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Abstract: In this paper, we consider an efficient way to investigate infectious diseases by constructing
and analyzing differential equations. Some infectious diseases such as COVID-19, AIDS, and
hepatitis B, involve both symptomatic patients and asymptomatic carriers. These asymptomatic carriers
are contagious. However, only a small amount of works consider asymptomatic carriers in their
models. Other factors such as vaccination and ages of infection are also important to the spread
of infectious diseases. Therefore, we incorporate these factors together into an SVEIR model that
includes continuous ages of infection for both symptomatic patients and asymptomatic carriers in this
work. The conditions for existence and local stability of disease-free and endemic steady states together
with the basic reproduction number RB are presented. Furthermore, the global stability of disease-free
and endemic steady states is considered. Several examples by simulations are presented to demonstrate
the obtained theoretical results. The importance of asymptomatic carriers in the infected population is
also shown in simulations.

Keywords: SVEIAR epidemic model; infection ages; stability; Lyapunov functional
Mathematics Subject Classification: 35Q92, 37N25, 92D30

1. Introduction

In recent years, infectious diseases have greatly affected our lives. It is important to investigate
how these diseases spread so that it can be controlled as quickly as possible. Modeling has been an
effective way to investigate infectious diseases. Some infectious diseases have asymptomatic carriers,
and these asymptomatic carriers are contagious. For example, a large number of asymptomatic carriers
emerged during the COVID-19 pandemic [1]. These asymptomatic carriers had no obvious symptoms
such as fever or cough, but their nucleic acid or antigen tests were positive. They unknowingly
spread the virus to others when they were amongst others. It was reported that asymptomatic carriers
participated in activities and led to the infection of many people. Take AIDS as another example.
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Some people infected with the HIV virus have no obvious symptoms during the acute phase and
the asymptomatic phase [2]. However, the virus exists in their bodies and can spread the virus to
others through sexual contact, blood and other means. Moreover, some hepatitis B virus carriers have
no symptoms of hepatitis and their liver functions are normal [3]. However, the hepatitis B virus is
contained in their blood, and the virus can be transmitted to others during mother-to-child transmission,
blood transmission, or sexual contact. Therefore, it is important to take asymptomatic carriers into
consideration to investigate infectious diseases by building mathematical models. Recently, researchers
have realized the importance of asymptomatic carriers, which was ignored before, but models with
asymptomatic individuals are still a small part of infectious models and its dynamics is not fully
understood. In the present paper, we will investigate and predict the spread of the infectious diseases
mentioned above by considering asymptomatic carriers as well as symptomatic carriers in our model.
How the symptomatic, the asymptomatic, and their recovered rates influence the spread of the disease
will be investigated in this work.

In real-world scenarios, the age of infection and vaccination are incorporated into the models
because they play crucial roles. In [6, 7, 9], they study the dynamical behavior of age-structured
SIRS model, SEI model, and SEIR model, respectively; in [8, 10] they studied the age-structured
population model with diffusion and imperfect vaccination; in [4, 11], the authors mainly study the
global stability of the equilibria of the age-structured model; [5] is a monograph of age-structured
population dynamics. Vaccination is one of the most powerful preventive measures against infectious
diseases. It can effectively decrease the rate of susceptible individuals and alter the transmission
dynamics within a population. By vaccinating a large group of the population, the spread of the
disease can be effectively controlled and even prevented from reaching epidemic proportions. Different
vaccination strategies, such as mass vaccination campaigns, targeted vaccination of specific age groups
or high-risk populations, and booster doses, can have diverse impacts on the disease dynamics. The
age of the infected is another important factor. The susceptibility, infectiousness, and the course of the
disease can vary depending on the age of the infected individual. For example, younger individuals
may have a different immune response compared to older ones, and the probability of developing severe
symptoms or complications might be age-dependent. Moreover, the social mixing patterns and contact
rates also change with age, which further influences the spread of the infection.

Some researches have focused on similar models with related factors. For instance, Rodrigues et
al. investigated an SVEIR epidemic model with age-dependent vaccination, latency, and infection, and
obtained the global stability of the equilibria [12]. Yang et al. built a dynamic model to show that
giving priority to vaccinating different age groups can have different effects on controlling COVID-19
spread [13]. Wang et al. analyzed stability of an age-structured model for vector-bone disease [14].
Some works such as [12] considered dynamics of equations with age-structure.

Recently, several studies analyzed the spread of COVID-19 by building suitable mathematical
models. In [24, 26, 29], they applied SIRD model, SVIRD model, and SEIVR model to study
the COVID 19, respectively. In [25, 27, 28], they assessed different strategies on the impact on
the COVID-19 by building different models. In [15], the following non-linear differential equations
were analyzed:

dS h

dt
= π + ϕVh − λS h − (µ + θ)S h,
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dVh

dt
= θS h − (1 − σ)λVh − (µ + ϕ)Vh,

dEh

dt
= λS h + (1 − σ)λVh − (µ + ω)Eh,

dIhA

dt
= (1 − ε)ωEh − (µ + α)IhA,

dIh

dt
= εωEh + (1 − κ)αIhA − (µ + γ1 + γ2 + δ1)Ih,

dJh

dt
= γ1Ih − (µ + γ3 + δ2)Jh,

dRh

dt
= γ2Ih + ακIhA + γ3Jh − µRh. (1.1)

The whole population is denoted as Nh(t). S h, Vh, Eh, IhA, Ih, Jh and Rh respectively
represent the susceptible, vaccinated, exposed, asymptomatic, symptomatic, isolated, and recovered
compartments. π denotes rate of individuals entering the susceptible compartment. σ is the efficacy
of the COVID-19 vaccine, which is administered to the susceptible at the rate of θ and wanes at the
rate ϕ. µ is the natural death rate. The force of infection is represented by λ =

β(ηIhA+Ih)
Nh−Jh

. β is the
transmission rate. η represents a modification factor for asymptomatic population. ε is the proportion
of the exposed persons becoming symptomatic. γ1, γ2, and γ3 respectively denote rate of isolation of
the symptomatic class, and the recovery rate of symptomatic and isolated individuals. Other parameters
can be seen from [15, Table 2].

Inspired by [15], we extend the model in [15] by considering the age of the infected for symptomatic
and asymptomatic individuals and taking a general incidence rate. We study the dynamical behavior
of the SEIAR model with vaccination and age of infection for both symptomatic patients and
asymptomatic patients as follows:

Ṡ (t) = − (ζ + φ)S − f1(S )
∫ ∞

0
β1(a)g1(i(t, a))da

− f2(S )
∫ ∞

0
β2(a)g2(A(t, a))da, t ≥ 0, (1.2a)

V̇(t) =B + φS − ζV − f3(V)
∫ ∞

0
β3(a)g3(i(t, a))da

− f4(V)
∫ ∞

0
β4(a)g4(A(t, a))da, t ≥ 0, (1.2b)

Ė(t) = f1(S )
∫ ∞

0
β1(a)g1(i(t, a))da + f2(S )

∫ ∞

0
β2(a)g2(A(t, a))da

+ f3(V)
∫ ∞

0
β3(a)g3(i(a, t))da + f4(V)

∫ ∞

0
β4(a)g4(A(t, a))da

− ζE − ωE, t ≥ 0, (1.2c)
∂i(t, a)
∂t

+
∂i(t, a)
∂a

= −(ζ + γ1(a) + ρ(a))i(t, a), t ≥ 0, a ≥ 0, (1.2d)

∂A(t, a)
∂t

+
∂A(t, a)
∂a

= −(ζ + γ2(a))A(t, a), t ≥ 0, a ≥ 0, (1.2e)
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Ṙ(t) =

∫ ∞

0
γ1(a)i(t, a)da +

∫ ∞

0
γ2(a)A(t, a)da − (ζ + δ)R(t), t ≥ 0, (1.2f)

i(t, 0) =ξ1ωE(t) + ξ2δR(t), t ≥ 0, (1.2g)
A(t, 0) =(1 − ξ1)ωE(t) + (1 − ξ2)δR(t) t ≥ 0. (1.2h)

The initial conditions are

S (0) > 0, V(0) ≥ 0, E(0) ≥ 0, i(0, a) ∈ L1
+(0,∞),

A(0, a) ∈ L1
+(0,∞), R(0) ≥ 0,

where S (t), V(t), E(t), and R(t) denote the numbers of susceptible, vaccinated, exposed, and recovered
individuals at time t, and i(t, a) and A(t, a) are the density of infected symptomatic and asymptomatic
individuals with infection age a at time t, respectively. Suppose all the newly born individuals and
individuals moving from other places into this compartment are vaccinated. The parameter B is
the influx rate of vaccinated individuals. The natural mortality of individuals in each compartment
is expressed by ζ. As the transmission rate of infected individuals changes as time goes on, the
transmission rate of susceptible individuals of infected symptomatic and asymptomatic individuals
with age a are β1(a) and β2(a), respectively. The imperfect efficiency of vaccination may cause
vaccinated persons to revert to the infected. Therefore we assume that vaccinated individuals are
infected by infected symptomatic and asymptomatic individuals with age a at rate β3(a) and β4(a),
respectively. Exposed individuals are transmitted into infected symptomatic and asymptomatic
individuals at constant rates of ξ1ω and (1−ξ1)ω, respectively. Infected symptomatic and asymptomatic
individuals with age a recover at rates γ1(a) and γ2(a), respectively. Infected revert to recovered at
a constant rate δ in which there are symptomatic individuals with proportion ξ2 and asymptomatic
individuals with ratio 1− ξ2. The mortality caused by the disease for infected symptomatic individuals
is represented by ρ(a). Susceptible individuals are vaccinated at a rate of φ. The functional space of
model (1.2) is

X+ = R+ × R+ × R+ × L1
+(0,∞) × L1

+(0,∞) × R+.

Generally, transmission rates, recovery rates, and mortality rates are positive and less than 1, and
their rates of change are not too large for different age groups. Therefore, we make the following
assumptions on the functions βi(·), γ j(·), and ρ(·), i ∈ {1, 2, 3, 4}, j ∈ {1, 2}.
Assumption 1.1. The functions βi(·), γ j(·), and ρ(·), i ∈ {1, 2, 3, 4}, j ∈ {1, 2} satisfy the
following properties:
(i) | βi(x) − βi(y) |≤ Lβi | x − y | for any x, y.
(ii) There exist constants β̂i, γ̂ j, and ρ̂ such that 0 ≤ βi(·) ≤ β̂i, 0 ≤ γ j(·) ≤ γ̂ j, 0 ≤ ρ(·) ≤ ρ̂.

Based on the following two facts, we can make the following assumption. 1) The number of
susceptible individuals infected increases as more susceptible persons are exposed to an infected
individual or more people are infected. 2) Since the number of people that one person is exposed
to is limited, the number of susceptible (infected) persons are exposed to an infected (susceptible)
individual increases slowly when the number of susceptible (infected) persons are large.
Assumption 1.2. Assume that for all i ∈ {1, 2, 3, 4},
(i) fi(x) ≥ 0, gi(x) ≥ 0 in which the equation holds if and only if x = 0.
(ii) fi(x) and gi(x) are increasing as x increases and f

′

i (x) and g
′

i(x) are decreasing as x increases.
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Our model (1.2) is complicated and a generalization of some recent works [11,29–33] . Its analysis
is difficult especially in local stability analysis and constructing suitable Lyapunov functionals. Our
results will be useful for researchers to study related problems.

This paper is organized as follows. In Section 2, the dissipativeness and positivity of the solutions
of the model are shown. In Section 3, the existence and local stability of the disease-free and endemic
steady states and the basic reproduction number is considered. In Section 4, the global stability of
equilibria will be presented. Examples by numerical simulations are given to verify the validity of the
theoretical results in Section 5. Finally, in Section 6 a brief conclusion is given to summarize this work.

2. Preliminaries

Let (S (t),V(t), E(t), i(t, a), A(t, a),R(t)) be a solution of system (1.2) satisfying the initial
condition (1.3). For convenience, denote

ψ1(a) = e−
∫ a

0 (ζ+γ1(u)+ρ(u))du, (2.1a)

ψ2(a) = e−
∫ a

0 (ζ+γ2(u))du. (2.1b)

Solving the fourth and fifth equations of system (1.2) by integrating it along the characteristic lines t −
a = const, we have

i(t, a) =

{
(ξ1ωE(t − a) + ξ2δR(t − a))ψ1(a), 0 ≤ a < t,
i(0, a − t) ψ1(a)

ψ1(a−t) , 0 ≤ t ≤ a, (2.2)

and

A(t, a) =

{
((1 − ξ1)ωE(t − a) + (1 − ξ2)δR(t − a))ψ2(a), 0 ≤ a < t,
A(0, a − t) ψ2(a)

ψ2(a−t) , 0 ≤ t ≤ a. (2.3)

2.1. Positivity and boundedness of solutions

From the first equation of system (1.2), S (t) remains nonnegative for all t ≥ 0 since Ṡ (t∗) = 0
for all t∗, satisfying S (t∗) = 0. Similarly, V(t) ≥ 0 for all t ≥ 0 because V̇(t∗) > 0 for all t∗

satisfying V(t∗) = 0.
Denote t∗∗ as the first time when i(t, a)A(t, a)R(t)E(t) = 0 holds true. It means that

i(t, a) > 0, A(t, a) > 0, R(t) > 0, E(t) > 0

for all t < t∗∗. From Eqs (2.2) and (2.3), i(t∗∗, a) > 0 and A(t∗∗, a) > 0 for all a > 0. Therefore, R(t∗∗) = 0
or E(t∗∗) = 0. By calculation of the sixth equation of system (1.2), Ṙ(t∗) ≥ 0 if R(t∗∗) = 0. Hence, R(t)
is nonnegative for all t ≥ 0. Similarly, E(t) is nonnegative for all t ≥ 0.

Define
Ω =

{
(x, v, y, z, u, ψ) ∈ X+| ‖ (x, v, y, z, u, ψ) ‖≤ max{

B
ζ
, ‖ x0 ‖}

}
.

Using the standard theory in [22], system (1.2) with (1.3) has a unique nonnegative solution on R+.
Define a continuous semiflow, denoting Φ : R+ × X+ → X+ as

Φ(t, x0) = (S (t), V(t), E(t), i(·, t), A(·, t), R(t)), t ∈ R+, x0 ∈ X+.
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Then, we have

‖ Φ(t, x0) ‖
=‖ (S ,V, E, i, A,R) ‖

= S (t) + V(t) + E(t) +

∫ ∞

0
i(t, a)da +

∫ ∞

0
A(t, a)da + R(t). (2.4)

Proposition 2.1. For system (1.2), the following statements hold true:
(a) Ω is positively invariant for Φ, i.e., Φ(t, x0) ∈ Ω for all t ≥ 0, x0 ∈ Ω;
(b) Φ is point dissipative and Ω attracts all points in X+.

Proof. From Eq (2.4), we have

d
dt
‖ Φ(t, x0) ‖

=
dS (t)

dt
+

dV(t)
dt

+
dE(t)

dt
+

d
dt

∫ ∞

0
i(t, a)da

+
d
dt

∫ ∞

0
A(t, a)da +

dR(t)
dt

=
dS (t)

dt
+

dV(t)
dt

+
dE(t)

dt
+

∫ ∞

0

∂i(t, a)
∂t

da

+

∫ ∞

0

∂A(t, a)
∂t

da +
dR(t)

dt
. (2.5)

It follows from system (1.2) that

d
dt
‖ Φ(t, x0) ‖

=
dS (t)

dt
+

dV(t)
dt

+
dE(t)

dt
+

dR(t)
dt

+

∫ ∞

0
[−(ζ + γ1(a) + ρ(a))i(t, a) −

∂i(t, a)
∂a

]da

+

∫ ∞

0
[−(ζ + γ2(a))A(t, a) −

∂A(t, a)
∂a

]da

=
dS (t)

dt
+

dV(t)
dt

+
dE(t)

dt
+

dR(t)
dt

−

∫ ∞

0
(ζ + γ1(a) + ρ(a))i(t, a)da − i(t, a)|∞0

−

∫ ∞

0
(ζ + γ2(a))A(t, a)da − A(t, a)|∞0

= B − ζ(S (t) + V(t) + E(t) + R(t)) − ωE(t) −
∫ ∞

0
ρ(a)i(t, a)da

−

∫ ∞

0
ζ(i(t, a) + A(t, a))da − δR(t) − i(t, a)|∞0 − A(t, a)|∞0 . (2.6)
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Substituting the last two equations of system (1.2) into Eq (2.6), we have

d
dt
‖ Φ(t, x0) ‖

= B − ζS (t) − ζV(t) − ζE(t) − ζR(t)

−

∫ ∞

0
ζ(i(t, a) + A(t, a))da −

∫ ∞

0
ρ(a)i(t, a)da

≤ B − ζ ‖ Φ(t, x0) ‖ . (2.7)

By the variation of constants formula, we have

‖ Φ(t, x0) ‖≤
B
ζ
− e−ζt(

B
ζ
− ‖ x0 ‖),

which implies

‖ Φ(t, x0) ‖≤ max{
B
ζ
, ‖ x0 ‖}

for all t ≥ 0. This completes the proof. �

From Proposition 2.1, we have the following results.

Proposition 2.2. There exists a constant M > B
ζ

such that

S (t) ≤ M, V(t) ≤ M, E(t) ≤ M,∫ ∞
0

i(t, a)da ≤ M,
∫ ∞

0
A(t, a)da ≤ M, R(t) ≤ M (2.8)

hold true for all t ≥ 0 if x0 ∈ X+ and ‖ x0 ‖≤ M.

Proposition 2.3. Define a bounded set C ⊂ X+. Then:
(i) Φt(C) is bounded;
(ii) Φt is eventually bounded on C.

The asymptotic smoothness of the semi-flow Φ generated by system (1.2) is shown in the appendix.

3. Steady states and its local stability

3.1. Steady states

Clearly, system (1.2) always has a disease-free steady state E1 = (0, B
ζ
, 0, 0, 0, 0). An endemic

steady state E2 = (0,V∗, E∗, i∗(a), A∗(a),R∗) satisfies

f3(V∗)
∫ ∞

0
β3(a)g3(i∗(a))da + f4(V∗)

∫ ∞

0
β4(a)g4(A∗(a))da = B − ζV∗,

f3(V∗)
∫ ∞

0
β3(a)g3(i∗(a))da + f4(V∗)

∫ ∞

0
β4(a)g4(A∗(a))da = ζE∗ + ωE∗,

di∗(a)
da

= −(ζ + γ1(a) + ρ(a))i∗(a),

dA∗(a)
da

= −(ζ + γ2(a))A∗(a),
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0
γ1(a)i∗(a)da +

∫ ∞

0
γ2(a)A∗(a)da = (ζ + δ)R∗,

i∗(0) = ξ1ωE∗ + ξ2δR∗,

A∗(0) = (1 − ξ1)ωE∗ + (1 − ξ2)δR∗. (3.1)

Solving the third equation and fourth equation of model (3.1) gives

i∗(a) = i∗(0)ψ1(a), (3.2a)
A∗(a) = A∗(0)ψ2(a). (3.2b)

Substituting Eq (3.2) into the fifth equation of model (3.1), together with sixth and seventh
equations, gives

i∗(0) =

(ζ+δ)ξ1
(ξ2−ξ1)δ +

∫ ∞
0
γ2(a)ψ2(a)da

(ζ+δ)(1−ξ1)
(ξ2−ξ1)δ −

∫ ∞
0
γ1(a)ψ1(a)da

A∗(0) := QA∗(0), (3.3a)

E∗ =
(1 − ξ2)Q − ξ2

ω(ξ1 − ξ2)
A∗(0), (3.3b)

R∗ =
(1 − ξ1)Q − ξ1

δ(ξ2 − ξ1)
A∗(0). (3.3c)

From the first two equations of models (3.1) and (3.3), it follows that

E∗ =
B − ζV∗

ζ + ω
, (3.4a)

A∗(0) =
B − ζV∗

ζ + ω

ω(ξ1 − ξ2)
(1 − ξ2)Q − ξ2

, (3.4b)

i∗(0) =
B − ζV∗

ζ + ω

ω(ξ1 − ξ2)Q
(1 − ξ2)Q − ξ2

. (3.4c)

Substituting Eqs (3.2) and (3.4) into the first equation of model (3.1), we have

f3(V∗)
∫ ∞

0
β3(a)g3(

B − ζV∗

ζ + ω

ω(ξ1 − ξ2)Q
(1 − ξ2)Q − ξ2

ψ1(a))da + f4(V∗)

×

∫ ∞

0
β4(a)g4(

B − ζV∗

ζ + ω

ω(ξ1 − ξ2)
(1 − ξ2)Q − ξ2

ψ2(a))da = B − ζV∗. (3.5)

Proposition 3.1. System (1.2) has one unique endemic equilibrium E2 if

R0 ≡ f3(
B
ζ

)
∫ ∞

0
β3(a)ψ1(a)da

(ξ1 − ξ2)Qω
(1 − ξ2)Q − ξ2

g
′

3(0)
ζ + ω

+ f4(
B
ζ

)
∫ ∞

0
β4(a)ψ2(a)da

(ξ1 − ξ2)ω
(1 − ξ2)Q − ξ2

g
′

4(0)
ζ + ω

> 1. (3.6)

Otherwise, system (1.2) has no endemic equilibrium.
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Proof. From Eq (3.4), i∗(0)
A∗(0) = Q. System (1.2) has an endemic equilibrium only if Q > 0

and (ξ1−ξ2)
(1−ξ2)Q−ξ2

> 0 because of the positivity of solutions. Since 0 < ξ1, ξ2 < 1, we have

(1 − ξ2)
∫ ∞

0
γ2(a)ψ2(a)da + ξ2

∫ ∞

0
γ1(a)ψ1(a)da

≤ (1 − ξ2)
∫ ∞

0
γ2(a)e−

∫ a
0 γ2(u)duda + ξ2

∫ ∞

0
γ1(a)e−

∫ a
0 γ1(u)duda

= (1 − ξ2)(1 − e−
∫ ∞

0 γ2(u)du) + ξ2(1 − e−
∫ ∞

0 γ1(u)du)
≤ 1

<
ζ + δ

δ
. (3.7)

Similarly, we have

(ζ + δ)(1 − ξ1)
(ξ2 − ξ1)δ

−

∫ ∞

0
γ1(a)ψ1(a)da >

(ζ + δ)(1 − ξ1)
(ξ2 − ξ1)δ

− 1 > 0, (3.8)

if ξ2 > ξ1 and
(ζ + δ)ξ1

(ξ2 − ξ1)δ
+

∫ ∞

0
γ2(a)ψ2(a)da <

(ζ + δ)ξ1

(ξ2 − ξ1)δ
+ 1 < 0, (3.9)

if ξ2 < ξ1. Following from Eqs (3.7)–(3.9), we get Q > 0 and

ξ1 − ξ2

(1 − ξ2)Q − ξ2
=

ξ1 − ξ2

(1−ξ2)
∫ ∞

0 γ2(a)ψ2(a)da+ξ2
∫ ∞

0 γ1(a)ψ1(a)da− ζ+δδ
(ζ+δ)(1−ξ1)

(ξ2−ξ1)δ −
∫ ∞

0 γ1(a)ψ1(a)da

> 0, (3.10)

for all 0 < ξ1, ξ2 < 1. From Eq (3.5), if V∗ exists, it should be a zero root of the function H in (0, B
ζ
),

where

H(V) = f3(V)
∫ ∞

0
β3(a)g3(

B − ζV
ζ + ω

ω(ξ1 − ξ2)Q
(1 − ξ2)Q − ξ2

ψ1(a))da − B + ζV

+ f4(V)
∫ ∞

0
β4(a)g4(

B − ζV
ζ + ω

ω(ξ1 − ξ2)
(1 − ξ2)Q − ξ2

ψ2(a))da. (3.11)

For simplicity, denote µ =
ω(ξ1−ξ2)

(1−ξ2)Q−ξ2
. Clearly, we have

H
′

(V)

= ζ + f
′

3(V)
∫ ∞

0
β3(a)g3(

(B − ζV)Qµψ1(a)
ζ + ω

)da −
∫ ∞

0

f3(V)β3(a)ζQµ
ζ + ω

×ψ1(a)g
′

3(
(B − ζV)Qµψ1(a)

ζ + ω
)da + f

′

4(V)
∫ ∞

0
g4(

(B − ζV)µψ2(a)
ζ + ω

)

×β4(a)da − f4(V)
∫ ∞

0

β4(a)ζµψ2(a)
ζ + ω

g
′

4(
(B − ζV)µψ2(a)

ζ + ω
)da, (3.12)

and

H
′′

(V)
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= f
′′

3 (V)
∫ ∞

0
β3(a)g3(

(B − ζV)Qµψ1(a)
ζ + ω

)da − 2 f
′

3(V)
∫ ∞

0
β3(a)

×g
′

3(
(B − ζV)Qµψ1(a)

ζ + ω
)
ζQµψ1(a)
ζ + ω

da + f3(V)
∫ ∞

0
β3(a)

×g
′′

3(
(B − ζV)Qµψ1(a)

ζ + ω
)(
ζQµψ1(a)
ζ + ω

)2da + f
′′

4 (V)
∫ ∞

0
β4(a)

×g4(
(B − ζV)µψ2(a)

ζ + ω
)da − 2 f

′

4(V)
∫ ∞

0
β4(a)

ζµψ2(a)
ζ + ω

×g
′

4(
(B − ζV)µψ2(a)

ζ + ω
)da + f4(V)

∫ ∞

0
β4(a)(

ζµψ2(a)
ζ + ω

)2

×g
′′

4(
(B − ζV)µψ2(a)

ζ + ω
)da. (3.13)

From Assumption 1.2, H
′′

(V) < 0 for V ∈ (0, B
ζ
). Therefore, H

′

(V) is decreasing as V ∈ [0, B
ζ
]

increases. From Eq (3.12), H
′

(0) > 0. According to the sign of H
′

( B
ζ
), there are two conditions

as follows:
(i) If H

′

( B
ζ
) ≥ 0, H

′

(V) > 0 hold for all V ∈ (0, B
ζ
), it follows that H(V) is increasing as V increases

in [0, B
ζ
]. Since H(0) < 0 and H( B

ζ
) = 0, there are no roots for H(V) = 0 in (0, B

ζ
). By direct computation

of Eq (3.12),

H
′

(
B
ζ

) = ζ − f3(
B
ζ

)
∫ ∞

0
β3(a)g

′

3(0)
ζ

ζ + ω

ω(ξ1 − ξ2)Q
(1 − ξ2)Q − ξ2

ψ1(a)da

− f4(
B
ζ

)
∫ ∞

0
β4(a)g

′

4(0)
ζ

ζ + ω

ω(ξ1 − ξ2)
(1 − ξ2)Q − ξ2

ψ2(a)da

= ζ(1 − R0). (3.14)

Therefore, system (1.2) has no endemic equilibrium if R0 ≤ 1.
(ii) If H

′

( B
ζ
) < 0, there must exist a V0 ∈ (0, B

ζ
) such that H

′

(V) > 0 for all V ∈ (0,V0) and H
′

(V) < 0
for all V ∈ (V0,

B
ζ
). Hence, H(V) is increasing as V increases in [0,V0] and H(V) is decreasing as V

increases in [V0,
B
ζ
]. There must exist one unique zero of the function H(V) in (0, B

ζ
) as H(0) < 0

and H( B
ζ
) = 0. Therefore, system (1.2) has one unique endemic equilibrium E2 if R0 > 1. �

The basic reproduction number for model (1.2) is defined as the mean number of infected persons
produced by one infectious individual during its time of infectiousness in a completely susceptible
population at the beginning of the disease. In system (1.2), infectious persons refer to people in
classes i or A. Therefore the total number of infected individuals is calculated as i(t, 0) + A(t, 0)
which equals ωE(t) + δR(t), here t is very small. From system (1.2), the total number of exposed

individuals E(t) is computed as
f3( B

ζ )
∫ ∞

0 β3(a)g
′

3(0)ψ1(a)i(t,0)da+ f4( B
ζ )

∫ ∞
0 β4(a)g

′

4(0)ψ2(a)A(t,0)da

ζ+ω
, where 1

ζ+ω
is the period

of exposedness. Similarly, the number of recovered persons R(t) is
∫ ∞

0 γ1(a)ψ1(a)i(t,0)da+
∫ ∞

0 γ2(a)ψ2(a)A(t,0)da
ζ+δ

, in
which 1

ζ+δ
is the period of recovery. Hence, the total number of infected persons is

ω
f3( B

ζ
)
∫ ∞

0
β3(a)g

′

3(0)ψ1(a)i(t, 0)da + f4( B
ζ
)
∫ ∞

0
β4(a)g

′

4(0)ψ2(a)A(t, 0)da

ζ + ω
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+δ

∫ ∞
0
γ1(a)ψ1(a)i(t, 0)da +

∫ ∞
0
γ2(a)ψ2(a)A(t, 0)da

ζ + δ
. (3.15)

The mean number of infected persons produced by one infectious individual is

ω f3( B
ζ
)
∫ ∞

0
β3(a)g

′

3(0)ψ1(a)i(t, 0)da + ω f4( B
ζ
)
∫ ∞

0
β4(a)g

′

4(0)ψ2(a)A(t, 0)da

(ζ + ω)(i(t, 0) + A(t, 0))

+

∫ ∞
0
δγ1(a)ψ1(a)i(t, 0)da +

∫ ∞
0
δγ2(a)ψ2(a)A(t, 0)da

(ζ + δ)(i(t, 0) + A(t, 0))
. (3.16)

From the last two equations of system (1.2) and the above calculation of E and R, i(t, 0) = QA(t, 0).
Substituting it into the above equation, the basic reproduction number for model (1.2) is denoted
as RB, satisfying

RB =
f3( B

ζ
)
∫ ∞

0
ωβ3(a)g

′

3(0)ψ1(a)Qda + f4( B
ζ
)
∫ ∞

0
ωβ4(a)g

′

4(0)ψ2(a)da

(ζ + ω)(Q + 1)

+

∫ ∞
0
δγ1(a)ψ1(a)Qda +

∫ ∞
0
γ2(a)ψ2(a)da

(ζ + δ)(Q + 1)
. (3.17)

From direct computation, RB > 1 equals R0 > 1.

3.2. Local stability

We need to prove the following proposition to get the local stability of E1(0, B
ζ
, 0, 0, 0, 0) and E2.

Proposition 3.2. Define Q̄ =
λ0ξ1

(ξ2−ξ1)δ+
(ζ+δ)ξ1

(ξ2−ξ1)δ+
∫ ∞

0 γ2(a)ψ2(a)e−λ0ada
λ0(1−ξ1)
(ξ2−ξ1)δ +

(ζ+δ)(1−ξ1)
(ξ2−ξ1)δ −

∫ ∞
0 γ1(a)ψ1(a)e−λ0ada

. Q̄ > 0 and

|
(ξ1 − ξ2)ω

Q̄(1 − ξ2) − ξ2
|≤

(ξ1 − ξ2)ω
Q(1 − ξ2) − ξ2

,

|
(ξ1 − ξ2)ωQ̄

Q̄(1 − ξ2) − ξ2
|≤

(ξ1 − ξ2)Qω
Q(1 − ξ2) − ξ2

(3.18)

hold true, if λ0 = a0 + b0i, a0 > 0.

Proof. Since Q > 0, by direct computation, we have Q̄ > 0 for each case of (i) ξ1 > ξ2 and (ii) ξ1 < ξ2.
We will prove Eq (3.18) in the following two cases (i) ξ1 > ξ2 and (ii) ξ1 < ξ2.

(i) If ξ1 > ξ2, we have

|
(ξ1 − ξ2)ω

Q̄(1 − ξ2) − ξ2
|

= |

(1−ξ1)(1−ξ2)
ξ1−ξ2

∫ ∞
0
γ2(a)ψ2(a)e−λ0ada +

ξ1(1−ξ2)
ξ1−ξ2

∫ ∞
0
γ1(a)ψ1(a)e−λ0ada

λ0+ζ+δ

δ
−

∫ ∞
0

((1 − ξ2)γ2(a)ψ2(a) + ξ2γ1(a)ψ1(a))e−λ0ada

+
1 − ξ1

ξ1 − ξ2
| (ξ1 − ξ2)ω
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≤
(ξ1 − ξ2)ω

Q(1 − ξ2) − ξ2
. (3.19)

Similarly, we have

|
(ξ1 − ξ2)ωQ̄

Q̄(1 − ξ2) − ξ2
|

= |

(1−ξ1)ξ2
ξ1−ξ2

∫ ∞
0
γ2(a)ψ2(a)e−λ0ada +

ξ1ξ2
ξ1−ξ2

∫ ∞
0
γ1(a)ψ1(a)e−λ0ada

λ0+ζ+δ

δ
−

∫ ∞
0

((1 − ξ2)γ2(a)ψ2(a) + ξ2γ1(a)ψ1(a))e−λ0ada

+
ξ1

ξ1 − ξ2
| (ξ1 − ξ2)ω

≤
(ξ1 − ξ2)Qω

Q(1 − ξ2) − ξ2
. (3.20)

(ii) If ξ1 < ξ2,

|
(ξ1 − ξ2)ω

Q̄(1 − ξ2) − ξ2
|

= |

(1−ξ1)(1−ξ2)
ξ2−ξ1

∫ ∞
0
γ2(a)ψ2(a)e−λ0ada +

ξ1(1−ξ2)
ξ2−ξ1

∫ ∞
0
γ1(a)ψ1(a)e−λ0ada

λ0
δ

+
ζ+δ

δ
− (1 − ξ2)

∫ ∞
0
γ2(a)ψ2(a)e−λ0ada − ξ2

∫ ∞
0
γ1(a)ψ1(a)e−λ0ada

+
1 − ξ1

ξ2 − ξ1
| (ξ2 − ξ1)ω

≤ (ξ2 − ξ1)ω(
1 − ξ1

ξ2 − ξ1

+

(1−ξ1)(1−ξ2)
ξ2−ξ1

∫ ∞
0
γ2(a)ψ2(a)da +

ξ1(1−ξ2)
ξ2−ξ1

∫ ∞
0
γ1(a)ψ1(a)da

ζ+δ

δ
− (1 − ξ2)

∫ ∞
0
γ2(a)ψ2(a)da − ξ2

∫ ∞
0
γ1(a)ψ1(a)da

)

=
(ξ1 − ξ2)ω

Q(1 − ξ2) − ξ2
. (3.21)

Similarly,

|
(ξ1 − ξ2)ωQ̄

Q̄(1 − ξ2) − ξ2
|

= |

(1−ξ1)ξ2
ξ2−ξ1

∫ ∞
0
γ2(a)ψ2(a)e−λ0ada +

ξ1ξ2
ξ2−ξ1

∫ ∞
0
γ1(a)ψ1(a)e−λ0ada

λ0
δ

+
ζ+δ

δ
− (1 − ξ2)

∫ ∞
0
γ2(a)ψ2(a)e−λ0ada − ξ2

∫ ∞
0
γ1(a)ψ1(a)e−λ0ada

+
ξ1

ξ2 − ξ1
| (ξ2 − ξ1)ω

≤
(ξ1 − ξ2)Qω

Q(1 − ξ2) − ξ2
. (3.22)

�

Theorem 3.1. The disease free equilibrium point E1 is unstable if R0 > 1. E1 is locally asymptotically
stable if R0 < 1.
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Proof. Linearizing system (1.2) at equilibrium E1 and setting S = y1eλt, V = y2eλt +
B
ζ
, E = y3eλt, i(t, a) = y4(a)eλt, A(t, a) = y5(a)eλt and R = y6eλt, we have

ωδ(ξ1 − ξ2)
(λ + ζ + ω)(λ + ζ + δ)

( f4(
B
ζ

)g
′

4(0)
∫ ∞

0
β4(a)ψ2(a)e−λada

∫ ∞

0
γ1(a)ψ1(a)

·e−λada − f3(
B
ζ

)g
′

3(0)
∫ ∞

0
β3(a)ψ1(a)e−λada

∫ ∞

0
γ2(a)ψ2(a)e−λada)

+
ω

λ + ζ + ω
((1 − ξ1) f4(

B
ζ

)g
′

4(0)
∫ ∞

0
β4(a)ψ2(a)e−λada + ξ1 f3(

B
ζ

)g
′

3(0)

·

∫ ∞

0
β3(a)ψ1(a)e−λada) +

δ

λ + ζ + δ
((1 − ξ2)

∫ ∞

0
γ2(a)ψ2(a)e−λada

+ξ2

∫ ∞

0
γ1(a)ψ1(a)e−λada) = 1. (3.23)

Define

F(λ) =
ωδ(ξ1 − ξ2)

(λ + ζ + ω)(λ + ζ + δ)
( f4(

B
ζ

)g
′

4(0)
∫ ∞

0
β4(a)ψ2(a)e−λada

·

∫ ∞

0
γ1(a)ψ1(a)e−λada − f3(

B
ζ

)g
′

3(0)
∫ ∞

0
β3(a)ψ1(a)e−λada

·

∫ ∞

0
γ2(a)ψ2(a)e−λada) +

ω

λ + ζ + ω
((1 − ξ1) f4(

B
ζ

)g
′

4(0)

·

∫ ∞

0
β4(a)ψ2(a)e−λada + ξ1 f3(

B
ζ

)g
′

3(0)
∫ ∞

0
β3(a)ψ1(a)e−λada)

+
δ

λ + ζ + δ
((1 − ξ2)

∫ ∞

0
γ2(a)ψ2(a)e−λada

+ξ2

∫ ∞

0
γ1(a)ψ1(a)e−λada).

Substituting Q =
(ζ+δ)ξ1

(ξ2−ξ1)δ+
∫ ∞

0 γ2(a)ψ2(a)da
(ζ+δ)(1−ξ1)

(ξ2−ξ1)δ −
∫ ∞

0 γ1(a)ψ1(a)da
of (3.3) into Eq (3.6), we have

R0 − 1

= f3(
B
ζ

)
∫ ∞

0
β3(a)ψ1(a)da

(ξ1 − ξ2)Qω
(1 − ξ2)Q − ξ2

g
′

3(0)
ζ + ω

+ f4(
B
ζ

)
∫ ∞

0
β4(a)ψ2(a)da

(ξ1 − ξ2)ω
(1 − ξ2)Q − ξ2

g
′

4(0)
ζ + ω

− 1

=

ζ+δ

δ
(F(0) − 1)

ζ+δ

δ
− (1 − ξ2)

∫ ∞
0
γ2(a)ψ2(a)da − ξ2

∫ ∞
0
γ1(a)ψ1(a)da

> 0. (3.24)

From R0 > 1, it follows that F(0) > 1. Clearly, limλ→+∞ F(λ) = 0, therefore F(λ) = 1 has at least one
positive root if F(0) > 1. So, the equilibrium E1 is unstable if R0 > 1.
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Suppose E1 is unstable when R0 < 1 . Therefore, there is at least one root λ1 = a1 + ib1 of Eq (3.23)
satisfying a1 ≥ 0. Let

Q̂ =

λ1ξ1
(ξ2−ξ1)δ +

(ζ+δ)ξ1
(ξ2−ξ1)δ +

∫ ∞
0
γ2(a)ψ2(a)e−λ1ada

λ1(1−ξ1)
(ξ2−ξ1)δ +

(ζ+δ)(1−ξ1)
(ξ2−ξ1)δ −

∫ ∞
0
γ1(a)ψ1(a)e−λ1ada

.

Equation (3.23) can be written as

f4(
B
ζ

)g
′

4(0)
∫ ∞

0
β4(a)ψ2(a)e−λ1ada

(ξ1 − ξ2)ω
(1 − ξ2)Q̂ − ξ2

1
λ1 + ζ + ω

+ f3(
B
ζ

)
∫ ∞

0
β3(a)ψ1(a)e−λada

(ξ1 − ξ2)Q̂ω
(1 − ξ2)Q̂ − ξ2

g
′

3(0)
λ1 + ζ + ω

= 1. (3.25)

From Proposition 3.2 and Eq (3.25), we have

| f4(
B
ζ

)g
′

4(0)
∫ ∞

0
β4(a)ψ2(a)e−λ1ada

(ξ1 − ξ2)ω
(1 − ξ2)Q̂ − ξ2

1
λ1 + ζ + ω

+ f3(
B
ζ

)
∫ ∞

0
β3(a)ψ1(a)e−λ1ada

(ξ1 − ξ2)Q̂ω
(1 − ξ2)Q̂ − ξ2

g
′

3(0)
λ1 + ζ + ω

|

≤ f3(
B
ζ

)
∫ ∞

0
β3(a)ψ1(a)da

(ξ1 − ξ2)Qω
(1 − ξ2)Q − ξ2

g
′

3(0)
ζ + ω

+ f4(
B
ζ

)
∫ ∞

0
β4(a)ψ2(a)da

(ξ1 − ξ2)ω
(1 − ξ2)Q − ξ2

g
′

4(0)
ζ + ω

= R0 < 1, (3.26)

which contradicts to Eq (3.25). Hence, the equilibrium E1 is stable if R0 < 1. �

Theorem 3.2. E2 is locally asymptotically stable if R0 > 1 holds true.

Proof. Set

m1eλt = S , m2eλt = V − V∗, m3eλt = E − E∗, m6eλt = R − R∗,

m4(a)eλt = i(t, a) − i∗(a), m5(a)eλt = A(t, a) − A∗(a), (3.27)

and linearizing system (1.2) at equilibrium E2, we have the following linear eigenvalue problem:

(λ + ζ + φ + f
′

1(0)
∫ ∞

0
β1(a)g1(i∗(a))da + f

′

2(0)
∫ ∞

0
β2(a)g2(A∗(a))da)m1 = 0,

(λ + ζ + f
′

3(V∗)
∫ ∞

0
β3(a)g3(i∗(a))da + f

′

4(V∗)
∫ ∞

0
β4(a)g4(A∗(a))da)m2

+ f3(V∗)
∫ ∞

0
β3(a)g

′

3(i∗(a))m4(a)da + f4(V∗)
∫ ∞

0
β4(a)g

′

4(A∗(a))m5(a)da = φm1,

( f
′

1(0)
∫ ∞

0
β1(a)g1(i∗(a))da + f

′

2(0)
∫ ∞

0
β2(a)g2(A∗(a))da)m1

+( f
′

3(V∗)
∫ ∞

0
β3(a)g3(i∗(a))da + f

′

4(V∗)
∫ ∞

0
β4(a)g4(A∗(a))da)m2

+ f3(V∗)
∫ ∞

0
β3(a)g

′

3(i∗(a))m4(a)da + f4(V∗)
∫ ∞

0
β4(a)g

′

4(A∗(a))m5(a)da
= (ζ + ω + λ)m3,

m4(a) = m4(0)e−
∫ a

0 (ζ+γ1(s)+ρ1(s)+λ)ds,

m5(a) = m5(0)e−
∫ a

0 (ζ+γ2(s)+λ)ds,

(λ + ζ + δ)m6 =
∫ ∞

0
γ1(a)m4(a)da +

∫ ∞
0
γ2(a)m5(a)da,

m4(0) = ξ1ωm3 + ξ2δm6,

m5(0) = (1 − ξ1)ωm3 + (1 − ξ2)δm6.

(3.28)
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Computation of Eq (3.28) yields the characteristic equation of system (1.2) at the equilibrium E2,

P(λ) = 1, (3.29)

where

P(λ)

=
f3(V∗)

∫ ∞
0
β3(a)g

′

3(i∗(a))Q̃ψ1(a)e−λada + f4(V∗)
∫ ∞

0
β4(a)g

′

4(A∗(a))ψ2(a)e−λada

λ + ζ + f ′3(V∗)
∫ ∞

0
β3(a)g3(i∗(a))da + f ′4(V∗)

∫ ∞
0
β4(a)g4(A∗(a))da

·
λ + ζ

λ + ζ + ω

(ξ1 − ξ2)ω
Q̃(1 − ξ2) − ξ2

,

Q̃ =

λξ1
(ξ2−ξ1)δ +

(ζ+δ)ξ1
(ξ2−ξ1)δ +

∫ ∞
0
γ2(a)ψ2(a)e−λada

λ(1−ξ1)
(ξ2−ξ1)δ +

(ζ+δ)(1−ξ1)
(ξ2−ξ1)δ −

∫ ∞
0
γ1(a)ψ1(a)e−λada

. (3.30)

By the method of contradiction, we assume that Eq (3.29) has one eigenvalue λ2 = a2 + b2i
satisfying a2 ≥ 0. Then, we have

| P(λ2) |

≤
| f3(V∗)

∫ ∞
0
β3(a)g

′

3(i∗(a))Q̌ψ1(a)da + f4(V∗)
∫ ∞

0
β4(a)g

′

4(A∗(a))ψ2(a)da |

| a2 + b2i + ζ + ω |

·
| a2 + b2i + ζ |

| a2 + b2i + ζ + f ′3(V∗)
∫ ∞

0
β3(a)g3(i∗(a))da + f ′4(V∗)

∫ ∞
0
β4(a)g4(A∗(a))da |

·
| (ξ1 − ξ2)ω |
| Q̌(1 − ξ2) − ξ2 |

, (3.31)

where Q̌ =
λ2ξ1

(ξ2−ξ1)δ+
(ζ+δ)ξ1

(ξ2−ξ1)δ+
∫ ∞

0 γ2(a)ψ2(a)e−λ2ada
λ2(1−ξ1)
(ξ2−ξ1)δ +

(ζ+δ)(1−ξ1)
(ξ2−ξ1)δ −

∫ ∞
0 γ1(a)ψ1(a)e−λ2ada

. Clearly,

| a2 + b2i + ζ |

| a2 + b2i + ζ + f ′3(V∗)
∫ ∞

0
β3(a)g3(i∗(a))da + f ′4(V∗)

∫ ∞
0
β4(a)g4(A∗(a))da |

< 1.

Therefore, Eq (3.31) can be rewritten as

| P(λ2) |

< |
f3(V∗)

∫ ∞
0
β3(a)g

′

3(i∗(a))Q̌ψ1(a)da

ζ + ω

+
f4(V∗)

∫ ∞
0
β4(a)g

′

4(A∗(a))ψ2(a)da

ζ + ω
|

|
(ξ1 − ξ2)ω

Q̌(1 − ξ2) − ξ2
|

≤
f3(V∗)

∫ ∞
0
β3(a)g

′

3(i∗(a))ψ1(a)da

ζ + ω

| (ξ1 − ξ2)ωQ̌ |
| Q̌(1 − ξ2) − ξ2 |
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+
f4(V∗)

∫ ∞
0
β4(a)g

′

4(A∗(a))ψ2(a)da

ζ + ω

| (ξ1 − ξ2)ω |
| Q̌(1 − ξ2) − ξ2 |

. (3.32)

From Eqs (3.19)–(3.22), Eq (3.32) can be rewritten as

| P(λ2) |

<
f3(V∗)

∫ ∞
0
β3(a)g

′

3(i∗(a))ψ1(a)da

ζ + ω

(ξ1 − ξ2)ωQ
Q(1 − ξ2) − ξ2

+
f4(V∗)

∫ ∞
0
β4(a)g

′

4(A∗(a))ψ2(a)da

ζ + ω

(ξ1 − ξ2)ω
Q(1 − ξ2) − ξ2

. (3.33)

Substituting the first and second equations of model (3.3) into Eq (3.33), we have

| P(λ2) |

<
f3(V∗)

∫ ∞
0
β3(a)g

′

3(i∗(a))ψ1(a)da

ζ + ω

i∗(0)
E∗

+
f4(V∗)

∫ ∞
0
β4(a)g

′

4(A∗(a))ψ2(a)da

ζ + ω

A∗(0)
E∗

. (3.34)

By Assumption 1.2,
g3(i∗(a)) = g3(i∗(a)) − g3(0) ≥ g

′

3(i∗(a))i∗(a) (3.35)

and
g4(A∗(a)) = g4(A∗(a)) − g4(0) ≥ g

′

4(A∗(a))A∗(a). (3.36)

Therefore, ∫ ∞

0
β3(a)g

′

3(i∗(a))ψ1(a)da ≤

∫ ∞
0
β3(a)g3(i∗(a))da

i∗(0)
(3.37)

and ∫ ∞

0
β4(a)g

′

4(A∗(a))ψ2(a)da ≤

∫ ∞
0
β4(a)g4(A∗(a))da

A∗(0)
. (3.38)

From Eqs (3.37) and (3.38) and the second equation of model (3.1), Eq (3.34) can be rewritten as

| P(λ2) |<
f3(V∗)

∫ ∞
0
β3(a)g3(i∗(a))da + f4(V∗)

∫ ∞
0
β4(a)g4(A∗(a))da

(ζ + ω)E∗
= 1,

which is a contradiction to Eq (3.29). �

4. Global stability

Theorem 4.1. E1 is globally asymptotically stable if R0 < 1.

Proof. From model (1.2), we have

dS (t)
dt
≤ −(ζ + φ)S (t). (4.1)
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By direct computation,

lim sup
t→+∞

S (t) ≤ 0. (4.2)

Hence, S (t)→ 0 when t → +∞. It follows from model (1.2) that

dV(t)
dt
≤ B + φS (t) − ζV(t). (4.3)

Clearly,

lim sup
t→+∞

V(t) ≤ lim sup
t→+∞

B + φS (t)
ζ

≤
B
ζ
. (4.4)

From Assumption 1.2,
gi(x) ≤ g

′

i(0)x, i = 1, 2, 3, 4.

From model (1.2) and Assumption 1.1, for any ε > 0 as t → +∞, we have

E(t) ≤
1

ζ + ω

∫ ∞

0
( f1(S (t))β1(a)g1(i(t, a)) + β2(a) f2(S (t))g2(A(t, a))

+ f3(V(t))β3(a)g3(i(t, a)) + f4(V(t))β4(a)g4(A(t, a)))da + ε

≤
f3( B

ζ
)g
′

3(0)(
∫ t

0
β3(a)i(t, a)da +

∫ ∞
t
β3(a)i(t, a)da)

ζ + ω

+
f4( B

ζ
)g
′

4(0)(
∫ t

0
β4(a)A(t, a)da +

∫ ∞
t
β4(a)A(t, a)da)

ζ + ω
+ ε

≤
f3( B

ζ
)g
′

3(0)
∫ ∞

0
β3(a)ψ1(a)da

ζ + ω
(ξ1ωE(t) + ξ2δ · R(t)) + ε (4.5)

+
f4( B

ζ
)g
′

4(0)
∫ ∞

0
β4(a)ψ2(a)da

ζ + ω
((1 − ξ1) · ωE(t) + (1 − ξ2)δR(t)).

Similarly, by model (1.2), for any ε > 0 when t → +∞, we have

R(t) ≤

∫ ∞
0

(ξ1γ1(a)ψ1(a) + (1 − ξ1)γ2(a)ψ2(a))da

ζ + δ
ωE(t) (4.6)

+

∫ ∞
0

(ξ2γ1(a)ψ1(a) + (1 − ξ2)γ2(a)ψ2(a))da

ζ + δ
δR(t) + ε.

By direct computation, from Eqs (4.5) and (4.6) together with (3.24), when t → +∞,

E(t)R(t)(F(0) − 1)

=

ζ+δ

δ
− (1 − ξ2)

∫ ∞
0
γ2(a)ψ2(a)da − ξ2

∫ ∞
0
γ1(a)ψ1(a)da

ζ+δ

δ

· E(t)R(t)(R0 − 1)

≥ 0. (4.7)
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As R0 < 1, when t → +∞, the following equation can be derived from Eq (4.7):

E(t)R(t)→ 0, (4.8)

which implies that

E(t)→ 0, (4.9)

or

R(t)→ 0. (4.10)

We prove that both Eqs (4.9) and (4.10) hold in the following.
(i) If Eq (4.9) holds true, Eq (4.6) can be written as

R(t)(1 −

∫ ∞
0

(ξ2γ1(a)ψ1(a) + (1 − ξ2)γ2(a)ψ2(a))da

ζ + δ
δ) ≤ ε. (4.11)

From Eqs (3.7) and (4.11), Eq (4.10) holds true.
(ii) If Eq (4.10) holds true, when t → +∞, Eq (4.5) can be written as

E(t) ≤ E(t)(
f3( B

ζ
)g
′

3(0)ω
∫ ∞

0
β3(a)ψ1(a)da

ζ + ω
ξ1

+
f4( B

ζ
)g
′

4(0)ω
∫ ∞

0
β4(a)ψ2(a)da

ζ + ω
(1 − ξ1)) + ε. (4.12)

By direct computation, we have

ξ1 <
Q(ξ1 − ξ2)

Q(1 − ξ2) − ξ2
(4.13)

and

1 − ξ1 <
ξ1 − ξ2

Q(1 − ξ2) − ξ2
. (4.14)

By substituting Eqs (4.13) and (4.14) into Eq (4.12), we have

E(t) ≤ E(t)(
f3( B

ζ
)g
′

3(0)ω
∫ ∞

0
β3(a)ψ1(a)da

ζ + ω
ξ1

+
f4( B

ζ
)g
′

4(0)ω
∫ ∞

0
β4(a)ψ2(a)da

ζ + ω
(1 − ξ1)) + ε

≤ E(t)R0 + ε. (4.15)

Since R0 < 1, from Eq (4.15), Eq (4.9) holds true. Therefore, both Eqs (4.9) and (4.10) hold true. It
follows from Eqs (2.2), (2.3), (4.9) and (4.10) that i(t, a) → 0 and A(t, a) → 0 when t → +∞. By
Eq (4.2) and the second equation of (1.2), for any ε > 0, when t → +∞, we obtain

dV(t)
dt

≥ B + φS (t) − ζV(t) − f3(
B
ζ

)
∫ ∞

0
g
′

3(0)i(t, a)β3(a)da
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− f4(
B
ζ

)
∫ ∞

0
A(t, a)β4(a)g

′

4(0)da − ε

≥ B + φS (t) − ζV(t) − f3(
B
ζ

)g
′

3(0)
∫ ∞

0
β3(a)ψ1(a)da

×(ξ1ωE(t) + ξ2δR(t)) − f4(
B
ζ

)g
′

4(0)
∫ ∞

0
β4(a)ψ2(a)da

×((1 − ξ1)ωE(t) + (1 − ξ2)δR(t)) − ε. (4.16)

From Eqs (4.9) and (4.10), Eq (4.16) can be rewritten as

V(t) ≥
B
ζ
. (4.17)

Therefore, limt→+∞ V(t) = B
ζ
. From Theorem 3.1, E1 is globally asymptotically stable from LaSalle’s

invariance principle. �

Assumption 4.1 Assume that

g3(i(t, a))
g3(i∗(a))

≤
f3(V(t))g3(i(t, a))V∗

f3(V∗)g3(i∗(a))V(t)
≤ 1, 0 < g3(i(t, a)) ≤ g3(i∗(a)),

1 ≤
f3(V(t))g3(i(t, a))V∗

f3(V∗)g3(i∗(a))V(t)
≤

g3(i(t, a))
g3(i∗(a))

, 0 < g3(i∗(a)) ≤ g3(i(t, a)).

g4(A(t, a))
g4(A∗(a))

≤
f4(V(t))g4(A(t, a))V∗

f4(V∗)g4(A∗(a))V(t)
≤ 1, 0 < g4(A(t, a)) ≤ g4(A∗(a)),

1 ≤
f4(V(t))g4(A(t, a))V∗

f4(V∗)g4(A∗(a))V(t)
≤

g4(A(t, a))
g4(A∗(a))

, 0 < g4(A∗(a)) ≤ g4(A(t, a)).

Theorem 4.2. The infectious equilibrium E2 is globally asymptotically stable if R0 > 1,
Assumption 4.1, and (1−ξ1)(1−ξ2)Q2−ξ1ξ2

ξ1−ξ2
> 0 hold true.

Proof. Define the function M(x) = x − 1 − ln x ≥ 0 for all x > 0. Define a Lyapunov function

L(t) = L1(t) + L2(t),

L1(t) = C1S (t) + C2V∗M(
V(t)
V∗

) + C3E∗M(
E(t)
E∗

) + C4R∗M(
R(t)
R∗

),

L2(t) = C5

∫ ∞

0
i∗(a)F1(a)M(

i(t, a)
i∗(a)

)da + C6

∫ ∞

0
A∗(a)F2(a)M(

A(t, a)
A∗(a)

)da

+C7

∫ ∞

0
i∗(a)F3(a)M(

i(t, a)
i∗(a)

)da + C8

∫ ∞

0
A∗(a)F4(a)M(

A(t, a)
A∗(a)

)da,

F1(a) =

∫ ∞

a

f3(V∗)β3(v)g3(i∗(v)) + f4(V∗)β4(v)g4(A∗(v))
i∗(a)

dv,

F2(a) =

∫ ∞

a

f3(V∗)β3(v)g3(i∗(v)) + f4(V∗)β4(v)g4(A∗(v))
A∗(a)

dv,

F3(a) =

∫ ∞

a

γ1(v)i∗(v) + γ2(v)A∗(v)
i∗(a)

dv,
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F4(a) =

∫ ∞

a

γ1(v)i∗(v) + γ2(v)A∗(v)
A∗(a)

dv.

Calculating the time derivative of L1, we have

L′1(t)

≤ (C2 −C1)φS + (C3 −C1) f1(S (t))
∫ ∞

0
β1(a)g1(i(t, a))da

+(C3 −C1) f2(S (t))
∫ ∞

0
β2(a)g2(A(t, a))da − f3(V∗)

·

∫ ∞

0
β3(a)g3(i∗(a))(C2M(

V∗

V(t)
) + C3M(

f3(V(t))g3(i(t, a))E∗

f3(V∗)g3(i∗(a))E(t)
)

−C2M(
f3(V(t))g3(i(t, a))V∗

f3(V∗)g3(i∗(a))V(t)
) + C3 ln

E∗

E(t)
)da − f4(V∗)

·

∫ ∞

0
β4(a)g4(A∗(a))(C2M(

V∗

V(t)
) + C3M(

f4(V(t))g4(A(t, a))E∗

f4(V∗)g4(A∗(a))E(t)
)

−C2M(
f4(V(t))g4(A(t, a))V∗

f4(V∗)g4(A∗(a))V(t)
) + C3 ln

E∗

E(t)
)da

+C4

∫ ∞

0
γ1(a)i∗(a)(M(

i(t, a)
i∗(a)

) − M(
i(t, a)R∗

i∗(a)R(t)
) − ln

R∗

R(t)
)da

+C4

∫ ∞

0
γ2(a)A∗(a)(M(

A(t, a)
A∗(a)

) − M(
A(t, a)R∗

A∗(a)R(t)
) − ln

R∗

R(t)
)da

−C3(ζ + ω)(E(t) − E∗) −C4(ζ + δ)(R(t) − R∗). (4.18)

Since Assumption 4.1 and [7, Proposition A.1], M(g3(i(t,a))
g3(i∗(a)) ) ≤ M( i(t,a)

i∗(a) ), and M( g4(A(t,a))
g4(A∗(a)) ) ≤ M( A(t,a)

A∗(a) ),
we have

M(
f3(V(t))g3(i(t, a))V∗

f3(V∗)g3(i∗(a))V(t)
) ≤ M(

g3(i(t, a))
g3(i∗(a))

) ≤ M(
i(t, a)
i∗(a)

) (4.19)

and

M(
f4(V(t))g4(A(t, a))V∗

f4(V∗)g4(A∗(a))V(t)
) ≤ M(

g4(A(t, a))
g4(A∗(a))

) ≤ M(
A(t, a)
A∗(a)

). (4.20)

Hence, dL1(t)
dt can be rewritten as

dL1(t)
dt

≤ (C2 −C1)φS + (C3 −C1)
∫ ∞

0
f1(S (t))β1(a)g1(i(t, a))da + (C3

−C1)
∫ ∞

0
f2(S (t))β2(a)g2(A(t, a))da + C2

∫ ∞

0
f3(V∗)β3(a)

·g3(i∗(a))M(
i(t, a)
i∗(a)

)da −C3(ζ + ω)(E(t) − E∗) + C3 ln
E(t)
E∗
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·(ζ + ω)E∗ + C2 f4(V∗)
∫ ∞

0
β4(a)g4(A∗(a))M(

A(t, a)
A∗(a)

)da

+C4

∫ ∞

0
γ1(a)i∗(a)M(

i(t, a)
i∗(a)

)da + C4(ζ + δ)R∗ ln
R(t)
R∗

+C4

∫ ∞

0
γ2(a)A∗(a)M(

A(t, a)
A∗(a)

)da −C4(ζ + δ)(R(t) − R∗). (4.21)

Direct computation gives

d
∫ ∞

0
F1(a)i∗(a)h( i(t,a)

i∗(a) )

dt

= −

∫ ∞

0
F1(a)i∗(a)

∂h( i(t,a)
i∗(a) )

∂a
da

= −F1(a)i∗(a)h(
i(t, a)
i∗(a)

) |∞0

+

∫ ∞

0
h(

i(t, a)
i∗(a)

)[F
′

1(a)i∗(a) + F1(a)i∗
′

(a)]da

= −F1(a)i∗(a)h(
i(t, a)
i∗(a)

) |∞0 +

∫ ∞

0
h(

i(t, a)
i∗(a)

)i∗(a)

·[F
′

1(a) − (ζ + γ1(a) + ρ(a))F1(a)]da. (4.22)

Clearly,

F1(0) =
(ζ + ω)E∗

i∗(0)
(4.23)

and

lim
a→+∞

F1(a) = 0. (4.24)

It follows from Eqs (4.22)–(4.24) that

d
∫ ∞

0
F1(a)i∗(a)h( i(t,a)

i∗(a) )

dt

=
(ζ + ω)E∗

i∗(0)
i(t, 0) − (ζ + ω)E∗ − (ζ + ω)E∗ ln

i(t, 0)
i∗(0)

−

∫ ∞

0
g3(i∗(a)) f3(V∗)β3(a)h(

i(t, a)
i∗(a)

)da

−

∫ ∞

0
g4(A∗(a)) f4(V∗)β4(a)h(

i(t, a)
i∗(a)

)da. (4.25)

Similarly, we have

dL2(t)
dt

= C5(ζ + ω)E∗(
i(t, 0)
i∗(0)

− 1) −C5(ζ + ω)E∗ ln
i(t, 0)
i∗(0)
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−C5

∫ ∞

0
f3(V∗)β3(a)g3(i∗(a))M(

i(t, a)
i∗(a)

)da

−C5

∫ ∞

0
f4(V∗)β4(a)g4(A∗(a))M(

i(t, a)
i∗(a)

)da

+C6
(ζ + ω)E∗

A∗(0)
(A(t, 0) − A∗(0)) −C6(ζ + ω)E∗ ln

A(t, 0)
A∗(0)

−C6

∫ ∞

0
f3(V∗)β3(a)g3(i∗(a))M(

A(t, a)
A∗(a)

)da

−C6

∫ ∞

0
f4(V∗)β4(a)g4(A∗(a))M(

A(t, a)
A∗(a)

)da

+C7
(ζ + δ)R∗

i∗(0)
(i(t, 0) − i∗(0)) −C7(ζ + δ)R∗ ln

i(t, 0)
i∗(0)

−C7

∫ ∞

0
γ1(a)i∗(a)M(

i(t, a)
i∗(a)

)da −C7

∫ ∞

0
γ2(a)A∗(a)M(

i(t, a)
i∗(a)

)da

+C8
(ζ + δ)R∗

A∗(0)
(A(t, 0) − A∗(0)) −C8(ζ + δ)R∗ ln

A(t, 0)
A∗(0)

−C8

∫ ∞

0
γ1(a)i∗(a)M(

A(t, a)
A∗(a)

)da

−C8

∫ ∞

0
γ2(a)A∗(a)M(

A(t, a)
A∗(a)

)da. (4.26)

From the sixth and seventh equations of (3.1), to make the terms with i(t, 0)− i∗(0), A(t, 0)−A∗(0) in L2

cancel with E(t) − E∗, R(t) − R∗ in L1, we have

C3(ζ + ω) = C5
(ζ + ω)E∗ξ1ω

i∗(0)
+ C6

(ζ + ω)E∗(1 − ξ1)ω
A∗(0)

+ C7
(ζ + δ)R∗ξ1ω

i∗(0)
+ C8

(ζ + δ)R∗(1 − ξ1)ω
A∗(0)

,

(4.27a)

C4(ζ + δ) = C5
(ζ + ω)E∗ξ2δ

i∗(0)
+ C6

(ζ + ω)E∗(1 − ξ2)δ
A∗(0)

+ C7
(ζ + δ)R∗ξ2δ

i∗(0)
+ C8

(ζ + δ)R∗(1 − ξ2)δ
A∗(0)

.

(4.27b)

Since for x > 0, (ln x)
′′

= − 1
x2 < 0 holds, we have ϑ ln E

E∗ + (1 − ϑ) ln R
R∗ ≤ ln(ϑE

E∗ +
(1−ϑ)R

R∗ ) for
any 0 < ϑ < 1. Therefore,

ξ1ωE∗

ξ1ωE∗ + ξ2δR∗
ln

E
E∗

+
ξ2δR∗

ξ1ωE∗ + ξ2δR∗
ln

R
R∗
≤ ln

i(t, 0)
i∗(0)

,

(1 − ξ1)ωE∗

(1 − ξ1)ωE∗ + (1 − ξ2)δR∗
ln

E
E∗

+
(1 − ξ2)δR∗

(1 − ξ1)ωE∗ + (1 − ξ2)δR∗
· ln

R
R∗
≤ ln

A(t, 0)
A∗(0)

, (4.28)

which can be rewritten as

ξ1ωE∗

i∗(0)
(C5(ζ + ω)E∗ + C7(ζ + δ)R∗) ln

E
E∗

+
ξ2δR∗

i∗(0)
(C5(ζ + ω)E∗ + C7(ζ + δ)R∗) ln

R
R∗

≤ (C5(ζ + ω)E∗ + C7(ζ + δ)R∗) ln
i(t, 0)
i∗(0)

, (4.29a)

AIMS Mathematics Volume 10, Issue 11, 27775–27815.



27797

(1 − ξ1)ωE∗

A∗(0)
(C6(ζ + ω)E∗ + C8(ζ + δ)R∗) ln

E
E∗

+
(1 − ξ2)δR∗

A∗(0)
(C6(ζ + ω)E∗

+C8(ζ + δ)R∗) ln
R
R∗
≤ (C6(ζ + ω)E∗ + C8(ζ + δ)R∗) ln

A(t, 0)
A∗(0)

. (4.29b)

It follows from adding the two equations of Eq (4.29) together that

C3(ζ + ω)E∗ ln
E(t)
E∗

+ C4(ζ + δ)R∗ ln
R(t)
R∗

≤ (C5(ζ + ω)E∗ + C7(ζ + δ)R∗) ln
i(t, 0)
i∗(0)

+ (C6(ζ + ω)E∗ + C8(ζ + δ)R∗) ln
A(t, 0)
A∗(0)

(4.30)

holds if Eq (4.27) holds. To make Eq (4.27) hold true, we define C4 = C7 = C8 = 1, C3 =
(ζ+δ)ω
2δ(ζ+ω) (

ξ1
(1−ξ2)Q +

(1−ξ1)Q
ξ2

), C5 =
(ζ+δ)A∗(0)

2(ζ+ω)E∗δξ2

(1−ξ1)(1−ξ2)Q2−ξ1ξ2
ξ1−ξ2

, and C6 =
(ζ+δ)A∗(0)

2(ζ+ω)QE∗δ(1−ξ2)
(1−ξ1)(1−ξ2)Q2−ξ1ξ2

ξ1−ξ2
.

Furthermore, we define C2 = min{C5, C6} and C1 = max{C2, C3}. Hence, we have

dL(t)
dt

=
d(L1(t) + L2(t))

dt
≤ 0. (4.31)

As E2 is locally asymptotically stable if R0 > 1, from LaSalle’s invariance principle, E2 is globally
asymptotically stable. �

5. Numerical simulations

In this section, several examples are shown to illustrate the theoretical results by
numerical simulations.
Case 1. Stability of model (1.2) when R0 < 1.

For simplicity, we assume the contact rate is the bilinear incidence rate, which satisfies
Assumptions 1.1, 1.2, and 4.1. Therefore, define f1(S (t)) = f2(S (t)) = S (t), f3(V(t)) = f4(V(t)) = V(t),
g1(i(t, a)) = g3(i(t, a)) = i(t, a) and g2(A(a, t)) = g4(A(t, a)) = A(t, a). Let B = 0.01, ζ =

0.017, φ = 0.85, δ = 0.125, γ1(a) = 0.7, γ2(a) = 0.9, ρ(a) = 0.02, ω = 0.4, σ = 0.1, ξ1 = 0.8
and ξ2 = 0.9. Set the initial conditions as (2.5, 0.05, 0.2, 0.02, 0.2, 3). Suppose that symptomatic
carriers and asymptomatic carriers will be cured, dead, or isolated, so they are not infective to
susceptible people when a > 20 and a > 30, respectively. The transmission coefficient of vaccinated
individuals should not be larger than that of susceptible individuals infected by symptomatic or
asymptomatic carriers due to the effect of vaccination, so β3(a) ≤ β1(a) and β4(a) ≤ β2(a). The
smaller the values of β3(a) and β4(a) are, the more effective the vaccination is. If β3(a) = β4(a) = 0,
people will not get infected once they are vaccinated. Suppose infected individuals will be dead,
cured, or quarantined after some time in infected class, so they are not infectious after some time. For
simplicity, the transmission coefficients β1(a) and β2(a) are chosen as
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β1(a) =



0.15 a ≤ 3,
0.1a − 0.15 3 < a ≤ 4,

0.25 4 < a ≤ 8,
1.05 − 0.1a 8 < a ≤ 9,

0.15 9 < a ≤ 14,
0.85 − 0.05a 14 < a ≤ 15,

0.1 15 < a ≤ 19,
2 − 0.1a 19 < a ≤ 20,

0 a > 20

(5.1)

and

β2(a) =



0.5 a ≤ 3,
0.25a − 0.25 3 < a ≤ 4,

0.75 4 < a ≤ 8,
2.75 − 0.25a 8 < a ≤ 9,

0.5 9 < a ≤ 14,
4.7 − 0.3a 14 < a ≤ 15,

0.2 15 < a ≤ 19,
3.05 − 0.15a 19 < a ≤ 20,

0.05 20 < a ≤ 29,
1.5 − 0.05a 29 < a ≤ 30,

0 a > 30.

(5.2)

Let β3(a) = 0.3 ∗ β1(a) and β4(a) = 0.3 ∗ β2(a). By computation of Eq (3.1), (1.2) has the disease-free
equilibrium E1(0, 0.5882, 0, 0, 0, 0). From Theorem 4.1, E1 is globally asymptotically stable due to
R0 = 0.2641 < 1 as shown in Figure 1. The disease will die out when the time is long. The parameters
are unchanged unless stated in the following cases.
Case 2. Local stability of model (1.2) when R0 > 1.

In this case, let ξ1 = 0.1 and ξ2 = 0.05. Model (1.2) has two equilibria,
E1( B

ζ
, 0, 0, 0, 0, 0) and E2(0, V∗, E∗, i∗(a), A∗(a), R∗). By computation, R0 = 2.1895 > 1

and (1−ξ1)(1−ξ2)Q2−ξ1ξ2
ξ1−ξ2

= −0.0376 < 0. Therefore, from Theorem 3.2, E2 is locally asymptotically stable,
which is shown in Figure 2. The disease might persistently exist for some initial conditions.
Case 3. Global stability of model (1.2) when R0 > 1.

To show that the conditions could be achieved in Theorem 4.2, we
set γ1(a) = 0.7, γ2(a) = 0.03, ξ1 = 0.2 and ξ2 = 0.1. By computation, R0 = 1.9372 > 1
and (1−ξ1)(1−ξ2)Q2−ξ1ξ2

ξ1−ξ2
= 0.0271 > 0. By Theorem 4.2, E2 is globally asymptotically stable as shown in

Figure 3. The disease will persistently exist.
Case 4. The effect of ξ1, ξ2, γ1(a), γ2(a).

Since a lot of works have already revealed that bigger transmission rates lead to more infectious
individuals, it is not discussed here by setting β1(a), β2(a), β3(a) and β4(a) fixed. In this part, we mainly
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investigate the effect of the asymptomatic on the spread of diseases. We focus on the influence of the
proportion of symptomatic persons ξ1, ξ2 and asymptomatic persons 1 − ξ1, 1 − ξ2. As the recovered
rate γ1(a) (γ2(a)) of symptomatic (asymptomatic) population is also important to the evolution of
infectious diseases, their effects are considered in this part.

Let γ2(a) = 0.1. From Figure 4, we get the following results:
(i) Spread of the disease changes greatly, especially for big ξ1 and small ξ2 when γ1(a) is small,

i.e., γ1(a) ≤ 0.1. Figure 4(a) shows that the disease can be stopped with very big ξ1 and very small ξ2

such as ξ1 = 0.9 and ξ2 = 0.1 when γ1(a) is very small, i.e., γ1(a) = 0.01. However, from Figure 4(b),
the disease cannot be controlled when ξ1 = 0.9, ξ2 = 0.1, and γ1(a) = 0.07. Why will the disease
be out of control when recovered rate increases? From our assumption, the transmission rate of
one asymptomatic individual is higher than one symptomatic individual, since they can contact more
susceptible individuals. Big ξ1 means that most first-infected individuals transmitting from the exposed
class are symptomatic persons who have a big death rate and small contagious rate. Small ξ2 means
that most second-infected (called second here if they are not infected for the first time) individuals who
transmit from recovered persons are highly contagious asymptomatic persons with a small death rate.
A slight increase of γ1(a) results in more recovered persons (see Figure 5(d)) who are more likely to
become asymptomatic persons as shown in Figure 5(c). Therefore, more people will be infected, and
the disease may even be out of control when γ1(a) is slightly increased with big ξ1 and small ξ2. It may
also hold true when ξ1 is big and ξ2 is of middle size.

(ii) Figure 4 shows that the number of infected people increases when γ1(a) increases in an
area [0.01, 0.2], while it decreases when γ1(a) increases in an area [0.2, 0.98] for small ξ1 and large ξ2

such as ξ1 = 0.2, and ξ2 = 0.95. Similar to the above analysis, most of first-infected persons
are asymptomatic, and most second-infected persons are symptomatic when ξ1 is small and ξ2 is
large. When γ1(a) ∈ [0.01, 0.2] is small, a slight increase of the recovered rate of symptomatic
cases γ1(a) does not induce symptomatic cases i(t, 0) to decrease a lot. Since it can induce an increase
in recovered persons, the number of second-infected persons increase, which results in the increasing
of symptomatic persons as ξ2 is large (shown in Figure 6). The increasing rate of symptomatic cases
is larger than the decreasing rate of symptomatic cases as γ1(a) is small. Therefore, the disease is
out of control when γ1(a) is small and increases slightly for small ξ1 and large ξ2. When γ1(a) is
big and increases, the decreasing rate of symptomatic individuals is larger than the increasing rate of
symptomatic individuals, so the disease can be controlled.

(iii) Evolution of the disease does not change significantly when γ1(a) is large, i.e., γ1(a) ≥ 0.5 from
Figure 4(d)–(f). When γ1(a) is big, increasing γ1(a) cannot change the spread of the disease, except for
small ξ1 and large ξ2. Compared with γ1(a), increasing γ2(a) may work better at stopping the disease
as an asymptomatic individual is more contagious than a symptomatic individual, which can be seen
from Figure 7.

(iv) From Figure 4, the disease will disappear when k1ξ1 + k2ξ2 > 1, where the values of k1 ≥ 0
and k2 ≥ 0 depend on γ1(a) and γ2(a). If most infected individuals coming from exposed and recovered
classes are symptomatic, then the disease may be controlled.
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Figure 1. The disease-free equilibrium E1(0, 0.5882, 0, 0, 0, 0) of model (1.2) in red dashed
lines, while the blue lines show solutions with initial conditions (2.5, 0.05, 0.2, 0.02, 0.2, 3).
The parameters are B = 0.01, ζ = 0.017, φ = 0.85, δ = 0.125, γ1(a) = 0.7, γ2(a) =

0.9, ρ(a) = 0.02, ω = 0.4, σ = 0.1, ξ1 = 0.8, and ξ2 = 0.9 from direct simulation.
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Figure 2. The endemic steady state E2( 0, 0.5577, 0.0012, 0.000378 ×
e−0.737a, 0.0029e−0.517a, 0.0223) (the red dashed lines) of model (1.2), and one solution (the
blue lines) with ξ1 = 0.1 and ξ2 = 0.05 from direct simulation.
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Figure 3. Endemic steady state E2(0, 0.3037, 0.0116, 0.0014e−0.737a, 0.0078 ×
e−0.047a, 0.0359) (shown in the red dashed lines) of model (1.2), and one solution (in the
blue lines) with γ1(a) = 0.7, γ2(a) = 0.03, ξ1 = 0.2, and ξ2 = 0.1 from direct simulation.
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Figure 4. Parameters are set to be γ2(a) = 0.1 and (a) γ1(a) = 0.01, (b) γ1(a) =

0.07, (c) γ1(a) = 0.2, (d) γ1(a) = 0.4, (e) γ1(a) = 0.5, and (f) γ1(a) = 0.98.
R0 > 1, (1−ξ1)(1−ξ2)Q2−ξ1ξ2

ξ1−ξ2
> 0 (yellow area), R0 > 1, (1−ξ1)(1−ξ2)Q2−ξ1ξ2

ξ1−ξ2
< 0 (green area), and

R0 < 1 (blue area) from calculation are shown.
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Figure 5. Evolution of E(t), i(t, 0), A(t, 0) and R(t) for different γ1(a). Set ξ1 = 0.9,
and ξ2 = 0.1.
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Figure 6. Evolution of E(t), i(t, 0), A(t, 0) and R(t) for different γ1(a). Set ξ1 = 0.2 and
ξ2 = 0.95. The right column is a scaled-up version of the left column.
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Figure 7. The yellow area is R0 > 1, while the blue area corresponds to R0 < 1 from the
calculation of R0. Parameters are set as (a) ξ1 = 0.7, ξ2 = 0.01, (b) ξ1 = 0.1, ξ2 = 0.01, (c)
ξ1 = 0.4, ξ2 = 0.01, and (d) ξ1 = 0.7, ξ2 = 0.8.
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6. Conclusions

In the present work, we have considered an SEIAR model with vaccination and the age of infection.
We have shown the positivity, boundedness, and asymptotic smoothness (see the appendix) of the
solutions. From our computation, the basic reproduction number RB is derived, which is equal to R0.
The model always has a disease-free steady state E1, and has one unique endemic equilibrium E2

if R0 > 1. When R0 < 1, the equilibrium E1 is not only locally asymptotically stable, but also globally
asymptotically stable. In this case, the disease will be controlled. If R0 > 1 holds, the equilibrium E1

is unstable, but the equilibrium E2 is locally asymptotically stable, which means that the disease could
be controlled for some initial conditions. Sufficient conditions for the equilibrium E2 to be globally
asymptotically stable, i.e. R0 > 1, (1−ξ1)(1−ξ2)Q2−ξ1ξ2

ξ1−ξ2
> 0, and Assumption 4.1 are given. Examples of (i)

R0 < 1, (ii) R0 > 1 and (iii) Q > 0, (1−ξ1)(1−ξ2)Q2−ξ1ξ2
ξ1−ξ2

> 0, and Assumption 4.1 are presented to illustrate
theoretical results by simulation.

By numerical simulation, we have also shown the effect of ξ1 and ξ2 on the spread of infectious
diseases. From the investigation of numerical results, we find the following conclusions drawn from
the results in Case 4. (1) The disease may become out of control if most of the first-infected persons are
symptomatic and most of the second-infected persons are asymptomatic when the recovered rate of the
symptomatic is small and slightly increased. (2) When most of first-infected persons are asymptomatic
and most of second-infected persons are symptomatic, the disease might become out of control for
small recovered rate of the symptomatic, and could be controlled for a large recovered rate of the
symptomatic as the recovered rate of the symptomatic increases. (3) The spread of disease cannot
be changed only by increasing the recovered rate of the symptomatic when the recovered rate of the
symptomatic is large except that most of the first-infected persons are asymptomatic, and most of the
second-infected persons are symptomatic. The spread of disease depends largely on the recovered
rate of the asymptomatic. (4) If most infected individuals coming from exposed and recovered classes
are symptomatic, then the disease may be controlled. These conclusions may be useful to control
infectious diseases. In this paper, we have not investigated control strategies of the disease. In the
future, we will consider parameter estimation and optimal control strategies to minimize the number
of infected and deaths in infectious diseases.
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Appendix: Asymptotic smoothness

Asymptotic smoothness of the semiflow Φ is considered in this section to show the existence of
an attractor.

Proposition 5.1. Defining

L1(t) =

∫ ∞

0
β1(a)g1(i(t, a))da, L2(t) =

∫ ∞

0
β2(a)g2(A(t, a))da,

L3(t) =

∫ ∞

0
β3(a)g3(i(t, a))da, L4(t) =

∫ ∞

0
β4(a)g1(A(t, a))da,

J1(t) =

∫ ∞

0
γ1(a)i(t, a)da, J2(t) =

∫ ∞

0
γ2(a)A(t, a)da, (5.1)

then the functions L1(t), L2(t), L3(t), L4(t), J1(t) and J2(t) are Lipschitz continuous on R+.

Proof. For fixed t ≥ 0 and h > 0, we have

| L1(t + h) − L1(t) |

= |

∫ ∞

0
β1(a)g1(i(a, t + h))da −

∫ ∞

0
β1(a)g1(i(t, a))da |

= |

∫ h

0
β1(a)g1(i(a, t + h))da +

∫ ∞

h
β1(a)g1(i(a, t + h))da

−

∫ ∞

0
β1(a)g1(i(t, a))da |
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≤ |

∫ ∞

h
β1(a)g1(i(a, t + h))da −

∫ ∞

0
β1(a)g1(i(t, a))da |

+ |

∫ h

0
β1(a)g1(i(a, t + h))da | . (5.2)

From Assumption 1.2, we have

| g1(i(a, t + h)) |≤ g
′

1(0) | i(a, t + h) |= g
′

1(0)i(a, t + h).

Then,

| L1(t + h) − L1(t) | ≤ |

∫ ∞

h
β1(a)g1(i(a, t + h))da −

∫ ∞

0
β1(a)g1(i(t, a))da |

+ |

∫ h

0
β1(a)g

′

1(0)i(a, t + h)da | . (5.3)

Substituting Eq (2.2) into Eq (5.3), we obtain∫ h

0
β1(a)g

′

1(0)i(a, t + h)da (5.4)

=

∫ h

0
β1(a)g

′

1(0)e−
∫ a

0 (ζ+γ1(s)+ρ(s))ds(ξ1ωE(t + h − a) + ξ2δR(t + h − a))da.

By Assumption 1.1 and Proposition 2.2, Eq (5.4) can be rewritten as∫ h

0
β1(a)g

′

1(0)i(a, t + h)da ≤ g
′

1(0)β̂1M(ξ1ω + ξ2δ)h.

It then follows from Eq (5.3) that

| L1(t + h) − L1(t) |

≤ |

∫ ∞

h
β1(a)g1(i(a, t + h))da −

∫ ∞

0
β1(a)g1(i(t, a))da |

+g
′

1(0)β̂1M(ξ1ω + ξ2δ)h

= |

∫ ∞

0
β1(σ + h)g1(i(σ + h, t + h))dσ

−

∫ ∞

0
β1(a)g1(i(t, a))da | +g

′

1(0)β̂1M(ξ1ω + ξ2δ)h

≤ |

∫ ∞

0
β1(a + h)(g1(i(a + h, t + h)) − g1(i(t, a)))da |

+ |

∫ ∞

0
(β1(a + h) − β1(a))g1(i(t, a))da |

+g
′

1(0)β̂1M(ξ1ω + ξ2δ)h. (5.5)

By Assumption 1.2, we have

| g1(i(a + h, t + h)) − g1(i(t, a)) |≤ g
′

1(0) | i(a + h, t + h) − i(t, a) | . (5.6)
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From Eq (2.2),

i(a + h, t + h) = i(t, a)e−
∫ a+h

a (ζ+γ1(s)+ρ(s))ds (5.7)

for all a ≥ 0, t ≥ 0 and h ≥ 0. Hence, we have

| g1(i(a + h, t + h)) − g1(i(t, a)) | ≤ g
′

1(0)i(t, a)(1 − e−
∫ a+h

a (ζ+γ1(s)+ρ(s))ds)

≤ g
′

1(0)i(t, a)
∫ a+h

a
(ζ + γ1(s) + ρ(s))ds

≤ g
′

1(0)i(t, a)(ζ + γ̂1 + ρ̂)h. (5.8)

From Eq (5.8), the first term in Eq (5.5) can be rewritten as

|

∫ ∞

0
β1(a + h)(g1(i(a + h, t + h)) − g1(i(t, a)))da |

≤ β̂1g
′

1(0)M(ζ + γ̂1 + ρ̂)h. (5.9)

By Assumption 1.1, | β1(a + h) − β1(a) |≤ Lβ1h. From Assumption 1.2, g1(i(t, a)) ≤ g
′

1(0)i(t, a).
Therefore, the second term in Eq (5.5) can be rewritten as

|

∫ ∞

0
(β1(a + h) − β1(a))g1(i(t, a))da |≤ Lβ1g

′

1(0)Mh. (5.10)

From Eqs (5.9) and (5.10), Eq (5.5) can be rewritten as

| L1(t + h) − L1(t) |≤ (β̂1(ζ + γ̂1 + ρ̂) + Lβ1 + β̂1(ξ1ω + ξ2δ))g
′

1(0)Mh.

Denote ML1 = (β̂1(ζ + γ̂1 + ρ̂) + Lβ1 + β̂1(ξ1ω + ξ2δ))g
′

1(0)M. Then,

| L1(t + h) − L1(t) |≤ ML1h.

Similarly, we have that L2(t), L3(t), L4(t), J1(t) and J2(t) are Lipschitz continuous on R+. Then, there
exist ML2 , ML3 , ML4 , LJ1 , LJ2 > 0 such that

| L2(t + h) − L2(t) |≤ ML2h, | L3(t + h) − L3(t) |≤ ML3h,

| L4(t + h) − L4(t) |≤ ML4h, | J1(t + h) − J1(t) |≤ LJ1h,

| J2(t + h) − J2(t) |≤ LJ2h. (5.11)

This completes the proof. �

Lemma 5.1. [23, Theorem 2.46] The semiflow Φ : R+ × X+ → X+ is asymptotically smooth if there
are maps Θ, Ψ : R+ × X+ → X+ such that Φ(t, X) = Θ(t, X) + Ψ(t, X) and the following conditions
hold for any bounded closed set C ⊂ X+ that is forward invariant under Φ:
(1) limt→+∞diamΘ(t,C) = 0;
(2) there exists tC ≥ 0 such that Ψ(t,C) has compact closure for each t ≥ tC.
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Lemma 5.2. [23, Theorem B.2] A set C ∈ L1
+(0,∞) has compact closure if and only if the following

conditions hold:
(i) sup f∈C

∫ ∞
0
| f (a) | da < ∞;

(ii) limr→∞

∫ ∞
r
| f (a) | da→ 0 uniformly in f ∈ C;

(iii) limh→0+

∫ ∞
0
| f (a + h) − f (a) | da = 0 uniformly in f ∈ C;

(iv) limh→0+

∫ h

0
| f (a) | da = 0 uniformly in f ∈ C.

From the above preparations, we can show the asymptotic smoothness of the semi-flow Φ generated
by system (1.2).

Theorem 5.1. The semi-flow Φ generated by system (1.2) is asymptotically smooth.

Proof. We first decompose the semi-flow Φ = Ψ + Θ into two maps: Ψ(t, x0) :=
(S (t),V(t), E(t), ĩ(·, t), Ã(·, t),R(t)) and Θ(t, x0) := (0, 0, 0, φ̃i(·, t), φ̃A(·, t), 0), where

ĩ(a, t) =

{
(ξ1ωE(t − a) + ξ2δR(t − a))ψ1(a) 0 ≤ a < t,

0 0 ≤ t ≤ a,

Ã(a, t) =

{
((1 − ξ1)ωE(t − a) + (1 − ξ2)δR(t − a))ψ2(a) 0 ≤ a < t,

0 0 ≤ t ≤ a,

φ̃i(a, t) =

{
0 0 ≤ a < t,

i0(a − t)e−
∫ a

a−t(ζ+γ1(s)+ρ(s))ds 0 ≤ t ≤ a,

φ̃A(a, t) =

{
0 0 ≤ a < t,

A0(a − t)e−
∫ a

a−t(ζ+γ2(s))ds 0 ≤ t ≤ a.
(5.12)

Let C ⊂ X+ be a closed bounded subset with bound K.
To verify that the conditions of Lemma 5.1 are satisfied, we take two steps. First, condition (1) of

Lemma 5.1 is verified in the following. Let x0 = (S 0,V0, E0, i0(·), A0(·),R0) ∈ C,

‖ Θ(t, x0) ‖ =

∫ ∞

0
| φ̃i(a, t) | da +

∫ ∞

0
| φ̃A(a, t) | da

=

∫ ∞

t
i0(a − t)e−

∫ a
a−t(ζ+γ1(s)+ρ(s))dsda

+

∫ ∞

t
A0(a − t)e−

∫ a
a−t(ζ+γ2(s))dsda

=

∫ ∞

0
i0(σ)e−

∫ σ+t
σ

(ζ+γ1(a)+ρ(a))dadσ

+

∫ ∞

0
A0(σ)e−

∫ σ+t
σ

(ζ+γ2(a))dadσ

≤ e−ζt ‖ x0 ‖

≤ e−ζtM. (5.13)

Hence, ‖ Θ(t, x0) ‖→ 0 as t → ∞, and ‖ Θ(t, x0) ‖ approaches 0 with uniform exponetial speed.
Therefore, limt→+∞diamΘ(t,C) = 0 and condition (1) holds in Lemma 5.1.
Next, we will show that conditions (i)-(iv) in Lemma 5.2 hold. From Proposition 2.2,

0 ≤ ĩ(a, t) ≤ (ξ1ω + ξ2δ)Me−aζ , 0 ≤ Ã(a, t) ≤ ((1 − ξ1)ω + (1 − ξ2)δ)Me−aζ .
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Hence, conditions (i)–(iv) of Lemma 5.2 are satisfied. In the following, we will show that condition (iii)
holds. Assume sufficiently small h ∈ (0, t). By computation, we have∫ ∞

0
| ĩ(a + h, t) − ĩ(a, t) | da

=

∫ t−h

0
| (ξ1ωE(t − a − h) + ξ2δR(t − a − h))e−

∫ a+h
0 (ζ+γ1(s)+ρ(s))ds

−(ξ1ωE(t − a) + ξ2δR(t − a))e−
∫ a

0 (ζ+γ1(s)+ρ(s))ds | da

+

∫ t

t−h
(ξ1ωE(t − a) + ξ2δR(t − a))e−

∫ a
0 (ζ+γ1(s)+ρ(s))dsda

≤

∫ t−h

0
ξ1ω | E(t − a − h) − E(t − a) | e−

∫ a
0 (ζ+γ1(s)+ρ(s))dsda

+

∫ t−h

0
ξ2δ | R(t − a − h) − R(t − a) | e−

∫ a
0 (ζ+γ1(s)+ρ(s))dsda

+

∫ t

t−h
(ξ1ωE(t − a) + ξ2δR(t − a))e−

∫ a
0 (ζ+γ1(s)+ρ(s))dsda

+

∫ t−h

0
(ξ1ωE(t − a − h) + ξ2δR(t − a − h))

×(1 − e−
∫ a+h

a (ζ+γ1(s)+ρ(s))ds)e−
∫ a

0 (ζ+γ1(s)+ρ(s))dsda. (5.14)

From Propositions 2.2, 5.1, and system (1.2), we have

| E(t − a − h) − E(t − a) | ≤ ( f
′

1(0)g
′

1(0)Mβ̂1 + f
′

2(0)g
′

2(0)Mβ̂2 + ζ + ω

+ f
′

3(0)g
′

3(0)Mβ̂3 + f
′

4(0)g
′

4(0)Mβ̂4)Mh := M1h,

| R(t − a − h) − R(t − a) | ≤ (γ̂1M + γ̂2M + ζM + δM)h := M2h. (5.15)

From Eq (5.15) and 1 − e−x ≤ x for all x ≥ 0, Eq (5.14) can be rewritten as∫ ∞

0
| ĩ(a + h, t) − ĩ(a, t) | da

≤
ξ1ωM1h

ζ
+
ξ2δM2h

ζ
+ (ξ1ω + ξ2δ)Mh +

∫ t−h

0
e−aζ

·(ξ1ωE(t − a − h) + ξ2δR(t − a − h))
∫ a+h

a
(ζ + γ1(s) + ρ(s))dsda

≤
ξ1ωM1h

ζ
+
ξ2δM2h

ζ
+ (ξ1ω + ξ2δ)Mh

+(ξ1ω + ξ2δ)(ζ + γ̂1 + ρ̂)
Mh
ζ
. (5.16)

Similarly, we have ∫ ∞

0
| Ã(a + h, t) − Ã(a, t) | da
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≤
(1 − ξ1)ωM1h

ζ
+

(1 − ξ2)δM2h
ζ

+((1 − ξ1)ω + (1 − ξ2)δ)(1 +
ζ + γ̂1 + ρ̂

ζ
)Mh. (5.17)

Therefore, condition (iii) of Lemma 5.2 holds true. Using Lemma 5.1, the semi-flow Φ of system (1.2)
is asymptotically smooth. This completes the proof. �
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