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Abstract: Let p be a prime and m a positive integer. This paper investigates cyclic and self-dual codes
of length n over the local Frobenius non-chain ring R = GR(p3,m)[v], with v2 = p2α, α ∈ F∗pm , and
pv = 0. First, we characterize the algebraic structure of cyclic codes of arbitrary length over R. When
gcd(n, p) = 1, explicit generator polynomials are determined, and the corresponding dual and self-
orthogonal structures are derived. A key result of this study is the proof that self-dual cyclic codes do
not exist over R. In addition, the enumeration formula for cyclic LCD codes is given by 2e1+

e2
2 . Several

examples and tables are provided to illustrate the theoretical findings and the derived mass formulas
for cyclic self-orthogonal and LCD codes.
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1. Introduction

Cyclic codes are one of the first categories of block codes and have been thoroughly examined over
the last sixty years [1]. During this period, research has shown their substantial uses in mathematics
and other disciplines. A substantial amount of study on cyclic codes and their generators has been
undertaken with the presumption that the ring R is a Frobenius ring, a category that includes Galois
rings and finite chain rings, among others. Hammons et al. [2] performed seminal research on cyclic
codes over F4 and Z4. Gradually, the emphasis broadened to encompass a wider variety of ring classes.
The authors of [3] and [4] investigated (self-dual) cyclic codes over Zpn . Bonnecaze and Udaya [5]
examined such codes over F2[u]

⟨u2⟩
, whereas Dinh and López-Permouth [6] conducted an extensive analysis

of these codes over finite chain rings.
Yildiz and Karadeniz [7] furthered this research by examining cyclic codes within the ring
F2[u,v]

⟨u2,v2,uv−vu⟩ , which is a Frobenius non-chain ring. Singh and Kewat [8] analyzed cyclic codes over Fp[u]
⟨uk⟩

,

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20251211


27536

obtaining findings on the minimum Hamming distance and minimal generating sets for these codes.
Recently, Kim and Lee [9] delineated the generators of all cyclic self-dual codes over Z2[u]

⟨u3⟩
of

length 2k, therefore augmenting the existing literature on self-dual codes.
Self-dual codes and self-orthogonal codes have garnered significant interest from researchers

because of their relationships with various mathematical domains, including invariant theory [10],
among others. Since the 1970s, extensive study has been conducted on the enumeration of self-dual
and self-orthogonal codes (see [11–13]). Linear complementary dual (LCD) codes were initially
proposed by Massey in 1992 [14]. These codes have attracted considerable interest owing to their
multiple benefits in coding theory and cryptography [15–17]. A significant application of LCD codes
is their capacity to offer protection against Side-Channel Attacks (SCAs) and Fault-Injection Attacks
(FIAs) in cryptographic systems (see [18]).

Recent years have seen substantial research into the features and architectures of LCD codes
across multiple algebraic structures, and the investigation of such codes over non-chain Frobenius
rings offers greater structural flexibility and richer enumeration possibilities compared with traditional
chain rings. Moreover, these rings naturally support Calderbank–Shor–Steane (CSS) type
constructions, which combine pairs of classical linear codes to produce quantum error-correcting
codes. This connection, as also demonstrated in [19, 20], highlights how the algebraic framework of
non-chain rings contributes to the development of superior quantum and cryptographic code families;
for more on LCD over finite rings, see [21–23]. Considering the current literature on non-chain
rings [24, 25], it is reasonable to broaden these studies to encompass other semi-local and local
non-chain rings.

Building on the existing literature on non-chain rings [26–28], this work extends current
investigations to a broader class of local non-chain rings. Motivated by these prior studies, we focus
on the finite commutative local non-chain ring R = GR(p3,m)[v]

⟨v2−p2α,pv⟩ , characterized by the relations v2 = p2α,
p3 = 0, and pv = 0.

Our contribution lies in extending and refining structural and enumerative techniques for cyclic,
LCD, and self-dual codes beyond traditional chain and prime-characteristic settings. By adapting these
methods to the mixed and higher-characteristic framework of the local Frobenius non-chain ring R, we
uncover new algebraic interactions between its nilpotent and unit components. This approach not only
generalizes classical results from simpler base fields, but also establishes a unified methodology for
analyzing and enumerating families of cyclic codes over more intricate ring environments, revealing
both theoretical depth and practical potential.

We begin by characterizing all ideals of R. Subsequently, we describe diverse constructions of
cyclic codes over R1 =

GR(p2,m)[v]
⟨v2,pv⟩ (Theorem 5) for any finite length n = ps. We then derive the

generators of cyclic codes over R (Theorem 11) and present additional results for the case
gcd(n, p) = 1 (Theorem 12). Furthermore, we establish necessary and sufficient conditions for the
existence of self-dual and linear complementary dual (LCD) codes over R. We also enumerate
self-orthogonal codes of length n over R with gcd(n, p) = 1, along with LCD codes of identical
length. Finally, we demonstrate that these classes of codes offer enumerative advantages
(Theorem 13). The ring R has attracted significant attention, with several categories of codes already
examined in prior works [24, 26, 29, 30].

This paper is organized as follows: Section 2 presents essential definitions and Gray maps. Section 3
addresses the structure and enumeration of the ring GR(p3,m)[v]

⟨v2−p2α,pv⟩ . Section 4 presents an analysis of the
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structure of cyclic codes over R of length n and provides an enumeration of self-dual and LCD codes.
We first examine the ring R1 = GR(p2,m) + vGR(p2,m) with the condition v2 = pv = 0, focusing
on cyclic codes, self-dual codes, and LCD codes defined over this structure. We then present their
structures over R for general n, with particular emphasis on the case where gcd(n, p) = 1. Section 5
provides several significant examples of cyclic codes, self-dual codes, and LCD codes over R, which
are derived from those over Fpm .

2. Preliminaries

Let p be a prime number and m a positive integer. Throughout this work, we consider the Galois
ring GR(p3,m) as the basic structure. We extend it by adjoining an indeterminate v subject to the
relations v2 = p2α and pv = 0, which gives rise to the ring

R =
GR(p3,m)[v]
⟨v2 − αp2, pv⟩

. (2.1)

It was established in [29] that R is a local but non-chain ring, and its unique maximal ideal is generated
by p and v, i.e., M = ⟨p, v⟩. Every element of GR(p3,m) can be written in p-adic form as β0+pβ1+p2β2,
where each coefficient belongs to the set Γ(m). Consequently, every element of R can be uniquely
expressed as γ = γ0 + vγ1 with γ0, γ1 ∈ GR(p3,m), so that R is isomorphic to GR(p3,m) + vGR(p3,m).

The group of units of R contains (pm − 1)p3m elements, while the remaining p4m − (pm − 1)p3m

elements are non-units. An element γ = γ0 + vγ1 is invertible in R exactly when both γ0 and γ1 are
nonzero in GR(p3,m). If ξ is a primitive element of the multiplicative group F∗pm of order pm − 1, then
each unit u of R can be expressed in the form u = ω(1+ pβ0+ p2β1+vβ3) with ω ∈ Γ∗(m) and βi ∈ Γ(m).
Here, we denote Γ(m) = {0, 1, ξ, ξ2, . . . , ξpm−2}, Γ1 = {ξ

2i+1 : 1 ≤ i ≤ pm−1
2 −1}, which corresponds to the

set of nonsquares in Γ∗(m), and Γ2 = {ξ
2i : 1 ≤ i ≤ pm−1

2 − 1}, which corresponds to the set of squares.
A linear code of length n over R is defined as an R-submodule of Rn. In this setting, codewords are

vectors of the form (c0, c1, . . . , cn−1) with entries from R. The cyclic shift operator π on Rn is defined
by π(c0, c1, . . . , cn−1) = (cn−1, c0, . . . , cn−2). A code C is called cyclic if π(C) = C. More generally, if the
length of a code is mt, then C is said to be quasi-cyclic of index t when π(t)(C) = C, where π(t) denotes
the t-fold application of π. The smallest such t is the index of the code, and in particular, cyclic codes
are quasi-cyclic codes of index one. Finally, every codeword (c0, c1, . . . , cn−1) can be associated with
the polynomial c0 + c1z + · · · + cn−1zn−1 inℜ(R, n) = R[z]

⟨zn−1⟩ , which shows that cyclic codes of length n
correspond to ideals ofℜ(R, n) (cf. [30]).

We consider the module Rn endowed with the standard Euclidean inner product. For a code C ⊆ Rn

of length n, its dual is defined as C⊥ = { y ∈ Rn : c · y = 0 for all c ∈ C }. A code is called self-
orthogonal if C ⊆ C⊥, and self-dual if C = C⊥. Moreover, C is said to be a linear complementary
dual (LCD) code if C ∩ C⊥ = {0}. For a polynomial θ(z) ∈ Fpm[z], the reciprocal polynomial is
given by θ∗(z) = zdeg(θ)θ

(
1
z

)
. It is straightforward to check that for any θ(z), ϑ(z) ∈ Fpm[z], one has

(θ(z)ϑ(z))∗ = θ∗(z)ϑ∗(z). This identity also holds in the quotient ring ℜ(Fpm , n) = Fpm [z]
⟨zn−1⟩ , provided that

deg(θϑ) < n. Now, let C be a cyclic code of length n over R, and let I denote the ideal of ℜ(R, n)
corresponding to C. Then, the dual code C⊥ is associated with the ideal { θ∗(z) : θ(z) ∈ Ann(I) }.
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3. Classification and ideals of the ring R

Recall that an element x ∈ R is called a zero-divisor if there exists a nonzero element y ∈ R such
that xy = 0. An element of R that is not a zero-divisor is said to be regular. A finite commutative ring
R is referred to as a Frobenius ring if it is an injective R-module. Equivalently, this condition holds
when Ann(M) � Fpm , where I denotes the Jacobson radical of R. In what follows, we focus on the ring
R = GR(p3,m)[v]

⟨v2−αp2, pv⟩ , which is a finite ring of order p4m with residue field F = Fpm . The structural properties
of this ring will be established, as they play a crucial role in the subsequent developments.

Theorem 1. The ring R is a Frobenius local non-chain ring of order p4m.

Proof. First, observe that the order of R follows from R = GR(p3,m) + vGR(p3,m) together with the
relation pv = 0. It is then not difficult to verify that M = ⟨p, v⟩, which in turn gives R/M � Fpm .

Hence, R is a local but non-chain ring. Furthermore, since the element p2 annihilates M = (p, v),
particularly because pv = 0 and p3 = 0, we deduce that p2M = 0, and thus p2 ∈ Ann(M). Now,
suppose z ∈ Ann(M) with z , 0. Then, zM = 0, which in particular implies zv = 0. Consequently,
z ∈ ⟨p⟩.Moreover, since zp = 0, it follows that z ∈ ⟨p2⟩. Therefore, Ann(M) = ⟨p2⟩, and hence R is a
Frobenius ring. □

An exhaustive characterization of all rings GR(p3,m)[v]
⟨v2−p2α,pv⟩ is given by Theorem 2.

Theorem 2. The classification of R is given in Table 1.

Table 1. Classes of R.

p , 2 p = 2
GR(p3,m)[v]
⟨v2−p2α,pv⟩

GR(8,m)[v]
⟨v2−4,2v⟩

GR(p3,m)[v]
⟨v2−p2,pv⟩

Proof. Elements of R are γ0 + γ1v, where γ0 ∈ GR(p3,m) and γ1 ∈ Γ(m). As pv = 0, then its minimal
polynomial is g(z) = z2 − p2α, where α ∈ Γ∗(m). Now suppose p = 2. Because gcd(2, 2m − 1) = 1, thus
(Γ(m))2 = Γ(m), and hence there is unique class of such rings, represented by GR(8,m)[v]

⟨v2−4,2v⟩ . □

From now on, we assume that p , 2. Consider the usual partition on Γ∗(m) by Γ1 and Γ2. It is worth
noting that |Γ1 |=

pm−1
2 =| Γ2 | .We next proceed with the proof with two cases.

Case a. We show that GR(p3,m)[v]
⟨v2−p2ξ,pv⟩ and GR(p3,m)[v]

⟨v2−p2,pv⟩ are not isomorphic, that is, they are not in the same
class when ξ ∈ Γ1. In contrast, suppose that they are isomorphic, and let ϕ be the ismorphism.
Assuming the radical is ⟨p, v⟩, and for some γ ∈ Γ∗(m), set ϕ(v) = γv. Note that (ϕ(v))2 = ϕ(v2), and so
(γv)2 = ϕ(p2ξ). This implies that γ2v2 = p2ϕ(ξ), and also γ2(p2) = p2ϕ(ξ). Consequently,
p2γ2 = p2ϕ(ξ), thus γ2 = ϕ(ξ).We have ϕ(ξ) = ξ, because ϕ restricted to Γ(m) is a fixed isomorphism.
Furthermore, because p , 2, this contradicts the assumption about ξ, and thus ξ , γ2. Therefore, the
result follows.

Case b. When α ∈ Γ3. In such a case, there exists γ ∈ Γ∗(m) such that α = γ2. Observe g(z) =
z2 − p2α = z2 − p2γ2 = γ2[(γ2)−1z2 − p2] = γ2[(γ−1z)2 − p2]. As v is a root of g(z), then g(v) = 0, and

AIMS Mathematics Volume 10, Issue 11, 27535–27559.



27539

hence v2 − p2α = 0. From the above argument, γ2[(γ−1v)2 − p2] = 0. Thus, (γ−1v)2 − p2 = 0. This
suggests that g(z) can take g(z) = z2 − p2. This ends the argument. To sum up, we have two classes of
such rings that are not isomorphic:

Ω1 : All rings with associated polynomials g(z) = z2 − p2α, where α ∈ Γ1;
Ω2 : All rings with associated polynomials g(z) = z2 − p2α, where α ∈ Γ2.

The first class is represented by
GR(p3,m)[v]
⟨v2 − p2ξ, pv⟩

, (3.1)

and the second class is represented by
GR(p3,m)[v]
⟨v2 − p2, pv⟩

. (3.2)

Now, every unit u of R is of the form,

u = γ0 + pγ1 + p2γ2 + vγ3, (3.3)

where γ0 ∈ Γ
∗(m).

Theorem 3. The ideals of R are given by the following lattice:

⟨1⟩ = R

M = ⟨p, v⟩

Ip = ⟨p⟩ I0 = ⟨v⟩I1 = ⟨v + p⟩

M2 = ⟨p2⟩

M3 = 0

Figure 1. Lattice of ideals of R.

Proof. Since every element of a proper ideal of R is of the form pγ1 + p2γ2 + vγ3, where γ1, γ2 and γ3

are in Γ(m), the equation v2 = p2α forces ⟨p2, v⟩ = ⟨p2 + v⟩ = ⟨v⟩. Thus, we are left with proper ideals
M, ⟨p⟩, ⟨v⟩, ⟨p + v⟩, ⟨p2⟩ and 0. □

4. Various structures of cyclic codes over R

First, we defineℜ(R, n) as R[z]
⟨zn−1⟩ . In the subsequent analysis, we examine the fundamental structural

characteristics ofℜ(R, n) along with the generators of its ideals. A prime ideal P in a commutative ring
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R is defined as minimal if the only prime ideal of R that is contained within P is P itself. A commutative
ring where every prime ideal is also a maximal ideal is defined as a zero-dimensional ring, indicating
that it has a Krull dimension of zero. In the context of commutative rings, if a ring R is characterized by
not being zero-dimensional while simultaneously ensuring that every prime ideal within it is classified
as either minimal or maximal, it follows that R is defined to possess a Krull dimension of one. Given
that R possesses a Krull dimension of 0, it can be concluded that R[z] hasMR[z] as its maximal ideal,
which consequently indicates that the dimension of R[z] is 1. Additionally, since zn − 1 < MR[z], we
can deduce thatℜ(R, n) is a zero-dimensional ring.

Lemma 1. The units ofℜ(R, n) are

γ1(z) + γ2(z)p + γ3(z)p2 + vγ4(z), (4.1)

where γ1(z) , 0, γ2(z), γ3(z), and γ4(z) belong toℜ(Fpm , n).

Proof. Suppose α(z) is a unit. Then, it can be expressed as

α(z) = γ1(z) + pγ2(z) + p2γ3(z) + vγ4(z), (4.2)

with γ1(z), γ2(z), γ3(z), γ4(z) ∈ ℜ(Fpm , n). Since α(z) is a unit, it must be a regular element ofℜ(R, n).
Consequently, γ1(z) cannot divide zn − 1. Indeed, suppose there exists β(z) ∈ ℜ(Fpm , n) such that
γ1(z)β(z) = zn − 1. Then, it would follow that β(z)α(z) = 0. If β(z) , 0, this would force α(z) to be
a zero-divisor, contradicting the assumption that α(z) is a unit. Thus, we must have β(z) = 0, which
implies that deg(γ1) = 0 and γ1(z) , 0.

Conversely, suppose α(z) = γ1(z) + γ2(z)p + γ3(z)p2 + vγ4(z), where γ1(z), γ2(z), γ3(z), γ4(z) ∈
ℜ(Fpm , n), and assume either that deg(γ1(z)) = 0 with γ1(z) , 0, or that γ1(z) ∤ zn − 1. In either case,
γ1(z) is a regular element ofℜ(Fpm , n), and therefore α(z) is regular inℜ(R, n), which means α(z) is a
unit. □

Representation (A)

Let θi(z) be in ℜ(Fpm , n), and suppose that θ̂i(z) = zn−1
θi(z) . Also, let I be an ideal in ℜ(R, n)) with the

following form:
I = ⟨ θ0(z) + pϑ1(z) + vϑ2(z) + p2ϑ3(z),

pθ1(z) + vϑ4(z) + p2ϑ5(z),
vθ2(z) + p2ϑ6(z),
p2θ3(z)⟩.

(4.3)

(i) Conditions involving θ1(z) :θ1(z) | θ0(z) | (zn − 1), deg(ϑ1) < deg(θ1) or ϑ1(z) = 0,

θ1(z) | ϑ1(z) θ̂0(z),

(ii) Conditions involving θ2(z) :

AIMS Mathematics Volume 10, Issue 11, 27535–27559.



27541
θ2(z) | θ0(z), deg(ϑ4) < deg(θ2) or ϑ4(z) = 0,

θ2(z) | ϑ4(z) θ̂1(z), deg(ϑ2) < deg
(

gcd(ϑ4, θ2)
)

or ϑ2(z) = 0,

θ2(z) | ϑ2(z) θ̂0(z)θ̂1(z),

(iii) Conditions involving θ3(z) :

θ3(z) | θi(z), i = 0, 1, 2, deg(ϑ6) < deg(θ3) or ϑ6(z) = 0,

θ3(z) | ϑ6(z) θ̂3(z), deg(ϑ5) < deg
(

gcd(ϑ6, θ3)
)

or ϑ5(z) = 0,

θ3(z) | ϑ5(z) θ̂1(z)θ̂2(z), deg(ϑ3) < deg
(

gcd(ϑ5, ϑ6, θ3)
)

or ϑ3(z) = 0,

θ3(z) | ϑ3(z) θ̂0(z)θ̂1(z)θ̂2(z).

Assume ηv : R −→ GR(p2,m) is the mapping such that ηv(r) = r̄ = r (mod v). Since v2 = p2α = 0,
it follows that the images of ηv lie in R1 =

GR(p2,m)[v]
⟨v2,pv⟩ . Our next goal is to identify the generators of

cyclic codes over GR(p2,m). Using this foundation, we explicitly describe the generator structures of
the ideals inℜ(R, n), which represent cyclic codes over R. Initially, no assumption is made regarding
gcd(n, p) = 1. However, by later imposing this condition, the algebraic structure becomes more
manageable, facilitating the analysis of these codes.

4.1. Constructions of cyclic codes over R1

In this section, we present structural results concerning cyclic codes of length n over

R1 =
GR(p2,m)[v]
⟨v2, pv⟩

.

Theorem 4. Let C be a cyclic code of length n defined over R1. Then, C can be described by a
generating set of the form

C = ⟨θ0(z) + pϑ1(z) + vϑ2(z), pθ1(z) + vϑ3(z), vθ2(z)⟩. (4.4)

Proof. Define the natural homomorphism

ηv : ℜ(R1, n) −→ ℜ(GR(p2,m), n) (4.5)

by extending linearly as
ηv(γ0(z) + pγ1(z) + vγ2(z)) = γ0(z) + pγ1(z), (4.6)

for all γ0(z), γ1(z), γ2(z) ∈ ℜ(Fpm , n). Then, ker(ηv) ∩ C forms an ℜ(Fpm , n)-submodule of vℜ(Fpm , n).
Consequently, there exists some θ2(z) ∈ ℜ(Fpm , n) with θ2(z) | (zn − 1) such that

ker(ηv) ∩ C = ⟨vθ2(z)⟩.

Since ηv is surjective, the image ηv(C) is an ideal ofℜ(GR(p2,m), n). By Theorem 4,

ηv(C) = ⟨θ0(z) + pϑ1(z), pθ1(z)⟩

AIMS Mathematics Volume 10, Issue 11, 27535–27559.
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for some θ0(z), θ1(z), ϑ1(z) ∈ ℜ(Fpm , n) satisfying Representation (A). This implies θ1(z) | θ0(z) and
θ1(z) | ϑ1(z)θ̂0(z), with either deg(ϑ1) < deg(θ1) or ϑ1(z) = 0.

Hence, we can express

C = ⟨θ0(z) + pϑ1(z) + vϑ2(z), pθ1(z) + vϑ3(z), vθ2(z)⟩,

for some ϑi(z) ∈ ℜ(Fpm , n), noting that vθ0(z) = v(θ0(z) + pϑ1(z)) ∈ ker(ηv) ∩ C = ⟨vθ2(z)⟩.
Next, define the map ηp : ℜ(R1, n)→ℜ(Fpm + vFpm , n) as

ηp(γ0(z) + pγ1(z) + vγ2(z)) = γ0(z) + vγ2(z),

for each γ0(z), γ1(z), γ2(z) ∈ ℜ(Fpm , n). A similar argument shows that

ηp(C) = ⟨θ0(z) + vϑ2(z), vϑ(z)⟩,

where ϑ(z) = gcd(ϑ3(z), θ2(z)), which implies deg(ϑ2) < deg(gcd(ϑ3(z), θ2(z))).
Finally, it follows that

vϑ3(z)θ̂0(z)θ̂1(z) = θ̂0(z)θ̂1(z)θ̂2(z)
[
θ0(z) + pϑ1(z) + vϑ2(z)

]
,

and
vϑ3(z)θ̂1(z)θ̂2(z) = θ̂0(z)θ̂1(z)

[
pθ1(z) + vϑ3(z)

]
,

which implies θ2(z) | ϑ2(z)θ̂0(z)θ̂1(z) and θ2(z) | ϑ3(z)θ̂1(z).
Thus, with Representation (A) satisfied, we conclude

C = ⟨θ0(z) + pϑ1(z) + vϑ2(z), pθ1(z) + vϑ3(z), vθ2(z)⟩.

□

If we set n = ps, then z−1 is nilpotent inℜ(R1, ps),with (z−1)2ps
= 0. Consequently, every element

ofℜ(R1, ps) can be expressed as a polynomial in z−1 with coefficients in Fpm . In particular, this applies
to the polynomials θ0(z), ϑi(z), θ1(z), and θ2(z). Therefore, we obtain specific structural results for this
case.

Corollary 1. Assume C is a cyclic code inℜ(R1, ps). Then, Representation (A) has the form

C = ⟨(z − 1)a + p(z − 1)t0θ0(z) + v(z − 1)t1θ1(z), p(z − 1)b + v(z − 1)t2θ2(z), v(z − 1)c⟩, (4.7)

where 
0 ≤ a < ps,

0 ≤ b ≤ min{ps−1, a}, a + b ≤ ps and t0 + deg(θ0) < b,

0 ≤ c ≤ a and t1 + deg(θ1) < c, t2 + deg(θ2) < c,

θi(z) are either zeros or units.
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Assume that χ = p or χ = v, and that ιχ = b or ιχ = ps − a. For a polynomial

γ(z) = χ(z − 1)t
∑
i=0

γi(z − 1)i ∈ ℜ(R1, ps),

we define its dual as

γ⊥(z) =
ιχ−1∑
i=0

( i∑
j=0

(−1)a+t+ j+1
(
a + d − t − j

i − j

)
γ j

)
(z − 1)i,

where d = min{b, c}.
Moreover, let

δ =

(−1)ps−1−d, if ps−1 − d < b,

0, otherwise.

We now describe the structure of C⊥ for any cyclic code of length ps over R1. Note that inℜ(R1, ps)
we have

(z − 1)ps
= − p(z − 1)ps−1

ϑ(z), (4.8)

where ϑ(z) ∈ U(ℜ(R1, ps)) is a unit. This relation implies that

p(z − 1)ps
= 0 and v(z − 1)ps

= 0.

Theorem 5. Suppose C is an ideal ofℜ(R1, ps). Then, its dual C⊥ can be represented as

C⊥ = ⟨(z − 1)ps−d + pδ(z − 1)ps−1−d − p(z − 1)ps−a−d+t0θ⊥0 (z)

− v(z − 1)ps−a−d+t1θ⊥1 (z), p(z − 1)b, v(z − 1)ps−a⟩,

where θ⊥0 (z) and θ⊥1 (z) are the duals of the polynomials θ0(z) and θ1(z), respectively over Fpm .

Proof. Suppose that C is uniquely represented by the polynomial generators of the form g1(z) = (z −
1)a + p(z− 1)t0θ0(z)+ v(z− 1)t1θ1(z), g2(z) = p(z− 1)b + v(z− 1)t2θ2(z), and g3(z) = v(z− 1)c. Then, it is
easy to verify the following:

g1(z)
[
(z − 1)ps−d + pδ(z − 1)ps−1−dϑ(z) − p(z − 1)ps−a−d+t0θ0(z) − v(z − 1)ps−a−d+t1θ1(z)

]
= 0,

Moreover, g1(z)(p(z − 1)b) = 0 and g1(z)(v(z − 1)ps−a) = 0. Since Ann(C) is an ideal ofℜ(R1, ps), then
I = ⟨G1(z),G2(z),G3(z)⟩ ⊆ Ann(C), where

G1(z) = (z − 1)ps−d + pδ(z − 1)ps−1−dϑ(z)
− p(z − 1)ps−a−d+t0θ0(z) − v(z − 1)ps−a−d+t1θ1(z),

G2(z) = p(z − 1)b,

G3(z) = v(z − 1)ps−a.
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Observe that ηv(Ann(C)) = Ann(ηv(C)), and thus Ann(C) = ⟨l1(z), l2(z), l3(z)⟩. By the nature of the
map ηv, we get such that ηv(li(z)) = ηv(Gi(z)), more explicitly,

l1(z) = (z − 1)ps−d + pδ(z − 1)ps−1−dϑ(z) − p(z − 1)ps−a−d+t0θ0(z) + v(z − 1)t′1θ′1(z),
l2(z) = p(z − 1)b + v(z − 1)t′2θ′2(z),
l3(z) = v(z − 1)c′ ,

where θ′1(z) and θ′2(z) are arbitrary elements ofℜ(R1, ps) with t′i+deg(θ′i ) < c′ for i = 1, 2.Compatibility
with the generators gi(z) forces c′ = ps−a, t′1 = ps−a−d+ t1, θ′1(z) = −θ1(z), and θ′2(z) = 0. Therefore,
Ann(C) = I. Finally, since b < ps−1 and d = min{b, c}, then d ≤ b < ps−1s. It follows that ips−1 − d > b
for i > 1. Consequently, the dual code C⊥ is given by

C⊥ = ⟨(z − 1)ps−d + pδ(z − 1)ps−1−d − p(z − 1)ps−a−d+t0θ⊥0 (z)

− v(z − 1)ps−a−d+t1θ⊥1 (z), p(z − 1)b, v(z − 1)ps−c⟩.

□

We now turn to the characterization of self-dual codes when p , 2. Assume that C is a self-dual
code over R1 of length ps. In this situation, it follows that a+ c = ps, which further implies b = c since
a + b ≤ ps. Hence, we have d = c = b.Moreover, if δ = 0, then we obtain(

(z − 1)ps−d)2
= (z − 1)2ps−2d = − p(z − 1)ps+ps−1−2d ϑ1(z) = 0,

where ϑ1(z) ∈ U(ℜ(R1, ps)) is a unit. Therefore, we have the following result.

Theorem 6. Let C be a cyclic code over R1 of length ps with δ = 0. Then, C is self-dual if and only if
it admits the representation

C = ⟨(z − 1)ps−b, p(z − 1)b, v(z − 1)b⟩.

However, when δ , 0, the term (z − 1)2ps−2d may no longer vanish. Indeed, we have

(z − 1)2ps−2d = − p(z − 1)ps+ps−1−2dϑ1(z).

Therefore, for odd primes p and γ = 2−1 , it follows that

(z − 1)2ps−2d + p(z − 1)ps+ps−1−2d =
(
(z − 1)ps−d + pγ(z − 1)ps−1−d)2

= 0.

Theorem 7. Assume that p is an odd prime and δ , 0. A cyclic code C over R1 is self-dual precisely
when it can be represented as

C = ⟨(z − 1)ps−b + pγ(z − 1)ps−1−b, p(z − 1)b, v(z − 1)b⟩.

Theorem 8. Over R1, the only LCD cyclic code of length ps is the trivial code C = 0.

Proof. Suppose that C is a cyclic LCD code. Since p(z − 1)b ∈ C ∩ C⊥ and v(z − 1)e ∈ C ∩ C⊥, where
e = max{c, ps − a}, it follows that b = ps and c = ps. Consequently, we must also have a = ps, which
implies C = 0.

The converse is immediate, as the zero code is trivially LCD. □
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Theorem 9. Let C be a cyclic code of length ps over R1. Then, C is proper self-orthogonal precisely
when C = 0.

Proof. Suppose that C is a self-orthogonal cyclic code, so that C ⊆ C⊥. From the general structure of
cyclic codes of length ps, we have a + c = ps, which implies that C⊥ = ⟨G(z), p(z − 1)b, v(z − 1)c⟩,
where G(z) = (z − 1)ps−d + pδ(z − 1)ps−1−dϑ(z) − p(z − 1)ps−a−d+t0θ⊥0 (z) − v(z − 1)ps−a−d+t1θ⊥1 (z). Let
g(z) = (z−1)a+ p(z−1)t0θ0(z)+v(z−1)t1θ1(z) ∈ C⊥. Then, there exist γ1(z), γ2(z) ∈ ℜ(R1, ps) such that
g(z) = G(z)+p(z−1)bγ1(z)+v(z−1)cγ2(z). Consequently, G(z) = g(z)−p(z−1)bγ1(z)−v(z−1)cγ2(z) ∈ C,
which shows that C⊥ ⊆ C. Combining this with C ⊆ C⊥, we conclude that C = C⊥. Therefore, no
non-trivial proper self-orthogonal cyclic code exists.

The converse is immediate since Ann(0) = ℜ(R1, ps). □

4.2. Structures of cyclic codes over R

In this section, we investigate the algebraic description of cyclic codes of length n over R, extending
the framework of cyclic codes over R1 established in Theorem 4.

Theorem 10. Every cyclic code of length n over R admits a representation of the form given in
Representation (A).

Proof. Define the homomorphism

ηv : ℜ(R1, n) −→ ℜ(GR(p2,m), n)

by setting
ηv(γ0 + pγ1 + vγ2) = γ0 + pγ1,

for all γ0, γ1, γ2 ∈ ℜ(Fpm , n). For a cyclic code C over R1, the intersection ker(ηv) ∩ C is anℜ(Fpm , n)-
submodule contained in vℜ(Fpm , n). Hence, there exists some θ2(z) ∈ ℜ(Fpm , n) with θ2(z) | (zn − 1)
such that

ker(ηv) ∩ C = ⟨vθ2(z)⟩.

Since ηv is surjective, its image ηv(C) is an ideal of ℜ(GR(p2,m), n), which by Theorem 4 takes the
form ⟨θ0(z) + pϑ1(z), pθ1(z)⟩ for some θ0(z), θ1(z), ϑ1(z) ∈ ℜ(Fpm , n) satisfying Representation (A). It
follows that C can be expressed as

C = ⟨θ0(z) + pϑ1(z) + vϑ2(z), pθ1(z) + vϑ4(z), vθ2(z)⟩. (4.9)

Next, consider a cyclic code C over R of length ps and define the map ηp2 : ℜ(R, n)→ ℜ(R1, n) by
ηp2(γ0 + pγ1 + p2γ2 + vγ3) = γ0 + pγ1 + vγ3 for each γ0, γ1, γ2, γ3 ∈ ℜ(Fpm , n). Then,

ηp2(C) = ⟨θ0(z) + pϑ1(z) + vϑ2(z), pθ1(z) + vϑ3(z), vθ2(z)⟩,

and hence

C =
〈
θ0(z) + pϑ1(z) + vϑ2(z) + p2ϑ3(z), pθ1(z) + vϑ4(z) + p2ϑ5(z), vθ2(z) + p2ϑ6(z), p2θ3(z)

〉
,

for some θ3(z), ϑ3(z), ϑ5(z), ϑ6(z) ∈ ℜ(Fpm , n). Letting ϑ(z) = gcd(ϑ6(z), θ3(z)), we obtain ηp2(C) =
⟨θ0(z) + pϑ1(z) + vϑ2(z), pθ1(z) + vϑ4(z), vϑ(z)⟩ with deg(ϑ4) < deg(θ2).
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By Theorem 4, θ1(z) | θ0(z) | zn − 1, which extends to θ2(z) | θ0(z) and θ3(z) | θ0(z) via the map ηp2 .
Furthermore, θ1(z) | ϑ1(z)θ̂0(z). Considering the map ηp : ℜ(R, n) → ℜ(Fpm + vFpm , n), a similar
argument gives ηp(C) = ⟨θ0(z) + vϑ2(z), vϑ4(z), vθ2(z)⟩, which reduces to
ηp(C) = ⟨θ0(z) + vϑ2(z), vϑ(z)⟩ with ϑ(z) = gcd(ϑ4(z), θ2(z)), implying deg(ϑ2) < deg(gcd(ϑ4, θ2)).
Similarly, it can be shown that θ2(z) | ϑ4(z)θ̂1(z) and θ2(z) | ϑ2(z)θ̂0(z)θ̂1(z). Moreover, the elements
p2ϑ3(z)θ̂0(z)θ̂1(z)θ̂2(z), p2ϑ5(z)θ̂1(z)θ̂2(z), and p2ϑ6(z)θ̂2(z) all lie in ⟨p2θ3(z)⟩, which ensures that
θ3(z) | ϑ3(z)θ̂0(z)θ̂1(z)θ̂2(z), θ3(z) | ϑ5(z)θ̂1(z)θ̂2(z), and θ3(z) | ϑ6(z)θ̂2(z). This establishes the
representation of any cyclic code over R of length n as claimed. □

4.3. Cyclic codes and their dual codes over R of length n when gcd(n, p) = 1.

In this subsection, we show that if gcd(n, p) = 1, the set of generators of the ideal corresponding
to a cyclic code C over R of length n, as given in Theorem 10, can be expressed in a simplified form.
Utilizing this reduced generating set, we provide an explicit description of the dual code C⊥, compute
the cardinality of C, and determine the total number of self-orthogonal codes of length n over R.

For the remainder of this work, unless otherwise specified, the polynomials

θ0(z), θ1(z), θ2(z), θ3(z), ϑ1(z), ϑ2(z), ϑ3(z), ϑ4(z), ϑ5(z), ϑ6(z)

are assumed to lie in ℜ(Fpm , n) and to satisfy Representation (A). Throughout, we adopt the standing
assumption that gcd(n, p) = 1.

Lemma 2. Suppose C is a cyclic code over R.

(i) For any γ1(z), γ2(z), γ3(z), γ4(z) ∈ ℜ(Fpm , n), we have γ1(z) ∈ ⟨γ1(z) + pγ2(z) + p2γ3(z) + uγ4(z)⟩.
Particularly, it follows that

⟨γ1(z), pγ2(z) + p2γ3(z) + uγ4(z)⟩ = ⟨γ1(z) + pγ2(z) + p2γ3(z) + uγ4(z)⟩.

(ii) Inℜ(R, n), we have〈
θ0(z) + pϑ1(z) + vϑ2(z) + p2ϑ3(z),

pθ1(z) + vϑ4(z) + p2ϑ5(z),
vθ2(z) + p2ϑ6(z),

p2θ3(z)
〉
=

〈
θ0(z) + pθ1(z) + vϑ4(z) + p2ϑ5(z), vθ2(z), p2θ3(z)

〉
.

Proof. For (i), let zn − 1 = α0(z) · · ·αm(z) be the prime factorization in Fpm[z]. This factorization is
unique up to units, and by Hensel’s lemma, each αi(z) is irreducible in R. As gcd(n, p) = 1, zn − 1
has no repeated factors, so αi(z) , α j(z) for i , j. By the Chinese Remainder Theorem, ℜ(Fpm , n) �
R1 × · · · × Rm, where Ri =

Fpm [z]
⟨αi(z)⟩ is a field. Hence,ℜ(R, n) �

∏m
i=1(Ri + pRi + p2Ri + uRi). Now, write

γi(z) = (γi1(z), . . . , γim(z)) with γi j(z) ∈ R j. If γ1 j(z) , 0, then γ1 j is a unit of R j, so

γ1 j = (γ1 j + pγ2 j + p2γ3 j + vγ4 j)p2
γ

1−p2

1 j ∈ ⟨γ1 j + pγ2 j + p2γ3 j + vγ4 j⟩.

If γ1 j = 0, then clearly γ1 j ∈ ⟨γ1 j + pγ2 j + p2γ3 j + vγ4 j⟩. Therefore, γ1(z) ∈ ⟨γ1(z) + pγ2(z) + p2γ3(z) +
vγ4(z)⟩, and the first statement follows. The second statement is immediate from the first.
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For (ii), all conditions of Representation (A) hold. Since zn − 1 factors into distinct irreducibles,
gcd(θ1(z), θ̂0(z)) = 1, so θ1(z) | ϑ1(z). If deg(θ1) > 0 and ϑ1(z) , 0, then deg(ϑ1) < deg(θ1) by
Theorem 10, a contradiction. Hence, ϑ1(z) = 0, and similarly when deg(θ1) = 0. By (i), we then have

C = ⟨θ0(z), vϑ2(z) + p2ϑ3(z), pθ1(z) + vϑ4(z) + p2ϑ5(z), vθ2(z) + p2ϑ6(z), p2θ3(z)⟩.

Since vϑ2(z) + p2ϑ3(z) ∈ ker(ηv) ∩ C = ⟨vθ2(z)⟩, it follows that θ2(z) | ϑ2(z) and θ2(z) | ϑ3(z). Degree
constraints then force ϑ2(z) = ϑ3(z) = 0. Applying (i) again gives ⟨vθ2(z)+ p2ϑ6(z)⟩ = ⟨vθ2(z), p2ϑ6(z)⟩,
which similarly implies ϑ6(z) = 0. Hence,

C = ⟨θ0(z) + pθ1(z) + vϑ4(z) + p2ϑ5(z), vθ2(z), p2θ3(z)⟩.

Finally, since θ3(z) | θ2(z) and v2 = p2α with α , 0, we obtain the simplified representation

C = ⟨θ0(z) + pθ1(z) + vϑ4(z), vθ2(z)⟩.

□

Lemma 2 implies that every non-principal ideal of ℜ(R, n) can be generated by a set of three
polynomials. Specifically, these generators can be taken as ϑ4(z), and the polynomials θi(z) for
i = 0, 1, 2, all of which belong toℜ(Fpm , n).

Corollary 2. Let n be a positive integer such that gcd(n, p) = 1. Then, every ideal C of ℜ(R, n) is
written as

C = ⟨θ0(z) + pθ1(z) + vϑ4(z), vθ2(z)⟩, (4.10)

where θ0(z), θ1(z), θ2(z), ϑ4(z) ∈ ℜ(Fpm , n).

In the next theorem, we describe the structure of the duals of cyclic codes under gcd(n, p) = 1.

Theorem 11. Let C be a cyclic code over R of length n corresponding to an ideal C = ⟨θ0(z)+ pθ1(z)+
vϑ4(z), vθ2(z)⟩ ofℜ(R, n). Then,

Ann(C) =
〈

zn − 1
gcd(θ2(z), θ1(z))

+ pθ̂0(z), vθ̂0(z)
〉
.

Moreover, the ideal 〈
zn − 1

gcd(θ2(z), θ1(z))∗
+ pθ̂∗0(z), vθ̂∗0(z)

〉
corresponds to the dual code C⊥ of C.

Proof. First, note that both θ2(z) and θ1(z) divide zn − 1 since zn − 1 is a product of distinct irreducible
polynomials in Fpm[z]. By Lemma 2, we have

Ann(C) = ⟨θ′0(z) + pθ′1(z) + vϑ′4(z), vθ′2(z)⟩ = ⟨θ′0(z), pθ′1(z), vθ′2(z)⟩

for some θ′0(z), θ′1(z), θ′2(z) ∈ ℜ(Fpm , n) satisfying Representation (A). Then,
(θ′0(z) + pθ′1(z) + vϑ′4(z))vθ2(z) = 0, so zn − 1 | θ′0(z)θ2(z), and thus zn−1

θ2(z) | θ
′
0(z). Similarly, by Lemma 2

(i), vθ2(z) + vϑ2(z) ∈ C and θ′0(z) ∈ Ann(C), which gives zn−1
θ1(z) | θ

′
0(z) and zn−1

ϑ4(z) | θ
′
0(z). Hence,

AIMS Mathematics Volume 10, Issue 11, 27535–27559.



27548

θ′0(z) = zn−1
gcd(θ1(z),ϑ4(z)) l(z) for some l(z) ∈ Fp[z]

⟨zn−1⟩. Taking into account that θ2(z) also divides θ′0(z), we
conclude θ′0(z) = zn−1

gcd(θ2(z),θ1(z)) l(z). Analogously, θ′1(z) = zn−1
θ0(z) l

′(z) and ϑ′4(z) = zn−1
θ0(z) l

′′(z) for some
l′(z), l′′(z) ∈ ℜ(Fpm , n). Finally, vθ′2(z)θ0(z) = 0, thus θ′2(z) = θ̂0(z)l2(z) for some l2(z) ∈ ℜ(Fpm , n).
Therefore, by Lemma 2, we obtain

Ann(C) ⊆
〈

zn − 1
gcd(θ2(z), θ1(z))

+ pθ̂0(z), vθ̂0(z)
〉
.

The reverse inclusion is straightforward to check, so the equality follows.
The statement for the dual code C⊥ is an immediate consequence of the above and the discussion

preceding Lemma 2. □

Lemma 3. Let C and C′ be cyclic codes over R of length n such that C ⊆ C′, with gcd(n, p) = 1.
Assume that θ0(z), θ1(z), θ2(z), θ′0(z), θ′1(z), θ′2(z) ∈ ℜ(Fpm , n) satisfy Representation (A), and that

C = ⟨θ0(z) + pθ1(z) + vϑ4(z), vθ2(z)⟩,
C′ = ⟨θ′0(z) + pθ′1(z) + vϑ′4(z), vθ′2(z)⟩.

Then, the following divisibility relations hold:

θ′0(z) | θ0(z), θ′1(z) | θ1(z), and gcd(θ′2(z), ϑ′4(z)) | gcd(θ2(z), ϑ4(z)).

Proof. Since C is contained in C′, we can express θ0(z) as

θ0(z) = (θ′0(z) + pθ′1(z) + vϑ′4(z))(a1(z) + pθ2(z) + p2a3(z) + va4(z))
+ vθ′2(z)(b1(z) + vb2(z)).

for some a1(z), θ2(z), a3(z), a4(z), g1(z), g2(z) ∈ ℜ(Fpm , n). From this decomposition, it follows
immediately that θ0(z) = θ′0(z)a1(z). Similarly, for the p-component, we have

pθ1(z) = (θ′0(z) + pθ′1(z) + vϑ′4(z))(γ1(z) + pγ2(z) + p2γ3(z) + vγ4(z))
+ vθ′2(z)(γ5(z) + pγ6(z) + p2γ7(z) + vγ8(z))

for some γi(z) ∈ ℜ(Fpm , n). Comparing the coefficients of p gives θ1(z) = θ′1(z)γ1(z) + θ′0(z)γ2(z). Since
θ′1(z) divides θ′0(z), we conclude that θ′1(z) | θ1(z). For the v-component, we find

ϑ4(z) = ϑ′4(z)γ1(z) + θ′0(z)γ3(z) + θ′2(z)γ5(z).

Using the fact that θ′2(z) | θ′0(z) (by part (4) of Theorem 4), it follows that gcd(θ′2(z), ϑ′4(z)) | ϑ4(z).
Finally, considering the v-term vθ2(z), we can write

vθ2(z) = (θ′0(z) + pθ′1(z) + vϑ′4(z))(γ1(z) + pγ2(z) + p2γ3(z) + vγ4(z))
+ vθ′2(z)(α1(z) + pα2(z) + p2α3(z) + vα4(z)).

for some γi(z), αi(z) ∈ ℜ(Fpm , n). Comparing the coefficients of v yields θ2(z) = θ′0(z)γ3(z)+ϑ′4(z)γ1(z)+
θ′2(z)α1(z). By an argument similar to the previous cases, we deduce that gcd(ϑ′4(z), θ′2(z)) | θ2(z).Hence,
we conclude θ′0(z) | θ0(z), θ′1(z) | θ1(z), and gcd(θ′2(z), ϑ′4(z)) | gcd(θ2(z), ϑ4(z)). □
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As a consequence of the earlier results, the generator polynomials for the ideals of ℜ(Fpm , n)
corresponding to self-orthogonal and self-dual codes over R can be explicitly described.

Theorem 12. Suppose C is a cyclic code given by C = ⟨θ0(z) + pθ1(z) + vϑ4(z), vθ2(z)⟩. Then,

(i) C is self-orthogonal if and only if

zn − 1
gcd(θ2(z), θ1(z))∗

| θ0(z).

(ii) There do not exist any self-dual cyclic codes over R.

Proof. (i) Assume C is self-orthogonal. Hence, Theorem 11 and Lemma 3 imply zn−1
gcd(θ2(z),θ1(z)) | θ0(z).

Conversely, if zn−1
gcd(θ2(z),θ1(z)) | θ0(z), then it follows that zn − 1 = −(zn − 1)∗ | (θ0(z) gcd(θ2(z), θ1(z))∗)∗.

Hence, zn − 1 | θ∗0(z) gcd(θ2(z), θ1(z)), and consequently zn−1
θ∗0(z) | gcd(θ2(z), θ1(z)). Furthermore, from the

first paragraph of the proof of Theorem 11, we also have gcd(θ2(z), θ1(z)) | ϑ4(z), leading to zn−1
θ∗0(z) | ϑ4(z).

Therefore, by Lemma 3, C is self-orthogonal.
(ii) By contradiction, we assume C is self-dual, and let q(z) = gcd(θ2(z), θ1(z)). Then, by Lemma 2 and
Theorems 10 and 11, we can write

θ0(z) =
(
zn − 1
q∗(z)

)
γ1(z), θ1(z) =

(
zn − 1
θ∗0(z)

)
γ2(z), ϑ4(z) = 0, θ2(z) =

(
zn − 1
θ∗0(z)

)
γ3(z),

for some units γ1(z), γ2(z), γ3(z) inℜ(Fpm , n). It follows that

q(z) = gcd(θ2(z), θ1(z)) =
zn − 1
θ∗0(z)

and θ0(z) =
(
zn − 1
q∗(z)

)
γ1(z) = θ∗0(z)γ1(z).

Since θ1(z) | θ0(z) by Theorem 10, we must have zn−1
θ0(z) | θ0(z). Given that zn − 1 factors into distinct

irreducible polynomials, this forces θ0(z) = zn − 1, yielding C = ⟨p, v⟩, which is impossible because
pC , 0 and vC , 0. Therefore, we have the result. □

We conclude this section by providing a characterization (Proposition 1) and a mass formula
(Theorem 13) for cyclic LCD codes with gcd(n, p) = 1.

4.4. Mass identity of cyclic LCD and self-orthogonal codes over R.

In this section, we let gcd(n, p) = 1. For elements x, y ∈ R, we write y ∼ x if x = uy for some unit
u ∈ R.

Theorem 13. Let α1(z), . . . , αt(z) be the irreducible factors of zn − 1 in Fpm[z], where α2i−1(z) ∼ α∗2i(z)
for 1 ≤ i ≤ k, and α j(z) are self-reciprocal for 2k + 1 ≤ j ≤ t. Define the set Q of polynomials
θ0(z) ∈ Fpk[z] such that

α2k+1(z) · · ·αt(z) | θ0(z) | zn − 1,

and for each 1 ≤ i ≤ k, at least one of α2i−1(z) or α2i(z) divides θ0(z). Then, the total number of cyclic
self-orthogonal codes is given by

Nself-orth =
∑
θ0(z)∈Q


∑

zn−1
θ∗0(z) |θ2(z)θ0(z)

ℵ0

 , (4.11)
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where
ℵ0 =

∑
zn−1
θ∗0(z) |θ1(z)θ0(z)

(pk)deg(θ2)−deg
(

gcd(θ2(z),θ1(z))
)
.

Proof. For a fixed θ0(z) ∈ Q, it holds that at least one of αi(z) or α∗i (z) divides θ0(z) for each 1 ≤ i ≤ t.
Equivalently, αi(z) | θ0(z) for i > 2k, and for each 1 ≤ i ≤ k, at least one of α2i−1(z) or α2i(z) divides
θ0(z). Consider the polynomials θ2(z), θ1(z) ∈ ℜ(R, n) such that zn−1

θ∗0(z) | θ2(z) | θ0(z), zn−1
θ∗0(z) | θ1(z) | θ0(z).

Using the polynomials θ0(z), θ1(z) and θ2(z), define the ideal I = ⟨θ0(z) + pθ1(z) + vϑ4(z), vθ2(z)⟩. The
total number of such distinct ideals is then given by

∑
θ0(z)∈Q


∑

zn−1
θ∗0(z) |θ2(z)θ0(z)

ℵ0

 .
By Theorem 12, each of these ideals corresponds to a self-orthogonal code. □

Proposition 1. Let gcd(n, p) = 1, and let C be a cyclic code over R of length n with corresponding
ideal ⟨θ0(z)+ pθ1(z)+vϑ4(z), vθ2(z)⟩. Then, C is an LCD code if and only if deg(θ0) = deg(θ2) = deg(θ1)
and θ∗0(z) | θ0(z).

Proof. Observe that 〈
zn − 1

gcd(θ2(z), θ1(z))
, p

zn − 1
θ∗0(z)

, v
zn − 1
θ∗0(z)

〉
is the ideal corresponding to C⊥ by Theorem 10. Suppose C ∩ C⊥ = {0}. Since p zn−1

θ∗0(z)θ0(z) ∈ C ∩ C⊥,

it follows that zn−1
θ∗0(z)θ0(z) = 0, so θ∗0(z) | θ0(z). Hence, if g(z) is an irreducible factor of zn − 1 over Fpm

dividing θ0(z), then g∗(z) also divides θ0(z), giving θ0(z) = βθ∗0(z) for some nonzero β ∈ Fpm . On the
other hand, (pθ1(z) + vϑ4(z)) zn−1

θ∗0(z) ∈ C ∩ C
⊥, so θ1(z) zn−1

θ∗0(z) = 0 and θ∗0 | θ1(z). Since θ0(z) | θ∗0(z) and
θ1(z) | θ0(z) by Representation (A), we deduce deg(θ1) = deg(θ0). Moreover, because gcd(θ2(z), θ1(z)) |
ϑ4(z) (see proof of Theorem 11), we must have ϑ4(z) = 0 by Representation (A). Conversely, assume
deg(θ0(z)) = deg(θ2(z)) = deg(θ1(z)), ϑ4(z) = 0, and θ∗0(z) | θ0(z). Then, v zn−1

θ∗0(z)θ2(z) ∈ C ∩ C⊥, so
zn−1
θ∗0(z)θ2(z) = 0, which implies deg(θ2) = deg(θ0) by the same argument as for θ1(z). Hence, the ideals
corresponding to C and C⊥ are

⟨θ0(z), pθ0(z), vθ0(z)⟩ and
〈

zn − 1
θ∗0(z)

, p
zn − 1
θ∗0(z)

, v
zn − 1
θ∗0(z)

〉
,

respectively. Suppose l(z) ∈ C ∩ C⊥. Then, there exist γi(z), αi(z) ∈ ℜ(R, n) for i = 1, 2, 3 such that

θ0(z)γ1(z) + pθ0(z)γ2(z) + vθ0(z)γ3(z) =
zn − 1
θ∗0(z)

α1(z) + p
zn − 1
θ∗0(z)

α2(z) + v
zn − 1
θ∗0(z)

α3(z).

This implies θ0(z)γi(z) = zn−1
θ∗0(z)αi(z), for each i = 1, 2, 3. Since θ0(z) = βθ∗0(z) for some β ∈ Fpm , it

follows that θ0(z) | αi(z), and therefore all terms vanish; θ0(z)γ1(z)+ pθ0(z)γ2(z)+vθ0(z)γ3(z) = 0. Thus,
C ∩ C⊥ = {0}, so C is an LCD code. □
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Corollary 3. Suppose gcd(n, p) = 1. Let e1 (resp. e2) denote the number of irreducible factors θ(z) of
zn − 1 over Fpm satisfying θ(z) = ±θ∗(z) (resp. θ(z) , ±θ∗(z)). Then, the total number of cyclic LCD
codes of length n over R is given by

2 e1+
e2
2 .

Proof. According to Proposition 1, a cyclic LCD code of length n over R is uniquely determined by
a choice of polynomial θ0(z) ∈ ℜ(R, n) with the condition that whenever an irreducible divisor of
zn − 1 over Fpm divides θ0(z), its reciprocal polynomial must also divide θ0(z). Counting the possible
selections of such factors yields the formula 2 e1+e2/2. □

Using Theorem 5, we can explicitly compute the number of cyclic LCD codes over R of length n
with gcd(n, p) = 1 in the following example.

5. Numerics

This section presents examples that illustrate our findings.

Example 1. We illustrate Representation (A) given in Theorem 4. Let us consider the ideals in
ℜ(R1, 4), where R1 =

GR(4,m)[v]
⟨v2,pv⟩ .

(1) Let C1 be the ideal generated by (z − 1)2. Theorem 4 gives the representation as

C1 = ⟨(z − 1)2, 2(z − 1)2, v(z − 1)2⟩, where θ0(z) = θ1(z) = θ2(z) = (z − 1)2.

However, as an ideal, C yields the following as possible constructions:

⟨(z − 1)2, 0⟩, ⟨(z − 1)2 + 2(z − 1)2, 0⟩, ⟨(z − 1)2 + 2(z − 1)3, 0⟩,

and ⟨(z − 1)2 + 2(z − 1)3 + 2(z − 1)2, 0⟩.

Thus, the construction obtained above is not unique in general.

(2) Let C2 be the ideal generated by (z − 1)3. Theorem 4 gives the representation as

C2 =
〈〈

(z − 1)3, 2(z − 1)2, v(z − 1)3〉〉,
θ0(z) = (z − 1)3 = θ2(z), θ1(z) = (z − 1)2,

while the ordinary representation will be ⟨(z − 1)3⟩. From the last representation, we see that the
ideal is generated by one element. However, we cannot immediately know all the deg(θ0), deg(θ1),
and deg(θ2) of the ideal from its algebraic structure, whereas in the Representation (A), we know
all the degrees of θ0, θ1, and θ2.

Now, we find the duals of C1 and C2 :

C⊥1 = ⟨(z − 1)2, 2(z − 1)2, v(z − 1)2⟩, C⊥2 = ⟨(z − 1)2, 2(z − 1), v(z − 1)⟩.

We note that C1 is a self-dual code over GR(4,m)[v].
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Example 2. After calculations, the polynomials θ⊥0 and θ⊥1 in representation of C⊥ in Theorem 5 take
the forms in some cases where b = 0, 1 and a = ps, ps − 1, ps − 2, ps − 3 (Table 2),

θ⊥0 (z) =

0, if b = 0,
(−1)a+1θ0,0, if b = 1,

θ⊥1 (z) =



0, if a = ps,

(−1)3+t1θ1,0, if a = ps − 1,
(−1)2+t1θ1,0 +

(
(−1)2+t1(1 + d − t1)θ1,0 + (−1)3+t1θ1,1

)
(z − 1), if a = ps − 2,

(−1)1+t1θ1,0 +
(
(−1)1+t1(1 + d − t1)θ1,0 + (−1)2+t1θ1,1

)
(z − 1),

+
(
(−1)1+t1 (d−t1)(d−t1−1)

2 θ1,0 + (−1)2+t1(d − t1 − 1)θ1,1, if a = ps − 3,
+(−1)3+t1θ1,2

)
(z − 1)2.

Table 2. Cyclic codes and their dual codes over R.

Cyclic Code C Dual Code C⊥

⟨1, 3, v⟩ ⟨(z − 1)3, 3, v(z − 1)3⟩

⟨(z − 1), 3, v⟩ ⟨(z − 1)3, 3, v(z − 1)2⟩

⟨(z − 1) + vθ1,0, 3 + vθ2,0v(z − 1)⟩ ⟨(z − 1)3 + vθ1,0, 3, v(z − 1)2⟩

⟨(z − 1) + 3θ0,0, 3(z − 1), v⟩ ⟨(z − 1)3 − 3θ0,0, 3, v(z − 1)2⟩

⟨(z − 1) + 3θ0,0 + vθ1,0, 3(z − 1) + vθ2,0, v(z − 1)⟩ ⟨(z − 1)2 − 3θ0,0 + vθ1,0, 3(z − 1), v(z − 1)2⟩

⟨(z − 1)2, 3, v⟩ ⟨(z − 1)3, 3, v(z − 1)⟩

⟨(z − 1)2 + vθ1,0, 3 + vθ2,0, v(z − 1)⟩ ⟨(z − 1)3 + vθ1,0, 3, v(z − 1)⟩

⟨(z − 1)2 + v(θ1,0 + θ1,1(z − 1)), 3 + v(θ2,0 + θ2,1 ⟨(z − 1)3 + vθ1,0, 3(z − 1), v(z − 1)⟩

(z − 1)), v(z − 1)2⟩

⟨(z − 1)2 + 3θ0,0, 3(z − 1), v⟩ ⟨(z − 1)3 − 3θ1,0, 3(z − 1), v(z − 1)⟩

⟨(z − 1)2 + 3θ0,0 + vθ1,0, 3(z − 1) + vθ2,0, v(z − 1)⟩ ⟨(z − 1)2 − 3θ1,0 + vθ1,0, 3(z − 1), v(z − 1)⟩

⟨(z − 1)2 + 3θ0,0 + v(θ1,0 + θ1,1(z − 1)), 3(z − 1)+ ⟨(z − 1)2 − 3θ1,0 + vθ1,0, 3(z − 1), v(z − 1)⟩

v(θ2,0 + θ2,1(z − 1)), v(z − 1)2⟩

⟨(z − 1)3, 3(z − 1)b + v(z − 1)t2θ2(z), v(z − 1)c⟩ ⟨(z − 1)3−d, 3(z − 1), v⟩

Example 3. Let R1 = GR(32, 1)[v] and v2 = 3v = 0.We investigate cyclic codes of length 3 over R1. In
particular, we list all cyclic codes and their duals.

Example 4. We illustrate the application of Theorem 13 by computing the number of cyclic
self-orthogonal codes over R = GR(33, 3)[v]/⟨v2 − 32α, 3v⟩ for parameters (n, p,m) = (2, 3, 3).

(1) Factorization. Over F27, the polynomial z2 − 1 decomposes as

z2 − 1 = (z − 1)(z + 1).
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Both factors are irreducible and self-reciprocal up to a unit, since (z− 1)∗(z) = −z+ 1 ∼ z− 1 and
(z + 1)∗(z) = z + 1. Hence, e1 = 2, e2 = 0, and k = 0.

(2) Construction of Q. As all irreducible factors are self-reciprocal, the defining condition in
Theorem 13 reduces to

z2 − 1 | θ0(z) | z2 − 1,

so that Q = { z2 − 1 }.

(3) Computation of L. For θ0(z) = z2 − 1, we have θ∗0(z) = z2 − 1, and L = z2−1
θ∗0(z) = 1. Consequently,

the formula in Theorem 13 simplifies to

Nself-orth =
∑

z2−1
θ∗0(z) |θ2(z)θ0(z)

ℵ0,

where
ℵ0 =

∑
z2−1
θ∗0(z) |θ1(z)θ0(z)

(33) deg(θ2(z))−deg
(

gcd(θ2(z),θ1(z))
)
.

Because the divisibility conditions are automatically satisfied, the summations extend over all
divisors of z2 − 1.

(4) Evaluation of the summation. The divisors of z2 − 1 are 1, z − 1, z + 1, and z2 − 1. For each
ordered pair (θ1(z), θ2(z)), we compute

(33) deg(θ2)−deg(gcd(θ2(z),θ1(z))) = 27 deg(θ2(z))−deg(gcd(θ2(z),θ1(z))).

The resulting values are summarized as follows:

θ2(z) = 1 :
∑
θ1(z) 270 = 4,

θ2(z) = z − 1 : 27 + 1 + 27 + 1 = 56,

θ2(z) = z + 1 : 56,

θ2(z) = z2 − 1 : 272 + 27 + 27 + 1 = 784.

Thus, Nself-orth = 4 + 56 + 56 + 784 = 900.

(5) Result. Since |Q| = 1, the total number of cyclic self-orthogonal codes over R for
(n, p,m) = (2, 3, 3) is Nself-orth = 900. This computation verifies the consistency of Theorem 13
and demonstrates how the mass formula systematically enumerates cyclic self-orthogonal codes
via the factorization of zn − 1 and the interplay of divisor degrees in Fpm[z] (Figure 2 (a)).

Example 5. Tables 3 and 4 list the total number of LCD codes over R for various lengths
n = 9, 15, 10, 14, 13, 8, 12, 6, 21, 24, 18 with primes p = 3, 7, 13, and 11.
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Table 3. Number of cyclic LCD codes over R for various parameters (n, p,m).

Parameters Factorization e1 e2 Number of
(n, p,m) of zn − 1 LCD codes
(14, 3, 1) (z − 1)(z + 1)(z6 + z5 + z4 + z3 + z2 + z + 1) 4 0 16

(z6 + 2z5 + z4 + 2z3 + z2 + 2z + 1)
(11, 5, 2) (z + 4)(z5 + 2z4 + 4z3 + z2 + z + 4) 1 2 4

(z5 + 4z4 + 4z3 + z2 + 3z + 4)
(10, 3, 1) (z − 1)(z + 1)(z4 + z3 + z2 + z + 1) 4 0 16

(z4 + 2z3 + z2 + 2z + 1)

Table 4. Number of cyclic LCD codes over R for various parameters (n, p,m) (continued).

Parameters Factorization e1 e2 Number of
(n, p,m) of zn − 1 LCD codes
(24, 11, 3) (z+ 1)(z+ 10)(z2 + 1)(z2 + z+ 1)(z2 + 2z+ 10) 7 6 1024

(z2 + 8z + 10)(z2 + 5z + 1)(z2 + 5z + 10)(z2 +

10z + 1)
(z2 + 9z + 10)(z2 + 3z + 10)(z2 + 6z + 1)(z2 +

6z + 10)
(13, 5, 1) (z + 4)(z4 + z3 + 4z2 + z + 1) 4 0 16

(z4 + 2z3 + z2 + 2z + 1)
(z4 + 3z3 + 3z + 1)

(12, 13, 2) (z + 1)(z + 2)(z + 4)(z + 8)(z + 3)(z + 6) 2 10 128
(z + 12)(z + 11)(z + 9)(z + 5)(z + 10)(z + 7)

(8, 5, 1) (z − 1)(z + 1)(z − 2)(z + 2)(z2 + 2)(z2 + 3) 2 4 16

(21, 13, 3) (z+ 4)(z+ 12)(z+ 10)(z2 + z+ 3)(z2 + 2z+ 3) 4 8 256
(z2+2z+9)(z2+3z+1)(z2+6z+1)(z2+6z+3)
(z2 + 9z + 9)(z2 + 5z + 1)(z2 + 5z + 9)

(12, 7, 1) (z−1)(z+1)(z−3)(z+3)(z−2)(z+2)(z2+1) 3 6 64
(z2 + 2)(z2 + 4)

(18, 7, 2) (z + 1)(z + 3)(z + 2)(z + 6)(z + 4)(z + 5) 2 8 64
(z3 + 3)(z3 + 2)(z3 + 4)(z3 + 5)

(9, 7, 1) (z − 1)(z − 3)(z − 5)(z3 + 3)(z3 + 5) 1 4 8

(6, 11, 1) (z − 1)(z + 1)(z2 + z + 1)(z2 + 10z + 1) 4 0 16

(15, 11, 1) (z − 2)(z − 6)(z − 7)(z − 8)(z − 10)(z2 + z + 1) 2 8 64
(z2+3z+9)(z2+4z+5)(z2+5z+3)(z2+9z+4)

(12, 13, 3) (z + 1)(z + 2)(z + 4)(z + 8)(z + 3)(z + 6) 2 10 128
(z + 12)(z + 11)(z + 9)(z + 5)(z + 10)(z + 7)
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Input: Ring R =

GR(p3,m)[v]/⟨v2 − p2α, pv⟩

Factorization
Factor zn − 1 over Fpm

into irreducibles αi(z)

Reciprocal Analysis
Identify pairs: α2i−1 ∼ α

∗
2i

Count self-reciprocal factors

Set Construction
Build Q = {θ0(z) :

α2k+1 · · ·αt | θ0(z) | zn − 1}

Initialization
For each θ0 ∈ Q:

Compute L = (zn − 1)/θ∗0

Outer Sum
Sum over θ2 satisfying:

L | θ2θ0 and θ2 | (zn − 1)/θ0

Inner Sum
For each θ2, sum over θ1:

L | θ1θ0 and θ1 | (zn − 1)/θ0

Weight Computation
Compute: (pm)deg(θ2)−deg(gcd(θ1 ,θ2))

Output: Total count of
cyclic self-orthogonal codes over R

(a) Self-orthogonal codes enumeration

Input: Ring R =

GR(p3,m)[v]/⟨v2 − p2α, pv⟩

Factorization
Factor zn − 1 over Fpm

into irreducibles αi(z)

Reciprocal Computation
Compute α∗i (z) = zdeg(αi)αi(1/z)

for each irreducible factor

Classification
e1 = # self-reciprocal factors

e2 = # non-self-reciprocal factors

Algebraic Structure
Analyze generator polynomials

from reciprocal relationships

Counting Formula
Apply: NLCD = 2e1+e2/2

using classification parameters

Verification
Compare with explicit counts
for small parameters (Table 3)

Extension
Apply to various (n, p,m)

using computational results

Output: Complete classification
and enumeration of LCD codes

(b) LCD codes enumeration

Figure 2. Enumeration procedures for (a) cyclic self-orthogonal codes using the mass
formula (Theorem 13) and (b) cyclic LCD codes using the classification formula (Corollary
3), over the ring R.

Remark 1. The computation in Appendix A provides a symbolic verification of the factorization
patterns that underpin our enumeration formula for cyclic LCD codes. This exercise highlights a key
conceptual distinction from earlier works, particularly that of [25]. While their analysis relies on
polynomial factorizations over the base field Fp, our investigation is conducted within the more
structurally intricate setting of the Galois ring GR(p3,m).

This shift in the algebraic framework is significant. By working over the extension field Fpm as the
residue field, our approach captures a richer and more refined factorization of zn − 1, which directly
determines the structure and enumeration of the corresponding cyclic codes. Moreover, by formulating
our results over a local Frobenius non-chain ring of higher characteristic p3 endowed with a specific
nilpotent structure, we demonstrate that the principles of code enumeration can be systematically
extended beyond simpler, non-Frobenius or chain-ring contexts.

Consequently, the enumeration formulas derived in this work are not merely analogous to those
in [25]; they constitute a substantive generalization to a broader and more algebraically complex
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class of rings. This advancement broadens the scope of enumerative coding theory and deepens our
understanding of code structures over mixed-characteristic, non-chain rings.

6. Conclusions

In this work, we have investigated cyclic, self-dual, and linear complementary dual (LCD) codes of
length n over the local Frobenius non-chain ring

R = GR(p3,m)[v], v2 = p2α, α ∈ F∗pm , pv = 0. (6.1)

We first established a complete algebraic framework describing the structure of cyclic codes of
arbitrary length over R. For the case gcd(n, p) = 1, we derived explicit forms of generator
polynomials and characterized the corresponding ideals in R[z]

⟨zn−1⟩ . Building on this foundation, we
constructed and enumerated both self-dual and LCD cyclic codes, providing necessary and sufficient
conditions for their existence. The resulting mass formulas and enumeration theorems extend known
results for chain and Galois rings to a broader class of non-chain Frobenius rings.

Additionally, we verified the enumeration formulas through explicit examples and computational
cases for small parameters, confirming the validity of Theorem 13. These examples also highlight the
combinatorial growth of self-orthogonal code families, emphasizing the structural richness of cyclic
codes over R.

Our findings contribute to a deeper understanding of the algebraic structure and enumeration of
codes over non-chain local rings, bridging the gap between theoretical ring properties and their
coding-theoretic applications. Future research may extend these results to analyze the Gray images
and minimum distance properties of the constructed codes, explore new classes of double circulant
and quasi-cyclic codes over R, and develop algorithmic constructions for optimal and quantum codes
derived from this framework.
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A. Verification of polynomial factorizations

This appendix provides computational verification of the polynomial factorizations reported in
Table 3 using Magma. We illustrate the procedure with one representative example; the remaining
cases were confirmed analogously. All computations were carried out in Magma on a standard
finite-field environment.
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Example: Verification for (n, p,m) = (14, 3, 1)

The factorization of z14 − 1 over F3 in Table 3 is

z14 − 1 = (z − 1)(z + 1)(z6 + z5 + z4 + z3 + z2 + z + 1)(z6 − z5 + z4 − z3 + z2 − z + 1). (A.1)

The following Magma code verifies this result:

> p := 3; n := 14;

> F := GF(p);

> P<z> := PolynomialRing(F);

> Factorization(zˆn - 1);

The computation returns:

[

<z + 1, 1>,

<z + 2, 1>,

<zˆ6 + zˆ5 + zˆ4 + zˆ3 + zˆ2 + z + 1, 1>,

<zˆ6 + 2*zˆ5 + zˆ4 + 2*zˆ3 + zˆ2 + 2*z + 1, 1>

]

This is algebraically equivalent to the factorization shown in Table 3, since, (z + 2) = (z − 1) in F3.

Hence, we obtain e1 = 4 and e2 = 0, giving 2 e1+
e2
2 = 16 cyclic LCD codes, as reported in Table 3.

All remaining factorizations in Tables 3 and 4 were verified in the same way using Figure 2 (b).
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