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Abstract: In this paper, we studied the continuous dependence and stability of solutions for a class
of fractional partial differential equations with multiple spatially varying coefficient parameters. The
nonlocal operator was defined by a symmetric kernel, yielding a self-adjoint structure essential to the
analysis. Using variational methods and the Minty–Browder theorem, we established the existence
and uniqueness of weak solutions in the energy space X0 for each admissible parameter vector w.
We extended single-parameter stability to a multi-parameter framework by proving that the solution
operator S f is continuous with respect to w in the product space

∏
i Lqi(Ω). Moreover, we derived

an explicit global Lipschitz estimate for S f and showed its Gâteaux differentiability under mild
regularity assumptions on f (x, u,w). Numerical simulations confirmed continuity, Lipschitz stability,
and differentiability of S f with respect to all parameters. These results provided rigorous guarantees
for inverse problems and uncertainty quantification in multi-parameter fractional PDE models.
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1. Introduction

In recent years, as partial differential equations (PDEs) have been widely applied to describe non-
local phenomena and model complex systems, research into the theoretical properties of their solutions
has grown increasingly extensive. In particular, fractional nonlocal PDEs with spatially variable
coefficients have emerged as a significant research focus in mathematical physics, as they are capable
of more accurately capturing the non-uniform characteristics of physical parameters. Nowadays,
fractional models have been widely applied in fields such as medical imaging, porous media, phase
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transition, and quantitative finance. They can describe abnormal transmission, long-range interactions,
and memory effects. For instance, the use of variable-order fractional operators has significantly
advanced adaptive denoising techniques in medical imaging [1], while mixed local–nonlocal diffusion
equations have deepened our understanding of flow in heterogeneous porous structures. Likewise,
phase transition problems with fractional Laplacians have clarified the effects of boundary reactions
and symmetry properties in materials science [2], and jump-process-driven PDEs now play a central
role in stochastic finance [3]. Beyond classical analysis, researchers have explored neural-network and
neurosymbolic paradigms to construct exact analytical solutions for nonlinear PDEs, further enriching
the toolbox for PDE modeling and computation [4–6].

Existence and uniqueness results for variable-order fractional p-Laplace evolution equations were
established in [7, 8], while regularity and maximum principles for local–nonlocal mixed elliptic
equations were derived in [9]. The connection between microscopic particle systems and macroscopic
nonlocal dynamics was further clarified in [10]. Advances have extended the stability analysis of
fractional PDEs to more complex scenarios. For instance, Colasuonno et al. [11] studied continuous
dependence results for p-Laplace equations with operator variations, while Hamdani et al. [8]
investigated nonlocal problems involving variable-order fractional p(·)-Laplacian with two parameters.
On the numerical side, Batiha et al. [12] proposed high-performance adaptive step size schemes for
fractional differential equations, enhancing computational accuracy in multi-parameter settings. In the
context of inverse problems and uncertainty quantification, Gao and Ng [13] introduced Wasserstein
GAN-based uncertainty quantification in physics-informed neural networks, and Fu et al. [14]
developed physics-informed kernel function neural networks for parametric PDEs. Furthermore, Rigas
et al. [15] presented adaptive training techniques for physics-informed Kolmogorov-Arnold networks
in multi-fidelity modeling, while Tripura and Chakraborty [16] utilized wavelet neural operators for
solving parametric PDEs in computational mechanics.

Despite these advances, a critical gap persists in the literature. A thorough examination reveals
that the overwhelming majority of stability results are confined to single-parameter perturbations or
constant coefficients [11, 17]. While this provides a foundational understanding, it fails to address
the far more complex and realistic scenario where a system is simultaneously subjected to multiple
independent spatially varying parameters. This multi-parameter framework is the rule rather than the
exception in practical applications such as inverse problems and uncertainty quantification, where
one must identify or account for the uncertainty in several physical properties concurrently. Yet,
a systematic theory guaranteeing solution stability and continuous dependence under such joint
perturbations remains largely undeveloped.

Many inverse-problem and uncertainty-quantification workflows for fractional nonlocal models
require quantitative sensitivity of solutions with respect to multiple spatially varying coefficients, rather
than a single scalar parameter. While most stability results address single-parameter or constant-
coefficient perturbations, practical models involve several independent distributed coefficients, and
rigorous, computable guarantees under joint perturbations have been lacking. To address this need,
we establish well-posedness in X0 and qualitative continuity of the parameter-to-solution map S f ,
derive a global Lipschitz estimate with an explicit constant for the full parameter vector w, and
prove the Gâteaux differentiability of S f together with its associated linearized nonlocal variational
problem; numerical experiments corroborate these properties and report discrete counterparts of the
constants. Taken together, these results provide a unified multiparameter stability/sensitivity theory
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that directly supports gradient-based identification, uncertainty propagation, and step-size control in
data-driven settings.

The central requirement of any mathematical model is adaptability; that is, the existence,
uniqueness, and stability of the solutions [18]. Among these, stability is particularly crucial for
parameter identification, uncertainty quantification, and inverse problem solving [19]: Only by
ensuring that small disturbances in the input data or coefficients cause controllable changes in the
solution can numerical simulation and model inference be reliable. Although researchers have
conducted relatively thorough discussions on the existence, uniqueness, and stability of solutions in the
single-parameter case [17], practical problems typically rely on multiple spatially varying parameters
changing simultaneously; thus, there is a need for a systematic stability theory to support identification,
uncertainty quantification, and inverse problem solving in such multiparameter settings.

Here, we aim to address this gap by studying the fractional boundary value problem−LKu = f (x, u(x),w1(x), . . . ,wn(x)) , x ∈ Ω,

u = 0, x ∈ RN \Ω,
(1.1)

where Ω ⊂ RN is a bounded Lipschitz domain, LK denotes a non-local operator with a kernel K
satisfying the general symmetry and integrability conditions, the bilinear energy form is symmetric
and the associated nonlocal operator is self-adjoint on X0. If, in addition, K(y) = κ(|y|), then the energy
is invariant under orthogonal transformations. Hence, whenever Ω and the data are invariant under a
subgroup G ⊂ O(N), uniqueness implies that the weak solution satisfies u ◦ g = u for all g ∈ G [2].
The parameter functions wi ∈ Lqi(Ω) represent spatially distributed coefficients. The nonlinearity f is
of Carathéodory type, subject to specific growth and one-sided Lipschitz assumptions, which will be
detailed in the following sections.
Example 1 (fractional diffusion in heterogeneous media). A canonical physical instance of (1.1) is
anomalous diffusion in a heterogeneous medium, where u(x) denotes the concentration of a solute and
several spatially varying fields jointly perturb the dynamics. A convenient multiparameter model that
fits our analysis is

−LKu = a(x) u(x) + η(x) +

n∑
i=1

βi(x) wi(x) in Ω u = 0 in Ωc.

This affine structure satisfies the standard growth condition, the one-sided Lipschitz condition
in t, and the multiparameter Lipschitz and differentiability conditions in wi, namely |∂t f | ≤ a+(x)
and ∂wi f = βi(x) ∈ Lsi(Ω), with exponents (si, qi, r) fulfilling 1

si
+ 1

qi
+ 1

r = 1. Consequently, the
multiparameter stability and Gâteaux differentiability of the parameter-to-solution map S f quantify
how simultaneous perturbations in (w1, . . . ,wn) impact u, which is critical for inverse identification
and UQ in heterogeneous media.

Despite considerable progress for existence and stability theory for fractional PDEs with single-
parameter or constant coefficients [11, 17], a unified quantitative framework for models with
multiple spatially varying parameters remains lacking, yet is crucial in practical inverse problems
and uncertainty quantification [19]. We systematically address this gap by establishing, under
minimal Carathéodory and monotonicity assumptions, a multi-parameter stability and sensitivity
theory for fractional nonlocal boundary value problems. Based on variational methods and the
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Minty–Browder theorem [20–22], we prove the existence and uniqueness of weak solutions, derive
explicit global Lipschitz estimates, and demonstrate Gâteaux differentiability of the solution operator
with respect to all parameters. Compared with classical single-parameter results, our theory provides
robust mathematical guarantees for well-posedness and sensitivity in genuinely multi-parameter,
spatially heterogeneous settings. These advances not only generalize the classical stability theory,
but also directly support reliable parameter identification and numerical modeling of nonlocal and
fractional systems.

In this paper, the term “stability” is always understood as stability with respect to perturbations
of the distributed parameter vector w = (w1, . . . ,wn). More precisely, we study the parameter-to-
solution operator

S f :
n∏

i=1

Lqi
Σi
−→ X0

and prove that it is (i) qualitatively continuous and (ii) globally Lipschitz continuous with respect to w
in the energy norm ‖ · ‖ of X0. Thus, the stability results obtained here do not concern dynamical or
asymptotic stability of time-dependent solutions, but rather the robustness of the stationary nonlocal
boundary value problem (1.1) under small perturbations of the coefficient functions wi.

The main structure of this article is as follows. In Section 2, we introduce the functional setting,
notation, and fractional Sobolev embeddings. In Section 3, we state the standing assumptions and
auxiliary lemmas, and prove existence–uniqueness and continuity of the solution operator. In Section 4,
we present the major results: A global Lipschitz estimate with respect to all parameters and the Gâteaux
differentiability together with the associated linearized nonlocal problem. Section 5 reports numerical
experiments that verify the theory. In Section 6, we conclude the paper.

2. Preliminaries

Throughout the paper, we assume that N ≥ 1, 0 < s ∈ (0, 1) and that Ω ⊂ RN is a bounded Lipschitz
domain. We denote by Ωc = RN \Ω the complement of Ω, and introduce the interaction set

Q = R2N \ (Ωc ×Ωc) =
{
(x, y) ∈ R2N : at least one of x, y lies in Ω

}
.

The nonlocal operator LK in (1.1) is defined in terms of a measurable kernel K : RN \ {0} → (0,∞) by

LKu(x) := P.V.
∫
RN

(
u(x) − u(y)

)
K(x − y) dy, x ∈ Ω,

where P.V. denotes the Cauchy principal value. We assume that K is symmetric, K(y) = K(−y), and
satisfies the standard integrability and ellipticity conditions ensuring that the associated bilinear form
is well defined and coercive; in particular,"

Q
|u(x) − u(y)|2K(x − y) dx dy < ∞

for all admissible functions u considered below.

The fractional Sobolev space associated with problem (1.1) is given by

X =
{

u : RN → R
∣∣∣∣ u is measurable, u ≡ 0 a.e. in Ωc,

∫
Q
|u(x) − u(y)|2K(x − y) dx dy < ∞

}
.

AIMS Mathematics Volume 10, Issue 11, 27837–27861.



27841

We then introduce the closed subspace

X0 =
{
u ∈ X : u(x) = 0 for a.e. x ∈ Ωc },

consisting of functions in X that vanish almost everywhere outside Ω. Endowed with the inner product

(u, v) :=
"
R2N

(
u(x) − u(y)

) (
v(x) − v(y)

)
K(x − y) dx dy,

and the induced norm

‖u‖ :=
("

R2N

∣∣∣u(x) − u(y)
∣∣∣2K(x − y) dx dy

)1/2

,

the space X0 is a separable Hilbert space. We denote by X∗0 its topological dual.
It is standard that X0 can be identified with the fractional Sobolev space H s

0(Ω) associated with the
operator LK (up to equivalent norms). Thus the natural energy space for problem (1.1) is the fractional
Sobolev space H s

0(Ω), endowed with the norm induced by the bilinear form associated with LK . For
notational convenience, we set

U := H s
0(Ω),

and refer to U as the state space of admissible solutions u. In the sequel, the parameter-to-solution
map S f will always be understood as a mapping

S f :W→ U,

whereW denotes the set of admissible multiparameter fields (w1, . . . ,wn) introduced below.

Next, we recall the fractional critical exponent

2∗s =
2N

N − 2s
,

which is finite whenever N > 2s. For every p ∈ [1, 2∗s] the Sobolev embedding

X0 → Lp(Ω)

is continuous, and if p < 2∗s, the embedding is also compact. In particular, for each p ∈ [1, 2∗s] we can
define the optimal embedding constant

cp := inf
{ ‖u‖
‖u‖Lp(Ω)

: u ∈ X0 \ {0}
}
, (2.1)

where ‖u‖Lp(Ω) denotes the usual Lp-norm of u on Ω.

Finally, we recall the notion of a weak solution for the boundary value problem (1.1).
Let (w1, . . . ,wn) be given parameter fields, and let f : Ω×R×Rn → R be a Carathéodory nonlinearity
satisfying the growth condition∣∣∣ f (x, t,w1, . . . ,wn

)∣∣∣ ≤ C
(
1 + |t|p−1) for a.e. x ∈ Ω, ∀ t ∈ R,
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for some p ∈ [2, 2∗s] and constant C > 0 (here, p′ =
p

p−1 denotes the Hölder conjugate of p). We say
that u ∈ X0 is a weak solution of problem (1.1) if f

(
·, u(·),w1(·), . . . ,wn(·)

)
∈ Lp′(Ω) and"

R2N

(
u(x) − u(y)

) (
v(x) − v(y)

)
K(x − y) dx dy =

∫
Ω

f
(
x, u(x), w1(x), . . . ,wn(x)

)
v(x) dx

holds for all test functions v ∈ X0. In this case, we also write

u = S f (w1, . . . ,wn) ∈ U

to emphasize the dependence of the weak solution on the multiparameter fields.

3. Major lemmas

We next specify hypotheses guaranteeing that problem (1.1) admits exactly one weak solution and
that this solution continuously depends on the input of the multi-parameter.

Let (Ω,Σ, µ) be a measure space, X a separable metric space, and Y a metric space. A mapping
f : Ω × X → Y is called a Carathéodory map provided that

(a) for every fixed ξ ∈ X, the function x → f (x, ξ) is (Σ,B(Y))-measurable (here B(Y) denotes the
Borel σ-field on Y);

(b) for µ-almost every x ∈ Ω, the map ξ → f (x, ξ) is continuous.

For p ∈ [1,∞], let p′ ∈ [1,∞] be the conjugate exponent determined by 1/p + 1/p′ = 1. Observe
that if N

2s ≤ p ≤ ∞, then
2 ≤ 2p′ ≤ 2∗s,

we will use the following standing assumptions on

f : Ω × R × · · · × R︸        ︷︷        ︸
n times

−→ R :

(F′) There exist r ∈ (1, 2∗s), a function η ∈ Lr′(Ω), and constants α1, α2, . . . , αn+1 > 0 such that, for
x ∈ Ω and all t ∈ R,

| f (x, t,w1, . . . ,wn)| ≤ η(x) + α1 |t| r−1 + α2 |w1|
q1/r′ + · · · + αn+1 |wn|

qn/r′ ,

where r′ = r
r−1 denotes the Hölder conjugate exponent of r.

(A′) There exists a measurable function a : Ω → R such that, for x ∈ Ω and for all t1, t2 ∈ R with
wi ∈ Σi (i = 1, . . . , n),(

f (x, t1,w1, . . . ,wn) − f (x, t2,w1, . . . ,wn)
)

(t1 − t2) ≤ a(x) (t1 − t2)2,

Remark 1. By [23], assumption (F′) ensures that the operator N f (u) = f (·, u,w1, . . . ,wn) defines a
Nemytskii map.
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Lemma 3.1. Let f : Ω × R → R be a Carathéodory function satisfying the following scalar growth
and one-sided Lipschitz conditions (which are the counterparts of (F′) and (A′) in the single-parameter
case, see [17]):

(F) There exist r ∈ (1, 2∗s), a function η ∈ Lr′(Ω), and a constant α > 0 such that

| f (x, t)| ≤ η(x) + α |t| r−1 for a.e. x ∈ Ω, ∀ t ∈ R,

where r′ = r
r−1 is the Hölder conjugate exponent of r.

(A) There exists a function a ∈ Lp(Ω) with N
2s ≤ p ≤ ∞ such that the partial derivative ∂t f (x, t) exists

for a.e. x ∈ Ω, for all t ∈ R, and satisfies

|∂t f (x, t)| ≤ a+(x) for a.e. x ∈ Ω, ∀ t ∈ R,

where a+(x) := max{a(x), 0} denotes the positive part of a.

Let p′ =
p

p−1 be the Hölder conjugate exponent of p. Suppose that

‖a+‖Lp(Ω) < c 2
2p′ , (3.1)

where the constant c2p′ is given in (2.1). Under these conditions, the boundary value problem−LKu = f (x, u(x)) x ∈ Ω,

u = 0 x ∈ RN \Ω,
(3.2)

admits a unique weak solution u0 in X0. Moreover, the norm of this solution is bounded from above by

‖u0‖ ≤
c2∗s ‖η‖L(2∗s )′ (Ω)

1 − c−2
2p′ ‖a+‖Lp(Ω)

. (3.3)

In addition, when N
2s < p ≤ ∞, the constant appearing in (3.1) is sharp: That is, there exists some

a ∈ Lp(Ω) with ‖a+‖p = c2
2p′ such that if f (x, u(x)) = a(x) u(x), then the problem (3.2) has at least two

distinct weak solutions.

Proof. Let X0 be the fractional Sobolev space defined in Section 2 with inner product and norm induced
by K. Define T : X0 → X∗0 by

〈T (u), v〉 := (u, v) −
∫

Ω

f (x, u(x)) v(x) dx, ∀ u, v ∈ X0.

By assumption (A), for all u, v ∈ X0,

〈T (u) − T (v), u − v〉 = ‖u − v‖2 −
∫

Ω

(
f (x, u) − f (x, v)

)
(u − v) dx

≥ ‖u − v‖2 −
∫

Ω

a+(x) |u − v|2 dx

≥ ‖u − v‖2 − ‖a+‖p ‖u − v‖22p′ .
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Embedding constant and kernel symmetry. By (K1) and (K2), there exist 0 < λ ≤ Λ, such that the
energy is comparable with the classical fractional seminorm:

λ [w]2
Hs(RN ) ≤ ‖w‖

2 ≤ Λ [w]2
Hs(RN ), ∀w ∈ X0,

hence, the (symmetric) bilinear form (·, ·) indeed defines the X0-inner product. Combining this with
the standard fractional Sobolev embedding H s

0(Ω)→ L2p′(Ω) (constant CS = CS (N, s,Ω)), we obtain

‖w‖2p′ ≤ CS [w]Hs(RN ) ≤ CS λ
−1/2 ‖w‖, ∀w ∈ X0.

Since c2p′ is defined by ‖w‖2p′ ≤ c−1
2p′‖w‖ (see (2.1)), we may take

c−1
2p′ = CS λ

−1/2
(
equivalently c2p′ = λ1/2/CS

)
,

which depends on only (N, s,Ω, λ); in particular, the symmetry (K1) guarantees that the energy form
is symmetric so that this identification of c2p′ is legitimate for the monotonicity argument.

Using the above estimate for ‖u − v‖2p′ , we continue from the previous line to get

〈T (u) − T (v), u − v〉 ≥
(
1 − c−2

2p′ ‖a+‖p

)
‖u − v‖2.

Since ‖a+‖p < c2
2p′ , T is strongly monotone with modulus m := 1 − c−2

2p′‖a+‖p > 0. By (F) and standard
properties of Carathéodory functions, T is hemicontinuous and coercive. Hence, by the Browder–
Minty theorem, T (u) = 0 admits a unique solution u0 ∈ X0.

A priori bound. Testing the weak formulation with v = u0 and arguing as usual yields

m ‖u0‖
2 ≤

∫
Ω

| f (x, 0)| |u0| dx ≤ ‖η‖(2∗s)′ ‖u0‖2∗s ≤ c−1
2∗s
‖η‖(2∗s)′ ‖u0‖,

which gives

‖u0‖ ≤
c2∗s ‖η‖(2∗s)′

1 − c−2
2p′‖a+‖p

.

There is sharpness when N
2s < p ≤ ∞. In this range, the embedding X0 → L2p′(Ω) is compact, so the

best constant c2p′ is attained by some φ ∈ X0 \ {0} with ‖φ‖2p′ = c−1
2p′‖φ‖. Set

a∗(x) := c2
2p′
|φ(x)|2p′/p

‖φ‖
2p′/p
2p′

∈ Lp(Ω), ‖a∗‖p = c2
2p′ .

A direct computation shows ∫
Ω

a∗(x) φ(x)2 dx = c2
2p′ ‖φ‖

2
2p′ = ‖φ‖2,

so the linear problem −LKu = a∗(x)u has at least two nontrivial weak solutions (u = ±φ), which proves
the sharpness of the condition ‖a+‖p < c2

2p′ . �
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Assume that f satisfies (F′) and (A′). For each i = 1, . . . , n we fix an exponent qi ∈ [1,∞) and
a (nonempty) linear subspace

Lqi
Σi
⊂ Lqi(Ω),

which we interpret as the admissible parameter space for the i-th component; it is endowed with
the subspace norm topology inherited from Lqi(Ω). Then, for any fixed parameters wi ∈ Lqi

Σi
,

i = 1, . . . , n, the function f automatically fulfills the scalar assumptions (F) and (A) used in Lemma 3.1.
Consequently, according to Lemma 3.1, problem (1.1) admits a unique weak solution u in X0. In this
situation, we say that the solution u corresponds to the parameters wi for i = 1, . . . , n.

Based on this fact and within the framework of (F′) and (A′), we define the single-valued
solution operator

S f : W := Lq1
Σ1
× Lq2

Σ2
× · · · × Lqn

Σn
−→ U,

which assigns to any parameter tuple (w1, . . . ,wn) ∈ W the unique weak solution u ∈ U to
problem (1.1). If, for each i = 1, . . . , n, the space Lqi

Σi
is endowed with the subspace topology induced by

the norm topology of Lqi(Ω), then the Cartesian productW = Lq1
Σ1
× · · · × Lqn

Σn
carries the corresponding

product topology. Within this topological setting, one can formulate a lemma on the continuous
dependence of the solution on the parameters.

Lemma 3.2. Assume (F′) and (A′) with a ∈ Lp(Ω) and N
2s ≤ p ≤ ∞ such that ‖a+‖p < c2

2p′ . Then the
solution operator

S f : Lq1
Σ1
× Lq2

Σ2
× · · · × Lqn

Σn
→ X0,

is continuous.

Proof. Assume (F′) and (A′) hold with a ∈ Lp(Ω) and ‖a+‖p < c2
2p′ . Consider sequences

{wk
i }k∈N ⊂ Lqi(Ω), such that wk

i → w0
i in Lqi(Ω) for each i = 1, . . . , n. Set

uk := S f (wk
1, . . . ,w

k
n), u0 := S f (w0

1, . . . ,w
0
n).

We will show uk → u0 strongly in X0, which implies continuity of S f .
For each k, define the operator Tk : X0 → X∗0 by

〈Tk(u), v〉 = (u, v) −
∫

Ω

f
(
x, u,wk

1, . . . ,w
k
n
)

v dx, ∀ u, v ∈ X0.

By the definition of uk as the weak solution, we have Tk(uk) = 0. Using the coercivity assumption (A′),
one can show that for all u, v ∈ X0,

〈Tk(u) − Tk(v), u − v〉 = ‖u − v‖2 −
∫

Ω

(
f (x, u,wk) − f (x, v,wk)

)
(u − v) dx

≥
(
1 − c−2

2p′‖a+‖p

)
‖u − v‖2 .

Hence, Tk is strongly monotone with modulus

m := 1 − c−2
2p′‖a+‖p > 0.

By the continuity assumption (F′), Tk is also hemicontinuous, and standard monotone-operator theory
ensures the uniqueness (and existence) of solution uk.
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Next, we derive a uniform bound for ‖uk‖. Testing the equation Tk(uk) = 0 with v = 0 in the
monotonicity inequality yields

m ‖uk‖
2 ≤ 〈Tk(uk) − Tk(0), uk〉 = −〈Tk(0), uk〉 =

∫
Ω

f
(
x, 0,wk

1, . . . ,w
k
n
)

uk dx.

Using (F′) and Hölder’s inequality (together with the compact embedding X0 ↪→ Lr(Ω) for some r
arising in (F′)), one shows that∫

Ω

f
(
x, 0,wk

1, . . . ,w
k
n
)

uk dx ≤ C ‖uk‖Lr(Ω) ≤ C ‖uk‖,

where the constant C > 0 depends on the norms ‖wk
i ‖qi but is independent of k (since wk

i → w0
i ). It

follows that ‖uk‖ ≤ C/m; hence, supk ‖uk‖ < ∞.
Because {uk} is bounded in the reflexive space X0, by Banach–Alaoglu and compact embeddings,

we can extract a subsequence (still denoted uk) such that

uk ⇀ ũ0 in X0, uk → ũ0 in Lr(Ω), uk → ũ0 a.e. in Ω,

for some ũ0 ∈ X0. Similarly, from wk
i → w0

i in Lqi(Ω), we may assume (up to a further subsequence)
that wk

i → w0
i a.e. in Ω, and there exist functions h1 ∈ Lr(Ω) and hi+1 ∈ Lqi(Ω) such that

|uk(x)|, |ũ0(x)| ≤ h1(x), |wk
i (x)|, |w0

i (x)| ≤ hi+1(x),

for a.e. x ∈ Ω and each i = 1, . . . , n (this is possible by standard diagonal arguments using the strong
convergence in Lr and Lqi).

Using the continuity and growth condition (F′), it follows by the dominated convergence theorem
that for any fixed v ∈ X0,

f
(
x, uk(x),wk

1(x), . . . ,wk
n(x)

)
v(x) → f

(
x, ũ0(x),w0

1(x), . . . ,w0
n(x)

)
v(x) in L1(Ω).

We can now pass to the limit in the weak formulation of the equation for uk. Since uk satisfies

(uk, v) =

∫
Ω

f
(
x, uk,wk

1, . . . ,w
k
n
)

v dx ∀v ∈ X0,

letting k → ∞ yields

(ũ0, v) =

∫
Ω

f
(
x, ũ0,w0

1, . . . ,w
0
n
)

v dx ∀v ∈ X0.

That is, ũ0 satisfies the weak equation with parameters w0
i . By the uniqueness of solutions established

in Lemma 3.1, it must be that ũ0 = u0. Hence, the whole sequence uk converges weakly to u0 and
almost everywhere.

Finally, to show strong convergence, we compare the weak formulations for uk and u0. For each k,
subtracting the equations

(uk, v) −
∫

f (x, uk,wk)v = 0, and (u0, v) −
∫

f (x, u0,w0)v = 0,
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and choosing v = uk − u0 gives

〈Tk(uk) − Tk(u0), uk − u0〉 =

∫
Ω

(
f (x, u0,w0) − f (x, uk,wk)

)
(uk − u0) dx.

By the strong monotonicity of Tk, the left-hand side is at least m‖uk − u0‖
2. The right-hand side tends

to 0 as k → ∞ because f (x, u0,wk
i )→ f (x, u0,w0

i ) in L1 and uk → u0 a.e. Thus,

m ‖uk − u0‖
2 ≤

∫
Ω

(
f (x, u0,w0) − f (x, uk,wk)

)
(uk − u0) dx −→ 0,

as k → ∞. We conclude ‖uk − u0‖ → 0, i.e., uk → u0 strongly in X0. Therefore S f (wk
1, . . . ,w

k
n) →

S f (w0
1, . . . ,w

0
n) in X0, proving that S f is continuous. �

We assume that the measurable kernel K : RN \{0} → (0,∞) satisfies

(K1) Symmetry: K(y) = K(−y) for all y ∈ RN \{0}.

(K2) Two-sided kernel bounds: there exist constants 0 < λ ≤ Λ such that

λ |y|−N−2s ≤ K(y) ≤ Λ |y|−N−2s, ∀ y ∈ RN \{0}.

Hence, the operator −LK : X0 → X∗0 defined by 〈−LKu, v〉 = E(u, v) is self-adjoint. If K(y) = κ(|y|),
then for any R ∈ O(N), one has E(u ◦ R, v ◦ R) = E(u, v) by a change of variables. As a consequence,
if Ω and the data are G-invariant for some subgroup G ⊂ O(N) and the weak solution is unique, then
u ◦ g = u for all g ∈ G.

4. Major theorems

In this section, we strengthen the qualitative continuity of S f by deriving a global quantitative
Lipschitz estimate with respect to the multiparameter vector (w1, . . . ,wn) and, under mild additional
smoothness in the parameters, we prove that S f is Gâteaux differentiable and identify the
linearized problem.

Throughout, keep the standing assumptions (K1)–(K2), (F′) and (A′) with a ∈ Lp(Ω), N
2s ≤ p ≤ ∞,

and ‖a+‖p < c 2
2p′ . Let r ∈ (1, 2∗s) be the exponent in (F′) and let cr > 0 be the embedding constant of

X0 → Lr(Ω).

4.1. A global Lipschitz estimate with respect to parameters

We impose the following quantitative Lipschitz condition in the parameter variables.

(W) Local Lipschitz in the parameters. For every R > 0, there exists a nondecreasing function
φ(R) ≥ 0 and measurable weights βi ∈ Lsi(Ω) such that, for a.e. x ∈ Ω, all t ∈ R and all parameter
vectors w, w̃ ∈

∏
i Lqi(Ω) with ‖w‖∏i Lqi ∨ ‖w̃‖∏i Lqi ≤ R, one has

∣∣∣ f (x, t,w) − f (x, t, w̃)
∣∣∣ ≤ φ(R)

n∑
i=1

βi(x) |wi(x) − w̃i(x)|.

In particular, the original global Lipschitz condition (W) corresponds to the special case φ(R) ≡ 1.
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Theorem 4.1. Assume the standing hypotheses on K and f in Sections 2 and 3, including the one-sided
Lipschitz condition in t, the Carathéodory regularity in (x, t,w), and (W above with exponents si, qi, r
satisfying 1

si
+ 1

qi
+ 1

r = 1. Let S f :
∏

i Lqi(Ω) → X0 denote the parameter-to-solution map. Fix R > 0
and take any w, w̃ with ‖w‖∏i Lqi ∨ ‖w̃‖∏i Lqi ≤ R. Then the weak solutions u = S f (w) and ũ = S f (w̃)
satisfy the local Lipschitz stability estimate

‖u − ũ‖ ≤
φ(R) cr

1 − c−2
2p′ ‖a+‖Lp(Ω)

n∑
i=1

‖βi‖Lsi (Ω) ‖wi − w̃i‖Lqi (Ω). (4.1)

In particular, S f is Lipschitz on every bounded subset of
∏

i Lqi(Ω).

Proof. Let w = (w1, . . . ,wn) and w̃ = (w̃1, . . . , w̃n) be two admissible parameter tuples, and let

u = S f (w), ũ = S f (w̃)

denote the corresponding weak solutions in X0 given by Lemma 3.1. By definition of weak solution,
for every v ∈ X0, we have"

R2N

(
u(x) − u(y)

) (
v(x) − v(y)

)
K(x − y) dx dy =

∫
Ω

f (x, u(x),w(x)) v(x) dx,

and "
R2N

(
ũ(x) − ũ(y)

) (
v(x) − v(y)

)
K(x − y) dx dy =

∫
Ω

f (x, ũ(x), w̃(x)) v(x) dx.

Subtracting these two identities and choosing the test function

v := u − ũ

gives "
R2N

(
(u − ũ)(x) − (u − ũ)(y)

)2 K(x − y) dx dy =

∫
Ω

(
f (x, u,w) − f (x, ũ, w̃)

)
(u − ũ) dx.

By the definition of the energy norm on X0, the left-hand side is exactly ‖u − ũ‖2. Hence,

‖u − ũ‖2 =

∫
Ω

(
f (x, u,w) − f (x, ũ, w̃)

)
(u − ũ) dx. (4.2)

We split the difference of the nonlinear terms as

f (x, u,w) − f (x, ũ, w̃) = f (x, u,w) − f (x, ũ,w)︸                     ︷︷                     ︸
=:I1(x)

+ f (x, ũ,w) − f (x, ũ, w̃)︸                     ︷︷                     ︸
=:I2(x)

.

Inserting this into (4.2) yields

‖u − ũ‖2 =

∫
Ω

I1(x) (u − ũ) dx +

∫
Ω

I2(x) (u − ũ) dx.

By the one-sided Lipschitz condition in t encoded in assumption (A′), together with the bound

|∂t f (x, t,w)| ≤ a+(x) for a.e. x ∈ Ω, ∀ t ∈ R,
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it follows (e.g., by the mean value theorem in t) that for a.e. x ∈ Ω,(
f (x, u(x),w(x)) − f (x, ũ(x),w(x))

)
(u(x) − ũ(x)) ≤ a+(x) |u(x) − ũ(x)|2.

Therefore, ∫
Ω

I1(x) (u − ũ) dx ≤
∫

Ω

a+(x) |u − ũ|2 dx.

For the second term, we simply take absolute values:∣∣∣∣∣∫
Ω

I2(x) (u − ũ) dx
∣∣∣∣∣ ≤ ∫

Ω

∣∣∣ f (x, ũ,w) − f (x, ũ, w̃)
∣∣∣ |u − ũ| dx.

Combining the last two estimates with (4.2), we arrive at

‖u − ũ‖2 ≤
∫

Ω

a+(x) |u − ũ|2 dx +

∫
Ω

∣∣∣ f (x, ũ,w) − f (x, ũ, w̃)
∣∣∣ |u − ũ| dx. (4.3)

We now estimate the first term on the right-hand side of (4.3). Using Hölder’s inequality with
exponents p and p′ (where p′ =

p
p−1 is the Hölder conjugate of p), we obtain∫

Ω

a+(x) |u − ũ|2 dx ≤ ‖a+‖Lp(Ω) ‖|u − ũ|2‖Lp′ (Ω).

Since
‖|u − ũ|2‖Lp′ (Ω) = ‖u − ũ‖2L2p′ (Ω),

we may use the continuous embedding X0 ↪→ L2p′(Ω) with embedding constant c2p′ (see (2.1)) to
conclude that

‖u − ũ‖L2p′ (Ω) ≤ c−1
2p′ ‖u − ũ‖.

Hence, ∫
Ω

a+(x) |u − ũ|2 dx ≤ ‖a+‖Lp(Ω) c−2
2p′ ‖u − ũ‖2.

Substituting this bound into (4.3) gives

(
1 − c−2

2p′‖a+‖Lp(Ω)
)
‖u − ũ‖2 ≤

∫
Ω

∣∣∣ f (x, ũ,w) − f (x, ũ, w̃)
∣∣∣ |u − ũ| dx. (4.4)

By assumption (3.1) we have 1 − c−2
2p′‖a+‖Lp(Ω) > 0.

We now estimate the right-hand side of (4.4). Using Hölder’s inequality with the pair of
exponents (r, r′) (where r′ = r

r−1 is the Hölder conjugate of r) yields∫
Ω

∣∣∣ f (x, ũ,w) − f (x, ũ, w̃)
∣∣∣ |u − ũ| dx ≤

∥∥∥∥ f (x, ũ,w) − f (x, ũ, w̃)
∥∥∥∥

Lr(Ω)
‖u − ũ‖Lr′ (Ω).

The continuous embedding X0 ↪→ Lr′(Ω) with embedding constant cr′ implies

‖u − ũ‖Lr′ (Ω) ≤ c−1
r′ ‖u − ũ‖.
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Therefore, ∫
Ω

∣∣∣ f (x, ũ,w) − f (x, ũ, w̃)
∣∣∣ |u − ũ| dx ≤ c−1

r′

∥∥∥∥ f (x, ũ,w) − f (x, ũ, w̃)
∥∥∥∥

Lr(Ω)
‖u − ũ‖.

Substituting this estimate into (4.4) and assuming u , ũ (otherwise, the desired inequality is trivial),
we can divide both sides by ‖u − ũ‖ to obtain(

1 − c−2
2p′‖a+‖Lp(Ω)

)
‖u − ũ‖ ≤ c−1

r′

∥∥∥∥ f (x, ũ,w) − f (x, ũ, w̃)
∥∥∥∥

Lr(Ω)
. (4.5)

Next we apply assumption (W). Let R > 0 be such that the parameters w and w̃ belong to the same
bounded set, say

‖wi‖Lqi (Ω) ≤ R, ‖w̃i‖Lqi (Ω) ≤ R, i = 1, . . . , n.

By (W), there exists a nondecreasing function φ : [0,∞)→ [0,∞), such that∥∥∥∥ f (x, ũ,w) − f (x, ũ, w̃)
∥∥∥∥

Lr(Ω)
≤ φ(R)

n∑
i=1

‖βi‖Lsi (Ω) ‖wi − w̃i‖Lqi (Ω).

Inserting this bound into (4.5) gives

(
1 − c−2

2p′‖a+‖Lp(Ω)
)
‖u − ũ‖ ≤ c−1

r′ φ(R)
n∑

i=1

‖βi‖Lsi (Ω) ‖wi − w̃i‖Lqi (Ω).

Rearranging the last inequality, we obtain

‖u − ũ‖ ≤
c−1

r′ φ(R)
1 − c−2

2p′‖a+‖Lp(Ω)

n∑
i=1

‖βi‖Lsi (Ω) ‖wi − w̃i‖Lqi (Ω).

This is precisely the Lipschitz estimate (4.1) for the solution operator S f on the bounded parameter
set of radius R. Hence, S f is Lipschitz continuous on bounded subsets ofW, with Lipschitz constant
depending on R only through φ(R). �

Remark 2. (Applicability beyond globally Lipschitz f ) Condition (W accommodates many
practical, possibly nonsmooth in w nonlinearities used in modeling (e.g., piecewise-affine responses,
saturation/clipping, thresholds), provided they are locally Lipschitz in w uniformly in (x, t) on bounded
parameter ranges. Note that (W imposes no spatial regularity on the coefficient functions wi(·) (they
may be discontinuous in x), and the weights βi ∈ Lsi(Ω) play the same role as in the global case.
When f is globally Lipschitz in w, one recovers the original Theorem 4.1 with φ(R) ≡ 1.

4.2. Directional differentiability of the parameter-to-solution map

We next show that, under mild smoothness in (t,w), the map S f is Gâteaux differentiable and its
derivative is the unique solution of a strongly monotone linear nonlocal problem.

(D) There exist Carathéodory functions ∂t f , ∂wi f : Ω × R × Rn → R such that for x and all (t,w):

• |∂t f (x, t,w)| ≤ a+(x);
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• |∂wi f (x, t,w)| ≤ βi(x) with the same βi ∈ Lsi(Ω) as in (W).

Theorem 4.2. Assume (F′), (A′) with ‖a+‖p < c 2
2p′ , (W), and (D). Fix w = (w1, . . . ,wn) ∈

∏
i Lqi

Σi
and

let u = S f (w). For any direction h = (h1, . . . , hn) ∈
∏

i Lqi(Ω), the directional derivative

S ′f (w)[h] := lim
τ→0

S f (w + τh) − S f (w)
τ

∈ X0

exists. Denoting z = S ′f (w)[h], z is the unique weak solution of the linear variational problem

(z, v) −
∫

Ω

∂t f
(
x, u(x),w(x)

)
z v dx =

n∑
i=1

∫
Ω

∂wi f
(
x, u(x),w(x)

)
hi v dx ∀v ∈ X0, (4.6)

and satisfies the a priori estimate

‖z‖ ≤
cr

1 − c−2
2p′‖a+‖p

n∑
i=1

‖∂wi f (·, u,w)‖si ‖hi‖qi ≤
cr

1 − c−2
2p′‖a+‖p

n∑
i=1

‖βi‖si ‖hi‖qi . (4.7)

In particular, if we introduce the weighted parameter seminorm

‖h‖Wβ
:=

n∑
i=1

‖βi‖si ‖hi‖qi , (4.8)

then for any nonzero direction h, the associated unit vector of the directional derivative in the
parameter space is given explicitly by

ĥ :=
h

‖h‖Wβ

=

(
h1

‖h‖Wβ

, . . . ,
hn

‖h‖Wβ

)
, (4.9)

which satisfies ‖̂h‖Wβ
= 1. Moreover, inserting (4.9) into (4.7) yields the uniform bound∥∥∥S ′f (w)[̂h]

∥∥∥ ≤ cr

1 − c−2
2p′‖a+‖p

for every unit vector ĥ in (Wβ, ‖ · ‖Wβ
). (4.10)

Proof. Let w ∈
∏

i Lqi(Ω) be fixed and u := S f (w) ∈ X0 the unique weak solution. For a direction
h = (h1, . . . , hn) ∈

∏
i Lqi(Ω) and τ ∈ R set

uτ := S f (w + τh), zτ :=
uτ − u
τ

.

Subtracting the weak formulations for uτ and u, dividing by τ, and testing with v ∈ X0 yield

(zτ, v) =

∫
Ω

f (x, uτ,w + τh) − f (x, u,w)
τ

v dx ∀v ∈ X0. (4.11)

By the Carathéodory regularity in (D), for a.e. x ∈ Ω, there exist points (ξτ(x), ητ(x)) on the segment
joining (u(x),w(x)) and (uτ(x),w(x) + τh(x)), such that

f (x, uτ,w + τh) − f (x, u,w)
τ

= ∂t f (x, ξτ, ητ) zτ +

n∑
i=1

∂wi f (x, ξτ, ητ) hi.
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Substituting this identity into (4.11), we obtain the variational identity

(zτ, v) −
∫

Ω

∂t f (x, ξτ, ητ) zτv dx =

n∑
i=1

∫
Ω

∂wi f (x, ξτ, ητ) hiv dx ∀v ∈ X0. (4.12)

Uniform bound for zτ. Choosing v = zτ in (4.12) gives

‖zτ‖2 −
∫

Ω

∂t f (x, ξτ, ητ) |zτ|2 dx =

n∑
i=1

∫
Ω

∂wi f (x, ξτ, ητ) hizτ dx. (4.13)

Using |∂t f | ≤ a+(x) and a+ ≥ 0, we estimate the left-hand side from below:

‖zτ‖2 −
∫

Ω

∂t f (x, ξτ, ητ) |zτ|2 dx ≥ ‖zτ‖2 −
∫

Ω

|∂t f (x, ξτ, ητ)| |zτ|2 dx

≥ ‖zτ‖2 −
∫

Ω

a+(x) |zτ|2 dx.

By Hölder’s inequality with exponents (p, p′) and the embedding X0 → L2p′(Ω), we obtain∫
Ω

a+(x) |zτ|2 dx ≤ ‖a+‖Lp(Ω) ‖|zτ|2‖Lp′ (Ω) = ‖a+‖p ‖zτ‖2L2p′ (Ω)

≤ ‖a+‖p c−2
2p′ ‖zτ‖

2,

where we used ‖v‖L2p′ (Ω) ≤ c−1
2p′‖v‖ for all v ∈ X0. Therefore,

‖zτ‖2 −
∫

Ω

a+(x) |zτ|2 dx ≥
(
1 − c−2

2p′‖a+‖p
)
‖zτ‖2.

For the right-hand side of (4.13), we use |∂wi f | ≤ βi and Hölder’s inequality with
exponents (si, qi, r) (so that 1/si + 1/qi + 1/r = 1):∣∣∣∣∣∫

Ω

∂wi f (x, ξτ, ητ) hizτ dx
∣∣∣∣∣ ≤ ∫

Ω

βi(x) |hi| |zτ| dx

≤ ‖βi‖si ‖hi‖qi ‖zτ‖Lr(Ω).

Summing over i and combining with the previous lower bound, we obtain

(
1 − c−2

2p′‖a+‖p
)
‖zτ‖2 ≤

n∑
i=1

‖βi‖si ‖hi‖qi ‖zτ‖Lr(Ω).

Using the continuous embedding X0 ↪→ Lr(Ω), there exists cr > 0, such that ‖v‖Lr(Ω) ≤ cr ‖v‖ for
all v ∈ X0. Hence, (

1 − c−2
2p′‖a+‖p

)
‖zτ‖2 ≤ cr

 n∑
i=1

‖βi‖si ‖hi‖qi

 ‖zτ‖.
If zτ , 0, we divide both sides by

(
1−c−2

2p′‖a+‖p
)
‖zτ‖ (which is positive by the assumption ‖a+‖p < c 2

2p′)
to obtain

‖zτ‖ ≤
cr

1 − c−2
2p′‖a+‖p

n∑
i=1

‖βi‖si ‖hi‖qi , (4.14)
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and the same estimate is trivially true when zτ = 0. Thus, {zτ} is bounded in X0.
Passage to the limit. Since {zτ} is bounded in the Hilbert space X0, there exists a subsequence (still
denoted zτ) and z ∈ X0 such that zτ ⇀ z weakly in X0. By Lemma 3.2 we know that uτ → u in X0

as τ→ 0, hence (up to a subsequence) ξτ → u and ητ → w a.e. in Ω. Using the Carathéodory property
of the partial derivatives and dominated convergence in (4.12), we can pass to the limit and obtain, for
every v ∈ X0,

(z, v) −
∫

Ω

∂t f (x, u,w) zv dx =

n∑
i=1

∫
Ω

∂wi f (x, u,w) hiv dx,

that is, z is a weak solution of the linearized variational problem (4.6).
Finally, define the bilinear form and linear functional

A(u; z, v) := (z, v) −
∫

Ω

∂t f (x, u,w) zv dx, R(u,w; h, v) :=
n∑

i=1

∫
Ω

∂wi f (x, u,w) hiv dx.

The previous estimates show that A(u; ·, ·) is coercive on X0 with coercivity constant 1 − c−2
2p′‖a+‖p > 0,

whereas R(u,w; h, ·) is bounded. By the Lax–Milgram lemma, the linear problem (4.6) admits a unique
solution z ∈ X0, which coincides with the weak limit of zτ, and satisfies the a priori bound (4.7). This
concludes the proof. �

Remark 3. The differentiability result identifies the directional derivative S ′f (w)[h] as the solution of a
linearized fractional PDE. This characterization provides exactly the sensitivity information needed in
gradient-based optimization, data assimilation, and optimal control. In inverse problems, it enables the
computation of Fréchet derivatives for use in Newton-type or adjoint-based reconstruction schemes.

5. Numerical experiments

In this section, we mainly conduct numerical simulations on the major conclusions of
the article, verifying the three core results of this paper: (i) The continuity of the
solution operator S f (Lemma (3.2)), (ii) the global Lipschitz estimate with respect to
multiparameters (Theorem (4.1)), and (iii) the Gâteaux differentiability of S f together with its
linearized variational problem (Theorem (4.2)).

We work on Ω = (0, 1)2. Let m ∈ N and set h = 1/(m + 1); the discrete nodal set has M = m2

interior points. The nonlocal operator is assembled in the symmetric interaction form associated with
a kernel K(y) � |y|−(N+2s) (s ∈ (0, 1)), together with the homogeneous exterior condition u ≡ 0 on Ωc.
The discrete energy norm is

‖uh‖
2
E,h = 1

2 u>h (−Ah)uh,

and the discrete Lp norms ‖ · ‖Lp
h

are computed with nodal weights.
For forcing, we take the affine choice.

f (x, t,w) = a(x) t + η(x) +

n∑
i=1

βi(x) wi(x), (5.1)

which satisfies (F’), (A’), (W), and (D); here, |∂t f | ≤ a+(x) and ∂wi f = βi(x) ∈ Lsi(Ω). Throughout the
experiments, we use r = 2 and qi = si = 4, so that 1/si + 1/qi + 1/r = 1. The coefficients are smooth
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and bounded;for example, a(x) = a0 + αa sin(2πx1) sin(2πx2), βi(x) = b0,i + αb,i cos(2πx1) cos(2πx2),
and η ≡ 0, with amplitudes chosen so that 1 − c−2

2p′‖a+‖Lp > 0.

5.1. Continuity of S f

Fix a baseline parameter tuple w(0) = (w(0)
1 , . . . ,w(0)

n ) and a direction d = (d1, . . . , dn). For a
geometric sequence εk → 0 set w(k) = w(0) + εkd and denote by u(k)

h the corresponding discrete
solutions. Define

∆w(k)
h :=

n∑
i=1

‖βi‖Lsi
h
‖w(k)

i − w(0)
i ‖L

qi
h
, ∆u(k)

h := ‖u(k)
h − u(0)

h ‖E,h,

On a log–log plot of ∆u(k)
h versus ∆w(k)

h we observe an approximately linear trend with slope close to 1
as k increases and h decreases, which confirms the continuity of S f under simultaneous perturbations
of all parameters (see Figure 1).

Figure 1. Continuity test: ∆uh versus ∆wh (log–log).

Figure 1 demonstrates the continuity of the solution operator S f with respect to simultaneous
perturbations of all parameters. As the total parameter perturbation ∆wh becomes small, the change in
the discrete solution ∆uh scales linearly, with a slope close to one on a log–log plot. This empirical
result supports the theoretical continuity result and shows that the multi-parameter system is robust to
small changes in all coefficients at once.

5.2. Verification of global Lipschitz estimate

In this experiment, we use the same stationary fractional boundary value problem as in Example 1
and Section 5.1. For the numerical tests reported in Figure 2, we fix Ω = (0, 1)2 and fractional
order s = 0.5, and consider uniform grids with m ∈ {16, 32, 64} interior nodes per coordinate direction.
Thus, the mesh size is h = 1/(m + 1), and the number of interior nodes is M = m2. Let {xi}

M
i=1 denote

the interior grid points. The nonlocal operator −LK with kernel K(y) = |y|−(N+2s) (N = 2) is discretized
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in the symmetric interaction form by midpoint quadrature, leading to a stiffness matrix −Ah ∈ R
M×M

with entries

(Ah)i j =


∑
k,i

ωik, i = j,

−ωi j, i , j,
ωi j = h2 K(xi − x j),

so that the discrete energy norm satisfies ‖uh‖
2
E,h = 1

2 u>h (−Ah)uh. The discrete L2 inner product is
implemented by the diagonal mass matrix Mh = h2IM, i.e., ‖vh‖

2
L2

h
= v>h Mhvh. All linear systems are

solved by the preconditioned conjugate gradient method with relative residual tolerance 10−10.
Throughout Sections 5.2 and 5.3, we use the affine forcing (5.1) with n = 3 parameter fields and

concrete smooth coefficients

a(x) = a0 + αa sin(2πx1) sin(2πx2),
βi(x) = b0,i + αb,i cos(2πx1) cos(2πx2), i = 1, 2, 3,
η(x) ≡ 0,

where, for reproducibility, we fix

a0 = 0.3, αa = 0.2, (b0,1, αb,1) = (0.4, 0.3), (b0,2, αb,2) = (0.25, 0.25), (b0,3, αb,3) = (−0.2, 0.2).

These choices are compatible with the structural hypotheses (F’), (A’), and (W) and are kept fixed
in all experiments shown in Figures 2 and 3. For any parameter tuple w = (w1,w2,w3) the discrete
solution uh(w) is computed from the linear system

(
(−Ah) − Mh diag(a)

)
uh = Mh

(
η +

3∑
i=1

βi � wi

)
,

where � denotes the pointwise product on the grid.
To test the global Lipschitz estimate, we fix a baseline parameter vector w(0) = (w(0)

1 ,w(0)
2 ,w(0)

3 )
given by

w(0)
1 (x) = sin(πx1) sin(πx2), w(0)

2 (x) = sin(2πx1) sin(πx2), w(0)
3 (x) = sin(πx1) sin(2πx2),

and choose a direction h = (h1, . . . , h3) of the same trigonometric form. On each grid, we normalize h
with respect to the discrete norms so that

3∑
i=1

‖βi‖Lsi
h
‖hi‖Lqi

h
= 1 with qi = si = 4, r = 2,

where the discrete norms are computed using the mass matrix Mh. For amplitudes δ → 0, we set
w(δ) = w(0) + δh and compute the empirical ratio

Lh(δ) :=
‖u(δ)

h − u(0)
h ‖E,h∑3

i=1 ‖βi‖Lsi
h
‖w(δ)

i − w(0)
i ‖L

qi
h

=
‖u(δ)

h − u(0)
h ‖E,h

δ
,

in accordance with the theoretical bound (4.1).

AIMS Mathematics Volume 10, Issue 11, 27837–27861.



27856

In addition, we evaluate the discrete upper bound

Ch :=
cr,h

1 − c−2
2,h‖a+‖L∞h

c2
2,h := 1

2 λmin
(
− Ah, Mh

)
, cr,h := inf

uh,0

‖uh‖E,h

‖uh‖Lr
h

, r = 2,

where λmin((−Ah),Mh) denotes the smallest generalized eigenvalue of (−Ah)u = λMhu. On all tested
grids m ∈ {16, 32, 64}, the quantity Lh(δ) remains bounded as δ → 0 and lies strictly below the
constant Ch. Here, Mh implements the discrete L2 inner product. The ratio Lh(δ) represents the relative
rate of change of the discrete solution under perturbations of all parameters, while Ch is the computable
upper bound for the Lipschitz constant of the discrete system, used for comparison with the theoretical
value in Theorem 4.1 (see Figure 2).

Figure 2. Global Lipschitz estimate on Ω = (0, 1)2 with s = 0.5: Lh(δ) vs. δ for
m ∈ {16, 32, 64}, together with the discrete bound Ch. The coefficients use the concrete
values a0 = 0.3, αa = 0.2, (b0,i, αb,i) as specified in Section 5.2.

Figure 2 presents a quantitative test of the global Lipschitz bound for the parameter-to-
solution map. The observed Lipschitz ratio Lh(δ) remains uniformly bounded across grid sizes
and parameter amplitudes, and always stays below the theoretically predicted discrete bound Ch.
This directly confirms the global Lipschitz stability established in Theorem 4.1 and highlights
the practical advantage of having a computable stability constant for sensitivity analysis and
uncertainty quantification.

5.3. Verification of Gâteaux differentiability and linearization

We now verify the Gâteaux differentiability of the parameter-to-solution map and the correctness
of the associated linearized problem. We keep the same spatial discretization, kernel K(y) = |y|−(N+2s)

with s = 0.5, and the same concrete coefficients a, βi and η as specified in Section 5.2, together with
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the domain Ω = (0, 1)2 and the mass matrix Mh = h2IM. For the directional derivative test in Figure 3,
we work on the grid with m = 64 (so h = 1/65 and M = 642) and reuse the baseline parameters w(0)

and direction h defined in the previous subsection.
Fix w(0) and a direction h = (h1, . . . , hn). For a geometric sequence τ→ 0 (here, we take τk = 10−k,

k = 1, . . . , 5) consider the difference quotients

zτ,h :=
uh(w(0) + τh) − uh(w(0))

τ
.

Independently, solve the discrete linearized problem associated with (5.1):(
(−Ah) − Mh diag(a)

)
zh = Mh

n∑
i=1

βi � hi,

which is the discrete counterpart of the linearized fractional PDE (4.2). We then define the error

eh(τ) := ‖zτ,h − zh‖E,h.

As τ → 0, the sequence eh(τ) is expected to decay to zero and, on sufficiently fine grids, to level off

at the linear solver tolerance, as predicted by the Gâteaux differentiability theory. This behavior is
precisely what we observe in our computations (see Figure 3).

Figure 3. Directional derivative test on Ω = (0, 1)2 with s = 0.5 and the coefficients from
Section 5.2: Decay of eh(τ) = ‖zτ,h − zh‖E,h versus τ (log–log) on the grid m = 64.

Figure 3 shows the convergence of the difference quotient zτ,h to the discrete linearized solution zh

as τ→ 0. The error eh(τ) decreases rapidly with smaller τ, and levels off at the linear solver tolerance,
matching the linearization predicted by the Gâteaux differentiability theory (Theorem 4.2). This result
demonstrates that the multi-parameter system can indeed be accurately linearized for small parameter
changes, enabling efficient gradient-based methods and sensitivity computations in applications.

AIMS Mathematics Volume 10, Issue 11, 27837–27861.



27858

5.4. Convergence study and comparisons

To quantify the empirical convergence behavior, we record the error between consecutive uniform
refinements in the energy norm and report the experimental order of convergence (EOC). For two
successive levels h` > h`+1 with errors E(h`) and E(h`+1), we set

EOC(h`) =
log

(
E(h`)/E(h`+1)

)
log

(
h`/h`+1

) . (5.2)

Under dyadic refinement (h`+1 = h`/2) this reduces to EOC(h`) = log2
(
E(h`)/E(h`+1)

)
. We compare

the observed EOC side-by-side with the benchmark rate reported/predicted in [24] using the same
error norm.

Comparison with single-parameter studies. To assess whether the claimed multi-parameter setting
alters discretization behavior, we juxtapose our asymptotic trend with single-parameter studies under
the same norm and comparable regularity. The researchers in [11, 17] focus on stability/continuous
dependence in the single-parameter regime; consistent with standard finite-difference behavior, our
asymptotic EOC in Table 1 shows no degradation relative to those single-parameter settings (first-
order trend in the energy norm). This indicates that the scheme preserves the expected order even
when multiple spatially varying coefficients are present simultaneously.

Table 1. Errors and experimental order of convergence (EOC) with side-by-side comparison
to [24] (same energy norm).

Grid size h ‖uh − uh/2‖E,h EOC via (5.2) Relative error
‖uh − uexact‖E,h

‖uexact‖E,h
Rate in [24] Match?

1/16 1.77 × 10−2 – 1.12 × 10−2 O(h) –
1/32 8.51 × 10−3 1.06 5.41 × 10−3 O(h) X

1/64 4.09 × 10−3 1.06 2.67 × 10−3 O(h) X

1/128 1.98 × 10−3 1.05 1.33 × 10−3 O(h) X

Discussion. On the finest levels, EOC stabilizes at approximately first order, which agrees with [24].
Minor deviations on coarse meshes are pre-asymptotic and do not affect the asymptotic trend. The
single-parameter comparison confirms that multi-parameter coupling does not reduce the discretization
order in the chosen norm.

6. Conclusions

In this paper, we develop a rigorous stability and sensitivity theory for fractional nonlocal boundary-
value problems with multiple spatially varying parameters. Under mild Carathéodory growth and
one-sided Lipschitz conditions, existence and uniqueness follow from variational monotonicity.
Beyond qualitative continuity, we obtain a global Lipschitz estimate for the parameter-to-solution
map and prove its Gâteaux differentiability together with the associated linearized problem; numerical
experiments corroborate these results.
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A key novelty of our work is that, instead of focusing on just a single parameter or constant,
we handle multiple spatially varying coefficients at the same time, providing a much more detailed
and practical analysis. Our results, such as the global Lipschitz estimate and the precise directional
derivatives, are especially useful for applications like parameter identification, uncertainty analysis,
and inverse problems, which are common in physics, engineering, and data science. Importantly, the
methods we use remain compatible with the standard assumptions and can be easily connected to
known literature.

Looking forward, this theory can be expanded in many directions: For example, by considering non-
symmetric or anisotropic kernels, adding time-dependence or system dynamics, enabling even rougher
data or more general nonlinearities, or including random effects. The results in this paper also set a
strong foundation for developing new computational algorithms, especially those that need accurate
sensitivity and stability information for modeling, optimization, and data-driven inverse problems.
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