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Abstract: This paper presents an advanced control strategy to suppress nonlinear vibrations in a
vertical conveyor system subjected to simultaneous resonance. Vertical conveyors play a crucial role
in industrial applications, where stability and continuous performance are essential. However,
excessive vibrations can reduce efficiency, cause mechanical fatigue, and increase maintenance costs.
To describe the dynamics, the system is modeled as a multi-degree-of-freedom cantilever beam with
quadratic and cubic nonlinearities under external harmonic excitations. These nonlinearities
introduce complex behaviors, especially when internal and external resonances interact. Previous
studies have analyzed the system using the multiple scale perturbation technique (MSPT) to
investigate dynamic responses and resonance conditions. While this approach provides valuable
insights, controlling nonlinear vibrations requires more effective strategies than conventional
controllers. In this work, we propose a nonlinear integral negative derivative feedback (NINDF)
controller, which combines first-order and second-order filters. This structure enhances stability
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margins, improves robustness, and ensures better vibration suppression during critical resonance
states. Analytical solutions were derived via MSPT, and system stability was assessed using the
Routh-Hurwitz criterion. Additionally, the system equations were integrated using the classical
fourth-order Runge-Kutta (RK4) method, which provides reliable accuracy for short-term transient
simulations. However, RK4 does not inherently preserve the geometric invariants (e.g., energy and
phase-space structure) that are significant in nonlinear systems exhibiting internal resonance. Results
demonstrate that the NINDF controller effectively reduces vibration amplitudes, particularly under
1:1 internal resonance, and achieves superior performance compared to traditional feedback methods.
Hence, the proposed control strategy offers a practical and reliable tool for mitigating nonlinear
vibrations in engineering systems exposed to demanding dynamic environments.

Keywords: vertical conveyor; NINDF; MSPT; simultaneous resonance; nonlinear vibration; stability
analysis; negative feedback control
Mathematics Subject Classification: 34C15, 34C46, 34F15, 74G10, 70H03

1. Introduction

In recent years, the study of nonlinear vibrations in engineering structures has received increasing
attention due to their significant impact on dynamic performance and structural stability. Vertical
conveyor systems and cantilever-type configurations are widely used in mechanical, aerospace, and
civil engineering because they can carry loads without intermediate supports. However, these systems
often exhibit complex vibration phenomena, particularly under harmonic and parametric
excitations [1-3]. To analyze such behaviors, multi-scale perturbation methods have been extensively
employed to investigate primary, subharmonic, and superharmonic responses, while mathematical
software has facilitated the evaluation of motion parameters and stability conditions [4]. Nonlinear
dynamic models incorporating quadratic and cubic nonlinearities are commonly adopted for vertical
conveyor systems, often treated as multi-degree-of-freedom (MDOF) structures. Bauomy and
El-Sayed [5] studied a 2-DOF nonlinear vertical conveyor subjected to dual-frequency excitation
using the multiple-scales perturbation technique (MSPT), revealing strong interactions between
internal and external resonances. Their work was later extended to a 4-DOF configuration [6], where
positive position feedback (PPF) controllers were implemented for vibration suppression. Although
PPF was effective for primary resonance, it lacked robustness under simultaneous resonance
conditions. Amer et al. [7] further examined dual-resonance behaviors and proposed saturation-based
absorbers, which reduced large-amplitude responses but only within limited parameter ranges.
Nonlinear oscillators excited by harmonic or parametric forces, such as Rayleigh- and Duffing-type
systems, have also been investigated for bifurcation and stability characteristics [8—10]. The
coexistence of internal and external resonances has motivated the development of more advanced
control strategies. Asymptotic solutions for cantilever beams with lumped masses have been derived
using the homotopy analysis method (HAM) and the differential transformation method
(DTM) [11,12]. Meanwhile, traditional approaches such as negative derivative feedback (NDF) [13],
integral resonant control (IRC) [14], and saturation-based absorbers [7] suffer from limited
adaptability and robustness. For instance, Shen et al. [15] demonstrated that self-excited oscillations in
unforced systems require more sophisticated suppression mechanisms than linear damping, while
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other studies [16,17] showed that time-delayed PPF controllers for Rayleigh-Van der Pol-Duffing
oscillators are highly sensitive to delay and loop gain. To address these challenges, a hybrid control
strategy—the nonlinear integral-negative derivative feedback (NINDF) controller—has been
introduced. The method integrates a first-order filter for damping regulation with a second-order filter
for energy redistribution at resonance, providing an adaptive solution for nonlinear vibration
control [18,19]. This research investigates various approaches to vibration control and performance
enhancement in engineering systems. The first study analyzes the impact of proportional derivative
control on reducing vibrations and improving the performance of permanent magnet synchronous
motors. The second study applies a negative derivative feedback controller to mitigate vibrations in a
hybrid Rayleigh-Van der Pol-Duffing oscillator, enhancing system stability in nonlinear environments.
The third paper examines model predictive torque control for a multilevel power converter in
four-phase switched reluctance motors, aiming to optimize dynamic performance and efficiency.
Finally, the fourth study explores the size-dependent vibrations in laminated functionally graded
curved beams with piezoelectric layers, providing insights into vibration behavior and contributing to
the design optimization of such materials [20—24].

In this study, a novel NINDF controller is developed and implemented for a 2-DOF nonlinear
vertical conveyor system exhibiting 1:1 internal resonance. The controller aims to suppress complex
vibratory interactions and enhance system stability under simultaneous resonance conditions. The
governing nonlinear equations are formulated, and analytical solutions are derived via the multiple
scales perturbation technique (MSPT). The frequency response equations (FREs) and stability
domains are determined using the Routh—Hurwitz criterion, while numerical simulations based on the
fourth-order Runge-Kutta method confirm the analytical outcomes. Comparative evaluations against
established controllers demonstrate the superior damping efficiency and robustness of the proposed
NINDF strategy. Unlike conventional schemes, the NINDF controller achieves rapid attenuation of
oscillations and sustained stability even under strong nonlinear coupling. By integrating the
resonance-compensation capability of IRC with the inherent damping strength of NDF, it provides a
more adaptive and resilient control framework. These findings establish NINDF as a highly effective
approach for advanced nonlinear vibration suppression in multi-resonant mechanical systems.

This paper is organized as follows: The Abstract summarizes the study’s aim, methods, and key
findings on vibration suppression using the NINDF controller. Section 1 (Introduction) reviews
nonlinear vibration challenges and motivates the proposed control approach. Section 2 (Formulation of
the problem) presents the nonlinear multi-degree-of-freedom model and control equations. Section 3
(Mathematical analysis) applies the multiple scales perturbation technique to derive analytical
solutions and resonance conditions. Section 4 (Stability analysis) uses the Routh-Hurwitz criterion and
eigenvalue analysis to assess system stability. Section 5 (Results and discussion) provides numerical
simulations based on RK4, illustrating the system’s behavior before and after control. Section 6
(Comparative study) compares NINDF performance with PD, PPF, and NSC controllers, while
Section 7 (Numerical accuracy discussion) evaluates RK4 against symplectic methods. Finally,
Section 8 (Conclusion) highlights the controller’s effectiveness and suggests structure-preserving
schemes for future work, with detailed derivations and supplementary data included in the appendices.
All used parameters in Eqs (1)—(6) listed in Table 1.
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Table 1. Used symbols.

D>p
A

), 0,
B, B,

Q,.Q,
Vi:V25V3574

AR
v, v,V
9.9

5
@, W,

Bys By

Q,.Q,

Ay s Ay

Displacements, velocities, and accelerations of the mean system.
Displacements, velocities, and accelerations of the controller.
Dimensionless motion and velocities of the controller.

Amplitude of external forces.

Natural frequencies of the main system and controller, respectively.
Nonlinear stiffness coefficients (quadratic and cubic).

Excitation frequencies.

Dimensionless control and feedback signal gains, respectively.
Damping coefficients for z,y .

Damping coefficients for u,v .
Lossy integrator’s frequency coefficient for p, q .
Small perturbation parameter(g >> 1) .

2. Formulation of the problem

Figure 1(a) depicts the vibrating model of a vertical shaking conveyor, as provided in [3], where
the model is subjected to many harmonic excitations. We create the block diagram for the simulation
of this model, as shown below.

S (cosQt +sin€2t)

S i+tely+2euy -yt +efy’ = fylcos Oyt +smQ )+ edi+edg

—TI TR S 2 I : ;
> Itoiz+lsuz+efr +ef,r =g f(cos i +smO )+ e+ ey, p

S5 (cost +sind,r)

A+ g ”
[ ~ ™
Y. g | V+alv+ oy =y WY — z
A L ¥ ARl
i+ P = g+6,q=A4y ~ -
b ., p s @+ gattl = —£y, % " V.2 - B
1 2 ) ‘. :
‘;”'2 pProp=yz /\‘ﬂ\]‘—&@q—q—
- J

(b)

Figure 1. (a) Vertical shaking conveyor schematic diagram; (b) Closed-loop control
system of the vertical shaking conveyor.
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The equations of motion governing the model in non-dimensional form [3] were adjusted as
follows:

Fvalz+2euz+efz° +fz = e f,(cost +sinQt) + ey + £y, p, (1)

W+ oy + 26y + By’ + By’ = € f,(cos Qut +sin QL t) + v+ eAq. (2)

We will use the NINDF controller. It combines two types of controls: IRC control and NDF
control. These work together to suppress the vibrations of the investigated system as follows:

i+ @wou + gyl = —&y,, (3)
V+ v+ e,y =—eAy, 4
P+op =7,z ()
G+0,9=1y. (6)

3. Mathematical analysis

For Eqgs (1)—(6), an approximate analytical solution is obtained independently using the multiple
scales method [25,26]. We are looking for a first-order expansion in the form

2(t,&) = z,(T,, T) + £z,(T,, T,) + o(&”)

y(t,e) =y, (T,,T) + ey, (T,,T,) +o(&”)
u(t,2) = (T, T+ &, (Ty, T) + 0(&)

(7)
v(t,&) =vy(T,, T)) + v (T, T,) + o(&?)
p(t,é‘) = po(%’]})+gp1(72)’]})+0(52)
q(t,€) = q,(T,, T,) + £q,(T,, T,) + o(¢*)
Derivatives can be written as follows:
d
E:DO +8D1+... (8)
d2
W:Dg +2&D,D, +... 9)
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Let us introduce the derivatives and the two time scales for the first-order approximation, where

T =g"tand p _9 (n=0,1)- Substituting Eqgs (7)-(9) into Eqgs (1)~(6) and equating coefficients of
"oor, '

n

like powers ¢ , we obtain:

o(e"):

(D(f + a)12 )z, ==2D\Dyz, =2 Dz, — ﬂlzg - :Bzzg +é&fi(cosQt +sin Q1)+ y, Dyuy + 7, p,

(Dg + a)32 )V’] = _2D1D0V/0 - 2:”2D0'//0 _ﬂﬂ//g _ﬂzﬂ//g + gf2 (cos ta +sin ta) + ﬂ'lDovo + ﬂz%
(D; +@; )u, ==2D, Dyt — &, Doty = 7,0, 2,

o(e):

(D + o)z, =0
(Dy + @)y, =0
(D} + ), =0
(D} + @} )v, =0
(Dy +9)) Py =742,
(Dy +6,)q, = 4y,

(Dy +@)v, ==2D,Dyv, =, Dyvy = 4Dy

(Do +51)p1 =74~

D, p,

(Do +52)q1 = 2’4‘//1 _D1QO

We write the solutions to Eq (10) in the form:

ZO (TE),T{) — Aei(olTO + Ze—i(olT()
WO (]—(v),]]) — Eel(z)sz + Eefiwsz
uy(T,,T,) = Ce™" + Ce™™
vo (T, T)) = Ye' T 4 Yool
O, —iw,
po(naTl) = 512 N :

1 1

o, —iw
qo(]—(v)aTi) = 522
2 3

i T -, T,
> 7,4 + Qe +cc.

3 io3T, —6,T,
A Ee + Qe +cc.

; (10)

(1)

: (12)

where 4,E,C,Y are complex functions in 7,,and Q,,Q, are constants of integration resulting from

the values ofeach p,,q,.By substituting Eq (12) into Eq (11), we obtain the following:
_ S —i ,
(D? + @?)z, = (=2iD,w, A —2i g, A—3 B, A2 A+ +7,7, ﬁfoe'%
1 1
—B (A7 £ 244) — B, A + i, y,ce’ " + % (e —ie M) 1 c.c.
D+ ). = (—=2iD,w,E — 2i 11,00, F — 3B, EE + 1,2, 271 )it (13)
(Dy + o))y, =(-2iD, o, L, @, B + 4,4, 2 02 Je
2 3
— B (E*e*™" + 2EE) — B,E*e”" +iw, A, Ye' " + % (el —je"" )+ c.c.
(D + &3)u, =(—2iw,D,c —iw,a,c)e" —iwy,Ae"" +c.c.
(D} + @] v, =(2iw,DY —iw,c,Y)e'" —iw, A, Ee" +c.c.
AIMS Mathematics Volume 10, Issue 12, 28129-28150.
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After eliminating all secular terms in Eq (13), z,w,,4,v,p, , and ¢, take the following

forms:

2 (T,.T) =N, (T,) " + N, (T,)+ N, (T, ) ™™ + N, (T, )" + Ny (T, ) (€™ —ie"™" ) +c.c.
wi(T,,T) =L (T,)e"" + L, (T,)+ L, (T, ) ™" + L, (T, )™ + Ly (T, ) (""" —ie""" ) + c.c.
u, (T,,T;) = Ny (T;) €™ +cwc.

v (T, 1) =Ly (T, ) ™" +cc.

(14)
p](T(')’]'i)zN7( l)eZiwlTo +N (T)e3i(0|To +N (]1)+N10(T) i, +
N, (1) (@ —ie®™)) + N, (T, ) e ™™ + N (T, ) e " + g(T;) + c.c.
a,(T.T) =L, (T; )eZWJO + Ly (T, )63%% +Ly (1) + Ly (T3 )em"T”

+ L, (T) (™0 —ie" ™)) + L, (T,) e + L, (T} ) e ** +m(T}) +c.c.

where L ,N, and i=1,2,...,13 appear in Appendix A. The complex conjugate components are

gathered under the symbol c.c. From Eq (13), we can list all resonance cases, which might be stated as:

a.
b.

C.

Primary resonance case , =w,,i=12;
Internal resonance case @, =, j =3,4;

Simultaneous resonance case: any combination of the two previous cases.

Periodic solutions

Simultaneous resonance is the worst type of resonance: Q, =0, Q, =0, and o, =w,,0, =o,.

In order to discuss the conditions of the solution, the tuning parameters of equations o, and o, are
identified as follows:

Q =w téeo, ,0, =0, +¢&0,. (15)

When Eq (15) is added to Eq (13), the solvability conditions take the following forms:

i, D, A-2ipw A-3B,A*A+7,y, % A+iw,y,Ce ™" +ZL Ul (e“"T1 —ie") =0
1 1
é‘2 a)3

—2iw,D\E - 2ip,0,E -3 B,E°E + LA, 2——= E +iwAYe ™" +%(ei”3T‘ -y =0 (16)
2 3

—2iw,D,C —iw,a,C —iw,y,de”"™" =0
—2iw, DY —iw,o,Y —ioA,Ee " =0

Putting 4,C,H ,and Y in the polar form, it appears as follows:

AIMS Mathematics Volume 10, Issue 12, 28129-28150.
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1 A 1 ‘
A(Ti) = Ed(]’{)etﬁ(ﬂ)’ C(T{) — EC(Ti)ele(T])’

D A= %(d + iaél)eig‘ , D,C = %(é + icé’2 e,

1 . 1 _
H(T) = Eh(T])elg"(Tl), Y(T) = Ey(Z)elg4(Tl)’

D.H = %(fz +ih6,)e'” DY = %( y+iy0,)e™,

(17)

where 6,.6,,0, , and 0, are the motion phases. The steady-state amplitudes of the system and

controller motion are presented as a,c,/, and y, respectively.

The following amplitude-phase modulating equations are obtained by converting Eq (17) into Eq

(16), while taking 6, =@, —¢ +0,—0, and 6, =@, — ¢, +0, -0, into consideration:

. Va7 1 | o, S
a=—pa— ———a+——2yccosp, +——(sinp —cose, ),
e T ie00sp,+ ]( ¢, —cosg,)
. 3 s VoVa O | o, : Ji .
ap =ao,—— Pa’ +2*+—L1 —qg———2ycsing, +—=——(cos, +sing ),
D 1 8, B, 20, 512_'_60]2 2w 7 ®, 2(0,( D 501)
. LA 1 lw o
h=—uh—--22 +——2 1 vycosp, +-22(sinp, —cos @, ),
= 3ﬂ1y s 2w}( ¢, —cosg,)
. 3 LA, O 1 w ) £ .
hg, =ho, ——— Bh’ + 22 —2 _ph———4 ] ysing, + 22 (cos, +sing, ),
(4 3 8o, B 20, 522+w32 2 0, Aysing, 20)}( (2 q’a)
1
¢=——ac———Ly,acos@,,
2 2
. [ A7 lo, c . cf, .
cp, =——y.asing, ——— falc+24 1 — 2y ~_sing, +—-—(cos@, +sing, )+ co,,
P2 = 1SN Jis 20 et 2w e l( @, +sing, ) +co,
1 3
Yy ——azy———ﬂghcosqo‘l,
2 4
. 1o . 3 A 0. lo, , v . v, :
=== Lhsing,—— B y+ZF2+—2—y———2 ] —sing, + =2 (cos, +sing, )+ yo,,
Y@y 20)413 @, 8, B, 20, 522+a)32 2 o, h @, 3( @y (03) YOy

(18)

(19)

(20)

21)

wherep, =0T, - 6,0, =0,T,-6,+06,, ¢, =0.,1,-6,,0, =0,T, -0, +6,. The stability of the equilibrium

solutions of Eqs (18)—(21) as a function of parameters @y, 1,,7,,7,,75-74> f,> and ¢ will be examined

in order to assess the control law’s performance.

5. Fixed-point solution

A fixed point in a steady-state solution to Egs (18)—(21) could be found by stroking

a:C:03¢1:¢2209h:y209¢3:¢4:0

AIMS Mathematics Volume 10, Issue 12, 28129-28150.
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Ji : 3 s VaVa O | o, .
—L(cos@, +sing )=—aoc, +— p,a’ — —L—a+——2y,csin
20, (cos g, ”) ' 8, Z 20, 5 +@} 2 o 4 @2 22
N (e VaYs 1 | o, ’
——(sing, —cos ¢, )= a+ ———a———=y,ccos
20, ( 2 §01) H > 512 +a)12 2o 7 ?,
L(cos% +sing,) =—ao, + 3 B — ey 252 - a+l&/11ysingo4
o, 8w, 20, 6, +w; X (23)
S A 1 l @, ’
sin@, —cos@, ) = w,h+— ———A,ycos
20, ( @, (03) H, > 522 +a)32 2 o, Ay @,
Sing, = 26020(0'1 —02)
73a)1a , (24)
—a,0,¢
cosQ, = ———
Vi@a
sing, = 20,h(0,—0,)
Awsh (25)
—a,w0,y
cos@, = ——=
2 Y
Squaring and subsequently adding Eqs (24) and (25) yields
2 1 2
70,0 2
= | =(clo,—0,)) +| —a,c
(2502] (c(01=02)) (21j
: 2 (26)
A.h 2 (1
— | =\yloy,—-0,)) +| -«
( 20, (y( 3 4)) > 2
By inserting Eq (24) into (22), and (25) into (23), we obtain
f . 3 s 1. O o, ) 7,c’
2—‘(c05(p1+sm(pl)=—aal+—ﬁ2a 28 g+ | 2| | 2 |(0,—0,)
, 8w, 20, 0] + , 7,0
L )
i(sin(o1 —cosgz),):,u]a+7/27/4 —— ! - a+l D | | &ANC
20, 2 O +o 2\ o, 7,a
2
5> : 3 s A4 6 @, /11)’2
—=(cos@, +sing, )=-ho,+—ph —————h+|— | | ——|(0, -0
a)3( s ”:) > 8w, Ps 20, 5, +w} o, Ah (0-04) a8)
2
. 1 1 2
L(sm(p3—cosgz)3):,uzh+/12ﬂ"‘ ——h+— @ | | 2Ay
20, 2 0, +o, 2\ o, Ah
AIMS Mathematics Volume 10, Issue 12, 28129-28150.
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Squaring and subsequently adding Eq (27), as well as Eqgs (28a) and (28b), yields:

2 2
2 2( 2 2 2

[ A j o+ 2 ppad 1242 2"*[@} 1 N o1-g9) | +f mas?24 1 z“*l[@J e

V2 8] 20 5240 @) { 734 2 st ) ( 73a

1
2 2 2 2 2 2

[fz J— ~hozt - ﬁh3 224 52 h+[“’4j b (o3-04) | + y2h+’12’14721 2h+1[“’4j @HY”

V2w3 203 53407 \@3) | A3h 2 syrwy 2) | A3k

The frequency response given by Eqs (26) and (28) corresponds to the practical case describing
the behavior of the system’s steady-state solutions, i.e., (a #0,c#0,h#0and y # 0).

. (29)

6. Nonlinear solution stability

The eigenvalues of the Jacobian matrix on the right-hand side of Eqs (18)—(21) are employed to
assess the stability of the equilibrium solution. If the real part of each eigenvalue is negative, the
corresponding equilibrium solution is asymptotically stable. Conversely, if the real part of any
eigenvalue is positive, the corresponding equilibrium solution becomes unstable. To establish the
stability requirements, it is necessary to analyze the behavior of small perturbations from the
steady-state solutions (a,,,¢;o,M0. V1@ > Prg » @5 and @y, ). Thus, we assume that

[al =+ a6 =Co L =g T LY = v+ L9 :(p10+¢“’j (30)

Py = Doy + Py, P5 = Q3+ @5 and @, = 9, + @y,

Let  (a1,¢10,M0, Y10 @000 P and ¢, ) denote  quantities satisfying Egs  (22)~(25), while
(@€ My 01001050y and @, ) Tepresents perturbations that are considered small in comparison
to (ay9,C105 > V10 » P10 » Py » P30 and @, ) . By substituting Eq (30) into Eqs (18)—(21) and retaining only

the terms linear in (q,,,c,,.h,,»,.9,.0, .9, and ¢, ), the following expressions are obtained:

=My T 1@ 13600 T 19

P =Ty + @y 0y 1,0 ’ G1)
Cy =15 Ty + 1336, 1540

Do) =Ty F TPy 73561, + 74P

Iy = rsshy + 1o @s) + T 0+ 150y

Py = Tshy) + TPy + Ty 1y + TgPy , (32)
Vi = Fyshy + 1605 + 1 0 10y

Pyy = Feshyy + o Py + Ty Vi + Fg @

where (7, —r,) are given in the Appendix B. Equations (31) and (32) can be displayed in the

following matrix form:

AIMS Mathematics Volume 10, Issue 12, 28129-28150.
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4y a,
@i, 28
éll Cn
P . (33)
hy, h,
P51 P51
M Y
K20 K20

where J denotes the Jacobian matrix corresponding to Eqs (31) and (32). The eigenvalues of J can be
expressed as

A*+RA+RA°+RA +RA +RAV +RA+RA +R, =0. (34)

For the solution to remain stable, a necessary and sufficient requirement is that all eigenvalues
possess negative real parts; otherwise, instability occurs. Based on the Routh-Hurwitz criterion, this
requirement is fulfilled if and only if the determinant (D) and all of its principal minors are strictly
positive, ensuring that all roots of Eq (34) lie in the left half of the complex plane.

r, 1. 0 0 0 0 0 0]
r,,, 1 0 0 0 0
r, r, I, T, I, 1 0 0
LHo|Ty Te Te T, T T, T (35)
o r, r, r, I, T, I, T,
0o 0 0 I, I, T, T, T,
0 0 0 0 0 I, I, T,
0 0 0 0 0 0 0 I,

7. Results and discussions

To analyze the numerical behavior of the system described by Eqgs (1)—(6), the fourth-order
Runge-Kutta algorithm was employed. The stability of the vertical conveyor system was further
explored using the multiple scales method and the frequency response function, while the influence
of various parameters on the behavior of the controlled system was evaluated. Finally, a comparison
was carried out between the analytical predictions and the corresponding numerical results.

7.1. System behavior before control

The system’s numerical behavior under the most critical resonance conditions was examined
using the following parameters:

®,=1.8,14,=0.01,8=0.02, 3,=0.2, £=0.04,Q,=1.8,7,=1,7,=1,,=1.8,,=0.001, 7,=1,5,=0.4,7,=1.

AIMS Mathematics Volume 10, Issue 12, 28129-28150.
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Time histories of the two coupled modes are presented for the uncontrolled system under
simultaneous resonance Q, =o,,Q, =o,,0, =®,,0, =, in Figure 2. In this case, the responses of

both conveyor modes exhibit amplitudes of approximately 2.5, while the diagrams reveal the
presence of multiple limit cycles.
6 . : 6

W

300

4+

2t

N 0

2t

¥

0 100 200 300 O
t t

Figure 2. The amplitude of conveyor system without NINDF controller at
Q =0=18,{=0.04 ,and o, =0.

7.2. System behavior after control

Figure 3 illustrates the time histories of the two modes of the vertical conveyor system after
implementing the NINDF controller. The steady-state amplitudes were reduced from approximately
3.6 to about 0.00002 for the two modes. This corresponds to a vibration reduction of about 99.9%
compared to the uncontrolled case. The controller efficiencies,
( Ea = amplitude with out controller/amplitude with controller) were approximately 239900 for the mode.

It is also observed that the controller demonstrated high efficiency, requiring only a short time to
stabilize the system under an external force of f, =0.04. The control forces are depicted in Figure 4,
where f =0.4 is ten times greater than the force applied in Figure 3. It is also noted that, at the start
of the simulation, the system exhibited a temporary rise in amplitudes. Despite this increase, the
system stabilized in approximately the same amount of time, which further demonstrates the
effectiveness of the control strategy.

0.03 0.05
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N 0 i = 0
-0.02 1
-0.03
0 100 200 300 '0'050 100 200 300
t t
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i
{1y
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Figure 3. Responses for the main system and the (NINDF) controller f, =0.04.
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Figure 4. System responses with NINDF control f, =0.4.

7.3. Curves of frequency response for the controlled system

The curves in Figure 5(a) and (b) illustrate the relationship between the detuning parameter o,

and the system response, whereas Figure 5(a) represents the first mode oscillation amplitude of the
vertical conveyor, and Figure 5(b) denotes the NINDF response component. In both cases, two main
resonance peaks can be observed, located at negative and positive values of o,. The solid lines

represent stable solutions, while the dashed lines indicate unstable solutions, highlighting regions
where sudden amplitude jumps may occur. As o, approaches from the left (region A-B), the

response amplitude rises steadily until reaching its maximum at point B, and the solution is stable,
after which it declines sharply (B—C). The system then moves toward a second resonance (C-D),
where instability is more prominent, before returning to lower amplitudes beyond point E. Physically,
these patterns reveal how energy transfer into the system is maximized near resonance and
diminishes outside it. From an engineering standpoint, identifying and avoiding the unstable regions
around the resonance peaks is essential to prevent excessive vibrations and ensure safe operation.
Figure 6(a) and (b) illustrate the system’s steady-state amplitude responses under three different
forcing amplitudes: f, =0.05, f, =0.04and f,=0.03 . In both figures, two dominant resonance

peaks appear symmetrically around o, =0, with their magnitudes increasing as the forcing
amplitude grows. For f, =0.05, the resonance peaks are the highest, indicating stronger energy
transfer into the system. Reducing f, =0.04, f, =0.03 results in a noticeable suppression of the

peak heights, reflecting lower vibrational energy levels. In Figure 6(a), the primary mode amplitude
a exhibits a more pronounced sensitivity to changes in f,, particularly near the left-hand resonance,

while in Figure 6(b), the secondary mode amplitude / remains comparatively small in magnitude
but follows a similar peak pattern. This behavior highlights the nonlinear resonance characteristics of
the system, where even small changes in excitation amplitude can significantly influence the
response. This also shows that both modes share similar resonance positions but differ in amplitude
scale and sensitivity.
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Figure 6. Effect of different values of the force f, on the frequency-response curves of
(a) the main system and (b) the NINDF controller.

Figure 7(1)—(4) shows the effect of changing the parameters of the controlled system on the
frequency response curves at different control values. Figures 7-10 illustrate the variations of
amplitudes a and h as functions of used parameters. In Figure 7, the amplitude a exhibits a
sharp peak, indicating a critical region of high sensitivity, with values of velocity signal coefficient
(7,) increasing from 0.8 to 1.2. Similarly, Figure 8 shows the response of amplitudes a and 7,

where a distinct resonance peak becomes increasingly sharp, reflecting growing instability near
resonance. Figure 9 highlights the influence of on amplitude a, where the observed peaks
correspond to resonance conditions, and the spacing between curves demonstrates the strong effect
of parameter changes on stability. Finally, Figure 10 presents amplitude /% under varying, where the
pronounced peak and curve spacing further emphasize the system’s sensitivity and the direct impact
of parameter variations on its overall dynamic behavior. Figure 11 shows the amplitudes a and #
as functions of o, for varying, . The distinct peaks at o, =0 indicate critical response points. As
u, increases from 0.001 to 0.05, the peak magnitudes decrease, reflecting a more stable system with
reduced sensitivity to changes in o,. This trend underscores the significance of g, in influencing

system dynamics and stability. When the natural frequency is relatively low, the system achieves
higher stability at o, =0, meaning ®, = w,. Under these conditions, the maximum amplitudes for

both the cantilever and the NINDF controller become larger, while the vibration range also expands.
This behavior confirms that the NINDF controller performs with high efficiency in low-frequency
scenarios, as presented in Figure 12.

Figure 13, with increased & from 1 to 1.3, clearly shows the strong effect of the control, as the
peak amplitudes for both the cantilever response (a) and the controller response / are significantly
reduced. The peaks also become narrower, indicating better frequency targeting and improved
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system stability. This confirms that higher &,

values make the control more powerful in suppressing
vibrations at resonance.
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Figure 8. Effect of the controller displacement signal coefficient (7/2) on system performance.
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8. Comparison with previously published works

This study derives the governing equations for a vertical conveyor system, analyzing primary,
subharmonic, and super-harmonic resonance. It explores vibration amplitudes, stability, and chaotic
behavior in nonlinear systems [3]. As shown in Figure 14, when comparing the system’s response
under the four control strategies—PD, NSC, PPF, and NINDF—the differences in performance
became quite clear [13]. With PD control, the oscillations stayed almost constant throughout the
entire period, which means the system never really reached stability. Using NSC control, the
oscillations started to fade gradually until the system finally settled at around t =~ 1600 s. While this
was an improvement over PD, the settling time was still very long [5]. On the other hand, PPF
control showed faster damping, with the system stabilizing at about t =~ 700 s [7]. The best results,
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however, came from NINDF control, where the oscillations dropped very quickly and stability was
achieved in just about t =~ 80 s. This makes NINDF not only the fastest in reaching stability but
also the most effective in improving the system’s overall performance. Finally, the NINDF control,
created by combining IRC and NDF, delivers remarkable results. It merges the resonance-handling
of IRC with the strong damping of NDF, allowing the system to reach stability. This makes it far
more effective and faster than all other control strategies.
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Figure 14. Comparison between different types of controllers.

9. Conclusions

This study investigates the vibrations of a vertical conveyor system subjected to an external
excitation force and controlled using a nonlinear integral negative derivative feedback (NINDF)
controller. A novel approach is proposed to mitigate the system’s lateral vibrations by implementing
the NINDF control strategy. The mathematical model is formulated by coupling two second-order
nonlinear differential equations with first-order linear differential equations, representing both the
conveyor system and the controller. To derive an approximate solution for the vibrating system, the
method of multiple scales is employed. Frequency—response equations are then utilized to analyze the
system’s stability. Numerical simulations are carried out to evaluate the influence of all system
parameters. Based on this analysis, the key findings are as follows:
= The vertical conveyor system’s resonance cases are all examined, with a simultaneous primary
and internal case, with Q, =@, ,Q, = o, ,0, = ®,,0, = ®, being the worst.
=  The NINDF control, created by combining IRC and NDF, delivers remarkable results. It merges
the resonance-handling of IRC with the strong damping of NDF, allowing the system to reach
stability.
= For the first mode (z), the amplitude is reduced to 99.9% compared to the amplitude of the
uncontrolled system. This reduction indicates an effective response in mitigating oscillations,
highlighting the system’s improved stability and control performance, such that £, = 239900.
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= For the second mode (y ), the amplitude is reduced to 98.7 compared to the amplitude of the
uncontrolled system. This reduction indicates an effective response in mitigating oscillations,
highlighting the system’s improved stability and control performance, such that £, = 80.

» The increase in the control coefficient y,,i=1,2,3,4 sharpens the peaks, indicating greater

system sensitivity and variations in stability.
* As the external excitation force (f,and f,) increased, this impacted the controlled system’s

behavior.

=  The response of the main system decreased with an increase in the damping coefficients p;, u,.
=  Among the four control strategies, NINDF provides the fastest and most effective damping (~80
seconds), followed by PPF (~700 seconds), and then NSC (~1600 seconds), while PD is significantly
unable to achieve stability.
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Appendix A

Coefficients mentioned in Eq (14) are determined as follows:

BA 28, AA B A iw,y,c f —io,y, A
M= 312 N, =| - 12 Ny = 22 Ny = 2212 N5 = 21 =~ | Ne= 22_32 )
o, o, 8w, @ —w, 2w —€Y)) W, —

A (S, = 2iw 2B AA A (5 -3iw
A =74(f;)2((5§ +4a>21))j’N9 :(_ ﬁza ]’Ng :(g;z((5;+9w;))}’
1 1 1 1+1 1 1 1

N _( ia)271c(51 _ia)z) j N, _[ f1(51 _iQI) ]
10 — 2 2 2 2y (21 T 2 2 2 2 ’
(] — ;)0 + ;) 2w =)0 +Q))

2
o —iw
N, =£(5112 +a)}j 74D1A]5N13 :(_DIG]I))’

AIMS Mathematics Volume 10, Issue 12, 28129-28150.


https://doi.org/10.32604/sv.2020.08469
https://doi.org/10.21608/erurj.2025.331356.1197
https://doi.org/10.3390/math13132137
https://doi.org/10.1088/1402-4896/ad398b
https://doi.org/10.33581/1561-4085-2022-25-3-217-228
https://doi.org/10.1109/TIE.2025.3594416
https://doi.org/10.1080/15376494.2022.2072546
https://doi.org/10.1109/TAES.2025.3624706
https://doi.org/10.1007/978-1-4612-3968-0

28149

BE’ —2B,EE BE’ io, Y
le[;z ’LZZ 32 ,L3= 42 ’L4:%’
w, ; 8w, W; — @,
1 —io,AE
L= 22 b Le=vi= 24%2 >
2(wy —€);) Wy —

L :Lﬂ{ﬂ}]{z(@ —2ia)3)D,L9 :(_ 2ﬁ3HF[j’L8 :(,34H3(§2 —3ia)3)j’

3w; (6; +4w]) w33, 8w; (5; +9@;)

;[ @AY o) ), f(6,-i0)
Y@ o)) o) )T\ 20! -2+ )

2
o, —iw
L, =((5} +w3§] /14D1HJ,L13 =(-DMT,),

Appendix B

Coefficients mentioned in Eqs (31) and (32) are determined as follows:
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