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Abstract: In response to the global health crises posed by infectious diseases like COVID-19,
this study presents an enhanced SEIR model by introducing a novel feedback control mechanism.
This mechanism dynamically adapts not only to the current state of the infected population but also
to its rate of change, offering a dual-dependence control strategy. Such an approach significantly
enhances the responsiveness and precision of epidemic management interventions, leading to a
substantial reduction in peak infection rates and overall disease burden. To achieve optimal control, we
employed the gradient descent method for mathematical analysis, ensuring both theoretical robustness
and computational efficiency. Theoretical results were validated through comprehensive numerical
simulations, demonstrating the efficacy of our control strategy across various epidemic scenarios.
Furthermore, a comparative analysis with Pontryagin’s maximum principle highlights the superior
performance of our model, underscoring the critical role of incorporating both state and rate of
change information in designing effective public health interventions. These findings reveal new
possibilities for improving epidemic containment strategies, offering valuable insights for real-world
disease management.
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1. Introduction

Infectious diseases remain a persistent threat to global public health, as dramatically illustrated
by recent outbreaks, including the COVID-19 pandemic. Such events have underscored the crucial
need for effective tools to analyze and mitigate the spread of contagious pathogens. Among these
tools, mathematical models have proven to be indispensable in understanding disease transmission
dynamics and in guiding policy decisions. In particular, compartmental models, such as the classical
susceptible–infectious–recovered (SIR) model introduced by Kermack and McKendrick in 1927 [2],
have laid the foundation for the development of more elaborate frameworks. One such refinement
is the susceptible–exposed–infectious–recovered (SEIR) model, which incorporates a latent phase to
account for the incubation period characteristic of many infectious diseases [6–8].

Despite the wide adoption of these models, a major limitation persists: The inability to dynamically
adjust intervention strategies in response to the evolving state of an epidemic. Traditional approaches
typically rely on static or pre-planned controls, which can be insufficient in rapidly changing contexts.
This challenge has prompted a growing interest in the integration of feedback mechanisms within
epidemic models, allowing control measures to adapt in real time based on the system’s behavior [9–
12]. Feedback control offers a pathway toward more resilient and efficient public health responses by
continuously tuning interventions to match the epidemic’s progression.

Various feedback strategies have been explored in the literature, including vaccination, treatment
policies, and non-pharmaceutical interventions. However, many existing models employ simplistic
feedback schemes that react solely to the current level of infection without considering the temporal
trends or rate of change in disease prevalence [13, 14, 21]. Such approaches may fail to capture the
urgency required in the face of rapidly escalating outbreaks. Furthermore, it has also been shown that
behavioral and information-related effects, such as the influence of messages disseminated on social
media on the spread of the epidemic, have a significant impact on transmission dynamics [22].

In this work, we propose an enhanced S EIR-type model that introduces a novel feedback control
mechanism. Unlike conventional methods that rely only on the instantaneous number of infected
individuals, our approach simultaneously incorporates the rate of change of infections. This dual-
dependence control strategy, based on both the infection level I(t) and its time derivative I′(t), enables
a more agile and anticipatory response to shifts in epidemic trends. The resulting control scheme is
thus better equipped to mitigate sudden surges in infections and to stabilize disease dynamics more
effectively.

The motivation for this study lies in the observed shortcomings of traditional control frameworks,
particularly their inability to respond proactively to changing epidemiological conditions. By
leveraging real-time information about the growth rate of infections, the proposed feedback law
provides a significant advantage in responsiveness and control precision. This has practical
implications for the timely implementation of containment strategies, especially during early outbreak
phases or in the presence of new variants.

To assess the effectiveness of our methodology, we perform a comparative analysis with the classical
optimal control approach rooted in Pontryagin’s maximum principle [15–17]. Many studies also
extend these methods to more general frameworks, notably fractional optimal control approaches [5].
This principle has long been a standard in determining time-dependent intervention strategies in
epidemiology. Our findings reveal that the feedback-based approach offers tangible benefits in terms
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of adaptivity, robustness, and computational efficiency.

In summary, this paper contributes to the advancement of epidemic modeling by introducing a
feedback control strategy that adapts to both the state and the dynamics of infection spread. The
proposed model not only extends the theoretical understanding of control in compartmental systems,
but also provides practical tools for decision-makers facing the challenges of epidemic containment.

The remainder of this paper is structured as follows. In Section 2, we introduce the mathematical
formulation of the SEIRS model and provide the foundational analysis. Section 3 presents the
controlled version of the model and details the design of the feedback mechanism. Section 4 is devoted
to the training via adjoint sensitivity analysis. In Section 5, we formulate and solve the optimal control
problem using Pontryagin’s framework. Section 6 offers a comparative study between the proposed
feedback method and classical optimal control strategies. Finally, we summarize the key insights and
discuss potential extensions in Section 7.

2. Problem statement

In order to understand the mechanisms behind the spread of infectious diseases and to create
successful intervention methods, mathematical modeling is essential [18, 19]. The SEIRS framework
is unique among the other compartmental models used in epidemiology since it introduces an exposed
class to capture the incubation time. In order to appropriately represent diseases where recovered
patients may re-infected, we propose an enhanced SEIRS model in this study that takes waning
immunity into account.

The complex interactions between the population compartments are reflected in our model, which is
built under biologically plausible assumptions. In particular, we establish four groups from the entire
population N(t) at time t: susceptible people S (t), exposed individuals E(t), infectious individuals
I(t), and recovered individuals R(t). The behavior of the system is described by the following set of
nonlinear ordinary differential equations:



S ′(t) = Λ − αS (t)
I(t)
N(t)

+ θR(t) − dS (t),

E′(t) = αS (t)
I(t)
N(t)

− aE(t) − dE(t),

I′(t) = aE(t) − (g + r + d)I(t),

R′(t) = gI(t) − θR(t) − dR(t),

(2.1)

with nonnegative initial conditions S (0), E(0), I(0), and R(0) ≥ 0 . According to Table 1, every system
parameter records a significant biological or epidemiological process.
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Table 1. Descriptions of the parameters used in the model.

Parameters Descriptions
Λ Coefficient of the recruitment rate
α Infection rate coefficient
d Coefficient of the natural mortality rate
r Coefficient of the mortality due to the virus
a Inverse of the average incubation period of the disease
g Coefficient of the recovery intensity of infected individuals
θ Loss rate of immunity

The entire population is described by N(t) = S (t) + E(t) + I(t) + R(t). The phase space of permissible
state variables is introduced to make the analysis easier:

X :=
{
x = (S , E, I,R) ∈ R4

+ : S (t) + E(t) + I(t) + R(t) = N(t),∀t ≥ 0
}
.

The nonnegativity of the model solutions is an important first finding that guarantees the model’s
epidemiological relevance.

Theorem 2.1. (Positivity of Solutions) Let (S (t), E(t), I(t),R(t)) be a solution to system (2.1) with
nonnegative initial conditions. Then, for all t ≥ 0, the components S (t), E(t), I(t),R(t) remain
nonnegative.

Proof. See [15] for a detailed proof. �

Furthermore, by adding the equations in (2.1), we obtain the population dynamics:

N′(t) = Λ − dN(t) − rI(t).

This implies that the population as a whole is eventually bounded. In other words, if N0 = N(0), then:

N(t) ≤ N0e−dt +
Λ

d
≤ K,

where K = N0 + Λ/d, and hence:

S (t), E(t), I(t),R(t) ≤ K, ∀t ≥ 0.

Remark 2.2. The boundedness of N(t) implies that all compartments in the system are uniformly
bounded by the constant K.

We normalize the system by dividing each compartment by N(t) in order to simplify the
mathematical analysis. We determine the system’s normalized form assuming a constant population
size: 

S ′(t) = Λ − αS (t)I(t) + θR(t) − dS (t),

E′(t) = αS (t)I(t) − aE(t) − dE(t),

I′(t) = aE(t) − (g + r + d)I(t),

R′(t) = gI(t) − θR(t) − dR(t).

(2.2)
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Letting S (t) + E(t) + I(t) + R(t) = 1, the normalized state space becomes:

X :=
{
x = (S , E, I,R) ∈ R4

+ : S (t) + E(t) + I(t) + R(t) = 1,∀t ≥ 0
}
.

The existence of solutions for system (2.2) is the next topic we discuss. Rewriting it in the conventional
Cauchy form: x′(t) = f (t, x),

x(0) = x0.

The vector field f can be divided into two parts: A linear and a nonlinear component as follows:

f (t, x) =Mx +H(x),

where

M =


−d 0 0 θ

0 −(a + d) 0 0
0 a −(g + r + d) 0
0 0 g −(d + θ)

 , H(x) =


Λ − αS I
αS I

0
0

 .
The existence and uniqueness of solutions are ensured by the standard Cauchy–Lipschitz theorem,
which makes it simple to confirm that f is locally Lipschitz continuous.

3. Control design and optimization framework

We provide a feedback control mechanism that is directly included into the SEIRS model’s structure
to improve the responsiveness of intervention tactics against epidemic outbreaks. By using real-time
data regarding the infection dynamics, particularly the state variable I(t) and its rate of change I′(t),
this method goes beyond conventional time-dependent or state-only control approaches. This decision
was made in order to produce a control legislation that is sensitive to sudden changes in the spread of
illness and adaptable.

3.1. Feedback-driven controlled model

The design of a feedback-based control mechanism incorporated into the SEIRS framework is a
significant innovation of this study. The suggested approach presents a dynamic control rule that
adjusts in real time to the current infection condition and its progression, in contrast to traditional
control techniques that recommend fixed actions or optimize predetermined control functions offline.
In particular, the model is expanded by adding a control input u(t) that adjusts the rate at which infected
people are removed, signifying the severity of interventions like treatment, isolation, or other health
regulations. This is how the controlled SEIRS system is constructed:

S ′(t) = Λ − αS (t)I(t) − dS (t) + θR(t),

E′(t) = αS (t)I(t) − (a + d)E(t),

I′(t) = aE(t) − (g + r + d + u(t))I(t),

R′(t) = (g + u(t))I(t) − (θ + d)R(t).

(3.1)
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The control u(t) is expressed as a feedback function of the number of people infected at a given moment
and the rate at which this number changes:

u(t) = k1(t)I′(t) + k2(t)I(t), (3.2)

where the time-dependent gain functions k1(t) and k2(t) establish how sensitive the control is to
infection dynamics. This formulation incorporates important epidemiological data and offers a number
of benefits:

• Responsiveness to acceleration: The trend in infection rates is captured by the derivative term
I′(t). The control automatically increases when infections are increasing quickly (i.e., I′(t) � 0),
allowing for the prompt scaling up of interventions like mass testing, more stringent isolation, or
emergency treatment mobilization.
• Proactive control: By identifying early indicators of acceleration, this control predicts future

load, in contrast to reactive techniques that simply react to current levels I(t). Avoiding system
delays is essential, since previous pandemics like COVID-19 have shown that even a few-day
delay in intervention can have disastrous results.
• Stabilization in post-peak phases: The control automatically decreases when the epidemic

slows (i.e., I′(t) < 0), preventing needless or excessive restrictions. This permits the reallocation
of resources or the relaxation of public measures without sacrificing safety.

This control structure can be viewed as a generalization of proportional-derivative (PD)
controllers used in engineering systems, where I(t) acts as the proportional component and I′(t) as
the derivative. Its application in epidemic control offers a powerful and interpretable tool: When the
epidemic is stable (I′(t) ≈ 0), the intervention intensity depends mostly on the current prevalence.
When the epidemic begins to surge, the derivative term triggers a rapid increase in control pressure,
effectively buying time and flattening the curve.

By embedding this control directly into the dynamic system, we establish a framework that is not
only mathematically sound, but also grounded in practical realities. This makes the proposed model
particularly valuable for real-time epidemic management, where quick and data-responsive decisions
are essential.

3.2. Objective functional and control constraints

Our goal is to determine the optimal pair of functions K = (k1, k2) that minimizes an objective
functional reflecting both epidemiological outcomes and control effort. Specifically, we consider:

J(x,K) =

∫ t f

0
G(x,K) dt,

where the cost integrand is defined as:

G(x,K) = I(t) − R(t) +
1
2

c1k1(t)2 +
1
2

c2k2(t)2.

The first term penalizes the prevalence of infections while rewarding recoveries, and the last two
terms regularize the control effort to avoid extreme interventions. We seek an optimal control K∗ =

(k∗1, k
∗
2) such that:
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J(x,K∗) = min
K∈K

J(x,K),

where the admissible control set K is given by:

K :=
{
(k1(t), k2(t)) : 0 ≤ u(t) ≤ 1, ∀t ∈ [0, t f ]

}
.

3.3. Adjoint-based gradient computation

First, we express the system (3.1) explicitly, as the introduction of the feedback law into the
dynamics induces an implicit dependence of I′(t) on the control variables, and consequently on (k1, k2),
so we define:

D(t) := 1 + k1I(t), A(t) := aE(t) − (g + r + d)I(t) − k2I(t)2.

The explicit equation for I′(t) is:

I′(t) =
A(t)
D(t)

=
aE − (g + r + d)I − k2I2

1 + k1I
,

and the explicit control is given by:

u(t) = k1I′(t) + k2I(t) = k1
A(t)
D(t)

+ k2I(t). (3.3)

So, system (3.1) could be rewritten as:

S ′(t) = Λ − αS I − dS + θR,

E′(t) = αS I − (a + d)E,

I′(t) =
aE − (g + r + d)I − k2I2

1 + k1I
,

R′(t) = (g + u)I − (θ + d)R.

(3.4)

To solve the optimal control problem, we apply a gradient-based optimization strategy. The problem
can be rewritten in the standard form:min

K∈K

∫ t f

0
G(x,K) dt,

subject to: x′(t) = f (x,K), x(0) = x0.

We define the Lagrangian functional:

L(x, λ,K) =

∫ t f

0

(
G(x,K) + λ(t)T (

x′(t) − f (x,K)
))

dt,

where λ(t) is the adjoint variable. Through integration by parts and optimality conditions, the gradient
of J with respect to K is derived as:

dJ
dK

=

∫ t f

0

(
∂G

∂K
+ λ(t)T ∂ f

∂K

)
dt,
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where λ(t) satisfies the adjoint system:
dλ
dt

=
∂G

∂x
−

(
∂ f
∂x

)T

λ(t),

λ(t f ) = 0.

3.4. Derivation of the feedback gradient expressions

To implement the gradient descent algorithm described earlier, it is essential to compute the gradient
of the objective function J(k1, k2) with respect to the feedback weights k1 and k2. This subsection details
the analytical derivation of these gradients using the adjoint sensitivity method.
The objective function to minimize is given by

J(k1, k2) =

∫ t f

0

(
I(t) − R(t) +

1
2

c1k2
1 +

1
2

c2k2
2

)
dt.

Since u(t) depends explicitly on k1 and k2, which in turn influence the system dynamics, we adopt
a Lagrangian formulation. Let λ(t) denote the adjoint vector associated with the state variables. The
total derivative of the Lagrangian with respect to K = (k1, k2) reads:

dJ
dK

=

∫ t f

0

(
∂G

∂K
+ λ(t)>

∂ f
∂K

)
dt,

where G is the running cost and f is the right-hand side of the controlled system.
First, we compute

∂G

∂k1
= c1k1,

∂G

∂k2
= c2k2,

from the explicit regularization terms.
Next, we evaluate ∂ f

∂K . Taking the partial derivatives with respect to k1 and k2, we obtain:

∂ f
∂k1

=


0
0

−
AI
D2

I
(
I′ − k1

AI
D2

)


,

∂ f
∂k2

=



0
0

−
I2

D
I
(
I − k1

I2

D

)


.

The corresponding terms in the gradient expression become:

λ>
∂ f
∂k1

= λ3

(
−

AI
D2

)
+ λ4I

(
I′ − k1

AI
D2

)
, λ>

∂ f
∂k2

= λ3

(
−

I2

D

)
+ λ4I

(
I − k1

I2

D

)
.

Substituting into the Lagrangian derivative, we obtain the final gradient formulas:

dJ
dk1

=

∫ t f

0

[
c1k1 + λ3

(
−

AI
D2

)
+ λ4I

(
I′ − k1

AI
D2

)]
dt,

dJ
dk2

=

∫ t f

0

[
c2k2 + λ3

(
−

I2

D

)
+ λ4I

(
I − k1

I2

D

)]
dt.

These expressions are used within the training algorithm to iteratively update the feedback weights,
as described in Algorithm 1.
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3.5. Gradient descent optimization algorithm

The optimal weights K are updated iteratively using the gradient descent method:

K j+1 = K j − η∇K J(x j,K j),

where η is the learning rate and ∇K J is the gradient computed using the adjoint system. The full
optimization procedure is summarized below (see Algorithm 1).

Algorithm 1: Gradient-Based Optimization of Feedback Control
Inputs: Initial condition x0, learning rate η, tolerance ε.
Output: Optimal feedback weights K = (k1, k2).
Initialize iteration counter j = 0, initial guess K0 = (k0

1, k
0
2).

Compute initial control u0(t) using Eq (3.3).
Repeat until convergence or j > jmax:

1. Solve the state system (3.1) forward in time to obtain x j(t).
2. Solve the adjoint system backward to compute λ j(t).
3. Compute the gradient ∇K J(x j, λ j,K j).
4. Update the weights: K j+1 = K j − η∇K J(x j, λ j,K j).
5. Update control u j+1(t) using updated weights.
6. Check convergence: if ‖u

j+1−u j‖

‖u j‖
≤ ε stop.

7. Increment j← j + 1.

This framework ensures that the control strategy evolves intelligently with the epidemic dynamics,
making it particularly suited for real-time policy adjustments and robust epidemic mitigation.

3.6. Numerical studies

In this section, we present numerically obtained results for solving our optimal problem (3.4), where
in the first case we treat the evolution of the system without k1, while in the second case we apply both
controls in order to have a conclusion that solidifies our theoretical findings. The simulations are
performed using the parameters c1 = 0.5, c2 = 0.05, learning rate η = 10−3, and tolerance ε = 10−6.
The parameter values and the initial conditions used in these simulations are taken from [6,15] and are
summarized in Table 2.

Table 2. Values and interpretations of the parameters for our model.

Parameters Interpretations values
Λ Coefficient of the recruitment rate 0.1
α Infection rate coefficient 0.3
d Coefficient of the natural mortality rate 0.1
r Coefficient of the mortality due to the virus 0.003
a The inverse of the average incubation period of the disease 1/12
g Coefficient of the recovery intensity of infected individuals 1/14
θ Loss rate of immunity 0.1
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First, we simulate the system in the absence of any control intervention. This configuration represents
the natural evolution of the epidemic and serves as a reference for our comparative analysis.

In this uncontrolled scenario (Figure 1), the infected population reaches a significant peak, and
the recovery is relatively slow. Such an evolution underscores the necessity for timely and adaptive
intervention strategies.
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Figure 1. Population evolution in time without control.

3.7. Controlled dynamics using feedback control

Next, we apply our proposed feedback-based control strategy, defined as:

u(t) = k1I′(t) + k2I(t) = k1
A(t)
D(t)

+ k2I(t),

with optimal weights k1 and k2 obtained via the gradient descent method.

As shown in Figure 2, the control feedback significantly reduces the infection peak and accelerates
recovery. The control intensity adapts dynamically in response to epidemic trends, illustrating the
benefits of including I′(t) in the feedback loop.
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Figure 2. Population evolution in time with both controls.

4. Optimal control via Pontryagin’s minimum principle

To complement the feedback-based control strategy previously developed, we now adopt a classical
analytical approach grounded in Pontryagin’s minimum principle (PMP) [3]. This method enables
the determination of an optimal control trajectory by directly minimizing a predefined objective
functional, subject to the dynamic constraints of the epidemiological system. In other biomedical
situations, such as tumor-immune interaction models under therapeutic intervention, similar optimal-
control formulations have been successfully implemented [23]. The use of PMP allows for a rigorous
derivation of necessary conditions for optimality and offers a theoretical benchmark against which we
can compare the feedback control policy.

4.1. Formulation of the optimal control problem

We reconsider the controlled SEIRS model under the influence of a scalar control u(t) representing
efforts such as treatment, isolation, or intensified healthcare interventions:

S ′(t) = Λ − αS (t)I(t) − dS (t) + θR(t),

E′(t) = αS (t)I(t) − (a + d)E(t),

I′(t) = aE(t) − (g + r + d + u(t))I(t),

R′(t) = (g + u(t))I(t) − (θ + d)R(t).

(4.1)

Our goal is to identify the optimal control u∗(t) minimizing the cost functional:

J(x(t), u(t)) =

∫ t f

0

[
I(t) − R(t) +

1
2

a1u(t)2
]

dt, (4.2)
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where the integrand balances the need to reduce infection levels while rewarding recovery, penalized
by the quadratic cost associated with control application. The scalar a1 > 0 tunes the intensity of this
penalization.

The admissible controls are those functions u(t) satisfying:

U :=
{
u(t) : 0 ≤ u(t) ≤ 1, ∀t ∈ [0, t f ]

}
.

Existence of an optimal control

Before deriving the necessary conditions, we establish the existence of at least one optimal control.

Theorem 4.1. There exists a measurable control function u∗(t) ∈ U that minimizes the functional J,
i.e.,

J(u∗) = min
u∈U

J(u).

Proof. The proof follows from standard results in optimal control theory, particularly those by Fleming
and Rishel [1]. We verify the following assumptions:

• The set of admissible controlsU is nonempty, convex, and closed.
• The right-hand side of the state system (4.1) is continuous and bounded in x and u, and satisfies

Lipschitz conditions ensuring existence and uniqueness of solutions.
• The cost integrand L(x, u) = I(t) − R(t) + 1

2a1u2(t) is convex in u.
• There exist constants c3 ∈ R, c4 > 0, and n > 1 such that L(x, u) ≥ c3 +c4‖u‖n, due to the quadratic

term in u and boundedness of state variables.

Therefore, all required hypotheses are satisfied, and the existence of an optimal control is guaranteed
by the theorem in [1]. �

4.2. Application of Pontryagin’s principle

To characterize the optimal control u∗(t), we invoke Pontryagin’s minimum principle. Let λ(t) =

(λ1(t), λ2(t), λ3(t), λ4(t)) be the adjoint variables associated with the state equations. The Hamiltonian
function for this problem is defined as:

H = I(t) − R(t) +
1
2

a1u(t)2 +

4∑
i=1

λi(t) fi(x(t), u(t)), (4.3)

where fi denotes the right-hand side of the ith equation in (4.1). The adjoint system is then given by:

λ′1(t) = (αI(t) + d)λ1(t) − αI(t)λ2(t),

λ′2(t) = (a + d)λ2(t) − aλ3(t),

λ′3(t) = −1 + αS (t)(λ1(t) − λ2(t)) + (g + r + d + u(t))λ3(t) − (g + u(t))λ4(t),

λ′4(t) = 1 − θλ1(t) + (θ + d)λ4(t),

(4.4)

with the transversality conditions:

λi(t f ) = 0, for i = 1, 2, 3, 4.
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Characterization of the optimal control

The optimal control u∗(t) is obtained by minimizing the Hamiltonian with respect to u, i.e.,

u∗(t) = arg min
u∈[0,1]

H(x(t), u, λ(t)).

Setting the derivative of H with respect to u to zero and projecting onto the admissible set, we
obtain:

u∗(t) = min
(
1,max

(
0,
λ3(t) − λ4(t)

a1
I(t)

))
. (4.5)

This feedback form of the optimal control links it explicitly to the state variable I(t) and the adjoint
variables λ3(t) and λ4(t), offering a direct means for implementation once the forward and backward
systems are solved.

Proof. The derivation follows directly from Pontryagin’s conditions:

λ′i(t) = −
∂H
∂xi

, and
∂H
∂u

= a1u(t) + I(t)(λ3(t) − λ4(t)) = 0.

Solving this equation gives:

u(t) =
λ3(t) − λ4(t)

a1
I(t),

which is then projected onto the admissible control set [0, 1] to obtain (4.5). �

4.3. Numerical implementation and simulation results

To numerically evaluate the optimal control derived via Pontryagin’s minimum principle, we solve
the associated optimality system, which consists of the state equations, adjoint equations, and the
control characterization. This forms a two-point boundary value problem (TPBVP), with initial
conditions imposed on the state variables and terminal conditions specified for the adjoint variables.

The resolution proceeds iteratively: We begin with an initial guess for the control u(t), then solve the
state system forward in time, followed by a backward integration of the adjoint system. The control
is subsequently updated using the characterization formula (4.5), and the process is repeated until
convergence of successive control profiles is achieved. All simulations were performed using Python,
with numerical parameters and initial conditions consistent with those used in previous sections. The
resulting population trajectories under Pontryagin’s minimum principle are shown in Figure 3.
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Figure 3. Population dynamics using Pontryagin’s minimum principle.

This approach produces an optimal trajectory based on backward-forward integration. While PMP
yields a viable solution, the resulting control may lack responsiveness to rapid epidemic surges.

Comparative assessment of control strategies

To evaluate the relative performance of the two proposed control approaches, the feedback-
based strategy and the Pontryagin-derived optimal control, we focus on the infected and recovered
compartments, which offer the most direct insights into the epidemic’s progression and containment
effectiveness.

Figure 4 illustrates the temporal evolution of the population under the two controls laws:

• Feedback Control : This strategy, defined by u(t) = k1(t)I′(t) + k2(t)I(t), achieves a significant
reduction in the infection peak and a notable increase in the number of recovered individuals.
The dynamic nature of this control, reacting to both the state and its rate of change, enables rapid
adjustments in response to epidemic acceleration.
• Pontryagin’s Optimal Control: Although effective in dampening the epidemic curve, this

strategy results in a higher infection peak and a comparatively lower number of recoveries. The
control profile tends to be smoother but less responsive to sudden changes in infection growth.
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Figure 4. Comparison of infection and recovery between feedback and PMP control
strategies.

The comparison clearly indicates that the feedback control strategy outperforms the classical
optimal control in both reducing the disease burden and accelerating recovery. Its reliance on real-time
epidemic signals (I(t) and I′(t)) makes it a more robust and adaptive tool, especially in scenarios where
rapid fluctuations in infection rates occur. These results advocate for the integration of such feedback
mechanisms into epidemic response frameworks, offering enhanced responsiveness over traditional
control optimization methods.

5. Conclusions

In this work, we have developed and analyzed an enhanced SEIRS epidemic model incorporating a
dynamic feedback control strategy based on both the current level of infection I(t) and its rate of change
I′(t). This dual-dependence control law introduces a higher degree of responsiveness to changes in
epidemic dynamics, enabling more timely and effective interventions.

To assess the efficiency of the proposed approach, we formulated an optimization problem and
applied adjoint sensitivity analysis combined with gradient descent techniques to identify the optimal
feedback parameters. Furthermore, we conducted a rigorous comparison with a classical optimal
control strategy derived from Pontryagin’s minimum principle. Numerical simulations have shown that
the feedback-based control outperforms the Pontryagin-based approach in reducing infection peaks and
enhancing the recovery process, offering a more robust framework for real-time epidemic management.

These findings highlight the potential of adaptive, data-driven control strategies in public health
planning, especially in rapidly evolving epidemic contexts. Future research directions may include
calibrating the model using empirical data, extending it to spatial or network-based structures, and
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integrating more realistic features such as time delays, age structures, vaccination dynamics or
fractional order versions [24]. Such extensions would further enhance the model’s applicability to
real-world epidemic control scenarios.
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