
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(11): 27755–27774.
DOI: 10.3934/math.20251220
Received: 23 September 2025
Revised: 13 November 2025
Accepted: 20 November 2025
Published: 27 November 2025

Research article

Efficient sieve estimation of semiparametric probit model with doubly
censored data

Lanxin Cui1, Shishun Zhao1 and Shuwei Li2,*

1 School of Mathematics, Jilin University, Changchun 130000, China
2 School of Economics and Statistics, Guangzhou University, Guangzhou 510000, China

* Correspondence: Email: seslishuw@gzhu.edu.cn.

Abstract: Semiparametric probit model serves as a valuable alternative to the popular proportional
hazards/odds model in survival analysis partly due to the use of a standard normal distributed random
error. This feature can facilitate developing an efficient inference and may render a better fit for the real
world data than other models. In this work, we concern regression analysis of doubly censored data
with a spline-based probit regression model and provide an efficient maximum likelihood estimation
procedure. A novel and reliable expectation-maximization algorithm is proposed to identify the sieve
estimator. Asymptotic properties of the proposed estimator are established. Simulation studies suggest
that the proposed method works well in finite samples and obviously outperforms the direct sieve
maximum likelihood method, which is accomplished with some existing optimization algorithm in the
software. An application to a real data set is also provided.
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1. Introduction

Doubly censored data frequently arises in various fields, particularly in medical research, where the
response of interest (e.g., a failure time) may not be observed exactly due to the presence of either left or
right censoring [1,2]. In such data, the exact response of interest T is only available within the interval
(L,R]. Left censoring arises if the response of a subject is smaller than L, while right censoring happens
when the subject has not experienced the response by R. For instance, in a clinical trial comparing two
drug treatments for AIDS [3], the HIV-1 RNA level in plasma is an important index for assessing the
treatment efficacy. The NucliSens assay used to measure the HIV-1 RNA level has detection limits in
the sense that it can only provide an accurate measure if the RNA level is between 400 and 750,000
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copies per milliliter of plasma. Otherwise, the RNA level cannot be measured exactly and is treated
as being left censoring at 400 or right censoring by 750,000. Thus, doubly censored data on the RNA
level occurs.

The analysis of doubly censored data has gained considerable attention, and a growing number of
methods have been proposed to estimate the survival function, perform two-sample tests, and conduct
regression analysis. For example, in the univariate case, estimation of the survival distribution typically
involves solving self-consistent equations [4, 5]. Gehan [1] and Hughes [6] proposed comparative
analyses of two samples with doubly censored data. In the context of regression analysis, techniques
based on M-estimation for the linear regression model have been advanced by Zhang and Li [7] and Ren
and Gu [8]. Kim et al. [9] and Shen [10] investigated maximum likelihood estimation (MLE) methods
along with asymptotic properties for the proportional hazards (PH), transformation and Cox-Aalen
models, respectively. Cai and Cheng [11] proposed an unbiased estimating equation approach for the
linear transformation model. Ji et al. [12] developed a martingale-based estimation method for the
quantile regression model. Li et al. [13] explored a shared frailty modeling approach for multivariate
doubly censored data.

Notably, most existing regression methods for analyzing doubly censored data are built upon the
PH or proportional odds (PO) assumptions, which may be restrictive in practice. The semiparametric
probit model provides an useful alternative by modeling the transformed failure time with a linear
combination of covariates and a standard normal distributed random error. This feature can facilitate
developing an efficient inference and may render a better fit for the real world data than other models.
In particular, let T denote the failure time of interest, and X be a p-dimensional covariate vector. Given
X, the probit regression model posits that the cumulative distribution function of T takes the form

F(t | X) = Φ{α(t) + βTX}, ∀t ∈ [0,∞), (1.1)

where Φ(·) denotes the distribution function of the standard normal random variable, β is the vector
of regression parameters, and α(·) is an unspecified increasing function with α(0) = −∞ and α(∞) =
∞. As commented by Deng et al. [14] and others, model (1.1) can be rewritten as α(T ) = −βTX +
ϵ, where ϵ is the random error term following the standard normal distribution. That is, the probit
regression model evaluates covariate effects on the transformed failure time of interest. In addition,
under model (1.1), the hazard function of T given X is

λ(t | Xi) = α′(t)ϕ{α(t) + βTXi}
[
1 − Φ{α(t) + βTXi}

]−1
,

where α′(t) = dα(t)/dt and ϕ(·) is the density function of a standard normal random variable. Thus, in
contrast to the PH model, the probit model allows a time-varying hazard ratio regarding two different
covariate values and may be less restrictive.

To make inference on the probit regression model (1.1), a growing number of frequentist and
Bayesian methods have been developed under various situations [14–20]. For instance, Huang and
Cai [21] conducted a mediation analysis for right censored data. Lin and Wang [16] and Liu and
Qin [17] investigated regression analysis of current status data with the Bayesian and MLE
procedures, respectively. Du et al. [18] proposed a sieve MLE method for analyzing current status
data with informative censoring. Regarding the general interval-censored data, Lin and Wang [15]
introduced a Bayesian estimation method, while Deng et al. [14] developed a pseudo MLE approach
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as well as a variable selection procedure. Despite the aforementioned method developments, to our
knowledge, estimating the semiparametric probit model (1.1) under doubly censored data has not
been investigated. This is partly because the coexistence of left and right censoring complicates the
likelihood construction and limits the applicability of existing estimation procedures. Filling in this
methodological gap constitutes the main goal of the current study.

In this work, we introduce an efficient sieve MLE approach for semiparametric probit model under
doubly censored data. Specifically, we approximate the nuisance function α(t) of model (1.1) with
monotone splines. An expectation-maximization (EM) algorithm that utilizes normal and multinomial
distributed latent variables is proposed to maximize the intractable observed data likelihood. The
proposed algorithm is easy to implement, robust to initial values and reliable, making it a reliable
and valuable tool for the analysis of doubly censored data. Asymptotic properties of the proposed
sieve estimator, including the consistency, asymptotic normality and semiparametric efficiency, are
established with the empirical process techniques and sieve estimation theory. Furthermore, thanks
to the desirable estimation performance of the proposed method, we can readily obtain the variance
estimates through a numerical profile likelihood method instead of the intensive bootstrapping used in
Li et al. [3].

The remainder of this paper is organized as follows. Section 2 introduces the notation, data
structure and observed data likelihood function. Section 3 describes the proposed MLE procedure
along with an EM algorithm. In Section 4, we discuss the asymptotic properties of the resultant sieve
estimator. Simulation studies are carried out in Section 5 to evaluate the proposed method’s empirical
performance, followed by an application in Section 6. Section 7 gives some discussions and remarks.
Appendix A provides a summary table of symbols used in this paper, and Appendix B contains the
technical proofs of the asymptotic properties outlined in Section 4.

2. Notation, likelihood and monotone splines

Consider a failure time study giving doubly censored data for n independent individuals. In this
case, the failure time of interest T can only be observed exactly within an interval (L,R]. Otherwise,
the failure time suffers from left censoring if T < L and right censoring if T > R. Define δ1 =

I(T ≤ L), δ2 = I(L < T ≤ R) and δ3 = I(T > R), where I(·) is the indicator function. In what
follows, notations with subscript i represents their sample analogues. Then the observed data consist
ofD = {(T̃i, δi1, δi2, δi3, Xi); i = 1, . . . , n}, where T̃i = max{Li,min(Ti,Ri)}.

Assuming that Ti and (Li,Ri] are conditionally independent given the covariates, which is essential
for the likelihood construction, the observed data likelihood function associated with model (1.1) is
given by

L(β, α) =
n∏

i=1

F(T̃i | Xi)δi1 f (T̃i | Xi)δi2{1 − F(T̃i | Xi)}δi3

=

n∏
i=1

Φ{α(T̃i) + βTXi}
δi1

[
ϕ{α(T̃i) + βTXi}α

′(T̃i)
]δi2[1 − Φ{α(T̃i) + βTXi}

]δi3 , (2.1)

where F(t | Xi) = Φ{α(t) + βTXi} (1.1) and f (t | Xi) = dF(t | Xi)/dt is the density function of T̃i given
Xi for i = 1, . . . , n.
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Notably, in likelihood (2.1), α(·) is infinite-dimensional. A routine way in survival analysis is to
approximate α(·) with some smooth function. Herein, we propose to use the monotone splines, taking
the form

αn(t) = ξ +
Kn∑

k=1

γkbk(t),

where bk(t)’s are integrated spline basis functions, ξ is the intercept, and γk’s are non-negative spline
coefficients to ensure a monotone increasing function [22]. Before using the monotone splines, one
needs to specify the interior knots, a sequence of qn increasing points, and to determine the spline
degree l̃. By setting l̃ = 1, 2 and 3, we can obtain linear, quadratic, and cubic splines, respectively.
The Kn = qn + l̃ basis functions can be fully determined if the interior knots and degree are specified.
In practice, one can try to use linear, quadratic or cubic splines and place a series of interior knots at
equally spaced quantiles of a certain time interval formed by the observed data. Then some commonly
used model selection criterion, such as Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC), can be used to determine the optimal model.

Through the above approximation, the observed data likelihood can be expressed as

L(β, ζ) =
n∏

i=1

Φ{ξ +

Kn∑
k=1

γkbk(T̃i) + βTXi}
δi1

×

ϕ{ξ + Kn∑
k=1

γkbk(T̃i) + βTXi}

Kn∑
k=1

γkmk(T̃i)

δi2

×

1 − Φ{ξ + Kn∑
k=1

γkbk(T̃i) + βTXi}

δi3 ,
(2.2)

where ζ = (ξ,γT)T, γ = (γ1, . . . , γKn)
T, and mk(t) is the first derivative of bk(t) with respect to t for

k = 1, . . . ,Kn.
To estimate all unknown parameters, one could consider performing a direct maximization of (2.2)

with some existing optimization algorithm in the software. However, due to the intractable form
of (2.2), such an approach is cumbersome and unreliable as manifested by the simulations in
Section 5. To render an accurate and easy-to-implement estimation, in the next section, we develop an
EM algorithm which utilizes some normal and multinomial distributed random variables to proceed
with the data augmentation.

3. Estimation algorithm

The proposed EM algorithm involves a two-stage data augmentation procedure, i.e., E-step and M-
step. We first construct the complete data likelihood with a tractable form through data augmentation.
Motivated by Lin and Wang [15], we introduce a normally distributed latent variable Zi as follows

Zi = N(αn(T̃i) + βTXi, 1), i = 1, . . . , n,

where Z1, . . . ,Zn are independent and the required constraints are Zi > 0 if δi1 = 1, Zi < 0 if δi3 = 1 and
Zi = 0 if δi2 = 1 for 1, . . . , n. With the fact F(t | Xi) = Φ{α(t)+βTXi} = 1−

∫ 0

−∞
ϕ{zi − (α(t)+βTXi)}dzi,
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we can obtain the augmented likelihood

L1(β, ζ) =
n∏

i=1

ϕ{Zi − (αn(T̃i) + βTXi)}α′n(T̃i)δi2{1(Zi>0)}
δi1{1(Zi=0)}

δi2{1(Zi<0)}
δi3 ,

where α′n(t) = dαn(t)/dt. Based on the spline representations of αn(·) and α′n(·), for each i, we introduce
a multinomial latent vector ui =

(
ui1, · · · , uiKn

)T
∼ M(1, pi), a multinomial distribution with the total

count equal to 1 and pi = (1/Kn, . . . , 1/Kn). Then we have the proposed complete data likelihood,
which takes the form

Lc(β, ζ) =
n∏

i=1

1
2π

exp

−1
2
{Zi − (ξ +

Kn∑
k=1

γkbk(T̃i) + βTXi)}2


×

 Kn∏
k=1

{γkmk(T̃i)}δi2uik

 {1(Zi>0)}
δi1{1(Zi=0)}

δi2{1(Zi<0)}
δi3 .

Note that unlike Lin and Wang [15], we have exactly observed failure times in doubly censored data and
thus additionally introduce a multinomial latent vector for each subject in the above data augmentation
procedure, rendering Lc(β, ζ) with a simple form.

The E-step involves calculating the conditional expectation of log Lc(β, ζ) given the observed data
D, the constraints of Zi’s in Lc(β, ζ) and the dth parameter updates, β(d) and ζ(d), with d ≥ 0. In
particular, we define β(0) and ζ(0) as the initial values of β and ζ, respectively. For notational
simplicity, in what follows, we will ignore all the conditional arguments in the expressions of
conditional expectations. This step leads to

Q(β, ζ;β(d), ζ(d)) = −
1
2

n∑
i=1

{ξ +

Kn∑
k=1

γkbk(T̃i) + βTXi}
2 +

n∑
i=1

Kn∑
k=1

E(uik) log(γk)δi2

+

n∑
i=1

E(Zi){ξ +
Kn∑

k=1

γkbk(T̃i) + βTXi},

where E(uik) =
γ(d)

k mk(T̃i)∑Kn
l=1 γl(d)ml(T̃i)

,

E(Zi) =


ν(d)

i + ϕ{ν
(d)
i }/[1 − Φ{ν

(d)
i }], if δi1 = 1,

0, if δi2 = 1,
ν(d)

i − ϕ{ν
(d)
i }/Φ{ν

(d)
i }, if δi3 = 1,

and ν(d)
i = ξ

(d) +
∑Kn

k=1 γ
(d)
k bk(T̃i) + βTX(d)

i , for k = 1, . . . ,Kn and i = 1, . . . , n.
In the M-step, by setting ξ = ξ(d) and γk = γ

(d)
k for k = 1, . . .Kn, we first maximize Q(β, ζ(d);β(d), ζ(d))

with respect to β and obtain the following least square solution

β(d+1) = (
n∑

i=1

XiXT
i )−1

n∑
i=1

Xi

ξ(d) +

Kn∑
k=1

γ(d)
k bk(T̃i) − E(Zi)

 . (3.1)
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Next, we maximize Q(β(d+1), ξ,γ(d);β(d), ζ(d)) with respect to ξ and obtain an explicit expression

ξ(d+1) =
1
n

n∑
i=1

βTX(d+1)
i + E(Zi) −

Kn∑
k=1

γ(d)
k bk(T̃i)

 . (3.2)

To update each γk, we suppose that γ(d+1)
k′ has been available for all k′ < k. Let Q(d)

k (γk) be the
updated Q(β(d+1), ξ(d+1),γ;β(d),γ(d)) with γk′ = γ

(d+1)
k′ for k′ < k and γk′ = γ

(d)
k′ for k′ > k, the derivative

of Q(d)
k (γk) with respect to γk is given by

dQ(d)
k (γk) /dγk =

n∑
i=1

[
− bk(T̃i)

{
ξ(d+1) +

∑
k′<k

γ(d+1)
k′ bk′(T̃i) +

∑
k′>k

γ(d)
k′ bk′(T̃i)

− βTX(d+1)
i − E(Zi)

}
+

E(uik)
γk

]
.

Examining dQ(d)
k (γk) /dγk = 0 leads to the following quadratic equation of γk

γ2
k

n∑
i=1

b2
k(T̃i) + γk

n∑
i=1

bk(T̃i)

ξ +∑
k′,k

γk′bk′(T̃i) − βTXi − E(Zi)


 − n∑

i=1

E(uik) = 0.

Let

ak =

n∑
i=1

b2
k(T̃i), e

(d)
k =

n∑
i=1

δiE(uik),

and

c(d)
k =

n∑
i=1

bk(T̃i)

ξ(d+1) +
∑
k′<k

γ(d+1)
k′ bk′(T̃i) +

∑
k′>k

γ(d)
k′ bk′(T̃i) − βTX(d+1)

i − E(Zi)


for k = 1, . . . ,Kn, we have

γ(d+1)
k =

−c(d)
k +

√
c(d)2

k + 4ake
(d)
k

2ak
. (3.3)

In summary, detailed iteration processes of the proposed EM algorithm are given in Algorithm 1.

Algorithm 1
1) Let d = 0 and initialize β(0), ξ(0) and γ(0).
2) Calculate the conditional expectations E(Zi) and E(uik) based on the observed data

and {β(d), ξ(d),γ(d)} for i = 1, . . . , n and k = 1, 2, . . . ,Kn.
3) Obtain β(d+1) with the closed-from solution (3.1).
4) Calculate ξ(d+1) with (3.2).
5) Calculate γ(d+1)

k with (3.3) for k = 1, . . . ,Kn, and let d = d + 1.
6) Repeat Step 2 to Step 5 until the convergence is achieved.

Our experiences show that the performance of the proposed EM algorithm is insensitive to the
choices of the initial values, β(0), ξ(0) and γ(0). In practice, one can simply set the initial values of
each regression parameter and each spline coefficient to 0 and 1, respectively. The algorithm can
be identified as convergence when the maximum absolute difference between successive parameter
updates is less than a small positive threshold (e.g., 10−7).
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4. Asymptotic properties

Let β̂ and α̂(·) be the proposed estimators of β and α(·), respectively. Let β0 and α0(·) be the true
values of β and α(·), respectively. DefineΘ = B×A as the parameter space of θ = (β, α), where β ∈ B,
a compact set in Rp, α ∈ A = {α(t) : dα(t)/dt > 0,−Mα ≤ α(t) ≤ Mα for t ∈ [τu, τv]}, [τu, τv] denotes
the union support of random variables T , L, and R with 0 < τu < τv < ∞, and both τ and Mα are positive
constants. Consider a knot sequence τu = t1 = · · · = tl̃ < tl̃+1 < · · · < tl̃+qn

< tl̃+qn+1 = · · · = tqn+2l̃ = τv,
where qn = O(nν) with 0 < ν < 0.5. Define the sieve space Θn = {θn = (β, αn);β ∈ B, αn ∈ An},
where An = {αn(t) = ξ +

∑Kn
k=1 γkbk(t); bk(t) ∈ [0, 1], t ∈ [τu, τv],−Mα ≤ ξ ≤ Mα, 0 ≤ γk ≤ Mα}.

The first derivative of αn(t) with respect to t is expressed as α′n(t) =
∑Kn

k=1 γkmk(t), where mk(t) is the
first derivative of bk(t) with respect to t for k = 1, . . . ,Kn. Let ∥ · ∥ denote the Euclidean norm. For a
vector β = (β1, . . . , βp)⊤, ∥β∥ = (

∑p
i=1 β

2
i )1/2. Let ∥ · ∥2 denote the L2-norm with respect to a probability

measure. For any two θ1 = (β1, α1) and θ2 = (β2, α2) in the parameter space, define

ρ(θ1, θ2) = (∥α1 − α2∥
2
2 + ∥β1 − β2∥

2)1/2,

where ∥α1 − α2∥
2
2 =

∫ τv
τu
{α1(s) − α2(s)}2dF(s) with F(·) being a distribution function.

To establish asymptotic properties of β̂ and α̂(·), like Chen et al. [23], Li et al. [3] and others, we
use the following standard regularity conditions.
(A1) (i). P(L < R | X) = 1; (ii). There exists a finite τ1 > 0 such that P(R ≤ τ1 | X) = 1; (iii).
P(L ∈ (0, τ3) | X) = 0 and P(L ≤ τ2 | X) = 1, where 0 < τ3 ≤ τ2 ≤ τ1.
(A2) T and (L,R) are conditionally independent given the covariates.
(A3) The covariate vector X takes values in a bounded subset of Rp.
(A4) The minimum spacing between knots satisfies ∆α = maxl̃+1≤k≤l̃+qn+1 |tk − tk−1| = O(n−ν) with
0 < ν < 0.5. Additionally, the ratio ∆α/δα remains bounded, where δα = minl̃+1≤k≤l̃+qn+1 |tk − tk−1|

represents the knots’ minimum spacing.
(A5) (i). The υth derivative of α(t) with respect to t, denoted by α(υ)(t), exists; (ii). There exists a
positive constant M > 0 such that α(υ)(t) satisfies the order-η Lipschitz condition:∣∣∣α(υ)(s) − α(υ)(t)

∣∣∣ ≤ M|s − t|η for any s, t ∈ [τu, τv];

(iii). Let r be a nonnegative integer and η ∈ (0, 1] such that r = υ + η > 0.5.
(A6) The true regression parameter β0 belongs to the interior of B, a compact set in Rp. The true
value of α denoted by α0 is inA.
(A7) If α(t)+β⊤X = 0 for any t ∈ [τu, τv] with probability one, then β = 0 and α(t) = 0 for t ∈ [τu, τv].

Conditions (A1)–(A3) are standard assumptions regarding the data structure and censoring
mechanism. Conditions (A4) and (A5) provide smoothness and spline approximation requirements.
Conditions (A6) and (A7) guarantee parameter space compactness and model identifiability. The
following two theorems summarize the asymptotic properties of the proposed estimators β̂ and α̂(·).
Detailed proofs of the theorems are sketched in the Appendix B.

Theorem 1. Suppose that conditions (A1)–(A6) hold, as n→ ∞, we have

ρ(θ̂n, θ0) = O(n−(1−ν)/2 + n−rν).

In particular, by taking ν = 1/(2r + 1), ρ(θ̂n, θ0) = O
(
n−r/(2r+1)

)
.
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As commented by Huang [24] and others, the smoothness assumption of α(t) is often needed. Usually,
in many situations, one can set r defined in (A6) to 1 (i.e., υ = 0 and η = 1) or 2 (i.e., υ = 1 and η = 1),
which correspond to assuming that α(t) has bounded first-order derivative or bounded second-order
derivative. Notably, if v = 1/(2r + 1), the convergence rate of θ̂n is nr/(2r+1), which is the same as the
optimal rate in nonparametric regression setting. The following theorem states that the convergence
rate of β̂ achieves

√
n.

Theorem 2. Suppose that conditions (A1)–(A7) hold, as n→ ∞, we have

√
n(β̂ − β0)

d
−→ N(0, I−1(β0)), (4.1)

where “
d
−→” denotes the convergence in distribution and I(β0) is defined in the Appendix B.

To make inference about the regression vector β, the parameter of interest, it is apparent that one
needs to estimate the covariance matrix of β̂ as suggested by Theorem 2. Herein, by following Zeng
et al. [25] and others, we suggest to employ a numerical profile likelihood approach. Specifically,
define pln(β) = maxζ log L(β, ζ), where L(β, ζ) is given in (2.2). The limiting covariance matrix of β̂
can be estimated by (nÎn)−1

În = n−1
n∑

i=1

 pli(β̂ + wne j) − pli(β̂)
wn


 pli(β̂ + wne j) − pli(β̂)

wn


T

,

where pli(β) is the ith subject’s contribution to pln(β), wn = cn−1/2, c is a positive constant, and, for
j = 1, . . . , p, e j is p-dimensional vector whose jth element is 1 and 0 elsewhere. To calculate pln(β),
one can directly use a simplified version of the above EM algorithm to maximize L(β, ζ), which only
involves updating ζ given a fixed β.

5. Simulation studies

In this section, simulation studies were conducted to evaluate the finite-sample performance of the
proposed method. The failure time of interest T was generated from the probit regression model:
F(t | X1, X2) = Φ (α(t) + β1X1 + β2X2), where X1 ∼ Uni f orm(0, 1), X2 ∼ Bernoulli(0.5), α(t) = log(t)
or

(
t0.1 − 1

)
/0.1, and (β1, β2) equals (0, 0.5), (0.5,−0.5) or (1, 1). We generated the left and right

endpoints of the interval (L,R] from Uni f orm(0, 1) and Uni f orm(2τ/3, τ), respectively, where τ was
chosen to produce different right censoring rates. Given the simulated interval (L,R], we had exact
failure time T if T ∈ (L,R]. Otherwise, we had a left censored observation on T if T < L, and T
suffered from right censoring if T > R. Herein, the right censoring rates were 24% – 43% and 46% –
65% by setting τ = 5 or τ = 3, respectively. We set n = 200 or 500, and used 500 replicates.

To implement the proposed method, we used monotone splines with degree 2 and 5 interior knots.
In particular, the interior knots were placed at equally spaced quantiles of the interval formed by
{T̃i; i = 1, . . . , n}. We set the initial value of each regression parameter to 0, and initialized each spline
coefficient with 1. To manifest the proposed EM algorithm’s advantage, we also performed direct
maximization of the observed data likelihood (2.2) using the optim() function in the R software. For
this direct maximization procedure, we investigated two choices of initial values. The first choice was
to use the same initial values as the proposed EM algorithm, which was abbreviated as “Direct
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maximization (a)”, and the second choice was to set initial values to the true parameter values, which
was abbreviated as “Direct maximization (b)”.

Table 1 summarized the results of the regression coefficient estimates with the proposed EM
algorithm and τ = 5. The evaluation criteria include Bias (the estimation bias calculated by the
average of 500 point estimates minus the true value), SSE (the sample standard error of 500 point
estimates), SEE (the average of 500 standard error estimates), and CP95 (95% coverage probability
formed by the normal approximation). The simulation results indicate that the proposed EM
algorithm performs reasonably well across various true values of regression parameters, true α(·) and
sample sizes. The biases are virtually small, SSE is in well accordance with SEE, implying that the
standard error estimators accurately reflect the true variations, and each CP95 is close to the nominal
value 95%. The algorithm consistently converged within a similar number of iterations and yielded
stable estimates, suggesting that the proposed EM procedure is insensitive to initialization and
exhibits reliable convergence behavior.

Table 1. Simulation results with τ = 5. Results include the estimation bias (Bias), the sample
standard error of 500 point estimates (SSE), the average of 500 standard error estimates
(SEE), and 95% coverage probability (CP95).

Proposed EM algorithm Direct maximization (a) Direct maximization (b)
n α(t) (β1,β2) Par. Bias SSE SEE CP95 Bias SSE SEE CP95 Bias SSE SEE CP95
200 log(t) (0,0.5) β1 -0.005 0.145 0.150 0.950 0.089 0.221 0.212 0.960 0.012 0.237 0.248 0.940

β2 -0.010 0.260 0.266 0.948 -0.097 0.233 0.221 0.860 0.005 0.222 0.223 0.950
(0.5,-0.5) β1 -0.004 0.160 0.173 0.954 -0.016 0.208 0.196 0.950 0.069 0.222 0.198 0.955

β2 0.014 0.255 0.274 0.944 0.098 0.212 0.199 0.890 -0.023 0.204 0.190 0.960
(1,1) β1 -0.032 0.161 0.169 0.946 -0.053 0.229 0.206 0.950 0.011 0.162 0.153 0.970

β2 -0.027 0.252 0.247 0.944 -0.117 0.199 0.195 0.880 -0.026 0.179 0.180 0.950
t0.1−1

0.1 (0,0.5) β1 -0.002 0.140 0.149 0.954 0.071 0.188 0.184 0.960 -0.009 0.175 0.177 0.940
β2 -0.001 0.261 0.264 0.944 -0.085 0.191 0.195 0.860 0.004 0.180 0.185 0.950

(0.5,-0.5) β1 -0.013 0.154 0.162 0.946 -0.049 0.185 0.198 0.960 -0.038 0.210 0.214 0.950
β2 0.003 0.266 0.273 0.948 0.134 0.218 0.216 0.890 -0.044 0.197 0.214 0.960

(1,1) β1 -0.017 0.158 0.166 0.958 -0.116 0.199 0.197 0.870 0.002 0.199 0.196 0.940
β2 -0.023 0.248 0.241 0.950 -0.125 0.180 0.188 0.880 0.012 0.186 0.182 0.950

500 log(t) (0,0.5) β1 -0.001 0.094 0.094 0.946 0.079 0.166 0.162 0.900 -0.006 0.167 0.161 0.960
β2 -0.011 0.165 0.166 0.956 -0.065 0.160 0.161 0.920 0.011 0.163 0.162 0.970

(0.5,-0.5) β1 -0.006 0.094 0.100 0.950 -0.042 0.166 0.169 0.930 0.034 0.171 0.178 0.960
β2 0.000 0.164 0.156 0.946 0.034 0.178 0.169 0.880 -0.028 0.176 0.176 0.940

(1,1) β1 -0.031 0.100 0.105 0.952 -0.121 0.175 0.161 0.800 -0.009 0.167 0.161 0.960
β2 -0.028 0.156 0.153 0.950 -0.158 0.151 0.156 0.840 -0.032 0.168 0.152 0.930

t0.1−1
0.1 (0,0.5) β1 0.001 0.091 0.093 0.958 0.020 0.161 0.162 0.900 0.024 0.159 0.156 0.950

β2 -0.006 0.161 0.165 0.948 -0.080 0.166 0.163 0.880 -0.027 0.176 0.179 0.940
(0.5,-0.5) β1 -0.003 0.096 0.100 0.956 -0.060 0.152 0.140 0.920 -0.066 0.175 0.171 0.920

β2 0.013 0.160 0.156 0.940 0.073 0.174 0.186 0.910 0.090 0.169 0.163 0.900
(1,1) β1 -0.024 0.100 0.103 0.952 -0.086 0.158 0.153 0.850 0.015 0.155 0.142 0.910

β2 -0.020 0.156 0.150 0.950 -0.137 0.186 0.183 0.810 -0.008 0.162 0.166 0.940
* Note: “Direct maximization (a)” refers to the method that maximizes the likelihood directly with the existing software, in which the initial values were set to be the same as those

used in the proposed EM algorithm. “Direct maximization (b)” refers to the method that maximizes the likelihood directly with existing software, in which the initial values were
set to the true parameter values.

To further evaluate the normality of the proposed estimator, we drew quantile-quantile (Q-Q) plots
of the standardized estimators against the standard normal distribution. For example, Figure 1
displayed the Q-Q plots for β1 and β2 with n = 200, (β1, β2) = (0.5,−0.5), α(t) = log(t) and τ = 5. The
almost linear plots suggest that the used normal approximation is reasonable. We also investigated the
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estimation performance of the proposed method for the baseline survival function S (t) = 1 − Φ{α(t)}.
In particular, Figure 2 presents the average of 500 baseline survival function estimates as well as the
true α(t) under the setup of α(t) = log(t), (β1, β2) = (0.5,−0.5) and τ = 5. The two plots in Figure 2
show that the average function estimates are close to the true curves, reflecting a satisfactory
estimation performance.

Figure 1. Quantile plots of the standardized, proposed estimates with n = 200, (β1, β2) =
(0.5,−0.5), α(t) = log(t) and τ = 5
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Figure 2. Simulation results for the estimation of the baseline survival function S (t) =
1 − Φ{α(t)} with α(t) = log(t), (β1, β2) = (0.5,−0.5) and τ = 5

Moreover, we presented in Tables 1 and 2 the simulation results obtained by “Direct maximization
(a)” and “Direct maximization (b)”. The results indicate that, by using the same initial values as
our proposed EM algorithm, “Direct maximization (a)” often exhibits large estimation bias, while the
performance of “Direct maximization (b)” improves obviously due to the use of true parameter values
as the initial values. These comparative results demonstrate that performing direct MLE with some
existing optimization procedure is sensitive to the initial value selection, a severe limitation that is
nonexistent in the proposed approach. The results with τ = 3 (high censoring rate) were given in
Table 2, from which one can observe same findings as above.

AIMS Mathematics Volume 10, Issue 11, 27755–27774.



27765

Table 2. Simulation results with τ = 3. Results include the estimation bias (Bias), the sample
standard error of 500 point estimates (SSE), the average of 500 standard error estimates
(SEE), and 95% coverage probability (CP95).

Proposed EM algorithm Direct maximization (a) Direct maximization (b)
n α(t) (β1,β2) Par. Bias SSE SEE CP95 Bias SSE SEE CP95 Bias SSE SEE CP95
200 log(t) (0,0.5) β1 0.005 0.154 0.156 0.946 0.055 0.218 0.203 0.920 0.016 0.212 0.221 0.910

β2 -0.011 0.274 0.273 0.944 0.005 0.188 0.185 0.970 -0.009 0.188 0.191 0.950
(0.5,-0.5) β1 0.001 0.154 0.151 0.938 -0.053 0.179 0.167 0.920 -0.005 0.207 0.203 0.930

β2 -0.005 0.258 0.236 0.946 0.055 0.220 0.221 0.820 -0.007 0.181 0.179 0.930
(1,1) β1 -0.030 0.181 0.182 0.946 -0.099 0.190 0.209 0.850 0.039 0.211 0.222 0.920

β2 -0.034 0.276 0.274 0.950 -0.104 0.154 0.156 0.820 0.017 0.220 0.214 0.950
t0.1−1

0.1 (0,0.5) β1 -0.004 0.152 0.156 0.956 0.169 0.205 0.199 0.800 -0.009 0.152 0.161 0.930
β2 0.005 0.250 0.274 0.946 -0.018 0.218 0.185 0.970 0.004 0.180 0.172 0.940

(0.5,-0.5) β1 0.008 0.160 0.174 0.950 -0.069 0.176 0.168 0.920 -0.005 0.219 0.198 0.920
β2 0.002 0.272 0.278 0.940 0.064 0.222 0.214 0.870 0.014 0.189 0.197 0.970

(1,1) β1 -0.022 0.164 0.169 0.952 -0.095 0.196 0.183 0.840 0.005 0.206 0.190 0.970
β2 -0.010 0.268 0.252 0.946 -0.103 0.179 0.162 0.840 -0.019 0.243 0.206 0.950

500 log(t) (0,0.5) β1 0.001 0.097 0.098 0.948 0.096 0.160 0.153 0.920 -0.005 0.130 0.130 0.950
β2 0.011 0.167 0.172 0.950 -0.113 0.172 0.172 0.930 0.008 0.152 0.128 0.950

(0.5,-0.5) β1 -0.005 0.098 0.101 0.944 -0.113 0.228 0.209 0.900 0.036 0.122 0.122 0.980
β2 0.008 0.157 0.161 0.950 0.238 0.179 0.188 0.940 -0.033 0.101 0.103 0.940

(1,1) β1 -0.012 0.109 0.112 0.950 0.103 0.145 0.147 0.890 -0.006 0.169 0.142 0.950
β2 -0.026 0.177 0.166 0.948 0.047 0.180 0.179 0.970 -0.031 0.173 0.154 0.940

t0.1−1
0.1 (0,0.5) β1 0.002 0.097 0.097 0.946 0.110 0.186 0.186 0.900 0.014 0.139 0.139 0.920

β2 0.011 0.167 0.171 0.948 -0.102 0.190 0.195 0.930 -0.009 0.130 0.140 0.970
(0.5,-0.5) β1 -0.004 0.098 0.101 0.942 -0.063 0.151 0.155 0.930 -0.014 0.142 0.158 0.950

β2 0.006 0.157 0.160 0.950 0.127 0.168 0.175 0.880 0.035 0.136 0.136 0.920
(1,1) β1 -0.024 0.106 0.105 0.954 0.049 0.183 0.182 0.990 0.060 0.183 0.183 0.940

β2 -0.022 0.167 0.157 0.942 0.076 0.152 0.143 0.960 -0.068 0.176 0.177 0.930
* Note: “Direct maximization (a)” refers to the method that maximizes the likelihood directly with the existing software, in which the initial values were set to be the same as those

used in the proposed EM algorithm. “Direct maximization (b)” refers to the method that maximizes the likelihood directly with existing software, in which the initial values were
set to the true parameter values.

6. Application

We applied the proposed method to a set of real world data arising from the randomized clinical trial
conducted by the AIDS Clinical Trial Group Protocol 320 (ACTG 320) [3]. Infected patients in this
trial were randomly assigned to receive either a two-drug combined therapy (ZDV and 3TC) or a three-
drug combined therapy (ZDV, 3TC, and RTV). HIV-1 RNA level in plasma (copies/ml), measured with
the NucliSens assay, was used as a biomarker to evaluate treatment efficacy since it essentially reflects
the viral load. However, as introduced in Section 1, the NucliSens assay used to measure the HIV-1
RNA level has detection limits because it can only provide an accurate measure if the RNA level is
between 400 and 750,000 copies/ml. Otherwise, the RNA level cannot be measured exactly and is
treated as left censoring at 400 or right censoring by 750,000.

In our analysis, we considered 838 patients who completed 24 weeks’ follow-up and the primary
objective is to conduct the treatment effect comparison through investigating the plasma HIV-1 RNA
level. To this end, the response of interest is defined as the change in log10 RNA value between week
0 and week 24, l0 − l24, where l0 and l24 denote the log10 RNA values at week 0 and 24, respectively.
In this HIV data set, since the measurements of l0 for all patients are within the limit of quantification.
The corresponding detection limits on the log scale are log10(400) = 2.60 and log10(750,000) = 5.88.
Therefore, l0 − l24 was either left-censored by L = l0 − 5.88 or right-censored by R = l0 − 2.60 if the
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measurement of l24 was out of the quantification limit. In other words, we had doubly censored data
on l0 − l24, with the left and right censoring proportions being 1.67% and 29.12%, respectively. To
conduct our regression analysis, the covariates used in the probit regression model (1.1) consisted of
the treatment indicator (trt = 1 for the three-drug combination group and 0 otherwise) and the baseline
log10 RNA value (l0).

To implement the proposed method, we set the initial value of each regression parameter to 0, and
initialized each spline coefficient with 1 as in the simulation studies. We considered linear, quadratic,
and cubic monotone splines, and placed 3–20 interior knots at equally spaced quantiles of the interval
formed by the realizations of T̃ , where T̃ = max{L,min(T,R)}. We used AIC and BIC to select the
optimal model with respect to the spline degree and number of interior knots. The model selection
results indicate that the optimal model under both AIC and BIC is the one with cubic splines and 12
interior knots.

The analysis results of the proposed method with the optimal probit model were summarized in
Table 3, which includes the degree and interior knot number of the optimal model, AIC value, BIC
value, the estimated covariate effect (Est), the estimated standard error (SE) and the p-value. Results
show that both baseline RNA value (l0) and treatment (trt) have significant influences on the change
in log10 RNA value between week 0 and week 24 (l0 − l24). In particular, larger l0 corresponds to a
larger change of log10 RNA value. Compared to two-drug therapy, receiving three-drug therapy leads
to a larger l0 − l24, implying that three-drug therapy is beneficial to reduce the RNA value in plasma.
Notably, Li et.al [3] analyzed the same HIV dataset under the PH and PO models. Their results also
indicated that the effect of baseline RNA level is significant, and the 3-drug combination (ZDV + 3TC
+ RTV) is more effective than the 2-drug combination (ZDV + 3TC) in reducing plasma HIV-1 RNA
levels. In addition, we note that, under different specifications of degree and knot number considered
here, the obtained conclusions are consistent and the point estimates are also very close with the largest
absolute discrepancy less than 0.052.

Table 3. Analysis results of the HIV data
l0 trt

Method l̃ qn AIC BIC Est SE p-value Est SE p-value
Proposed EM algorithm 3 12 1135.29 1210.98 -0.1878 0.0707 <0.001 -1.1720 0.0951 <0.001
Direct maximization (a) 3 4 1292.78 1330.63 -0.7324 0.0534 <0.001 -1.3334 0.0808 <0.001

* Note: “Direct maximization (a)” refers to the method that maximizes the likelihood directly with the existing software. d and qn denote the degree and
number of interior knots in monotone splines, respectively.

We also analyzed the HIV data by performing direct maximization of the observed data
likelihood (2.2) with the existing optimization function optim() in the R software. This method is
abbreviated as “Direct maximization (a)”, which sets the initial values of each regression parameter
and each spline coefficient to 0 and 1, respectively, as in the proposed method. As above, we used
AIC and BIC to select the optimal combination of degree and interior knot number in monotone
splines. Through the analysis, it turned out that the optimal model is given by the cubic splines with 4
interior knots. Results shown in Table 3 suggest that regression coefficient estimates were quite
different from those of the proposed method, especially for the effect of l0. The AIC and BIC values
of “Direct maximization (a)” are consistently larger than those of the proposed method, This
phenomenon suggests a lack-of-fit of “Direct maximization (a)” for the HIV data, and thus the
resultant regression coefficient estimates are unreliable.
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7. Discussion

Regarding doubly censored data, this work provided a computationally efficient sieve MLE
method for the spline-based probit regression model. Tailored to monotonic splines’ representation
and doubly censored data structure, a stable and reliable EM algorithm was proposed to identify the
sieve estimator. The key idea was to utilize some normal and multinomial distributed random
variables to conduct data augmentation, offering a tractable complete data likelihood that is easy to
maximize. The proposed algorithm is quite reliable and insensitive to the initialization, and we did
not encounter the non-convergence cases in the above numerical studies. The proposed estimator was
theoretically justified by investigating its asymptotic properties with empirical process techniques and
sieve estimation theory. Numerical results obtained from simulations and real data analysis
highlighted the proposed method’s satisfactory performance and advantage over the method that
performs direct maximization of the observed data likelihood. Overall, the spline-based probit
modeling framework, combined with the proposed EM algorithm, provides an useful alternative for
analyzing doubly censored data.

Our proposed method could be extended to several research directions. First, in many practical
applications, some individuals may not experience the failure event of interest even though the
follow-up is sufficiently long. These individuals constitute a cured subgroup in the whole population
under study [26]. It is helpful to generalize the proposed method to estimate a mixture cure rate probit
model. Second, the proposed method was built upon an independent censoring assumption, where the
censoring and failure times are conditionally independent given the covariates. However, this
assumption may be fragile since censoring may be driven by some response-related reasons. To
accommodate informative censoring, one may consider extending the proposed method by using a
frailty-based method [27] or a copula-based framework [28]. Furthermore, multivariate failure time
data are also frequently confronted in survival analysis [29]. To our knowledge, fitting a probit
regression model to multivariate failure time data under double censoring is still unexplored and
warrants a future investigation.
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Appendix A: A summary table of symbols used in this paper

Symbol Description

T The failure time of interest.
T̃ The observed time, defined as max{L,min(T,R)}.

(L,R] The interval within which T can be observed exactly.
δ1, δ2, δ3 The indicators for left censoring, exact, and right censoring observations, respectively.

I(·) The indicator function.
D The observed data.
X The covariate vector.
p The dimension of X.

[τu, τv] The union support of the random variables T , L, and R.
F(t | X) The cumulative distribution function of T given X.
λ(t | X) The hazard function of T given X.
Φ(·) The cumulative distribution function of a standard normal variable.
ϕ(·) The probability density function of a standard normal variable.
β The vector of regression parameters.
β0 The true value of the regression parameters vector.
β̂ The proposed estimator of β.
α(·) An unspecified, strictly increasing function with α(0) = −∞ and α(∞) = ∞.
α0(·) The true value of α(·).
α̂(·) The proposed estimator of α(·).
θ The full parameter vector.
B The parameter space for β.
A The function space for α(·).
Θ The parameter space for θ = (β, α).
L The observed data likelihood function.
L1 The augmented likelihood function.
Lc The complete data likelihood function (with latent variables).
αn(·) Monotone splines used to approximate α(·).
bk(·) The kth integrated spline basis function.
mk(·) The first derivative of the kth integrated spline basis function.

l̃ The degree of the spline.
qn The number of interior knots.
Kn The total number of basis functions, Kn = qn + l̃.
ξ The intercept term in the spline representation of αn.
γk The non-negative spline coefficient for the kth basis function.
γ The vector of spline coefficients, (γ1, . . . , γKn)

T.
ζ The full spline parameter vector, (ξ,γT)T.
An The sieve space for αn(·).
Θn The sieve parameter space for θn = (β, αn).
Zi A latent variable for the ith subject.
ui A multinomial latent vector for the ith subject, ui ∼ M(1, pi).
∥ · ∥ The Euclidean norm.
∥ · ∥2 The L2-norm with respect to a probability measure.
ρ(·, ·) The metric combining L2 and Euclidean norms.
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Appendix B: Proofs of asymptotic properties

Define θ = (β, α), θ0 = (β0, α0), θn0 = (β, αn0), where αn0 is true value of the spline function αn,
and θ̂n = (β̂, α̂n). Under the proposed semiparametric probit model and doubly censored data, the
log-likelihood function for the ith individual is

ℓi(θ) = δ1i log{Φ(α(ti) + βTXi)} + δ2i log{ϕ(α(ti) + βTXi)α′(ti)
}
+ δ3i log{1 − Φ(α(ti) + βTXi)}. (B.1)

Let the negative log-likelihood function be hi(θ) = −ℓi(θ). We define the empirical and expected
negative log-likelihood functions as Hn(θ) = n−1 ∑n

i=1 hi(θ) and H(θ) = E [hi(θ)], respectively. This
transformation facilitates the application of standard optimization theory while preserving the
equivalence between maximizing the log-likelihood Ln(θ) =

∑n
i=1 ℓi(θ) and minimizing Hn(θ).

Additionally, for any ε > 0, let N[](ε,F , ρ) denote the ε-bracketing number, and N(ε,F , ρ) be
the covering number, with respect to a metric (or semimetric) ρ for a function class F . To prove
Theorem 3.1, we need the following lemma.

Lemma 1. Suppose that conditions (A1)–(A6) hold, we have ρ(θ̂n, θ0) = op(1)

Proof. For any µ > 0, let Nµ = {θn ∈ Θn : ρ(θn, θn0) ≥ µ} denote the complement of a neighborhood
around the true sieve approximation θn0. We decompose H(θn) over Nµ as

inf
θn∈Nµ

H(θn) = inf
θn∈Nµ
{[H(θn) − Hn(θn)] + Hn(θn)} ≤ sup

θn∈Θn

|Hn(θn) − H(θn)| + inf
θn∈Nµ

Hn(θn).

If θ̂n ∈ Nµ, we can obtain

inf
θn∈Nµ

Hn(θn) = Hn(θ̂n) ≤ Hn(θn0) = [Hn(θn0) − H(θn0)] + H(θn0).

Under Conditions (A1), we have

inf
θn∈Nµ

H(θn) − H(θn0) ≥ δµ > 0,

where δµ is a positive constant. Combining these inequalities yields

δµ ≤ sup
θn∈Θn

|Hn(θn) − H(θn)| + [Hn(θn0) − H(θn0)].

Under Conditions (A1)–(A5), according to Lemma 3 of [23] and the law of large numbers, we have

sup
θn∈Θn

|Hn(θn) − H(θn)| = op(1), Hn(θn0) − H(θn0) = op(1).

Consequently, we obtain ρ(θ̂n, θn0) = op(1). Furthermore, Lemma 1 of [23] ensures that ρ(θn0, θ0) →
op(1), leading to ρ(θ̂n, θ0) = op(1). □

Proof of Theorem 3.1. We use Theorem 3.4.1 of [30] to derive the convergence rate of the proposed
estimators. First, For any 0 < ε ≤ µ, define the function classes

Q1 = {α(t) + βTX : β ∈ B, αn ∈ An},
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Q2 = {log{Φ[α(t) + βTX]} : β ∈ B, αn ∈ An},

Q3 = {ϕ[α(t) + βTX]α′(t) : β ∈ B, αn ∈ An},

Q4 = {1 − Φ[α(t) + βTX] : β ∈ B, αn ∈ An}, and
Lµ = {ℓi(θn) − ℓi(θn0) : ρ(θn, θn0) ≤ µ}.

Recall the function class An = {αn(t) = ξ +
∑Kn

k=1 γkbk(t); bk(t) ∈ [0, 1], t ∈ [τu, τv],−Mα ≤ ξ ≤
Mα, 0 ≤ γk ≤ Mα}, where Mα is a positive constant. Following the calculations in [31], the logarithm
of bracketing number satisfies log N[](ε,An, ∥ · ∥2) ≤ Kn log(µ/ε). Moreover, the neighborhood Bµ =
{β : ∥β − β0∥ ≤ µ} in Rd can be covered by (µ/ε)d balls of radius ε.

There exists a finite constant M > 0 such that the logarithmic bracketing number of Q1 is
Kn log(µ/ε) + d log(µ/ε) ≤ M(Kn + d) log(µ/ε) ≍ MKn log(µ/ε), in which ≍ means both sides have
same order. Analogously, the bracketing number bounds for the remaining function classes Q2, Q3,
and Q4 also satisfy N[](ε,Qi, ρ) ≍ MKn log(µ/ε) for i = 2, 3, 4. By Lemma 9.25 of [32], we have
log N[](ε,Lµ, ∥ · ∥2) ≤ MKn log(µ/ε). Hence, the bracketing integral of function class Lµ is

J[](µ,Lµ, ρ) =
∫ µ0

0

√
1 + log N[](ε,Lµ, ρ)dε ≤ M̃K1/2

n µ,

where M̃ is a positive constant. Then, by Lemma 3.4.2 of [30], we have

E
(

sup
ρ(θn,θn0)<µ

∣∣∣√n(Ln − L)(θn) −
√

n(Ln − L)(θn0)
∣∣∣)

≤J[](µ,Lµ, ρ)(1 +
J[](µ,Lµ, ρ)

µ2
√

n
) ≤ M̃K1/2

n µ(1 +
M̃K1/2

n µ

µ2
√

n
) = O(K1/2

n µ + Kn/n1/2).

In particular, the key function ϕ(µ) defined in Theorem 3.4.1 of [30] is given by ϕn(µ) = K1/2
n µ+Kn/n1/2.

It can be readily verified that ϕn(µ)/µ is monotonically decreasing in µ. Furthermore, for the scaling
sequence rn = (n/Kn)1/2 = n(1−v)/2, we have:

r2
nϕn(1/rn) = rnK1/2

n +
r2

nKn

n1/2 ≤ O(n1/2).

The estimation error between the estimator θ̂n and the projected true value θn0 satisfies

ρ(θ̂n, θn0) = (Kn/n)1/2.

Combining this with the spline approximation error ρ (θn0, θ0) = O
(
K−r

n
)
, where the parameter r is

defined in Condition (A5), we have

ρ(θ̂n, θ0) = ρ(θ̂n, θn0) + ρ(θn0, θ0) = O(n−(1−ν)/2 + n−rν).

When ν = 1/(2r + 1), ρ(θ̂n, θ0) = O(n−r/(2r+1)), which completes the proof.
□
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Proof of Theorem 3.2. For a single subject, the score function for β can be derived from the
log-likelihood function in equation B.1 as

ℓ̇β(θ) = XQ(X, T̃ ; θ),

where

Q(X, T̃ ; θ) = δ1
ϕ[α(T̃ ) + β⊤X]

Φ[α(T̃ ) + β⊤X]
− δ2[α(T̃ ) + β⊤X] − δ3

ϕ[α(T̃ ) + β⊤X]

1 − Φ[α(T̃ ) + β⊤X]
.

Consider the submodel αη(t) = α(t)+ηz(t) for a small constant η around 0, where z(·) is a nondecreasing
function. By differentiating ℓ(θ) with respect to η and evaluating the derivative at η = 0, we can obtain
the score function for α(·), taking the form

ℓ̇α(θ)[z] = z(T̃ )Q(X, T̃ ; θ).

By following the arguments of Theorem 3.4.1 of [33], one can derive the information bound for β using
the efficient score method. First, projecting ℓ̇β(θ) onto the linear space spanned by the score functions
ℓ̇α(θ)[z]. Next, identify a function z∗ such that the efficient score ℓ̇β(θ) − ℓ̇α(θ)[z∗] is orthogonal to
ℓ̇α(θ)[z] for all z(·) with bounded variation. This implies

E0{[ℓ̇β(θ) − ℓ̇α(θ)[z∗]]ℓ̇α(θ)[z]} = E0{[X − z∗(T̃ )]z(T̃ )Q2(X, T̃ ; θ)} = 0.

Thus, the solution for z∗ is

z∗ =
E0[XQ2(X, T̃ ; θ)]

E0[Q2(X, T̃ ; θ)]
,

and the efficient score function for β is given by

ℓ̃β(θ) =
X −

E0[XQ2(X, T̃ ; θ)]

E0[Q2(X, T̃ ; θ)]

 Q(X, T̃ ; θ).

By following the arguments of [34] and others, we have

Gn[ℓ̃β(θ̂)] = n1/2I(β0)(β̂ − β0) + O(n1/2ρ(θ̂n, θ0)),

where I(β0) = E[ℓ̃β(θ0)ℓ̃β(θ0)⊤], and the remainder term is ignorable.
Thus, to prove the asymptotic normality of β̂, we need to verify the following two conditions:

(C1) The efficient score ℓ̃β(θ̂) belongs to a Donsker class and converges to ℓ̃β (θ0) = ℓ̇β(θ0) -ℓ̇α(θ0)[z∗]
in the L2(P)-norm;
(C2) The matrix I(β0) = E[ℓ̃β(θ0)ℓ̃β(θ0)⊤] is nonsingular.

To verify Condition (C1), analogous to the proof of Lemma 1, we can establish that, for any ϵ > 0,
the class

{ℓ̃β(θn) : β ∈ B, αn ∈ An, ρ(θn, θ0) ≤ ϵ}

has a bounded ε-bracketing number M log(µ/ε), which implies that it is Donsker. Similarly, it can be
shown that the classes

{ℓ̇α(θn)[z∗] : β ∈ B, αn ∈ An, ρ(θn, θ0) ≤ ϵ}

AIMS Mathematics Volume 10, Issue 11, 27755–27774.
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is also Donsker. By the preservation property of Donsker classes, ℓ̃β(θ̂) belongs to a Donsker class.
Applying Theorem 1, we conclude that ℓ̃β(θ̂) converges to ℓ̃β(θ0) in the L2-norm. This implies that
Gn[ℓ̃β(θ̂)] converges in distribution to a zero-mean d-variate normal random vector.

Finally, we demonstrate that I(β0) is nonsingular. Suppose that the matrix I(β0) is singular, there
exists a nonzero vector χ̃ such that

χ̃⊤I(β0)χ̃ = χ̃⊤E{ℓ̃β (θ0) ℓ̃β (θ0)⊤}χ̃ = 0.

This implies that the score function along the submodel (β0+κχ̃, α0+κχ̃
⊤z∗) is zero with probability 1,

where κ is any constant, that is,

Q(X,T ; θ0)[χ̃⊤X + χ̃⊤z∗] = 0.

In particular, by considering δ1 = 1, we have Q(X,T ; θ0) = ϕ[α(T̃ )+β⊤X]
Φ[α(T̃ )+β⊤X]

∈ (0,∞). Consequently,
χ̃⊤X + χ̃⊤z∗ = 0 with probability 1. By Condition (A7), we have χ̃ = 0, which contradicts the
assumption that χ̃ is a nonzero vector. Therefore, I(β0) is nonsingular, and we have

√
n(β̂ − β0)

d
−→ N(0, I−1(β0)), (B.2)

which completes this proof. □
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