rational function on C having a pole of order less than or equal to three at Q and
no poles everywhere else, or equivalently, L(3Q) has at least dimension 2. The Weierstrass points on C
are known to be nothing more than flexes (Vermeulen [3]).

Lemma 5.4. Let C be a smooth projective plane quartic curve with three total sextactic points P,Q,
and∞. If two of these points have the same tangent line to C, say P and∞, and all the possible mutual
conics are imperfect, or the tangent lines to C at these points are distinct and only one of the mutual
conics, say ΞP∞, is perfect, then

[mP + nQ − (m + n)∞] , 0,

for any (m, n) ∈ Z4 × Z8, (m, n) , (0, 0).

Proof. If P and∞ have the same tangent line to C and all the possible mutual conics are imperfect, or
if only the mutual conic ΞP∞ is perfect and the other mutual conics are all imperfect, then in both cases
we find that |[P −∞]| = 4 and |[Q −∞]| = 8 in JC. Similarly to Lemma 5.2, we vary over m ∈ Z4.

(i) Let m = 0. Then [nQ− n∞] , 0, for any n ∈ Z8\{0}, because the order of [Q −∞] in JC is exactly
8.

(ii) Let m = 1. If n = 1, 4, 6 and [P + nQ − (n + 1)∞] = 0, then we have [P + Q − 2∞] = 0,
[2P − 2∞] = 0, [P+∞− 2Q] = 0, respectively, which contradicts the non-hyperellipticity of C.
When n = 0, 7 and [P + nQ − (n + 1)∞] = 0, we get either [P − ∞] = 0 or [P − Q] = 0,
which contradicts the non-rationality of C. If n = 3, 5 and [P + nQ − (n + 1)∞] = 0, we get
[4Q − 4∞] = 0, which contradicts Lemma 4.3. Finally, if [P + 2Q − 3∞] = 0 would imply the
existence of a nonconstant rational function with a pole only at ∞ of order 3 and holomorphic
everywhere else, then the dimension of L(3∞) > 1. So, ∞ is a Weierstass point on C, which is
equivalent to say∞ is a flex point of C, which is a contradiction.

(iii) Let m = 2. If n = 0, 3, 5, 7 and [2P + nQ − (n + 2)∞] = 0, then we get either [2P − 2∞] = 0
or [2Q − 2∞] = 0, which contradicts the non-hyperellipticity of C. If n = 2, 6 and
[2P + nQ − (n + 2)∞] = 0, we get [4Q− 4∞] = 0, which contradicts Lemma 4.3. When n = 1
and [2P + Q − 3∞] = 0, we find that this is impossible because∞ is not a 1-Weierstass point on
C. Finally, if n = 4 and [2P + 4Q − 6∞] = 0 in JC, this implies that [4P + 8Q − 12∞] = 0 in
JC. Therefore, there exists a rational function f on C with div( f ) = 4P + 8Q − 12∞. It is
clear that f ∈ L(12∞) � H0(C, (Ω(1))3(C)) � H0(C,OC(3)). Hence, there exists a cubic E∞ with
div(E∞) = 12∞ on C. This leads to a contradiction by Remark 4.1.

(vi) Let m = 3. If [3P + nQ − (3 + n)∞] = 0, then −[3P − 3∞] = [nQ − n∞], therefore
[P − ∞] = [nQ − n∞], so we can apply a similar proof to case of m = 1.

□

Before giving a summary of the previous results, we want to obtain a geometric interpretation when
the class [2P + 4Q − 6∞] does not vanish in JC. The following lemma helps us to find such a thing.

Lemma 5.5. Let P,Q,R be any points on a smooth quartic curve C and let ∞ be a total sextactic on
C. Then [2P + 2Q + 2R − 6∞] = 0 in the Jacobian JC of C if and only if there exists a conic tangent to
the curve at these 4 points.
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Proof. Suppose that Λ∞ is the sextactic conic at ∞. It is clear that if there exists a conic Λ tangent to
the curve at these 4 points, then div( Λ

Λ∞
) = 2P+2Q+2R+2∞−8∞. Therefore [2P+2Q+2R−6∞] = 0

in JC.
Conversely, suppose that [2P+ 2Q+ 2R− 6∞] = 0, that is, there is an effective divisor in the linear

system associated with 6∞ whose zeros are P,Q, and R, with multiplicity 2. The vector space L(6∞)
is of dimension 4 according to the Riemann-Roch theorem. Up to a suitable choice of the coordinates
in P2, one can assume that ∞ = [1 : 0 : 0], the tangent T∞ at ∞ has the equation: Z = 0, and hence
the sextactic conic Λ∞ at ∞ has the equation: Y2 − XZ = 0. Therefore, a base of L(6∞) is given
by 1, XZ

Y2−XZ ,
YZ

Y2−XZ ,
Z2

Y2−XZ . Hence

L(6∞) =
{
αY2 + βYZ + γXZ + δZ2

Y2 − XZ
: for some constants α, β, γ, δ

}
.

□

Remark 5.6. The relation [2P + 2Q + 2R − 6∞] = [2P + 2Q + 2R + 2∞ − 8∞] = 0 in JC implies
the existence of a rational function f on C with div( f ) = 2P + 2Q + 2R + 2∞ − 8∞. Hence, f ∈
L(8∞) � H0(C, (Ω(1))2(C)) � H0(C,OC(2)). Therefore, the existence of such a function f , implies, in
turn, the existence of a conic Λ with contact order 2 to C at each of P,Q,R, and ∞. This provides us
with another proof of Lemma 5.5.

Returning to our problem, according to Lemma 5.5, we find that the class [2P+ 4Q− 6∞] vanishes
in JC if and only if there exists a conic Λ with div(Λ) = 2P+4Q+2∞. It turns out that either Λ = 2TQ,
where TQ is the tangent to C at Q, so TQ passes through both P and ∞ (and this is impossible by
Corollary 5.1), orΛ is an irreducible, but this conic must coincides with both ΞPQ and Ξ∞Q (by Bezout’s
theorem) and both will be semiperfect (see Remark 3.2). So, as a corollary of Lemma 5.4, one gets the
following.

Corollary 5.7. If a smooth projective plane quartic curve C has three total sextactic points P,Q, and
∞ with distinct tangent lines, then, there are no coincident semiperfect mutual conics among these
points.

Proof. Without loss of generality, assume that ΞPQ and Ξ∞Q are two coincident semiperfect mutual
conics. Then, by definition of semiperfect conics, one has div(ΞPQ) = div(Ξ∞Q) = 4Q + 2P + 2∞.
Hence, there exists a rational function f := ΞPQ

Λ∞
on C, where Λ∞ is the sextactic conic for C at ∞,

satisfying that div( f ) = 2P + 4Q − 6∞. Therefore, [2P+4Q − 6∞] = 0 in JC, which is a contraction
by Lemma 5.4. □

Summing up the above, we can write the following.

Theorem 5.8. Let C be a smooth projective plane quartic curve with three total sextactic points. Let G
be the subgroup generated by the images of these total sextactic points in the Jacobian JC of C. Then
G � Z/4Z ⊕ Z/8Z if and only if C has distinct tangent lines at these points and only one of the mutual
conics is perfect, or two of these points have the same tangent to C and all the possible mutual conics
are imperfect.

Finally, assume that the two generators of G are of order 4. Geometrically, this happens if and
only if the curve C has distinct tangent lines at these points and two (or all) of the mutual conics are

AIMS Mathematics Volume 10, Issue 12, 28221–28242.



28232

perfect, or C has the same tangent line at two of these points and at least one of the mutual conics is
perfect. Then, G is a quotient of the group (Z/4Z)2. Without loss of generality, assume that ΞP∞ and
ΞQ∞ are perfect (note that if, for instance, ΞP∞ and ΞQP are perfect we can exchange roles between P
and ∞), or P and ∞ have the same tangent line to C and ΞQ∞ is perfect. Therefore, in all possibilities,
|[P −∞]| = 4 and |[Q −∞]| = 4 in JC. Also, similar to how Lemmas 5.2 and 5.4 were proved, we can
demonstrate that

{[mP + nQ − (m + n)∞] = 0 | (m, n) ∈ Z4 × Z4, (m, n) , (0, 0)} = ⟨0⟩ .

Perhaps the only case that needs a little clarification is when (m, n) = (2, 2). If [2P + 2Q − 4∞] = 0,
then, as in the proof of Lemma 4.3, there exists f ∈ L(4∞) on C with div( f ) = 2P + 2Q − 4∞. Taking
the rational functions 1 and g∞ =

T 2
∞

Λ∞
as a basis for L(4∞), it follows that f can be written in the form

f = ℓ.1 + g∞ =
T 2
∞ + ℓΛ∞

Λ∞
,

for some constant ℓ ∈ C. It is evident that f has a zero at the point P if and only if ℓ = −g∞ (P) (note
that if C has the same tangent line at P and ∞, then g∞ (P) = 0) but in such a case P is not a zero of
order two due to the assumption that the mutual conic for P with respect to ∞ is perfect, or C has the
same tangent line at P and∞, which is a contradiction.

Theorem 5.9. Let C be a smooth projective plane quartic curve with three total sextactic points. Let G
be the subgroup generated by the images of these total sextactic points in the Jacobian JC of C. Then
G � (Z/4Z)2 if and only if C has distinct tangent lines at these points and two (or all) of the mutual
conics are perfect, or two of these points have the same tangent line to the curve C and at least one of
of the mutual conics is perfect.

As a summary of Theorems 5.3, 5.8, and 5.9, we provide Table 2 in Section 1. Now, we support the
correctness of our results by giving the following examples.

Example 5.10. Following the same notations as in Examples 4.5 and 4.6, it is not hard to see that the

point Q5 =

[
2 −
√

2 :
√

3
√

2 − 4 : 1
]

is a total sextactic point on C. Indeed, the sextactic conic Λ5 and

the tangent line T5 associated to Q5 are

Λ5 = X2 + 4
(√

2 − 1
)

Y2 +
(
6 − 4

√
2
)

Z2 +
(
2
√

2 − 4
)

XZ + 2
√

3
√

2 − 4
(
XY −

√
2YZ

)
,

T5 = X +
√

3
√

2 − 4(
√

2 + 2)Y −
√

2Z.

Using a computer algebra system, such as Maple, one can show that div(Λ5) = 8Q5 and div(T5) ,
div(T1) , div(T3). Let Ξ51 = T

2
1 − g1(Q5)Λ1, g1(Q5) := T

2
1
Λ1

(Q5) = 3 − 2
√

2, be the mutual conic for

Q5 with respect to Q1, and Ξ53 = T
2
3 − g3(Q5)Λ3, g3(Q5) := T

2
3
Λ3

(Q5) = 1, be the mutual conic for Q5

with respect to Q3. Let Ξ31 be the mutual conic for Q3 with respect to Q1 given in Example 4.6. The
intersection divisors of Ξ31, Ξ53, and Ξ51 on C are:

div(Ξ31) = 4Q1 + 2Q3 + R1 + S 1,
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div(Ξ53) = 4Q3 + Q5 + Q6 + W3 + W∞,

div(Ξ51) = 4Q1 + Q5 + Q6 + W1 + W2,

where W1 = [2
√

2 − 2 : 0 : 1], W2 = [0 : 0 : 1], W3 = [1 : 0 : 1], W∞ = [ 1
√

2
: 0 : 0],

Q6 = [2 −
√

2 : −
√

3
√

2 − 4 : 1]. Hence, the mutual conics are all imperfect. Therefore, the subgroup
G4 := ⟨[Q3 − Q1], [Q5 − Q1]⟩ in the Jacobian JC satisfies G4 � (Z/8Z)2. This example supports the
correctness of Theorem 5.3.

Example 5.11. Following the same notations as in Examples 4.5 and 4.6, it is not hard to see that the

point Q4 =

[
√

2 : −
√
√

2 − 2 : 1
]

is a total sextactic points on C. Indeed, the sextactic conic

Λ4 = X2 − 4 Y2 + 2 Z2 − 2
√

2XZ + 2
√

2 −
√

2i
(√

2YZ −
(
1 +
√

2
)

XY
)
,

and the tangent line T4 = −X + i
√

4 − 2
√

2Y +
(
2 −
√

2
)

Z, associated to Q4 on the curve C satisfy

div(Λ4) = 8Q4 and div(T4) , div(T1) , div(T3). Let Ξ34 = T
2
4 −g4 (Q3)Λ4, where g4 (Q3) := T

2
4
Λ4

(Q3) =
2 −
√

2 is the mutual conic for Q3 with respect to Q4, and Ξ41 = T
2
1 − g1 (Q4)Λ1, where g1 (Q4) :=

T 2
1
Λ1

(Q4) = 1
2 (1 − i)

(
2 +
√

2
)

is the mutual conic for Q4 with respect to Q1. Let Ξ31 be the mutual
conic for Q3 with respect to Q1 given in Example 4.6. The intersection divisors of Ξ31, Ξ34, and
Ξ41 on C are given by div(Ξ31) = 4Q1 + 2Q3 + R1 + S 1, div(Ξ34) = 4Q3 + 4Q4, and div(Ξ41) =
4Q1 + 2Q4 + R2 + S 2, where

R2 =

[
−11
√

2 + 16 + 2
√

116 − 82
√

2 : i
(
−3 + 2

√
2
) (
−2 +

√
2 −
√

2
)

: 1
]
,

S 2 =

[
−11
√

2 + 16 − 2
√

116 − 82
√

2 : i
(
−3 + 2

√
2
) (

2 +
√

2 −
√

2
)

: 1
]

.

The mutual conics Ξ31 and Ξ41 are imperfect while Ξ34 is perfect. Therefore, the subgroup G5 :=
⟨[Q3 − Q1] , [Q4 − Q1]⟩ in the Jacobian JC satisfies G5 � Z/4Z ⊕ Z/8Z. This example supports the
validity of one of the possibilities in Theorem 5.8.

Example 5.12. Following the same notations as in Example 4.7, it is not hard to show that the points
P3 =

[
ω : −ω2 : 1

]
and P4 =

[
ω2 : −ω : 1

]
are total sextactic points on K14. Indeed, the sextactic

conic Λi to C at Pi (i = 3, 4) is

Λ3 : X2 − 5YZ + ω(Z2 − 5XY) + ω2(Y2 + 5XZ) = 0,
Λ4 : X2 − 5YZ + ω2(Z2 − 5XY) + ω(Y2 + 5XZ) = 0.

Moreover, the line T34 : X − Y + Z = 0 is bitangent to K14 at P3 and P4. Both Λi and T34 satisfy
div(Λi) = 8Pi and div(T 34) = 2P3 + 2P4. Let us take the point P1 as a base point for the Abel Jacobi
map AP1 : K14 → JK14 . Then, the principal divisor div(T

2
34
Λ4

) implies that 4 [P3 − P4] = 0 in JK14 .

Let Ξ31 = T
2
12 − h1 (P3)Λ1, where h1 (P3) := T 2

12
Λ1

(P3) =
2
(
−1+ 3√

−1
)

5 is the mutual conic for P3 with
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respect to P1. Let Ξ41 = T
2
12 − h1 (P4)Λ2, where h1 (P4) := T 2

12
Λ1

(P4) = 1 − i
√

3 is the mutual conic
for P4 with respect to P1. The intersection divisors of Ξ31 and Ξ41 on K14 are given by div(Ξ31) =
4P1 +P3 +T1 +T2 +T3 and div(Ξ41) = 4P1 +P4 +T4 +T5 +T6, where P1,P3,P4 , T j, j = 1, 2, . . . , 6,
so the mutual conics Ξ31 and Ξ41 are imperfect. Now, replacing the order-eight element [P3 − P1]
by the order-four element [P3 − P4], it follows that the subgroup G6 = ⟨[P3 − P1] , [P4 − P1]⟩ of the
Jacobian JK14 satisfies G6 � Z/4Z ⊕ Z/8Z. This example supports the validity of the other possibility
in Theorem 5.8.

Remark 5.13. The authors have not yet succeeded in constructing an explicit example supporting
Theorem 5.9. It is possible that such an example exists, and they hope future research will provide one.

6. Computational framework and examples of mutual conics

6.1. Algorithms

Here, we provide a set of detailed algorithms that clearly outline the step-by-step computational
procedures used in the examples. Let C ⊂ P2(C) be a smooth projective plane curve of degree d ≥ 3,
defined by the homogeneous polynomial F(X,Y,Z) = 0. Let P ∈ C be a sextactic point and Q ∈ C
another point. We choose an affine open subset of P2(C) containing P and define f (x, y) = F(x, y, 1)
as the affine equation of C in this chart. Let (α, β) and (γ, δ) denote the affine coordinates of the points
P and Q in this chart, respectively. Based on this setup, we now present algorithms for computing the
equations of the tangent line, the sextactic conic to C atP, and the mutual conic forQwith respect toP.

Algorithm 1: Computation of the tangent line TP to C at P

(1) Input: The defining polynomial F(X,Y,Z) and the point P.
(2) Choose the affine chart Z , 0 and define f (x, y) = F(x, y, 1).
(3) Compute the partial derivatives fx and fy of f (x, y) with respect to x and y, respectively.
(4) Evaluate A := fx(α, β) and B := fy(α, β).
(5) Form the affine tangent line at P: tP := A(x − α) + B(y − β) = 0.
(6) Homogenize tP with respect to Z to obtain the projective tangent line:

TP := A(X − αZ) + B(Y − βZ) = 0.

(7) Output: The homogeneous equation of the tangent line TP.

Now we present an algorithm to construct the sextactic conic at the pointP ∈ Cwhich was originally
introduced in Lemma 4 of [6].

Algorithm 2: Computation of the sextactic conic ΛP(X,Y,Z) to C at P

(1) Input: The defining polynomial F(X,Y,Z) and the point P.
(2) In the affine chart Z , 0, define f (x, y) = F(x, y, 1) and translate P to the origin by defining
C′ : h(x, y) = f (x + α, y + β).

(3) Obtain the tangent line at the origin from Algorithm 1: e(x, y) := TP(x + α, y + β, 1).
(4) Consider the tangent conic to C′ at the origin:

r(x, y) := ax2 + bxy + cy2 + e(x, y),
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with unknown coefficients a, b, c.
(5) Eliminate y between r(x, y) = 0 and h(x, y) = 0 (for instance, using the resultant with respect to

y), obtaining a univariate polynomial

k(x) = s2d(a, b, c)x2d + · · · + s2(a, b, c)x2.

(6) Solve the nonlinear system

s5(a, b, c) = 0, s4(a, b, c) = 0, s3(a, b, c) = 0, s2(a, b, c) = 0

for (a, b, c) (unique up to scaling for a sextactic point).
(7) Substitute (a, b, c) into r(x, y), and translate it back to P by setting

ΩP(x, y) := r(x − α, y − β).

(8) Homogenize ΩP(x, y) with respect to Z to obtain the sextactic conic

ΛP(X,Y,Z) = 0.

(9) Output: The homogeneous equation of the sextactic conic ΛP(X,Y,Z).

Before describing the algorithm for computing the mutual conic for the point Q with respect to P,
recall that the function gP(Q) represents the value of the rational function gP =

T 2
P

ΛP
evaluated at the

projective point Q ∈ C. Since TP and ΛP are homogeneous forms of degrees 1 and 2, respectively, for
any nonzero scalar λ ∈ C, we have

T 2
P(λX, λY, λZ) = λ2T 2

P(X,Y,Z), ΛP(λX, λY, λZ) = λ2ΛP(X,Y,Z),

which implies that
T 2
P

ΛP
is homogeneous of zero degree, and therefore invariant under rescaling of

homogeneous coordinates. Hence, gP is a well-defined rational function on C.
In practice, the evaluation at a point Q is performed by dehomogenizing on any affine chart

containing Q, letting Z , 0, so Q = (γ, δ, 1), and computing

gP(Q) =
(TP(γ, δ, 1))2

ΛP(γ, δ, 1)
.

This value is independent of the chosen affine chart due to the degree relation above.

Algorithm 3: Computation of the mutual conic ΞQP for Q with respect to P

(1) Input: The defining polynomial F(X,Y,Z) and the point P and Q.
(2) Compute of the tangent line TP to C at P using Algorithm 1.
(3) Compute the sextactic conic ΛP to C at P using Algorithm 2.

(4) Compute gP(Q) =
(TP(Q))2

ΛP(Q)
.

(5) If gP(Q) , 0, define: ΞQP := T 2
P
− gP(Q)ΛP = 0.

(6) If gP(Q) = 0, define: ΞQP := T 2
P

.
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(7) Output: The homogeneous equation of the mutual conic ΞQP.

Algorithm 4: Computation of the intersection divisor between two smooth projective plane
curves.
Let E ⊂ P2(C) be a smooth projective plane curve of degree n ≥ 1, defined by the homogeneous form
L(X,Y,Z) = 0. We now describe the algorithm for computing the intersection divisor of C and E.

(1) Input: The defining polynomials F(X,Y,Z) and L(X,Y,Z).
(2) Choose an affine chart (typically Z , 0) and set f (x, y) = F(x, y, 1) and l(x, y) = L(x, y, 1).
(3) Compute the resultant R(x) = Res( f , l; y) and factor it as

R(x) = Const.
∏

i

(x − αi)Mi .

Each root αi corresponds to one or more intersection points ofC∩E sharing the same x-coordinate.
(4) For each root αi, simultaneously solve f (αi, y) = 0 and l(αi, y) = 0 for y. Let the corresponding

y-values be βi1, . . . , βik, and record the points (αi, βi j).
(5) Compute the second resultant S (y) = Res( f , l; x) and factor it as

S (y) = Const.
∏

j

(y − βi j)ti j .

(6) For each intersection point (αi, βi j), define the local multiplicity

mi j := min{Mi, ti j}.

(7) Repeat the process using another affine chart (e.g., X , 0 or Y , 0) to identify all points at infinity
(Z = 0) and compute their multiplicities analogously.

(8) Form the intersection divisor
D =

∑
R

mRR,

where the sum extends over all intersection points R := (αi, βi j), including those at infinity, each
counted with multiplicity mR := mi j.

(9) Verify the global consistency:

deg(D) = deg(C) · deg(E) = dn, where deg(D) :=
∑

R

mR.

(10) Output: The intersection divisor D =
∑

R mRR.

6.2. Examples of mutual conic types

This subsection provides representative examples of the mutual conic types introduced in
Definition 3.1, namely the perfect, semiperfect, and ordinary mutual conics. Consider the smooth
projective plane quartic curve defined by:

C : Y4 = (X − Z)
(
X − (−2 + 2

√
2)Z

)
XZ.
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The curve C possesses eight total sextactic points, namely,

Q1 =

[
√

2 :
√

2 −
√

2 : 1
]
, Q5 =

[
2 −
√

2 :
√

3
√

2 − 4 : 1
]
,

Q2 =

[
√

2 : −
√

2 −
√

2 : 1
]
, Q6 =

[
2 −
√

2 : −
√

3
√

2 − 4 : 1
]
,

Q3 =

[
√

2 :
√
√

2 − 2 : 1
]
, Q7 =

[
2 −
√

2 :
√

4 − 3
√

2 : 1
]
,

Q4 =

[
√

2 : −
√
√

2 − 2 : 1
]
, Q8 =

[
2 −
√

2 : −
√

4 − 3
√

2 : 1
]
.

Following Algorithm 1, one can verify that the tangent lines at the points Q j, j = 1, 2, . . . , 8,
respectively, are given by

T1 = X −
√

4 − 2
√

2Y −
(
2 −
√

2
)

Z,T2 = ρ
2(T1), T3 = ρ(T1), T4 = ρ

3(T1),

T5 = X +
√

3
√

2 − 4
(
2 +
√

2
)

Y −
√

2Z,T6 = ρ
2(T5), T7 = ρ(T5), T8 = ρ

3(T5),

where ρ : P2 −→ P2 is a projective change of coordinates defined by ρ ([X : Y : Z]) = [X : iY : Z] ,
i =
√
−1. Using Algorithm 4 (the intersection-divisor algorithm) together with a computer algebra

system (e.g., Maple), one can show that the intersection divisors of the tangents T j on the curve C
satisfy

div (T1) = 2Q1 + U1 + U2, div (T5) = 2Q5 + V1 + V2,

div (T2) = 2Q2 + U3 + U4, div (T6) = 2Q6 + V3 + V4,

div (T3) = 2Q3 + U5 + U6, div (T7) = 2Q7 + V5 + V6,

div (T4) = 2Q4 + U7 + U8, div (T8) = 2Q8 + V7 + V8.

The auxiliary points appearing above may be written as

U1 =
[
α1, β1, 1

]
, U2 =

[
α2, β2, 1

]
, U3 =

[
α1,−β1, 1

]
, U4 =

[
α2,−β2, 1

]
,

U5 =
[
α1, iβ1, 1

]
, U6 =

[
α2, iβ2, 1

]
, U7 =

[
α1,−iβ1, 1

]
, U8 =

[
α2,−iβ2, 1

]
,

V1 =
[
α3, β3, 1

]
, V2 =

[
α4, β4, 1

]
, V3 =

[
α3,−β3, 1

]
, V4 =

[
α4,−β4, 1

]
,

V5 =
[
α3, iβ3, 1

]
, V6 =

[
α4, iβ4, 1

]
, V7 =

[
α3,−iβ3, 1

]
, V8 =

[
α4,−iβ4, 1

]
.

The explicit values of these coordinates are

α1 :=
(
−6
√

2 + 8
) √

2 −
√

2 − 11
√

2 + 16, β1 :=
(
2
√

2 − 3
) (√

2 −
√

2 + 2
)
,

α2 :=
(
6
√

2 − 8
) √

2 −
√

2 − 11
√

2 + 16, β2 :=
(
2
√

2 − 3
) (√

2 −
√

2 − 2
)
,

α3 := −2
√

1 +
√

2
(
2 +
√

2
) √
−4 + 3

√
2 + 3

√
2 + 2, β3 := − 3

√
2
√

6
√

2−8
2 −2

√
6
√

2 − 8 +2
√

1 +
√

2,

α4 := 2
√

1 +
√

2
(
2 +
√

2
) √
−4 + 3

√
2 + 3

√
2+2, β4 := − 3

√
2
√

6
√

2−8
2 −2

√
6
√

2 − 8 − 2
√

1 +
√

2.

The equations of the sextactic conics Λ j associated with each Q j are obtained using Algorithm 2.
They are given by

Λ1 = X2 + 4 Y2 + 2 Z2 − 2
√

2XZ + 2
√

4 − 2
√

2YZ + 2
√

2 −
√

2
(√

2YZ −
(√

2 + 1
)

XY
)
,
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Λ5 = X2 + 4
(√

2 − 1
)

Y2 + 2
(√

2 − 2
)

XZ + 2
(
3 − 2

√
2
)

Z2 + 2
√

3
√

2 − 4
(
XY −

√
2YZ

)
,

Λ2 = ρ
2(Λ1), Λ3 = ρ(Λ1), Λ4 = ρ

3(Λ1), Λ6 = ρ
2(Λ5), Λ7 = ρ(Λ5), Λ8 = ρ

3(Λ5).

Let Ξi j := T 2
j − g j (Qi)Λ j, where g j (Qi) :=

T 2
j

Λ j
(Qi) is the mutual conic for Qi with respect to

Q j. By applying Algorithm 3 to construct the mutual conics Ξi j and Algorithm 4 to compute their
corresponding intersection divisors with C, we obtain the divisors div (Ξi j). These divisors naturally
classify the mutual conics into perfect, semiperfect, and ordinary types, as summarized in table below.

No. Ξi j g j (Qi) div (Ξi j) Type

1 Ξ21 2 −
√

2 4Q1+4Q2 Perfect
2 Ξ31 u1 4Q1+2Q3+R1+S 1 Semiperfect
3 Ξ41 u2 4Q1+2Q4+R2+S 2 Semiperfect

4 Ξ51 3 − 2
√

2 4Q1+Q5+Q6+W1+W2 Ordinary

5 Ξ61 3 − 2
√

2 4Q1+Q5+Q6+W1+W2 Ordinary
6 Ξ71 1 4Q1+Q7+Q8+W3+W∞ Ordinary
7 Ξ81 1 4Q1+Q7+Q8+W3+W∞ Ordinary

8 Ξ12 2 −
√

2 4Q1+4Q2 Perfect
9 Ξ32 u2 4Q2+2Q3+R1+S 1 Semiperfect
10 Ξ42 u1 4Q2+2Q4+R2+S 2 Semiperfect

11 Ξ52 3 − 2
√

2 4Q2+Q5+Q6+W1+W2 Ordinary

12 Ξ62 3 − 2
√

2 4Q2+Q5+Q6+W1+W2 Ordinary
13 Ξ72 1 4Q2+Q7+Q8+W3+W∞ Ordinary
14 Ξ82 1 4Q2+Q7+Q8+W3+W∞ Ordinary
15 Ξ13 u2 4Q3+2Q1+R3+S 3 Semiperfect
16 Ξ23 u1 4Q3+2Q2+R4+S 4 Semiperfect

17 Ξ43 2 −
√

2 4Q3+4Q4 Perfect
18 Ξ53 1 4Q3+Q5+Q6+W3+W∞ Ordinary
19 Ξ63 1 4Q3+Q5+Q6+W3+W∞ Ordinary

20 Ξ73 3 − 2
√

2 4Q3+Q7+Q8+W1+W2 Ordinary

21 Ξ83 3 − 2
√

2 4Q3+Q7+Q8+W1+W2 Ordinary
22 Ξ14 u1 4Q4+2Q1+R3+S 3 Semiperfect
23 Ξ24 u2 4Q3+2Q2+R4+S 4 Semiperfect

24 Ξ34 2 −
√

2 4Q3+4Q4 Perfect
25 Ξ54 1 4Q4+Q5+Q6+W3+W∞ Ordinary
26 Ξ64 1 4Q4+Q5+Q6+W3+W∞ Ordinary

27 Ξ74 3 − 2
√

2 4Q4+Q7+Q7+W1+W2 Ordinary

28 Ξ84 3 − 2
√

2 4Q4+Q7+Q7+W1+W2 Ordinary
29 Ξ15 1 4Q5+Q1+Q2+W3+W∞ Ordinary
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No. Ξi j g j (Qi) div (Ξi j) Type

30 Ξ25 1 4Q5+Q1+Q2+W3+W∞ Ordinary

31 Ξ35 3 + 2
√

2 4Q5+Q3+Q4+W1+W2 Ordinary

32 Ξ45 3 + 2
√

2 4Q5+Q3+Q4+W1+W2 Ordinary

33 Ξ65 2+
√

2 4Q5+4Q4 Perfect

34 Ξ75 1 + i + 4√
−1 4Q5+2Q7+M1+N1 Semiperfect

35 Ξ85 u4 4Q5+2Q8+M2+N2 Semiperfect
36 Ξ16 1 4Q6+Q1+Q2+W3+W∞ Ordinary
37 Ξ26 1 4Q6+Q1+Q2+W3+W∞ Ordinary

38 Ξ36 3 + 2
√

2 4Q6+Q3+Q4+W1+W2 Ordinary

39 Ξ46 3 + 2
√

2 4Q6+Q3+Q4+W1+W2 Ordinary

40 Ξ56 2 +
√

2 4Q5+4Q6 Perfect
41 Ξ76 u3 4Q6+2Q7+M1+N1 Semiperfect

42 Ξ86 1 + i + 4√
−1 4Q6+2Q8+M2+N2 Semiperfect

43 Ξ17 3 + 2
√

2 4Q7+Q1+Q2+W1+W2 Ordinary

44 Ξ27 3 + 2
√

2 4Q7+Q1+Q2+W1+W2 Ordinary
45 Ξ37 1 4Q7+Q3+Q4+W3+W∞ Ordinary
46 Ξ47 1 4Q7+Q3+Q4+W3+W∞ Ordinary
47 Ξ57 u3 4Q7+2Q5+M3+N3 Semiperfect

48 Ξ67 1 + i + 4√
−1 4Q7+2Q6+M4+N4 Semiperfect

49 Ξ87 2 +
√

2 4Q7+4Q8 Perfect

50 Ξ18 3 + 2
√

2 4Q8+Q1+Q2+W1+W2 Ordinary

51 Ξ28 3 + 2
√

2 4Q8+Q1+Q2+W1+W2 Ordinary
52 Ξ38 1 4Q8+Q3+Q4+W3+W∞ Ordinary
53 Ξ48 1 4Q8+Q3+Q4+W3+W∞ Ordinary

54 Ξ58 1 + i + 4√
−1 4Q7+2Q5+M3+N3 Semiperfect

55 Ξ68 u3 4Q8+2Q6+M4+N4 Semiperfect

56 Ξ78 2 +
√

2 4Q7+4Q8 Perfect

where

W1 =
[
−2 + 2

√
2 : 0 : 1

]
, W2 = [0 : 0 : 1] , W3 = [1 : 0 : 1] , W∞ =

[
1
√

2
: 0 : 0

]
,

R1 =
[
α: −iβ : 1

]
, S 1 =

[
γ: −iδ : 1

]
, M1 = [ζ : −iη : 1], N1 = [λ : −iµ : 1],

R2 =
[
α : iβ : 1

]
, S 2 =

[
γ : iδ : 1

]
, M2 = [ζ : iη : 1], N2 = [λ : iµ : 1],

R3 =
[
α : −β : 1

]
, S 3 =

[
γ : −δ : 1

]
, M3 =

[
ζ : −η : 1

]
, N3 =

[
λ : −µ : 1

]
,

R4 =
[
α : β : 1

]
, S 4 =

[
γ : δ : 1

]
, M4 =

[
ζ : η : 1

]
, N4 =

[
λ : µ : 1

]
.
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The explicit values of these coordinates are

u1 =
1
2 (1 + i)

(
2 −
√

2
)
, γ = −11

√
2 + 16 − 2

√
116 − 82

√
2,

u2 =
1
2 (1 − i)

(
2 −
√

2
)
, δ =

(
−3 + 2

√
2
) (

2 +
√

2 −
√

2
)
,

u3 =
1
2 (1 − i)

(
2 +
√

2
)
, ζ = 3

√
2 + 2 − 2

√
4 + 2

√
2,

u4 = 1 + 1
√

2
− i
√

2

(√
3 + 2

√
2
)
, η =

√
8 + 7

√
2 − 4

√
10 + 7

√
2,

α = −11
√

2 + 16 + 2
√

116 − 82
√

2, λ = 3
√

2 + 2 + 2
√

4 + 2
√

2,

β =
(
−3 + 2

√
2
) (
−2 +

√
2 −
√

2
)
, µ = −2

√
√

2 + 1 −
√

4 + 3
√

2.

7. Future work

The following lemma will be useful for any future work studying groups generated by four total
sextactic points of smooth quartic curves.

Lemma 7.1. Let C be a smooth projective plane quartic curve with three total sextactic points. If these
points are collinear, then the fourth point of intersection to C is either a total sextactic point or a 2-flex
point.

Proof. Suppose that P,Q, and ∞ are total sextactic points of the curve C, and they lie on a line L.
Assume that the intersection divisor of L cut out on C is defined to be div(L) = P + Q +∞ + R, where
R ∈ C \ {P,Q,∞}. Taking ∞ as a base point of the Jacobian embedding, let Λ∞ be the quadratic form
defining the sextactic conic to C at∞. Then, div(Λ∞) = 8∞. We have a relation in JC of the form

[div
L2

Λ∞
] = [2P + 2Q + 2R − 6∞] = 0.

Multiplying this relation by 4, we get [8R − 8∞] = 0.Note thatΛ∞ ∈ H0(C,OC(2)) � H0(C, (Ω(1))2(C)).
The relation [8R − 8∞] = 0 implies the existence of a conic Λ with a contact order of 8 to C at R. It
turns out that either Λ = 2TR, and then R is a 2-flex and TR is the tangent to C at R, or the conic Λ is
irreducible, in which case R is a total sextactic point and Λ is the sextactic conic to C at R. □

In Examples 4.5 and 4.6, it is clear that the pointsQ1,Q2, andQ3 are collinear. Indeed, they lie on the

line L := X−
√

2Z. This line L intersects the curve C once more at the pointQ4 =

[
√

2 : −
√
√

2 − 2 : 1
]

which is a total sextactic point on C (see Example 5.11). We also have the following interesting
example when the fourth intersection point is a 2-flex point.

Example 7.2. Let ℧ be the smooth Picard quartic curve defined by

℧ : Y3Z = X4 − b X2Z2 − Z4;

b = i
√

9 − 3
√

3. It is not hard to show that the points Q1 = [0 : −1 : 1] , Q2 =
[
0 : ζ : 1

]
, and

Q3 =
[
0 : −ζ2 : 1

]
, where ζ = e

πi
3 , are total sextactic points on ℧. We note that the distinct lines

T1 = Y + Z, T2 = 2Y −
(
1 + i

√
3
)

Z, and T3 = 2Y −
(
1 − i

√
3
)

Z
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are the tangent lines to ℧ at Q1,Q2, and Q3, respectively. The equations of the sextactic conics Λi

associated to Qi (i = 1, 2, 3) are

Λ1 = −6X2 − b Y2 +
(√

3 + 1
)

bYZ +
(√

3 + 2
)

b Z2 ,

Λ2 = −6X2 + ζb Y2 + ζ2
(
1 +
√

3
)

bYZ −
(√

3 + 2
)

ibZ2, and

Λ3 = 6X2 + ζ2bY2 + ζ
(
1 +
√

3
)

bYZ −
(√

3 + 2
)

bZ2.

Using any of computer algebra systems (like Maple), one can show that the conics Λi on the curve

℧ satisfy that div(Λi) = 8Qi. Let Ξ21 = T
2
1 − g1 (Q2)Λ1, where g1 (Q2) := T 2

1
Λ1

(Q2) = − 4
√
√

3−2
54 is the

mutual conic for Q2 with respect to Q1. Let Ξ31 = T
2
1 −g1 (Q3)Λ1, where g1 (Q3) := T

2
1
Λ1

(Q3) = i 4
√
√

3−2
54

is the mutual conic for Q3 with respect to Q1. Let Ξ32 = T
2
2 − g2 (Q3)Λ2, where g2 (Q3) := T

2
2
Λ2

(Q3) =
− 4i

b(2+i+
√

3) is the mutual conic for Q3 with respect to Q2. The intersection divisors of Ξ21, Ξ31, and Ξ32

on ℧ are given by div(Ξ21) = 4Q1 + 2Q2 + N1 + N2, div(Ξ31) = 4Q1 + 2Q3 + N3 + N4, and div(Ξ32) =
4Q2 + 2Q3 + N5 + N6, where Ni ∈ ℧ \ {Q1,Q2,Q3} for i = 1, 2, . . . , 6. Hence, the mutual conics are
all imperfect. Therefore, the subgroup G := ⟨[Q2 − Q1] , [Q3 − Q1]⟩ in the Jacobian J℧, under the
Abel Jacobi map AQ1 : ℧ → J℧, satisfies G � (Z/8Z)2. This example supports the correctness of
Theorem 5.3, but also we note that the three total sextactic points Q1,Q2, and Q3 on the curve ℧ are
colinear. Indeed, they lie on the line X = 0 and it is not hard to see that its fourth intersection point
with the curve ℧, namely Q4 = [0 : 1 : 0], is a 2-flex point on ℧.

Remark 7.3. As a promising direction for future work, the authors note that the Jacobian matrix also
plays a role in the study of chaotic systems (see [12]).

8. Conclusions

In this paper, we introduced the concept of the mutual conic as a geometric tool to understand how
total sextactic points relate to each other on smooth plane quartic curves. This tool made it possible to
give a complete classification of the groups generated by two or three such points in the Jacobian. What
we found is that the structure of these groups is fully determined by simple geometric features—mainly
the behavior of the tangent lines and the nature of the mutual conics between the points.

Our classifications show exactly which subgroup appears in each geometric situation, and the
examples throughout the paper illustrate these possibilities in a concrete and transparent way. Overall,
the results indicate that the mutual conic is a natural and powerful invariant for studying higher-
order contact phenomena on quartic curves. We expect that this perspective will be useful in further
investigations—particularly those involving larger collections of total sextactic points or related higher-
order Weierstrass loci—opening the door to new classifications and deeper structural understanding.
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