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Abstract: Semiparametric probit model serves as a valuable alternative to the popular proportional
hazards/odds model in survival analysis partly due to the use of a standard normal distributed random
error. This feature can facilitate developing an efficient inference and may render a better fit for the real
world data than other models. In this work, we concern regression analysis of doubly censored data
with a spline-based probit regression model and provide an efficient maximum likelihood estimation
procedure. A novel and reliable expectation-maximization algorithm is proposed to identify the sieve
estimator. Asymptotic properties of the proposed estimator are established. Simulation studies suggest
that the proposed method works well in finite samples and obviously outperforms the direct sieve
maximum likelihood method, which is accomplished with some existing optimization algorithm in the
software. An application to a real data set is also provided.
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1. Introduction

Doubly censored data frequently arises in various fields, particularly in medical research, where the
response of interest (e.g., a failure time) may not be observed exactly due to the presence of either left or
right censoring [1,2]. In such data, the exact response of interest T is only available within the interval
(L, R]. Left censoring arises if the response of a subject is smaller than L, while right censoring happens
when the subject has not experienced the response by R. For instance, in a clinical trial comparing two
drug treatments for AIDS [3], the HIV-1 RNA level in plasma is an important index for assessing the
treatment efficacy. The NucliSens assay used to measure the HIV-1 RNA level has detection limits in
the sense that it can only provide an accurate measure if the RNA level is between 400 and 750,000
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copies per milliliter of plasma. Otherwise, the RNA level cannot be measured exactly and is treated
as being left censoring at 400 or right censoring by 750,000. Thus, doubly censored data on the RNA
level occurs.

The analysis of doubly censored data has gained considerable attention, and a growing number of
methods have been proposed to estimate the survival function, perform two-sample tests, and conduct
regression analysis. For example, in the univariate case, estimation of the survival distribution typically
involves solving self-consistent equations [4, 5]. Gehan [1] and Hughes [6] proposed comparative
analyses of two samples with doubly censored data. In the context of regression analysis, techniques
based on M-estimation for the linear regression model have been advanced by Zhang and Li [7] and Ren
and Gu [8]. Kim et al. [9] and Shen [10] investigated maximum likelihood estimation (MLE) methods
along with asymptotic properties for the proportional hazards (PH), transformation and Cox-Aalen
models, respectively. Cai and Cheng [11] proposed an unbiased estimating equation approach for the
linear transformation model. Ji et al. [12] developed a martingale-based estimation method for the
quantile regression model. Li et al. [13] explored a shared frailty modeling approach for multivariate
doubly censored data.

Notably, most existing regression methods for analyzing doubly censored data are built upon the
PH or proportional odds (PO) assumptions, which may be restrictive in practice. The semiparametric
probit model provides an useful alternative by modeling the transformed failure time with a linear
combination of covariates and a standard normal distributed random error. This feature can facilitate
developing an efficient inference and may render a better fit for the real world data than other models.
In particular, let 7' denote the failure time of interest, and X be a p-dimensional covariate vector. Given
X, the probit regression model posits that the cumulative distribution function of T takes the form

F(t| X) = ®{a() + X}, Vte]0,c0), (1.1)

where @(-) denotes the distribution function of the standard normal random variable, B is the vector
of regression parameters, and a(-) is an unspecified increasing function with @(0) = —co and a(e0) =
co0. As commented by Deng et al. [14] and others, model (1.1) can be rewritten as a(T) = —8TX +
€, where € i1s the random error term following the standard normal distribution. That is, the probit
regression model evaluates covariate effects on the transformed failure time of interest. In addition,
under model (1.1), the hazard function of 7" given X is

’ T T -1
At] X)) = o/ (Dple) + BT X3} [1 - Dla) + B X,

where @/(¢) = da(t)/dt and ¢(-) is the density function of a standard normal random variable. Thus, in
contrast to the PH model, the probit model allows a time-varying hazard ratio regarding two different
covariate values and may be less restrictive.

To make inference on the probit regression model (1.1), a growing number of frequentist and
Bayesian methods have been developed under various situations [14-20]. For instance, Huang and
Cai [21] conducted a mediation analysis for right censored data. Lin and Wang [16] and Liu and
Qin [17] investigated regression analysis of current status data with the Bayesian and MLE
procedures, respectively. Du et al. [18] proposed a sieve MLE method for analyzing current status
data with informative censoring. Regarding the general interval-censored data, Lin and Wang [15]
introduced a Bayesian estimation method, while Deng et al. [14] developed a pseudo MLE approach
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as well as a variable selection procedure. Despite the aforementioned method developments, to our
knowledge, estimating the semiparametric probit model (1.1) under doubly censored data has not
been investigated. This is partly because the coexistence of left and right censoring complicates the
likelihood construction and limits the applicability of existing estimation procedures. Filling in this
methodological gap constitutes the main goal of the current study.

In this work, we introduce an efficient sieve MLE approach for semiparametric probit model under
doubly censored data. Specifically, we approximate the nuisance function a(#) of model (1.1) with
monotone splines. An expectation-maximization (EM) algorithm that utilizes normal and multinomial
distributed latent variables is proposed to maximize the intractable observed data likelihood. The
proposed algorithm is easy to implement, robust to initial values and reliable, making it a reliable
and valuable tool for the analysis of doubly censored data. Asymptotic properties of the proposed
sieve estimator, including the consistency, asymptotic normality and semiparametric efficiency, are
established with the empirical process techniques and sieve estimation theory. Furthermore, thanks
to the desirable estimation performance of the proposed method, we can readily obtain the variance
estimates through a numerical profile likelihood method instead of the intensive bootstrapping used in
Lietal. [3].

The remainder of this paper is organized as follows. Section 2 introduces the notation, data
structure and observed data likelihood function. Section 3 describes the proposed MLE procedure
along with an EM algorithm. In Section 4, we discuss the asymptotic properties of the resultant sieve
estimator. Simulation studies are carried out in Section 5 to evaluate the proposed method’s empirical
performance, followed by an application in Section 6. Section 7 gives some discussions and remarks.
Appendix A provides a summary table of symbols used in this paper, and Appendix B contains the
technical proofs of the asymptotic properties outlined in Section 4.

2. Notation, likelihood and monotone splines

Consider a failure time study giving doubly censored data for n independent individuals. In this
case, the failure time of interest 7 can only be observed exactly within an interval (L, R]. Otherwise,
the failure time suffers from left censoring if 7 < L and right censoring if T > R. Define 6; =
I(T <L),d =I(L<T < R)and 63 = I(T > R), where I(-) is the indicator function. In what
follows, notations with subscript i represents their sample analogues. Then the observed data consist
of D = (T, 611,61, 63, X);i = 1,...,n}, where T; = max{L;, min(T}, R;)}.

Assuming that 7; and (L;, R;] are conditionally independent given the covariates, which is essential
for the likelihood construction, the observed data likelihood function associated with model (1.1) is
given by

LB = | | FT: 1 X0 £(T: | X)7(1 = F(T; | X))
i=1

= | | @ta(T) + B X" [¢le(T) + BT X3/ (T)]*[1 - (T + FXAN,  2.1)

i=1

where F(t | X;) = ®{a(t) + BX;} (1.1) and f(z | X;) = dF(¢ | X;)/dt is the density function of f, given
X;fori=1,...,n.
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Notably, in likelihood (2.1), a(-) is infinite-dimensional. A routine way in survival analysis is to
approximate a(-) with some smooth function. Herein, we propose to use the monotone splines, taking
the form

K,
an(t) = £+ ) yibi(0),
k=1

where b;(t)’s are integrated spline basis functions, £ is the intercept, and y;’s are non-negative spline
coeflicients to ensure a monotone increasing function [22]. Before using the monotone splines, one
needs to specify the interior knots, a sequence of ¢, increasing points, and to determine the spline
degree I. By setting / = 1, 2 and 3, we can obtain linear, quadratic, and cubic splines, respectively.
The K, = g, + [ basis functions can be fully determined if the interior knots and degree are specified.
In practice, one can try to use linear, quadratic or cubic splines and place a series of interior knots at
equally spaced quantiles of a certain time interval formed by the observed data. Then some commonly
used model selection criterion, such as Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC), can be used to determine the optimal model.
Through the above approximation, the observed data likelihood can be expressed as

n K,
LB.o = | |@le+ D b + BT X"
i=1 k=1

62

[ K, K,
x| 1€+ > T + X)) ymi(T)) (2.2)
i k=1 P
- K, 6i3
x| 1= ®lg+ ) nbT)+ X
| k=1
where £ = (&, v, ¥ = (y1,...,vk,)", and my(?) is the first derivative of by(f) with respect to ¢ for

k=1,...,K,.

To estimate all unknown parameters, one could consider performing a direct maximization of (2.2)
with some existing optimization algorithm in the software. However, due to the intractable form
of (2.2), such an approach is cumbersome and unreliable as manifested by the simulations in
Section 5. To render an accurate and easy-to-implement estimation, in the next section, we develop an
EM algorithm which utilizes some normal and multinomial distributed random variables to proceed
with the data augmentation.

3. Estimation algorithm

The proposed EM algorithm involves a two-stage data augmentation procedure, i.e., E-step and M-
step. We first construct the complete data likelihood with a tractable form through data augmentation.
Motivated by Lin and Wang [15], we introduce a normally distributed latent variable Z; as follows

Z: = N(eo(T) + B*X;, 1), i=1,....n,

where Z,, ..., Z, are independent and the required constraints are Z; > 0if 6;; = 1,Z; < 0if 6;3 = 1 and
Z; =0if 6, = 1 for 1,...,n. With the fact F(¢ | X;) = ®{a(t) +BTX;} = 1 - f_ooo dlzi — (a(t) + BT X))}dz;,
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we can obtain the augmented likelihood
LiB.¢) = | | 912 = @u(T) + B X1 (T {1 20} {1 =0} (1 <o)},
i=1

where @ (f) = da,(t)/dt. Based on the spline representations of @,(-) and «,,(-), for each i, we introduce
a multinomial latent vector u; = (u;1,--- , uiKn)T ~ M(1, p;), a multinomial distribution with the total
count equal to 1 and p; = (1/K,,...,1/K,). Then we have the proposed complete data likelihood,
which takes the form

| 1 K —
L(B.) = Uﬂ exp |32~ ¢+ ; Yib(Ty) + B X))

K

(5,‘[ { 61‘2 5i3

X Liz=0)}"* {1 (z,<0}

{yimy(T))om"
k=1

{I(Z,->0)}

Note that unlike Lin and Wang [15], we have exactly observed failure times in doubly censored data and
thus additionally introduce a multinomial latent vector for each subject in the above data augmentation
procedure, rendering L.(B, {) with a simple form.

The E-step involves calculating the conditional expectation of log L.(8, {) given the observed data
D, the constraints of Z;’s in L.(B,) and the dth parameter updates, 89 and {¥, with d > 0. In
particular, we define B and ¢ as the initial values of B and £, respectively. For notational
simplicity, in what follows, we will ignore all the conditional arguments in the expressions of
conditional expectations. This step leads to

1 n K, _ n K,
0(B.4:p".{") =~ 3 ;{f + kZ} yibi(T)) + BT X, + Zl ; E(un) log(y)dn
n K,
+ D E@)E+ Y vibT) + BT Xy,
i=1 k=1

Y mi(T))

where E(l/lik) = W,

A+ VNI - Y, ifon = 1,

E(Z;) =10, if 6, = 1,

v = o) o), if 65 = 1,

and v = ¢ 4 3K Dp (T + BTXP, fork = 1,...,K,andi=1,...,n.

In the M-step, by setting & = &9 and y; = y\” fork = 1,... K, we first maximize Q(8, {V; @, {@)
with respect to B and obtain the following least square solution

n n K
R T {g - ST - E<zi>}. @
i=1 i=1 k=1
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Next, we maximize Q(BY*V, &, yD; B, @) with respect to & and obtain an explicit expression

n Ky
£avD) rlz Z {'BTX;"“) + E(Z) - Z '}’;((d)bk(ﬁ)} : (3.2)

i=1 k=1

To update each vy;, we suppose that y,(f,l“) has been available for all ¥ < k. Let Qﬁ(d)(yk) be the

updated QB+, £8D y; D 5D with v, = ¢ for k' < k and yi = ¥\ for k' > k, the derivative
of Q;{d) (vx) with respect to yy is given by

a0 () fdy = Y [ i bk(f"){f“’”) + D 7 b+ ) Vb

i=1 k' <k k' >k

_'BTXlgdn) B E(Zi)} N E(”ik)]'

Yk
Examining dQ,({d) (vx) /dyir = 0 leads to the following quadratic equation of y;

- ZH: E(uy) = 0.
i1

n

% Z BAT) + i ).
i=1

i=1

bi(Ty) {f + > yebe(T) - B'X; - E(z,)}

[
Let

g d
ay = Zl bA(T)), e = le S E (i),

and

& =" bu(T) {éd*” £ 2 W BT+ ) Y beT) - BTXY - E(z,)}
i=1

k' <k k'>k
fork=1,...,K,, we have

—D 4 c,((d)2 + 4ake§<d)

(d+1) k
= . 3.3
yk 2ak ( )

In summary, detailed iteration processes of the proposed EM algorithm are given in Algorithm 1.

Algorithm 1
1) Let d = 0 and initialize B©, &® and y©.
2) Calculate the conditional expectations E(Z;) and E(u;;) based on the observed data
and {BD, D yDyfori=1,...,nand k = 1,2,...,K,.
3) Obtain B with the closed-from solution (3.1).
4) Calculate £9+V with (3.2).
5) Calculate y**" with (3.3) fork = 1,...,K,, and letd = d + 1.
6) Repeat Step 2 to Step 5 until the convergence is achieved.

Our experiences show that the performance of the proposed EM algorithm is insensitive to the
choices of the initial values, B©,&® and ). In practice, one can simply set the initial values of
each regression parameter and each spline coefficient to 0 and 1, respectively. The algorithm can
be identified as convergence when the maximum absolute difference between successive parameter
updates is less than a small positive threshold (e.g., 1077).
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4. Asymptotic properties

Let 8 and a(-) be the proposed estimators of 8 and a(-), respectively. Let By and ao(-) be the true
values of B and a(-), respectively. Define @ = BX A as the parameter space of 8 = (B, @), where B € B,
a compact set in R”, @ € A = {a(?) : da(t)/dt > 0,-M,, < a(t) < M, fort € [1,,7,]}, [T4, T,] denotes
the union support of random variables 7', L, and R with O < 7, < 7, < 0o, and both 7 and M,, are positive
constants. Consider a knot sequence 7, = t; = -+ = f7 <y <+ <l <Ilig 1 = =l 0] = T
where ¢, = O(n”) with 0 < v < 0.5. Define the sieve space ©, = {0, = (B,a,);B € B,a, € A,},
where A, = {a,() = £ + TX yibi(); bi(1) € [0, 11,1 € [ry7,],~M, < & < My, 0 < 3 < M),
The first derivative of «,(#) with respect to ¢ is expressed as a,,(f) = Zf:"l v (t), where my(t) is the
first derivative of b, (¢) with respect to ¢ for k = 1,...,K,. Let || - || denote the Euclidean norm. For a
vector 8= (B1,....B8,)7, IBll = (X2, BH'2. Let || - ||l denote the L,-norm with respect to a probability
measure. For any two 6, = (B, ;) and 0, = (8, @,) in the parameter space, define

p(01,60,) = (llay — aall5 + 181 = Bl

where ||a; — alelg = fT :”{a/l(s) — a,(s)}2dF (s) with F(-) being a distribution function.

To establish asymptotic properties of ﬁ and &(-), like Chen et al. [23], Li et al. [3] and others, we
use the following standard regularity conditions.
(A1) (). P(L < R | X) = 1; (ii). There exists a finite 7; > 0 such that P(R < 7; | X) = 1; (iii).
PLe0,m3)| X)=0and P(L<1,|X)=1,where0 <73 <1, <71,.
(A2) T and (L, R) are conditionally independent given the covariates.
(A3) The covariate vector X takes values in a bounded subset of R”.
(A4) The minimum spacing between knots satisfies A, = maxy, iy +1 [k — fi-1l = O(n™) with
0 < v < 0.5. Additionally, the ratio A,/d, remains bounded, where 6, = ming, ., 1 ik — fi-1l
represents the knots’ minimum spacing.
(A5) (i). The vth derivative of a(f) with respect to ¢, denoted by a¥(¢), exists; (ii). There exists a
positive constant M > 0 such that o¥)(¢) satisfies the order-n Lipschitz condition:

@ (s) — a”(t)| < Mls— 11" forany s,7 € [1,,7];

(ii1). Let r be a nonnegative integer and 7 € (0, 1] such that r = v + 1 > 0.5.

(A6) The true regression parameter B, belongs to the interior of B, a compact set in R”. The true

value of a denoted by « is in A.

(A7) Ifa()+B"X = Oforany ¢ € [1,, 7,] with probability one, then 8 = 0 and a(f) = O for ¢ € [1,, T,].
Conditions (A1)-(A3) are standard assumptions regarding the data structure and censoring

mechanism. Conditions (A4) and (A5) provide smoothness and spline approximation requirements.

Conditions (A6) and (A7) guarantee parameter space compactness and model identifiability. The

following two theorems summarize the asymptotic properties of the proposed estimators B and a(-).

Detailed proofs of the theorems are sketched in the Appendix B.

Theorem 1. Suppose that conditions (Al)—(A6) hold, as n — oo, we have
P(én, 00) = O(n—(l—v)/z + n_ry).

In particular, by taking v = 1/Q2r + 1), p(@n, 6, =0 (n—r/(2r+1))_
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As commented by Huang [24] and others, the smoothness assumption of () is often needed. Usually,
in many situations, one can set r defined in (A6)to 1 (i.e., v =0andnp=1)or2 (i.e.,v=1andnp = 1),
which correspond to assuming that a(#) has bounded first-order derivative or bounded second-order
derivative. Notably, if v = 1/(2r + 1), the convergence rate of 6, is n”/¥*", which is the same as the

optimal rate in nonparametric regression setting. The following theorem states that the convergence
rate of B achieves /n.

Theorem 2. Suppose that conditions (Al)—(A7) hold, as n — oo, we have

V(B = Bo) S NO,T(By)), 4.1)

d
where “—” denotes the convergence in distribution and I(By) is defined in the Appendix B.

To make inference about the regression vector B, the parameter of interest, it is apparent that one
needs to estimate the covariance matrix of B as suggested by Theorem 2. Herein, by following Zeng
et al. [25] and others, we suggest to employ a numerical profile likelihood approach. Specifically,
define pl,(B) = max;log L(B,{), where L(B,{) is given in (2.2). The limiting covariance matrix of /3‘
can be estimated by (nf,)™!

I,=n
i=1 W W

e 3 { PLB+ wne,) — ph(ﬁ)} {ph(B +w.e)) = pliB) }T |

where pl;(B) is the ith subject’s contribution to pl,(B), w, = cn~'/?, ¢ is a positive constant, and, for

Jj=1,...,p, ejis p-dimensional vector whose jth element is 1 and O elsewhere. To calculate pl,(B),
one can directly use a simplified version of the above EM algorithm to maximize L(B, {), which only
involves updating { given a fixed S.

5. Simulation studies

In this section, simulation studies were conducted to evaluate the finite-sample performance of the
proposed method. The failure time of interest 7 was generated from the probit regression model:
F(t| X1,X5) = @ (a(t) + 1 X + B2X3), where X; ~ Uniform(0, 1), X, ~ Bernoulli(0.5), a(t) = log(t)
or (to'l - 1) /0.1, and (By,8,) equals (0,0.5), (0.5,-0.5) or (1,1). We generated the left and right
endpoints of the interval (L, R] from Uniform(0, 1) and Uniform(27/3, 1), respectively, where T was
chosen to produce different right censoring rates. Given the simulated interval (L, R], we had exact
failure time 7 if T € (L,R]. Otherwise, we had a left censored observation on 7 if T < L, and T
suffered from right censoring if 7 > R. Herein, the right censoring rates were 24% — 43% and 46% —
65% by setting T = 5 or T = 3, respectively. We set n = 200 or 500, and used 500 replicates.

To implement the proposed method, we used monotone splines with degree 2 and 5 interior knots.
In particular, the interior knots were placed at equally spaced quantiles of the interval formed by
{Ti;i =1,...,n}. We set the initial value of each regression parameter to 0, and initialized each spline
coefficient with 1. To manifest the proposed EM algorithm’s advantage, we also performed direct
maximization of the observed data likelihood (2.2) using the optim() function in the R software. For
this direct maximization procedure, we investigated two choices of initial values. The first choice was
to use the same initial values as the proposed EM algorithm, which was abbreviated as “Direct
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maximization (a)”, and the second choice was to set initial values to the true parameter values, which
was abbreviated as “Direct maximization (b)”.

Table 1 summarized the results of the regression coefficient estimates with the proposed EM
algorithm and 7 = 5. The evaluation criteria include Bias (the estimation bias calculated by the
average of 500 point estimates minus the true value), SSE (the sample standard error of 500 point
estimates), SEE (the average of 500 standard error estimates), and CP95 (95% coverage probability
formed by the normal approximation). The simulation results indicate that the proposed EM
algorithm performs reasonably well across various true values of regression parameters, true «(-) and
sample sizes. The biases are virtually small, SSE is in well accordance with SEE, implying that the
standard error estimators accurately reflect the true variations, and each CP95 is close to the nominal
value 95%. The algorithm consistently converged within a similar number of iterations and yielded
stable estimates, suggesting that the proposed EM procedure is insensitive to initialization and
exhibits reliable convergence behavior.

Table 1. Simulation results with 7 = 5. Results include the estimation bias (Bias), the sample
standard error of 500 point estimates (SSE), the average of 500 standard error estimates
(SEE), and 95% coverage probability (CP95).

Proposed EM algorithm Direct maximization (a) Direct maximization (b)
n a(t) B1,82) Par.  Bias SSE SEE CP95 Bias SSE SEE CP95 Bias SSE  SEE CP95
200 log(r) (0,0.5) B -0.005 0.145 0.150 0.950 0.089 0.221 0.212 0.960 0.012  0.237 0.248 0.940
B -0.010 0.260 0.266 0.948 -0.097 0.233 0.221 0.860 0.005 0.222 0.223 0.950
(0.5,-0.5) B -0.004 0.160 0.173 0.954 -0.016 0.208 0.196 0.950 0.069 0.222 0.198 0.955
B 0.014 0255 0274 0.944 0.098 0.212 0.199 0.890 -0.023  0.204 0.190 0.960
(1,1 B -0.032 0.161 0.169 0.946 -0.053 0.229 0.206 0.950 0.011 0.162 0.153 0.970
B, -0.027 0.252 0.247 0.944 -0.117 0.199 0.195 0.880 -0.026 0.179 0.180 0.950
’U(')lf;l (0,0.5) B -0.002 0.140 0.149 0.954 0.071 0.188 0.184 0.960 -0.009 0.175 0.177 0.940
B -0.001 0261 0.264 0.944 -0.085 0.191 0.195 0.860 0.004 0.180 0.185 0.950
(0.5,-0.5) By -0.013 0.154 0.162 0.946 -0.049 0.185 0.198 0.960 -0.038 0.210 0.214 0.950
B, 0.003 0266 0.273 0.948 0.134 0218 0.216 0.890 -0.044 0.197 0.214 0.960
(1,1) B -0.017 0.158 0.166 0.958 -0.116 0.199 0.197 0.870 0.002  0.199 0.196 0.940
B -0.023 0.248 0.241 0.950 -0.125 0.180 0.188 0.880 0.012 0.186 0.182 0.950
500 log(r) (0,0.5) B -0.001 0.094 0.094 0.946 0.079 0.166 0.162 0.900 -0.006 0.167 0.161 0.960
B -0.011 0.165 0.166 0.956 -0.065 0.160 0.161 0.920 0.011 0.163 0.162 0.970
(0.5,-0.5) B -0.006 0.094 0.100 0.950 -0.042 0.166 0.169 0.930 0.034 0.171 0.178 0.960
B> 0.000 0.164 0.156 0.946 0.034 0.178 0.169 0.880 -0.028 0.176 0.176 0.940
(1,1) B -0.031 0.100 0.105 0.952 -0.121 0.175 0.161 0.800 -0.009 0.167 0.161 0.960
B -0.028 0.156 0.153 0.950 -0.158 0.151 0.156 0.840 -0.032 0.168 0.152 0.930
’%1 (0,0.5) B 0.001 0.091 0.093 0.958 0.020 0.161 0.162 0.900 0.024  0.159 0.156 0.950
B -0.006 0.161 0.165 0.948 -0.080 0.166 0.163 0.880 -0.027 0.176 0.179 0.940
(0.5,-0.5) B -0.003 0.096 0.100 0.956 -0.060 0.152 0.140 0.920 -0.066 0.175 0.171 0.920
B 0.013 0.160 0.156 0.940 0.073 0.174 0.186 0.910 0.090 0.169 0.163 0.900
(1,1) B -0.024 0.100 0.103 0.952 -0.086 0.158 0.153 0.850 0.015 0.155 0.142 0.910
B> -0.020 0.156 0.150 0.950 -0.137 0.186 0.183 0.810 -0.008 0.162 0.166 0.940
* Note: “Direct maximization (a)” refers to the method that maximizes the likelihood directly with the existing software, in which the initial values were set to be the same as those

used in the proposed EM algorithm. “Direct maximization (b)” refers to the method that maximizes the likelihood directly with existing software, in which the initial values were
set to the true parameter values.

To further evaluate the normality of the proposed estimator, we drew quantile-quantile (Q-Q) plots
of the standardized estimators against the standard normal distribution. For example, Figure 1
displayed the Q-Q plots for 5, and 3, with n = 200, (8;,82) = (0.5, -0.5), a(¢) = log(¢) and 7 = 5. The
almost linear plots suggest that the used normal approximation is reasonable. We also investigated the
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estimation performance of the proposed method for the baseline survival function S (7) = 1 — ®{a(?)}.
In particular, Figure 2 presents the average of 500 baseline survival function estimates as well as the
true a(t) under the setup of a(r) = log(?), (81,52) = (0.5,-0.5) and 7 = 5. The two plots in Figure 2
show that the average function estimates are close to the true curves, reflecting a satisfactory
estimation performance.

Standardized estimates for 4
Standardized estimates for fi;

-1.0

N(0,1) N(0,1)

Figure 1. Quantile plots of the standardized, proposed estimates with n = 200, (8;,82) =
(0.5,-0.5), a(t) = log(t) and 7 = 5

B=(0.5,-0.5),t=5 B=(0.5,-0.5),=5

7 —— True curve —— True curve
---- Proposed estimate ---- Proposed estimate

1.0
1.0

0.8

1-@(odt))
0.6
1-@(odt))

0.4
0.4

0.2
0.2

Time Time

Figure 2. Simulation results for the estimation of the baseline survival function S(¢) =
1 — ®{a(r)} with a(r) = log(r), (B1,8,) = (0.5,-0.5)and 7 =5

Moreover, we presented in Tables 1 and 2 the simulation results obtained by “Direct maximization
(a)” and “Direct maximization (b)”. The results indicate that, by using the same initial values as
our proposed EM algorithm, “Direct maximization (a)” often exhibits large estimation bias, while the
performance of “Direct maximization (b)” improves obviously due to the use of true parameter values
as the initial values. These comparative results demonstrate that performing direct MLE with some
existing optimization procedure is sensitive to the initial value selection, a severe limitation that is
nonexistent in the proposed approach. The results with 7 = 3 (high censoring rate) were given in
Table 2, from which one can observe same findings as above.
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Table 2. Simulation results with 7 = 3. Results include the estimation bias (Bias), the sample
standard error of 500 point estimates (SSE), the average of 500 standard error estimates
(SEE), and 95% coverage probability (CP95).

Proposed EM algorithm Direct maximization (a) Direct maximization (b)
n a(t)  (B1,B2) Par. Bias SSE SEE CP95 Bias SSE SEE CP95 Bias SSE SEE CP95
200 log(r) (0,0.5) B 0.005 0.154 0.156 0.946 0.055 0.218 0.203 0.920 0.016 0.212 0.221 0.910
B -0.011 0274 0273 0.944 0.005 0.188 0.185 0.970 -0.009 0.188 0.191 0.950
(0.5,-0.5) B 0.001 0.154 0.151 0.938 -0.053 0.179 0.167 0.920 -0.005 0.207 0.203 0.930
B> -0.005 0.258 0.236 0.946 0.055 0220 0.221 0.820 -0.007 0.181 0.179 0.930
(1,1) B -0.030 0.181 0.182 0.946 -0.099 0.190 0.209 0.850 0.039 0211 0.222 0.920
B -0.034 0276 0.274 0.950 -0.104 0.154 0.156 0.820 0.017 0.220 0.214 0.950
Lol 0,0.5) B -0.004 0.152 0.156 0.956 0.169 0.205 0.199 0.800 -0.009 0.152 0.161 0.930
B> 0.005 0.250 0.274 0.946 -0.018 0.218 0.185 0.970 0.004 0.180 0.172 0.940
0.5,-0.5) B 0.008 0.160 0.174 0.950 -0.069 0.176 0.168 0.920 -0.005 0.219 0.198 0.920
B 0.002 0272 0.278 0.940 0.064 0.222 0.214 0.870 0.014 0.189 0.197 0.970
(LD B -0.022 0.164 0.169 0.952 -0.095 0.196 0.183 0.840 0.005 0.206 0.190 0.970
B> -0.010 0.268 0.252 0.946 -0.103 0.179 0.162 0.840 -0.019 0.243 0.206 0.950
500 log(») (0,0.5) B 0.001 0.097 0.098 0.948 0.096 0.160 0.153 0.920 -0.005 0.130 0.130 0.950
B 0011 0.167 0.172 0.950 -0.113 0.172 0.172 0.930 0.008 0.152 0.128 0.950
(0.5,-0.5) B -0.005 0.098 0.101 0.944 -0.113  0.228 0.209 0.900 0.036 0.122 0.122 0.980
B 0.008 0.157 0.161 0.950 0.238  0.179 0.188 0.940 -0.033 0.101 0.103 0.940
(LD B -0.012 0.109 0.112 0.950 0.103 0.145 0.147 0.890 -0.006 0.169 0.142 0.950
B> -0.026 0.177 0.166 0.948 0.047 0.180 0.179 0.970 -0.031 0.173 0.154 0.940
~= (0,0.5) B 0.002 0.097 0.097 0.946 0.110 0.186 0.186 0.900 0.014 0.139 0.139 0.920
B, 0.011 0.167 0.171 0.948 -0.102 0.190 0.195 0.930 -0.009 0.130 0.140 0.970
(0.5,-0.5) B, -0.004 0.098 0.101 0.942 -0.063 0.151 0.155 0.930 -0.014 0.142 0.158 0.950
B> 0.006 0.157 0.160 0.950 0.127 0.168 0.175 0.880 0.035 0.136 0.136 0.920
(1,1) B -0.024 0.106 0.105 0.954 0.049 0.183 0.182 0.990 0.060 0.183 0.183 0.940
B -0.022 0.167 0.157 0.942 0.076  0.152 0.143 0.960 -0.068 0.176 0.177 0.930
“ Note: “Direct maximization (a)” refers to the method that maximizes the likelihood directly with the existing software, in which the initial values were set to be the same as those

used in the proposed EM algorithm. “Direct maximization (b)” refers to the method that maximizes the likelihood directly with existing software, in which the initial values were
set to the true parameter values.

6. Application

We applied the proposed method to a set of real world data arising from the randomized clinical trial
conducted by the AIDS Clinical Trial Group Protocol 320 (ACTG 320) [3]. Infected patients in this
trial were randomly assigned to receive either a two-drug combined therapy (ZDV and 3TC) or a three-
drug combined therapy (ZDV, 3TC, and RTV). HIV-1 RNA level in plasma (copies/ml), measured with
the NucliSens assay, was used as a biomarker to evaluate treatment efficacy since it essentially reflects
the viral load. However, as introduced in Section 1, the NucliSens assay used to measure the HIV-1
RNA level has detection limits because it can only provide an accurate measure if the RNA level is
between 400 and 750,000 copies/ml. Otherwise, the RNA level cannot be measured exactly and is
treated as left censoring at 400 or right censoring by 750,000.

In our analysis, we considered 838 patients who completed 24 weeks’ follow-up and the primary
objective is to conduct the treatment effect comparison through investigating the plasma HIV-1 RNA
level. To this end, the response of interest is defined as the change in log,, RNA value between week
0 and week 24, [y — L4, where [j and 54 denote the log,, RNA values at week 0 and 24, respectively.
In this HIV data set, since the measurements of /, for all patients are within the limit of quantification.
The corresponding detection limits on the log scale are log,,(400) = 2.60 and log,,(750,000) = 5.88.
Therefore, Iy — [4 was either left-censored by L = [, — 5.88 or right-censored by R = [, — 2.60 if the
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measurement of /4 was out of the quantification limit. In other words, we had doubly censored data
on ly — lp4, with the left and right censoring proportions being 1.67% and 29.12%, respectively. To
conduct our regression analysis, the covariates used in the probit regression model (1.1) consisted of
the treatment indicator (trt = 1 for the three-drug combination group and O otherwise) and the baseline
log,, RNA value (Iy).

To implement the proposed method, we set the initial value of each regression parameter to 0, and
initialized each spline coefficient with 1 as in the simulation studies. We considered linear, quadratic,
and cubic monotone splines, and placed 3-20 interior knots at equally spaced quantiles of the interval
formed by the realizations of T, where T = max{L, min(7, R)}. We used AIC and BIC to select the
optimal model with respect to the spline degree and number of interior knots. The model selection
results indicate that the optimal model under both AIC and BIC is the one with cubic splines and 12
interior knots.

The analysis results of the proposed method with the optimal probit model were summarized in
Table 3, which includes the degree and interior knot number of the optimal model, AIC value, BIC
value, the estimated covariate effect (Est), the estimated standard error (SE) and the p-value. Results
show that both baseline RNA value (/) and treatment (trt) have significant influences on the change
in log,, RNA value between week 0 and week 24 (ly — l4). In particular, larger /y corresponds to a
larger change of log,, RNA value. Compared to two-drug therapy, receiving three-drug therapy leads
to a larger [y — [»4, implying that three-drug therapy is beneficial to reduce the RNA value in plasma.
Notably, Li et.al [3] analyzed the same HIV dataset under the PH and PO models. Their results also
indicated that the effect of baseline RNA level is significant, and the 3-drug combination (ZDV + 3TC
+ RTV) is more effective than the 2-drug combination (ZDV + 3TC) in reducing plasma HIV-1 RNA
levels. In addition, we note that, under different specifications of degree and knot number considered
here, the obtained conclusions are consistent and the point estimates are also very close with the largest
absolute discrepancy less than 0.052.

Table 3. Analysis results of the HIV data

ly trt
Method I q, AIC BIC Est SE p-value Est SE p-value
Proposed EM algorithm 3 12 1135.29 1210.98 -0.1878 0.0707 <0.001 -1.1720 0.0951 <0.001
Direct maximization (a) 3 4 1292.78 1330.63 -0.7324 0.0534 <0.001 -1.3334 0.0808 <0.001

* Note: “Direct maximization (a)” refers to the method that maximizes the likelihood directly with the existing software. d and ¢, denote the degree and
number of interior knots in monotone splines, respectively.

We also analyzed the HIV data by performing direct maximization of the observed data
likelihood (2.2) with the existing optimization function optim() in the R software. This method is
abbreviated as “Direct maximization (a)”, which sets the initial values of each regression parameter
and each spline coefficient to 0 and 1, respectively, as in the proposed method. As above, we used
AIC and BIC to select the optimal combination of degree and interior knot number in monotone
splines. Through the analysis, it turned out that the optimal model is given by the cubic splines with 4
interior knots. Results shown in Table 3 suggest that regression coefficient estimates were quite
different from those of the proposed method, especially for the effect of /,. The AIC and BIC values
of “Direct maximization (a)” are consistently larger than those of the proposed method, This
phenomenon suggests a lack-of-fit of “Direct maximization (a)” for the HIV data, and thus the
resultant regression coeflicient estimates are unreliable.
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7. Discussion

Regarding doubly censored data, this work provided a computationally efficient sieve MLE
method for the spline-based probit regression model. Tailored to monotonic splines’ representation
and doubly censored data structure, a stable and reliable EM algorithm was proposed to identify the
sieve estimator. The key idea was to utilize some normal and multinomial distributed random
variables to conduct data augmentation, offering a tractable complete data likelihood that is easy to
maximize. The proposed algorithm is quite reliable and insensitive to the initialization, and we did
not encounter the non-convergence cases in the above numerical studies. The proposed estimator was
theoretically justified by investigating its asymptotic properties with empirical process techniques and
sieve estimation theory. Numerical results obtained from simulations and real data analysis
highlighted the proposed method’s satisfactory performance and advantage over the method that
performs direct maximization of the observed data likelihood. Overall, the spline-based probit
modeling framework, combined with the proposed EM algorithm, provides an useful alternative for
analyzing doubly censored data.

Our proposed method could be extended to several research directions. First, in many practical
applications, some individuals may not experience the failure event of interest even though the
follow-up is sufficiently long. These individuals constitute a cured subgroup in the whole population
under study [26]. It is helpful to generalize the proposed method to estimate a mixture cure rate probit
model. Second, the proposed method was built upon an independent censoring assumption, where the
censoring and failure times are conditionally independent given the covariates. However, this
assumption may be fragile since censoring may be driven by some response-related reasons. To
accommodate informative censoring, one may consider extending the proposed method by using a
frailty-based method [27] or a copula-based framework [28]. Furthermore, multivariate failure time
data are also frequently confronted in survival analysis [29]. To our knowledge, fitting a probit
regression model to multivariate failure time data under double censoring is still unexplored and
warrants a future investigation.
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Appendix A: A summary table of symbols used in this paper
Symbol Description
T The failure time of interest.
T The observed time, defined as max{L, min(T, R)}.
(L,R]  The interval within which T can be observed exactly.
01,02,03 The indicators for left censoring, exact, and right censoring observations, respectively.
1(") The indicator function.
D The observed data.
X The covariate vector.
p The dimension of X.
[t,,7»]  The union support of the random variables 7', L, and R.
F(t|1 X) The cumulative distribution function of 7' given X.
A(t] X) The hazard function of T given X.
() The cumulative distribution function of a standard normal variable.
() The probability density function of a standard normal variable.
B The vector of regression parameters.
Bo The true value of the regression parameters vector.
B The proposed estimator of .
alt) An unspecified, strictly increasing function with @(0) = —co and a(c0) = oo.
ao(+) The true value of a(-).
a(s) The proposed estimator of a(-).
(7] The full parameter vector.
B The parameter space for .
A The function space for a(-).
® The parameter space for 0 = (8, @).
L The observed data likelihood function.
L, The augmented likelihood function.
L. The complete data likelihood function (with latent variables).
a,(*) Monotone splines used to approximate a(-).
bi(+) The kth integrated spline basis function.
mi(-)  The first derivative of the kth integrated spline basis function.
I The degree of the spline.
qn The number of interior knots.
K, The total number of basis functions, K, = ¢, + L
& The intercept term in the spline representation of .
Vi The non-negative spline coefficient for the kth basis function.
v The vector of spline coefficients, (yi, ..., Yk, )T
l The full spline parameter vector, (£,y1)T.
A, The sieve space for ().
0, The sieve parameter space for 6, = (8, @,).
Z; A latent variable for the ith subject.
u; A multinomial latent vector for the ith subject, u; ~ M(1, p;).
[l The Euclidean norm.
|- 1]2 The L,-norm with respect to a probability measure.
p(,-)  The metric combining L, and Euclidean norms.
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Appendix B: Proofs of asymptotic properties

Define 0 = (B, @), 0y = (Bo, @), 0,0 = (B, @,0), Where «, is true value of the spline function «,,
and 6, = (B,&,). Under the proposed semiparametric probit model and doubly censored data, the
log-likelihood function for the ith individual is

(0) = 61 log{®(a(t) + BT X))} + 6 log{g(a(r;) + BT X' (1)} + 63 log(1 — d(a(r) + BT X)), (B.1)

Let the negative log-likelihood function be h;(0) = —¢;(6). We define the empirical and expected
negative log-likelihood functions as H,(8) = n~' Y, h;() and H(@) = E [hi(0)], respectively. This
transformation facilitates the application of standard optimization theory while preserving the
equivalence between maximizing the log-likelihood L,(6) = } ., ¢;(6) and minimizing H,(6).

Additionally, for any & > 0, let Nj(g, F,p) denote the e-bracketing number, and N(g, F,p) be
the covering number, with respect to a metric (or semimetric) p for a function class ¥. To prove
Theorem 3.1, we need the following lemma.

Lemma 1. Suppose that conditions (Al)—(A6) hold, we have p(@n, 0y) = 0,(1)

Proof. Forany u > 0, let N, = {0, € ©, : p(6,,0,0) > u} denote the complement of a neighborhood
around the true sieve approximation 6,,. We decompose H(6,) over N, as

inf H(6,) = inf {[H(8,) - H,(8,)] + H.(0.)} < sup |H,(6,) — H(O,)| + inf H,(6,).

0N, 0,0, n€Nu
If 6, € N, we can obtain

inf Hn(gn) = Hn(én) < Hn(anO) = [Hn(enO) - H(Ono)] + H(anO)

0,€N,

Under Conditions (A1), we have

e,f?ﬁ,l H(6,) — H(B,0) > 6, > 0,

where J,, 1s a positive constant. Combining these inequalities yields

5;1 < osug |Hn(0n) - H(on)l + [Hn(onO) - H(HnO)]

Under Conditions (A1)—(AS5), according to Lemma 3 of [23] and the law of large numbers, we have

osug |Hn(0n) - H(an)| = Op(l)’ Hn(0n0) - H(GnO) = Op(l)-

Consequently, we obtain p(@n, 0,0) = 0,(1). Furthermore, Lemma 1 of [23] ensures that p(8,0, 6y) —
0,(1), leading to p(8,,, ) = 0,(1). O

Proof of Theorem 3.1. We use Theorem 3.4.1 of [30] to derive the convergence rate of the proposed
estimators. First, For any 0 < £ < u, define the function classes

Q ={a)+p'X:BeB,a,cA,,
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log{®[a(t) + B'X]} : B € B,a, € A,},
olat) + B X1/ (1) : B € B,a, € A},

1 - ®la) +B'X]: BeB,a,cA,), and
i(6,) — €i(00) = (6, 0,0) < ).

=1
{
Q4 =
L, ={

Recall the function class A, = {a,(t) = & + Zfz”l vibi(1); b () € [0,1],t € [1,,7,],—-M, < & <
M,,0 <y, < M,}, where M, is a positive constant. Following the calculations in [31], the logarithm
of bracketing number satisfies log Nyj(g, A,, || - [l) < K, log(u/e). Moreover, the neighborhood B, =
{B: 118 - Poll < i} in R? can be covered by (u/&)? balls of radius &.

There exists a finite constant M > 0 such that the logarithmic bracketing number of Q, is
K, log(u/e) + dlog(u/e) < M(K, + d)log(u/e) < MK,log(u/e), in which < means both sides have
same order. Analogously, the bracketing number bounds for the remaining function classes Q,, Qs,
and Q4 also satisfy Ny(e,Q,,p) < MK, log(u/e) for i = 2,3,4. By Lemma 9.25 of [32], we have
log Nyy(e, Ly, 1l - Il) < MK, log(u/€). Hence, the bracketing integral of function class £, is

HO ~
J[](,u,L ,p) = f \/1 + IOgN[](S,,L ,p)db‘ < MK;/ZIU,
0

where M is a positive constant. Then, by Lemma 3.4.2 of [30], we have

Eafg3|WM¢—mwa—vau—meﬁ
n,0n0)<H
1/2
< Lpop)(1 + DLy e KR ey g,
w2\ u*\n

In particular, the key function ¢(u) defined in Theorem 3.4.1 of [30] is given by ¢, (1) = K/ *u+K,/n'/>.
It can be readily verified that ¢,(u)/u is monotonically decreasing in u. Furthermore, for the scaling
sequence r, = (n/K,)"* = n'=/2_ we have:

2
nKn
radu(1/r) = r,K,> + Ust@“)

The estimation error between the estimator 6, and the projected true value 6, satisfies
0 _ 1/2
P(6,,6,0) = (Ky/n) "~

Combining this with the spline approximation error p (6,9,6y) = O(K,"), where the parameter r is
defined in Condition (A5), we have

p(én’ 00) = p(éna 0n0) + P(ono, 00) = 0(n—(1—v)/2 + I’l_rv).

When v = 1/Q2r + 1), p(8,, 8y) = O(n~"®+1), which completes the proof.
o
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Proof of Theorem 3.2. For a single subject, the score function for B can be derived from the
log-likelihood function in equation B.1 as

15(0) = XQ(X, T ),

where _ .

¢la(T) + B X] ¢la(T) + B X]

®[a(T) + BT X] 1 - ®[a(T) + BTX]

Consider the submodel a,,(f) = a(?)+nz(?) for a small constant 17 around 0, where z(-) is a nondecreasing
function. By differentiating £(6) with respect to 7 and evaluating the derivative at = 0, we can obtain
the score function for a(-), taking the form

OX,T;0) = 6, — &[T + BT X] - 63

t.(0)[z] = «AT)Q(X, T; ).

By following the arguments of Theorem 3.4.1 of [33], one can derive the information bound for B using
the efficient score method. First, projecting £4(#) onto the linear space spanned by the score functions
£,(@)[z]. Next, identify a function z* such that the efficient score 3(6) — ,(6)[z"] is orthogonal to
£,(0)[z] for all z(-) with bounded variation. This implies

Eoll3(0) — (D[ 116.(O)[2]} = Eol[X — 2/ (D)]«(T)Q* (X, T; 0)} = 0.

Thus, the solution for z* is .
_ E[XQ*(X.T;9)]

 E[Q¥X.T:0)]

and the efficient score function for B is given by

3k

Eo[XQ*(X,T;0)]
EolQ*(X,T;0)]

p(0) = {X - } 0(X,T;0).

By following the arguments of [34] and others, we have

Gulls(@)] = n'*LBo)(B — Bo) + O(n'*p(8,, 60)),

where I(8y) = E [Zﬂ(Oo)Zﬂ(HO)T], and the remainder term is ignorable.

Thus, to prove the asymptotic normality of 8, we need to verify the following two conditions:
(C1) The efficient score ?ﬁ(é) belongs to a Donsker class and converges to fﬂ (0y) = fﬁ(Go) -£,(00)[z*]
in the L,(P)-norm:;
(C2) The matrix I(Bo) = E[{3(60){s(60)7] is nonsingular.

To verify Condition (C1), analogous to the proof of Lemma 1, we can establish that, for any € > 0,
the class

(75(0,) : B € B.ty € A, p(8,.00) < €)

has a bounded e-bracketing number M log(u/€), which implies that it is Donsker. Similarly, it can be
shown that the classes
{l(8,)[2°] : B € B, € Ay, p(0,,0) < €}
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is also Donsker. By the preservation property of Donsker classes, Zﬁ(é) belongs to a Donsker class.
Applying Theorem 1, we conclude that fﬁ(é) converges to Z,,(oo) in the L,-norm. This implies that
Gn[fﬂ(é)] converges in distribution to a zero-mean d-variate normal random vector.

Finally, we demonstrate that I(8) is nonsingular. Suppose that the matrix I(8) is singular, there
exists a nonzero vector y such that

X XBo)k = ¥ E(ls (60) L5 (60) "} = 0.

This implies that the score function along the submodel (B + k¥, @y + k¥ ' z*) is zero with probability 1,
where « is any constant, that is,

OX,T;00)x' X +x"z'] =0.

HlaD)+pX]
O[a(T)+BTX]
X'X + x'z° = 0 with probability 1. By Condition (A7), we have ¥ = 0, which contradicts the

assumption that ¥ is a nonzero vector. Therefore, I(8)) is nonsingular, and we have

In particular, by considering 6; = 1, we have Q(X,T;0,) = € (0,00). Consequently,

VB = Bo) S NO,T(By)), (B.2)

which completes this proof. m|
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