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Abstract: This paper presents an advanced control strategy to suppress nonlinear vibrations in a 

vertical conveyor system subjected to simultaneous resonance. Vertical conveyors play a crucial role 

in industrial applications, where stability and continuous performance are essential. However, 

excessive vibrations can reduce efficiency, cause mechanical fatigue, and increase maintenance costs. 

To describe the dynamics, the system is modeled as a multi-degree-of-freedom cantilever beam with 

quadratic and cubic nonlinearities under external harmonic excitations. These nonlinearities 

introduce complex behaviors, especially when internal and external resonances interact. Previous 

studies have analyzed the system using the multiple scale perturbation technique (MSPT) to 

investigate dynamic responses and resonance conditions. While this approach provides valuable 

insights, controlling nonlinear vibrations requires more effective strategies than conventional 

controllers. In this work, we propose a nonlinear integral negative derivative feedback (NINDF) 

controller, which combines first-order and second-order filters. This structure enhances stability 
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margins, improves robustness, and ensures better vibration suppression during critical resonance 

states. Analytical solutions were derived via MSPT, and system stability was assessed using the 

Routh-Hurwitz criterion. Additionally, the system equations were integrated using the classical 

fourth-order Runge-Kutta (RK4) method, which provides reliable accuracy for short-term transient 

simulations. However, RK4 does not inherently preserve the geometric invariants (e.g., energy and 

phase-space structure) that are significant in nonlinear systems exhibiting internal resonance. Results 

demonstrate that the NINDF controller effectively reduces vibration amplitudes, particularly under 

1:1 internal resonance, and achieves superior performance compared to traditional feedback methods. 

Hence, the proposed control strategy offers a practical and reliable tool for mitigating nonlinear 

vibrations in engineering systems exposed to demanding dynamic environments. 

Keywords: vertical conveyor; NINDF; MSPT; simultaneous resonance; nonlinear vibration; stability 

analysis; negative feedback control 

Mathematics Subject Classification: 34C15, 34C46, 34F15, 74G10, 70H03 

 

1. Introduction 

In recent years, the study of nonlinear vibrations in engineering structures has received increasing 

attention due to their significant impact on dynamic performance and structural stability. Vertical 

conveyor systems and cantilever-type configurations are widely used in mechanical, aerospace, and 

civil engineering because they can carry loads without intermediate supports. However, these systems 

often exhibit complex vibration phenomena, particularly under harmonic and parametric 

excitations [1–3]. To analyze such behaviors, multi-scale perturbation methods have been extensively 

employed to investigate primary, subharmonic, and superharmonic responses, while mathematical 

software has facilitated the evaluation of motion parameters and stability conditions [4]. Nonlinear 

dynamic models incorporating quadratic and cubic nonlinearities are commonly adopted for vertical 

conveyor systems, often treated as multi-degree-of-freedom (MDOF) structures. Bauomy and 

El-Sayed [5] studied a 2-DOF nonlinear vertical conveyor subjected to dual-frequency excitation 

using the multiple-scales perturbation technique (MSPT), revealing strong interactions between 

internal and external resonances. Their work was later extended to a 4-DOF configuration [6], where 

positive position feedback (PPF) controllers were implemented for vibration suppression. Although 

PPF was effective for primary resonance, it lacked robustness under simultaneous resonance 

conditions. Amer et al. [7] further examined dual-resonance behaviors and proposed saturation-based 

absorbers, which reduced large-amplitude responses but only within limited parameter ranges. 

Nonlinear oscillators excited by harmonic or parametric forces, such as Rayleigh- and Duffing-type 

systems, have also been investigated for bifurcation and stability characteristics [8–10]. The 

coexistence of internal and external resonances has motivated the development of more advanced 

control strategies. Asymptotic solutions for cantilever beams with lumped masses have been derived 

using the homotopy analysis method (HAM) and the differential transformation method 

(DTM) [11,12]. Meanwhile, traditional approaches such as negative derivative feedback (NDF) [13], 

integral resonant control (IRC) [14], and saturation-based absorbers [7] suffer from limited 

adaptability and robustness. For instance, Shen et al. [15] demonstrated that self-excited oscillations in 

unforced systems require more sophisticated suppression mechanisms than linear damping, while 
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other studies [16,17] showed that time-delayed PPF controllers for Rayleigh-Van der Pol-Duffing 

oscillators are highly sensitive to delay and loop gain. To address these challenges, a hybrid control 

strategy—the nonlinear integral-negative derivative feedback (NINDF) controller—has been 

introduced. The method integrates a first-order filter for damping regulation with a second-order filter 

for energy redistribution at resonance, providing an adaptive solution for nonlinear vibration 

control [18,19]. This research investigates various approaches to vibration control and performance 

enhancement in engineering systems. The first study analyzes the impact of proportional derivative 

control on reducing vibrations and improving the performance of permanent magnet synchronous 

motors. The second study applies a negative derivative feedback controller to mitigate vibrations in a 

hybrid Rayleigh-Van der Pol-Duffing oscillator, enhancing system stability in nonlinear environments. 

The third paper examines model predictive torque control for a multilevel power converter in 

four-phase switched reluctance motors, aiming to optimize dynamic performance and efficiency. 

Finally, the fourth study explores the size-dependent vibrations in laminated functionally graded 

curved beams with piezoelectric layers, providing insights into vibration behavior and contributing to 

the design optimization of such materials [20–24]. 

In this study, a novel NINDF controller is developed and implemented for a 2-DOF nonlinear 

vertical conveyor system exhibiting 1:1 internal resonance. The controller aims to suppress complex 

vibratory interactions and enhance system stability under simultaneous resonance conditions. The 

governing nonlinear equations are formulated, and analytical solutions are derived via the multiple 

scales perturbation technique (MSPT). The frequency response equations (FREs) and stability 

domains are determined using the Routh–Hurwitz criterion, while numerical simulations based on the 

fourth-order Runge-Kutta method confirm the analytical outcomes. Comparative evaluations against 

established controllers demonstrate the superior damping efficiency and robustness of the proposed 

NINDF strategy. Unlike conventional schemes, the NINDF controller achieves rapid attenuation of 

oscillations and sustained stability even under strong nonlinear coupling. By integrating the 

resonance-compensation capability of IRC with the inherent damping strength of NDF, it provides a 

more adaptive and resilient control framework. These findings establish NINDF as a highly effective 

approach for advanced nonlinear vibration suppression in multi-resonant mechanical systems. 

This paper is organized as follows: The Abstract summarizes the study’s aim, methods, and key 

findings on vibration suppression using the NINDF controller. Section 1 (Introduction) reviews 

nonlinear vibration challenges and motivates the proposed control approach. Section 2 (Formulation of 

the problem) presents the nonlinear multi-degree-of-freedom model and control equations. Section 3 

(Mathematical analysis) applies the multiple scales perturbation technique to derive analytical 

solutions and resonance conditions. Section 4 (Stability analysis) uses the Routh-Hurwitz criterion and 

eigenvalue analysis to assess system stability. Section 5 (Results and discussion) provides numerical 

simulations based on RK4, illustrating the system’s behavior before and after control. Section 6 

(Comparative study) compares NINDF performance with PD, PPF, and NSC controllers, while 

Section 7 (Numerical accuracy discussion) evaluates RK4 against symplectic methods. Finally, 

Section 8 (Conclusion) highlights the controller’s effectiveness and suggests structure-preserving 

schemes for future work, with detailed derivations and supplementary data included in the appendices. 

All used parameters in Eqs (1)–(6) listed in Table 1. 
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Table 1. Used symbols. 

, ,z z z  , ,    Displacements, velocities, and accelerations of the mean system. 

, ,u u u  , ,v v v  Displacements, velocities, and accelerations of the controller. 

,p p  ,q q  Dimensionless motion and velocities of the controller. 

1f  
2f  Amplitude of external forces. 

1 2,   
3 4,   Natural frequencies of the main system and controller, respectively. 

1 2,   
3 4,   Nonlinear stiffness coefficients (quadratic and cubic). 

1 2,   
3 4,   Excitation frequencies. 

1 2 3 4, , ,     
1 2 3 4, , ,     Dimensionless control and feedback signal gains, respectively. 

1  
2  Damping coefficients for ,z  . 

1  2  Damping coefficients for ,u v . 

1  
2  Lossy integrator’s frequency coefficient for ,p q . 

    Small perturbation parameter ( )1  . 

2. Formulation of the problem 

Figure 1(a) depicts the vibrating model of a vertical shaking conveyor, as provided in [3], where 

the model is subjected to many harmonic excitations. We create the block diagram for the simulation 

of this model, as shown below. 

 

(a) 

 

(b) 

Figure 1. (a) Vertical shaking conveyor schematic diagram; (b) Closed-loop control 

system of the vertical shaking conveyor. 
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The equations of motion governing the model in non-dimensional form [3] were adjusted as 

follows: 

2 2 3

1 1 1 2 1 1 1 1 22 (cos sin ) ,z z z z z f t t u p      + + + + =  +  + +             (1) 

2 2 3

3 2 3 4 2 2 2 1 22 (cos sin ) .f t t v q         + + + + =  +  + +            (2) 

We will use the NINDF controller. It combines two types of controls: IRC control and NDF 

control. These work together to suppress the vibrations of the investigated system as follows: 

2

2 1 3 ,u u u z  + + = −                              (3) 

2

4 2 3 ,v v v  + + = −                              (4) 

1 4 ,p p z + =                                 (5) 

2 4 .q q + =                                 (6) 

3. Mathematical analysis 

For Eqs (1)–(6), an approximate analytical solution is obtained independently using the multiple 

scales method [25,26]. We are looking for a first-order expansion in the form 

2

0 0 1 1 0 1

2

0 0 1 1 0 1

2

0 0 1 1 0 1

2

0 0 1 1 0 1

2

0 0 1 1 0 1

2

0 0 1 1 0 1

( , ) ( , ) ( , ) ( )

( , ) ( , ) ( , ) ( )

( , ) ( , ) ( , ) ( )

( , ) ( , ) ( , ) ( )

( , ) ( , ) ( , ) ( )

( , ) ( , ) ( , ) ( )

z t z T T z T T o

t T T T T o

u t u T T u T T o

v t v T T v T T o

p t p T T p T T o

q t q T T q T T o

  

    

  

  

  

  

= + +

= + +

= + +


= + +

= + +

= + +












.                      (7) 

Derivatives can be written as follows: 

0 1 ...
d

D D
dt

= + +                                 (8) 

2
2

0 0 12
2 ...

d
D D D

dt
= + +                              (9) 
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Let us introduce the derivatives and the two time scales for the first-order approximation, where 
n

nT t= and , ( 0,1)n

n

D n
T


= =


. Substituting Eqs (7)–(9) into Eqs (1)–(6) and equating coefficients of 

like powers , we obtain: 

0( ) :o                            

2 2

0 1 0

2 2

0 3 0

2 2

0 2 0

2 2

0 4 0

0 1 0 4 0

0 2 0 4 0

( ) 0

( ) 0

( ) 0

( ) 0

( )

( )

D z

D

D u

D v

D p z

D q



 





 

 

+ =


+ = 


+ = 


+ = 
+ =

+ = 

,                              (10) 

1( ) :o   

2 2 2 3

0 1 1 1 0 0 1 0 0 1 0 2 0 1 1 1 1 0 0 2 0

2 2 2 3

0 3 1 1 0 0 2 0 0 3 0 4 0 2 2 2 1 0 0 2 0

2 2

0 2 1 1 0 0 1 0 0 3 0 0

2 2

0 4 1 1 0 0 2

( ) 2 2 (cos sin )

( ) 2 2 (cos sin )

( ) 2

( ) 2

D z D D z D z z z f t t D u p

D D D D f t t D v q

D u D D u D u D z

D v D D v D

      

          

  

 

+ = − − − − +  +  + +

+ = − − − − +  +  + +

+ = − − −

+ = − − 0 0 3 0 0

0 1 1 4 1 1 0

0 2 1 4 1 1 0

( )

( )

v D

D p z D p

D q D q

 

 

 








− 
+ = −

+ = − 

. (11) 

We write the solutions to Eq (10) in the form: 

1 0 1 0

2 0 2 0

3 0 3 0

4 0 4 0

1 0 1 0

3 0 2 0

0 0 1

0 0 1

0 0 1

0 0 1

1 1
0 0 1 4 12 2

1 1

2 3
0 0 1 4 22 2

2 3

( , )

( , )

( , )

( , )

( , ) . .

( , ) . .

i T i T

i T i T

i T i T

i T i T

i T T

i T T

z T T Ae Ae

T T Ee Ee

u T T Ce Ce

v T T Ye Ye

i
p T T Ae Q e c c

i
q T T Ee Q e c c

 

 

 

 

 

 



 


 

 


 

−

−

−

−

−

−

= +


= + 

= +

= +


−
= + +

+

−
= + +

+












,                     (12) 

where , , ,A E C Y  are complex functions in 1T , and 
1 2,Q Q  are constants of integration resulting from 

the values  of each 0 0,p q . By substituting Eq (12) into Eq (11), we obtain the following: 

1 0

1 0 1 0 2 0 1 0 1 0

3 0

2 2 2 1 1
0 1 1 1 1 1 1 2 2 4 2 2

1 1

2 32 3 1
1 2 2 1

2 2 2 2 3
0 3 1 1 3 2 3 4 2 4 2 2

2 3

2

3

( ) ( 2 2 3 )

( 2 ) ( ) . .
2

( ) ( 2 2 3 )

(

i T

i T i T i T i T i T

i T

i
D z iD A i A A A A e

f
A e AA A e i ce e ie c c

i
D iD E i E E E E e

E e



  



 
      

 

   

 
       

 



 

−
+ = − − − + +

+

− + − + + − +

−
+ = − − − +

+

− 3 0 3 0 4 0 2 0 2 0

2 0 1 0

4 0 3 0

2 33 2
4 4 1

2 2

0 2 1 2 1 2 1 1 3

2 2

0 4 1 4 1 4 2 3 3

2 ) ( ) . .
2

( ) ( 2 ) . .

( ) ( 2 ) . .

i T i T i T i T i T

i T i T

i T i T

f
EE E e i Ye e ie c c

D u i D c i c e i Ae c c

D v i D Y i Y e i Ee c c

  

 

 

  

     

     

 












+ − + + − + 


+ = − − − + 


+ = − − − + 

.         (13) 
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After eliminating all secular terms in Eq (13), 
1 1 1 1 1, , , ,z u v p , and 

1q  take the following 

forms: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1 0 1 0 2 0 1 0 1 0

3 0 3 0 4 0 2 0 2 0

1 0

3 0

2 3

1 0 1 1 1 2 1 3 1 4 1 5 1

2 3

1 0 1 1 1 2 1 3 1 4 1 5 1

1 0 1 6 1

1 0 1 6 1

1 0

, ( ) . .

( , ) ( ) . .

, . .

, . .

,

i T i T i T i T i T

i T i T i T i T i T

i T

i T

z T T N T e N T N T e N T e N T e ie c c

T T L T e L T L T e L T e L T e ie c c

u T T N T e c c

v T T L T e c c

p T T

  

  







 

 

= + + + + − +

= + + + + − +

= +

= +

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 0 1 0 2 0

1 0 1 0 1 0 1 0

3 0 3 0 4 0

2 0 2 0 3 0 2 0

2 3

1 7 1 8 1 9 1 10 1

11 1 12 1 13 1 1

2 3

1 0 1 7 1 8 1 9 1 10 1

11 1 12 1 13 1 1

( )) ( ) . .

,

( )) (

i T i T i T

i T i T i T T

i T i T i T

i T i T i T T

N T e N T e N T N T e

N T e ie N T e N T e g T c c

q T T L T e L T e L T L T e

L T e ie L T e L T e m T

  

 

  

 

  −

  −

= + + + +

− + + + +

= + + +

+ − + + + ) . .c c














+ 

   (14) 

where ,i iL N and 1,2,...,13i =  appear in Appendix A. The complex conjugate components are 

gathered under the symbol c.c. From Eq (13), we can list all resonance cases, which might be stated as: 

a. Primary resonance case , 1, 2i i i = = ; 

b. Internal resonance case , 3,4j i j = = ; 

c. Simultaneous resonance case: any combination of the two previous cases. 

4. Periodic solutions 

Simultaneous resonance is the worst type of resonance: 
1 1 2 2,  =  = and 1 3 2 4,   = = . 

In order to discuss the conditions of the solution, the tuning parameters of equations 1 and 2  are 

identified as follows: 

1 1 1 2 1 2, .     = + = +                            (15) 

When Eq (15) is added to Eq (13), the solvability conditions take the following forms: 

2 1 1 1 1 1

3 1 3 14 1

2 1

2 1 1 1
1 1 1 1 2 2 4 2 12 2

1 1

2 2 3 2
3 1 2 3 4 2 4 4 12 2

2 3

2 1 2 1 1 3

4 1 4 3

2 2 3 ( ) 0
2

2 2 3 ( ) 0
2

2 0

2

i T i T i T

i T i Ti T

i T

i f
i D A i A A A A i Ce e ie

i f
i D E i E E E E i Ye e ie

i D C i C i Ae

i D Y i Y

  

 



 
       

 

 
       

 

    

  

−

−
− − − + + + − =

+

−
− − − + + + − =

+

− − − =

− − 4 1

3 3 0
i T

i Ee
  −










− = 

.   (16) 

Putting , ,A C H , and Y  in the polar form, it appears as follows: 
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1 1 2 1

1 2

3 1 4 1

3 4

( ) ( )

1 1 1 1

1 1 1 2

( ) ( )

1 1 1 1

1 3 1 4

1 1
( ) ( ) , ( ) ( ) ,

2 2

1 1
( ) , ( ) ,

2 2

1 1
( ) ( ) , ( ) ( ) ,

2 2

1 1
( ) , ( ) ,

2 2

i T i T

i i

i T i T

i i

A T a T e C T c T e

D A a ia e D C c ic e

H T h T e Y T y T e

D H h ih e D Y y iy e

 

 

 

 

 

 


= = 


= + = +


= =


= + = +


                  (17) 

where 1 2 3, ,   , and 4  are the motion phases. The steady-state amplitudes of the system and 

controller motion are presented as , ,a c h , and y , respectively. 

The following amplitude-phase modulating equations are obtained by converting Eq (17) into Eq 

(16), while taking 
2 2 1 1 2    = − + −  and 

4 4 3 3 4    = − + −  into consideration: 

( )

( )

2 4 2 1
1 1 2 1 12 2

1 1 1 1

3 2 4 1 2 1
1 1 2 1 2 1 12 2

1 1 1 1 1 1

1 1
cos sin cos ,

2 2 2

3 1
sin cos sin ,

8 2 2 2

f
a a a c

f
a a a a c

  
    

   

   
      

     


= − − + + − + 


= − + − + +
+ 

      (18) 

( )

( )

2 4 4 2
2 1 4 3 32 2

2 3 3 3

3 2 4 2 4 2
3 3 4 1 4 3 32 2

3 3 2 3 2 3

1 1
cos sin cos ,

2 2 2

3 1
sin cos sin ,

8 2 2 2

f
h h h y

f
h h h h y

  
    

   

   
      

     


= − − + + − + 


= − + − + +
+ 

      (19) 

( )

1
1 3 2

2

2
21 2 4 1 2 1

2 3 2 2 1 2 1 1 22 2

2 1 1 1 1 1 1

1 1
cos ,

2 2

1 3 1
sin sin cos sin ,

2 8 2 2 2

c c a

cfc
c a a c c c

a a


  



    
        

      


= − − 



= − + − + + +
+ 

(20) 

( )

3
2 3 4

4

2
23 2 4 2 4 2

4 3 4 4 1 4 3 3 42 2

4 3 3 2 3 2 3

1 1
cos ,

2 2

1 3 1
sin sin cos sin ,

2 8 2 2 2

y y h

yfy
y h h y y y

h h


  



    
        

      


= − − 



= − + − + + +
+ 

(21) 

where
1 1 1 1 2 2 1 1 2, ,T T      = − = − + 3 3 1 3 4 4 1 3 4,T T      = − = − + . The stability of the equilibrium 

solutions of Eqs (18)–(21) as a function of parameters 1 1 1 2 3 4, , , , ,      , 
1f , and c will be examined 

in order to assess the control law’s performance. 

5. Fixed-point solution 

A fixed point in a steady-state solution to Eqs (18)–(21) could be found by stroking

1 20, 0,a c  = = = =
3 40, 0h y  = = = = . 
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( )

( )

31 2 4 1 2
1 1 1 2 1 22 2

1 1 1 1 1 1

1 2 4 2
1 1 1 1 22 2

1 1 1 1

3 1
cos sin sin

2 8 2 2

1 1
sin cos cos

2 2 2

f
a a a c

f
a a c

   
     

     

  
    

   


+ = − + − + + 


− = + −
+ 

,         (22) 

( )

( )

32 2 4 2 4
3 3 3 4 1 42 2

3 3 3 2 3 3

2 2 4 4
3 3 2 1 42 2

3 2 3 3

3 1
cos sin sin

2 8 2 2

1 1
sin cos cos

2 2 2

f
a h a y

f
h h y

   
     

     

  
    

   


+ = − + − + + 


− = + −
+ 

,        (23) 

( )2 1 2

2

3 1

1 2
2

3 1

2
sin

cos

c

a

c

a

  


 

 


 

− 
= 




− =


,                              (24) 

( )4 3 4

4

3 3

2 4
4

3 3

2
sin

cos

h

h

y

h

  


 

 


 

− 
= 




− =


.                              (25) 

Squaring and subsequently adding Eqs (24) and (25) yields 

( )( )

( )( )

2 2
2

3 1
1 2 1

2

2 2
2

3 3
3 4 2

4

1

2 2

1

2 2

a
c c

h
y y

 
  



 
  



   
= − +   

   


   
= − +    

   

.                        (26) 

By inserting Eq (24) into (22), and (25) into (23), we obtain 

( ) ( )

( )

2
2

31 2 4 1 2 1
1 1 1 2 1 22 2

1 1 1 1 1 1 3

2
2

1 2 4 2 1 1
1 1 1 2 2

1 1 1 1 3

3
cos sin

2 8 2

1 1
sin cos

2 2 2

f c
a a a

a

f c
a a

a

    
     

      

    
  

    

  
+ = − + − + −  

+    


   
− = + +    

+     

,   (27) 

( ) ( )

( )

2
2

32 2 4 2 4 1
3 3 3 4 3 42 2

3 3 3 2 3 3 3

2
2

2 2 4 4 2 1
3 3 2 2 2

3 2 3 2 3

3
cos sin

2 8 2

1 1
sin cos

2 2 2

f y
h h h

h

f y
h h

h

    
     

      

    
  

    

   
+ = − + − + −   

+    


   
− = + +    

+     

.  (28) 
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Squaring and subsequently adding Eq (27), as well as Eqs (28a) and (28b), yields: 

( )

2 2
2 2 22 23 1 131 2 4 1 2 1 2 4 2 1 1

1 2 1 2 12 2 2 28 2 2 22 1 1 1 3 1 31
1 1 1 1

2
3 32 2 4 2 4

3 4 2 28 22 3 3 33
2 3

f c c
a a a a a

a a

f
h h h

         
    

         

   
 

    

                 = − + − + − + + +              + +        

   
= − + − +   

 + 
( )

2 2
2 22 21 11 2 4 4 2 1

3 4 2 2 22 23 2 3
2 3

y y
h h

h h

     
  

   







              − + + +             +        

. (29) 

The frequency response given by Eqs (26) and (28) corresponds to the practical case describing 

the behavior of the system’s steady-state solutions, i.e., ( )0, 0, 0 0 .a c h and y     

6. Nonlinear solution stability 

The eigenvalues of the Jacobian matrix on the right-hand side of Eqs (18)–(21) are employed to 

assess the stability of the equilibrium solution. If the real part of each eigenvalue is negative, the 

corresponding equilibrium solution is asymptotically stable. Conversely, if the real part of any 

eigenvalue is positive, the corresponding equilibrium solution becomes unstable. To establish the 

stability requirements, it is necessary to analyze the behavior of small perturbations from the 

steady-state solutions ( )10 10 10 10 10 20 30 40, , , , , , .a c h y and     Thus, we assume that 

1 10 11 1 10 11 1 10 11 1 10 11 1 10 11

2 20 21 3 30 31 4 40 41

, , , , ,
.

,

a a a c c c h h h y y y

and

  

        

= + = + = + = + = + 
 

= + = + = + 
              (30) 

Let ( )10 10 10 10 10 20 30 40, , , , , ,a c h y and    denote quantities satisfying Eqs (22)–(25), while 

( )11 11 11 11 11 21 31 41, , , , , ,a c h y and     represents perturbations that are considered small in comparison 

to ( )10 10 10 10 10 20 30 40, , , , , ,a c h y and    . By substituting Eq (30) into Eqs (18)–(21) and retaining only 

the terms linear in ( )11 11 11 11 11 21 31 41, , , , , ,a c h y and    , the following expressions are obtained: 

11 11 11 12 11 13 11 14 21

11 21 11 22 11 23 11 24 21

11 31 11 32 11 33 11 34 21

21 41 11 42 11 43 11 44 21

a r a r r c r

r a r r c r

c r a r r c r

r a r r c r

 

  

 

  

= + + + 


= + + + 


= + + + 
= + + + 

,                              (31) 

11 55 11 56 31 57 11 58 41

31 65 11 66 31 67 11 68 41

11 75 11 76 31 77 11 78 41

41 85 11 86 31 87 11 88 41

h r h r r y r

r h r r y r

y r h r r y r

r h r r y r

 

  

 

  

= + + +


= + + + 


= + + + 
= + + + 

,                              (32) 

where ( )11 88r r−  are given in the Appendix B. Equations (31) and (32) can be displayed in the 

following matrix form: 
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 

11 11

11 11

11 11

21 21

1111

3131

1111

4141

a a

c c

J
hh

yy

 

 





   
   
   
   
   
   

=   
   
   
   
   
     

,                                (33) 

where J denotes the Jacobian matrix corresponding to Eqs (31) and (32). The eigenvalues of J can be 

expressed as 

8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8 0R R R R R R R R       + + + + + + + + = .              (34) 

For the solution to remain stable, a necessary and sufficient requirement is that all eigenvalues 

possess negative real parts; otherwise, instability occurs. Based on the Routh-Hurwitz criterion, this 

requirement is fulfilled if and only if the determinant (D) and all of its principal minors are strictly 

positive, ensuring that all roots of Eq (34) lie in the left half of the complex plane. 

1

3 2 1

5 4 3 2 1

7 6 5 4 3 2 1

8 7 6 5 4 3 2

8 7 6 5 4

8 7 6

8

1 0 0 0 0 0 0

1 0 0 0 0

1 0 0

1

0

0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

D

 
 
  
 
     
 
       =
       
 

     
   
 

  

.                     (35) 

7. Results and discussions 

To analyze the numerical behavior of the system described by Eqs (1)–(6), the fourth-order 

Runge-Kutta algorithm was employed. The stability of the vertical conveyor system was further 

explored using the multiple scales method and the frequency response function, while the influence 

of various parameters on the behavior of the controlled system was evaluated. Finally, a comparison 

was carried out between the analytical predictions and the corresponding numerical results. 

7.1. System behavior before control 

The system’s numerical behavior under the most critical resonance conditions was examined 

using the following parameters: 

1 1 1 2 1 1 1 2 2 1 3 1 4=1.8, =0.01, =0.02, =0.2, =0.04, =1.8, =1, =1, =1.8, =0.001, =1, =0.4, =1f           . 
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Time histories of the two coupled modes are presented for the uncontrolled system under 

simultaneous resonance 
1 1 2 2 1 3 2 4, , ,      =  = = =  in Figure 2. In this case, the responses of 

both conveyor modes exhibit amplitudes of approximately 2.5, while the diagrams reveal the 

presence of multiple limit cycles. 

 
Figure 2. The amplitude of conveyor system without NINDF controller at 

1 1 1=1.8, f =0.04 = , and 
1 0 = . 

7.2. System behavior after control 

Figure 3 illustrates the time histories of the two modes of the vertical conveyor system after 

implementing the NINDF controller. The steady-state amplitudes were reduced from approximately 

3.6 to about 0.00002 for the two modes. This corresponds to a vibration reduction of about 99.9% 

compared to the uncontrolled case. The controller efficiencies,

( )amplitude with out controller/amplitude with controllerEa =  were approximately 239900 for the mode. 

It is also observed that the controller demonstrated high efficiency, requiring only a short time to 

stabilize the system under an external force of 
1 0.04f = . The control forces are depicted in Figure 4, 

where 
1 0.4f =  is ten times greater than the force applied in Figure 3. It is also noted that, at the start 

of the simulation, the system exhibited a temporary rise in amplitudes. Despite this increase, the 

system stabilized in approximately the same amount of time, which further demonstrates the 

effectiveness of the control strategy. 

 
Figure 3. Responses for the main system and the (NINDF) controller 1 0.04f = . 
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Figure 4. System responses with NINDF control 1 0.4f = . 

7.3. Curves of frequency response for the controlled system 

The curves in Figure 5(a) and (b) illustrate the relationship between the detuning parameter 
1  

and the system response, whereas Figure 5(a) represents the first mode oscillation amplitude of the 

vertical conveyor, and Figure 5(b) denotes the NINDF response component. In both cases, two main 

resonance peaks can be observed, located at negative and positive values of 1 . The solid lines 

represent stable solutions, while the dashed lines indicate unstable solutions, highlighting regions 

where sudden amplitude jumps may occur. As 1  approaches from the left (region A–B), the 

response amplitude rises steadily until reaching its maximum at point B, and the solution is stable, 

after which it declines sharply (B–C). The system then moves toward a second resonance (C–D), 

where instability is more prominent, before returning to lower amplitudes beyond point E. Physically, 

these patterns reveal how energy transfer into the system is maximized near resonance and 

diminishes outside it. From an engineering standpoint, identifying and avoiding the unstable regions 

around the resonance peaks is essential to prevent excessive vibrations and ensure safe operation. 

Figure 6(a) and (b) illustrate the system’s steady-state amplitude responses under three different 

forcing amplitudes: 1 1 10.05, 0.04 0.03f f and f= = = . In both figures, two dominant resonance 

peaks appear symmetrically around 1 0 = , with their magnitudes increasing as the forcing 

amplitude grows. For 1 0.05f = , the resonance peaks are the highest, indicating stronger energy 

transfer into the system. Reducing 1 10.04, 0.03f f= =  results in a noticeable suppression of the 

peak heights, reflecting lower vibrational energy levels. In Figure 6(a), the primary mode amplitude 

a  exhibits a more pronounced sensitivity to changes in 1f , particularly near the left-hand resonance, 

while in Figure 6(b), the secondary mode amplitude h  remains comparatively small in magnitude 

but follows a similar peak pattern. This behavior highlights the nonlinear resonance characteristics of 

the system, where even small changes in excitation amplitude can significantly influence the 

response. This also shows that both modes share similar resonance positions but differ in amplitude 

scale and sensitivity. 
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Figure 5. (a) Resonance curves for the main system; (b) NINDF controller. 

 
Figure 6. Effect of different values of the force 1f  on the frequency-response curves of 

(a) the main system and (b) the NINDF controller. 

Figure 7(1)–(4) shows the effect of changing the parameters of the controlled system on the 

frequency response curves at different control values. Figures 7–10 illustrate the variations of 

amplitudes a  and h  as functions of used parameters. In Figure 7, the amplitude a  exhibits a 

sharp peak, indicating a critical region of high sensitivity, with values of velocity signal coefficient 

( )1  increasing from 0.8 to 1.2. Similarly, Figure 8 shows the response of amplitudes a  and h , 

where a distinct resonance peak becomes increasingly sharp, reflecting growing instability near 

resonance. Figure 9 highlights the influence of on amplitude a , where the observed peaks 

correspond to resonance conditions, and the spacing between curves demonstrates the strong effect 

of parameter changes on stability. Finally, Figure 10 presents amplitude h  under varying, where the 

pronounced peak and curve spacing further emphasize the system’s sensitivity and the direct impact 

of parameter variations on its overall dynamic behavior. Figure 11 shows the amplitudes a  and h  

as functions of 
1  for varying

1 . The distinct peaks at 
1 0 =  indicate critical response points. As 

1 increases from 0.001 to 0.05, the peak magnitudes decrease, reflecting a more stable system with 

reduced sensitivity to changes in 1 . This trend underscores the significance of 1  in influencing 

system dynamics and stability. When the natural frequency is relatively low, the system achieves 

higher stability at 1 0 = , meaning 1 2 = . Under these conditions, the maximum amplitudes for 

both the cantilever and the NINDF controller become larger, while the vibration range also expands. 

This behavior confirms that the NINDF controller performs with high efficiency in low-frequency 

scenarios, as presented in Figure 12. 

Figure 13, with increased 
1  from 1 to 1.3, clearly shows the strong effect of the control, as the 

peak amplitudes for both the cantilever response (a) and the controller response h  are significantly 

reduced. The peaks also become narrower, indicating better frequency targeting and improved 
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system stability. This confirms that higher 
1  values make the control more powerful in suppressing 

vibrations at resonance. 

 

Figure 7. Effect of the controller velocity signal coefficient ( )1  on system performance. 

 

Figure 8. Effect of the controller displacement signal coefficient ( )2  on system performance. 

 

Figure 9. Effect of the controller velocity feedback coefficient ( )3  on system performance. 

 

Figure 10. Effect of the controller displacement feedback coefficient ( )4  on system performance. 
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Figure 11. Effect of the damping coefficient 1  on frequency response curves of (a) the 

mean system and (b) the NINDF controller. 

 
Figure 12. Effect of the nature frequency on frequency response curves of (a) the mean 

system and (b) the NINDF controller. 

 
Figure 13. Effect of the lossy integrator’s frequency 1  on frequency response curves 

of (a) the mean system and (b) the NINDF controller. 

8. Comparison with previously published works 

This study derives the governing equations for a vertical conveyor system, analyzing primary, 

subharmonic, and super-harmonic resonance. It explores vibration amplitudes, stability, and chaotic 

behavior in nonlinear systems [3]. As shown in Figure 14, when comparing the system’s response 

under the four control strategies—PD, NSC, PPF, and NINDF—the differences in performance 

became quite clear [13]. With PD control, the oscillations stayed almost constant throughout the 

entire period, which means the system never really reached stability. Using NSC control, the 

oscillations started to fade gradually until the system finally settled at around t ≈ 1600 s. While this 

was an improvement over PD, the settling time was still very long [5]. On the other hand, PPF 

control showed faster damping, with the system stabilizing at about t ≈ 700 s [7]. The best results, 
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however, came from NINDF control, where the oscillations dropped very quickly and stability was 

achieved in just about t ≈ 80 s. This makes NINDF not only the fastest in reaching stability but 

also the most effective in improving the system’s overall performance. Finally, the NINDF control, 

created by combining IRC and NDF, delivers remarkable results. It merges the resonance-handling 

of IRC with the strong damping of NDF, allowing the system to reach stability. This makes it far 

more effective and faster than all other control strategies. 

 

Figure 14. Comparison between different types of controllers. 

9. Conclusions 

This study investigates the vibrations of a vertical conveyor system subjected to an external 

excitation force and controlled using a nonlinear integral negative derivative feedback (NINDF) 

controller. A novel approach is proposed to mitigate the system’s lateral vibrations by implementing 

the NINDF control strategy. The mathematical model is formulated by coupling two second-order 

nonlinear differential equations with first-order linear differential equations, representing both the 

conveyor system and the controller. To derive an approximate solution for the vibrating system, the 

method of multiple scales is employed. Frequency–response equations are then utilized to analyze the 

system’s stability. Numerical simulations are carried out to evaluate the influence of all system 

parameters. Based on this analysis, the key findings are as follows: 

▪ The vertical conveyor system’s resonance cases are all examined, with a simultaneous primary 

and internal case, with 1 1 2 2 1 3 2 4, , ,      =  = = =  being the worst. 

▪ The NINDF control, created by combining IRC and NDF, delivers remarkable results. It merges 

the resonance-handling of IRC with the strong damping of NDF, allowing the system to reach 

stability. 

▪ For the first mode (z), the amplitude is reduced to 99.9% compared to the amplitude of the 

uncontrolled system. This reduction indicates an effective response in mitigating oscillations, 

highlighting the system’s improved stability and control performance, such that aE  = 239900. 
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▪ For the second mode ( ), the amplitude is reduced to 98.7 compared to the amplitude of the 

uncontrolled system. This reduction indicates an effective response in mitigating oscillations, 

highlighting the system’s improved stability and control performance, such that 
aE  = 80. 

▪ The increase in the control coefficient , 1, 2,3, 4i i =  sharpens the peaks, indicating greater 

system sensitivity and variations in stability. 

▪ As the external excitation force ( )1 2f and f  increased, this impacted the controlled system’s 

behavior. 

▪ The response of the main system decreased with an increase in the damping coefficients 𝜇1, 𝜇2. 

▪ Among the four control strategies, NINDF provides the fastest and most effective damping (~80 

seconds), followed by PPF (~700 seconds), and then NSC (~1600 seconds), while PD is significantly 

unable to achieve stability. 
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Appendix A 

Coefficients mentioned in Eq (14) are determined as follows: 
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Appendix B 

Coefficients mentioned in Eqs (31) and (32) are determined as follows: 
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