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Abstract: Let p be a prime and m a positive integer. This paper investigates cyclic and self-dual codes
of length n over the local Frobenius non-chain ring R = GR(p?, m)[v], with v* = p’a, « € F., and
pv = 0. First, we characterize the algebraic structure of cyclic codes of arbitrary length over R. When
gcd(n, p) = 1, explicit generator polynomials are determined, and the corresponding dual and self-
orthogonal structures are derived. A key result of this study is the proof that self-dual cyclic codes do
not exist over R. In addition, the enumeration formula for cyclic LCD codes is given by 2¢+%  Several
examples and tables are provided to illustrate the theoretical findings and the derived mass formulas
for cyclic self-orthogonal and LCD codes.
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1. Introduction

Cyclic codes are one of the first categories of block codes and have been thoroughly examined over
the last sixty years [1]. During this period, research has shown their substantial uses in mathematics
and other disciplines. A substantial amount of study on cyclic codes and their generators has been
undertaken with the presumption that the ring R is a Frobenius ring, a category that includes Galois
rings and finite chain rings, among others. Hammons et al. [2] performed seminal research on cyclic
codes over F, and Z,. Gradually, the emphasis broadened to encompass a wider variety of ring classes.
The authors of [3] and [4] investigated (self-dual) cyclic codes over Z,.. Bonnecaze and Udaya [5]
examined such codes over %[2‘;] , whereas Dinh and L6pez-Permouth [6] conducted an extensive analysis
of these codes over finite chain rings.

Yildiz and Karadeniz [7] furthered this research by examining cyclic codes within the ring

C . : .o i . F
2wl Cyohich is a Frobenius non-chain ring. Singh and Kewat [8] analyzed cyclic codes over ”&"] ,
(u? v? uv—vu) (u*)
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obtaining findings on the minimum Hamming distance and minimal generating sets for these codes.

Recently, Kim and Lee [9] delineated the generators of all cyclic self-dual codes over Z{i[f;] of

length 2, therefore augmenting the existing literature on self-dual codes.

Self-dual codes and self-orthogonal codes have garnered significant interest from researchers
because of their relationships with various mathematical domains, including invariant theory [10],
among others. Since the 1970s, extensive study has been conducted on the enumeration of self-dual
and self-orthogonal codes (see [11-13]). Linear complementary dual (LCD) codes were initially
proposed by Massey in 1992 [14]. These codes have attracted considerable interest owing to their
multiple benefits in coding theory and cryptography [15-17]. A significant application of LCD codes
is their capacity to offer protection against Side-Channel Attacks (SCAs) and Fault-Injection Attacks
(FIAs) in cryptographic systems (see [18]).

Recent years have seen substantial research into the features and architectures of LCD codes
across multiple algebraic structures, and the investigation of such codes over non-chain Frobenius
rings offers greater structural flexibility and richer enumeration possibilities compared with traditional
chain rings. = Moreover, these rings naturally support Calderbank—Shor-Steane (CSS) type
constructions, which combine pairs of classical linear codes to produce quantum error-correcting
codes. This connection, as also demonstrated in [19, 20], highlights how the algebraic framework of
non-chain rings contributes to the development of superior quantum and cryptographic code families;
for more on LCD over finite rings, see [21-23]. Considering the current literature on non-chain
rings [24, 25], it is reasonable to broaden these studies to encompass other semi-local and local
non-chain rings.

Building on the existing literature on non-chain rings [26-28], this work extends current

investigations to a broader class of local non-chain rings. Motivated by these prior studies, we focus
GR(p* m)v]

. . 2 _ 2
2’ characterized by the relations v = p“a,

on the finite commutative local non-chain ring R =
p® =0, and pv = 0.

Our contribution lies in extending and refining structural and enumerative techniques for cyclic,
LCD, and self-dual codes beyond traditional chain and prime-characteristic settings. By adapting these
methods to the mixed and higher-characteristic framework of the local Frobenius non-chain ring R, we
uncover new algebraic interactions between its nilpotent and unit components. This approach not only
generalizes classical results from simpler base fields, but also establishes a unified methodology for
analyzing and enumerating families of cyclic codes over more intricate ring environments, revealing
both theoretical depth and practical potential.

We begin by characterizing all ideals of R. Subsequently, we describe diverse constructions of
cyclic codes over R, = GR((:;_;:;M (Theorem 5) for any finite length n = p°. We then derive the
generators of cyclic codes over R (Theorem 11) and present additional results for the case
gcd(n, p) = 1 (Theorem 12). Furthermore, we establish necessary and sufficient conditions for the
existence of self-dual and linear complementary dual (LCD) codes over R. We also enumerate
self-orthogonal codes of length n over R with gcd(n, p) = 1, along with LCD codes of identical
length.  Finally, we demonstrate that these classes of codes offer enumerative advantages
(Theorem 13). The ring R has attracted significant attention, with several categories of codes already
examined in prior works [24,26,29, 30].

This paper is organized as follows: Section 2 presents essential definitions and Gray maps. Section 3
GR(p> m)v]

addresses the structure and enumeration of the ring )’

Section 4 presents an analysis of the
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structure of cyclic codes over R of length n and provides an enumeration of self-dual and LCD codes.
We first examine the ring R, = GR(p?,m) + vGR(p?*, m) with the condition v* = pv = 0, focusing
on cyclic codes, self-dual codes, and LCD codes defined over this structure. We then present their
structures over R for general n, with particular emphasis on the case where gcd(n, p) = 1. Section 5
provides several significant examples of cyclic codes, self-dual codes, and LCD codes over R, which
are derived from those over F .

2. Preliminaries

Let p be a prime number and m a positive integer. Throughout this work, we consider the Galois
ring GR(p?, m) as the basic structure. We extend it by adjoining an indeterminate v subject to the
relations v? = p?a and pv = 0, which gives rise to the ring

GR(p’,m)[v]

R=—"> 7"
(v —ap?, pv)

2.1

It was established in [29] that R is a local but non-chain ring, and its unique maximal ideal is generated
by pandv,i.e., M = (p,v). Every element of GR(p?, m) can be written in p-adic form as B+ pB; + p*Ba,
where each coefficient belongs to the set I'(z). Consequently, every element of R can be uniquely
expressed as y = yo + vy, with g,y € GR(p?, m), so that R is isomorphic to GR(p*, m) + vGR(p*, m).
The group of units of R contains (p™ — 1)p*" elements, while the remaining p*" — (p™ — 1)p*"
elements are non-units. An element y = vy, + vy, is invertible in R exactly when both vy, and y, are
nonzero in GR(p?, m). If £ is a primitive element of the multiplicative group F . of order p™ — 1, then
each unit u of R can be expressed in the form u = w(1 + pBy + p*B1 +vB3) with w € I'*(m) and B; € T'(m).
Here, we denote I'(m) = {0, 1,&,&2,..., &2}, T = (&4 1 1<i< # — 1}, which corresponds to the
set of nonsquares in I™*(m), and I', = {£¥ : 1 <i < L{l — 1}, which corresponds to the set of squares.

A linear code of length n over R is defined as an R-submodule of R". In this setting, codewords are
vectors of the form (¢, ¢y, ..., c,—1) with entries from R. The cyclic shift operator 7 on R" is defined
by m(co, €1y -+ Cue1) = (Cn=1,C0s - - - , Cu—2). A code C is called cyclic if 7(C) = C. More generally, if the
length of a code is mt, then C is said to be quasi-cyclic of index t when 7'?(C) = C, where ¥ denotes
the #-fold application of 7. The smallest such 7 is the index of the code, and in particular, cyclic codes
are quasi-cyclic codes of index one. Finally, every codeword (c, ¢y, ..., c,—1) can be associated with
the polynomial co + ¢1z+ -+ - + ¢,_12" ' in R(R, n) = <Z1§[_Z]1>, which shows that cyclic codes of length n
correspond to ideals of R(R, n) (cf. [30]).

We consider the module R" endowed with the standard Euclidean inner product. For a code C € R"
of length n, its dual is defined as C* = {y € R" : ¢-y = O forallc € C}. A code is called self-
orthogonal if C C C*, and self-dual if C = C*. Moreover, C is said to be a linear complementary
dual (LCD) code if C N C+ = {0}. For a polynomial 6(z) € F,x[z], the reciprocal polynomial is
given by 6*(z) = zdeg“’)e(%). It is straightforward to check that for any 6(z), %(z) € Fm[z], one has

(B(z)(2))" = 6°(z) 9" (). This identity also holds in the quotient ring R(F,»,n) = i’i"_[fi, provided that
deg(69) < n. Now, let C be a cyclic code of length n over R, and let I denote the ideal of R(R,n)

corresponding to C. Then, the dual code C* is associated with the ideal { 6*(z) : 6(z) € Ann(]) }.
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3. Classification and ideals of the ring R

Recall that an element x € R is called a zero-divisor if there exists a nonzero element y € R such
that xy = 0. An element of R that is not a zero-divisor is said to be regular. A finite commutative ring
R is referred to as a Frobenius ring if it is an injective R-module. Equivalently, this condition holds
when Ann(M) = F,», where I denotes the Jacobson radical of R. In what follows, we focus on the ring
R = %, which is a finite ring of order p*" with residue field F = F,». The structural properties
of this ring will be established, as they play a crucial role in the subsequent developments.

Theorem 1. The ring R is a Frobenius local non-chain ring of order p*".

Proof. First, observe that the order of R follows from R = GR(p®,m) + vGR(p?, m) together with the
relation pv = 0. It is then not difficult to verify that M = (p,v), which in turn gives R/M = Fn.
Hence, R is a local but non-chain ring. Furthermore, since the element p2 annihilates M = (p,v),
particularly because pv = 0 and p® = 0, we deduce that p> M = 0, and thus p*> € Ann(M). Now,
suppose z € Ann(M) with z # 0. Then, zM = 0, which in particular implies zv = 0. Consequently,
z € {p). Moreover, since zp = 0, it follows that z € (p?). Therefore, Ann(M) = (p?), and hence R is a
Frobenius ring. O

GR(p> . m)[v]

An exhaustive characterization of all rings -
(v?=p*a,pv)

is given by Theorem 2.

Theorem 2. The classification of R is given in Table 1.

Table 1. Classes of R.

p#2 p=2
GR(p* m)[v] GR(8,m)[v]
(v2-p2a,pv) (v2—4,2v)
GR( p3 ,m)[v]

(2—p?.pv)

Proof. Elements of R are y, + v,v, where v, € GR(p®,m) and y; € I'(m). As pv = 0, then its minimal
polynomial is g(z) = z> — p*a, where a € I'*(m). Now suppose p = 2. Because gcd(2,2" — 1) = 1, thus

(T(m))* = I'(m), and hence there is unique class of such rings, represented by Gj;i’";g] O

From now on, we assume that p # 2. Consider the usual partition on I'*(m) by I'; and I';. It is worth
noting that |’y |= pT_l =|I'; | . We next proceed with the proof with two cases.

Case a. We show that f’;lf(_‘i z?)p[:; (zﬁ(f ;zm;[vg] are not isomorphic, that is, they are not in the same
class when ¢ € I';. In contrast, suppose that they are isomorphic, and let ¢ be the ismorphism.
Assuming the radical is {p, v, and for some y € I'*(m), set ¢(v) = yv. Note that (¢(v))*> = ¢(+?), and so
(yv)? = ¢(p?¢). This implies that y*v* = p’¢(&), and also y*(p*) = p?°¢(&). Consequently,
P*y? = pPe(é), thus y? = ¢(&). We have ¢(€) = &, because ¢ restricted to I'(m) is a fixed isomorphism.
Furthermore, because p # 2, this contradicts the assumption about &, and thus & # 2. Therefore, the
result follows.

Case b. When a € T';. In such a case, there exists y € I'*(m) such that @ = y?. Observe g(z) =

= pra =2 -py =y ()2 - p*l = ¥’[(y '2)* - p*l. As v is aroot of g(z), then g(v) = 0, and
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hence v — p*a = 0. From the above argument, y*[(y~'v)?> — p?] = 0. Thus, (y"'v)*> — p?> = 0. This
suggests that g(z) can take g(z) = z2 — p*. This ends the argument. To sum up, we have two classes of
such rings that are not isomorphic:

Q, : All rings with associated polynomials g(z) = z* — p*a, where a € T'j;

Q, : All rings with associated polynomials g(z) = z* — p*a, where a € T,.

The first class is represented by
GR(p>,m)[v]

A R Y R (3.1
(v* = p*, pv)
and the second class is represented by
GR(p>,
(p M)[V]. (3.2)
(v? = p2, pv)
Now, every unit u of R is of the form,
u=1vyy+py + pzyz + vy, (3.3)

where y, € I'*(m).

Theorem 3. The ideals of R are given by the following lattice:

(Iy =R
M=<p,v)
/ \
Iy ={v+p) I, =<{p) Iy =(v)
\ /
M2 = (p?)
M =0

Figure 1. Lattice of ideals of R.

Proof. Since every element of a proper ideal of R is of the form py; + p*y, + vy3, where y1,y, and y3
are in I'(m), the equation v? = p*a forces (p?,v) = (p* + v) = (v). Thus, we are left with proper ideals
M, {p), (), {p +v),{p*) and 0. |

4. Various structures of cyclic codes over R

First, we define R(R, n) as { zli[—Z]w' In the subsequent analysis, we examine the fundamental structural

characteristics of ‘R(R, n) along with the generators of its ideals. A prime ideal P in a commutative ring
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R is defined as minimal if the only prime ideal of R that is contained within P is P itself. A commutative
ring where every prime ideal is also a maximal ideal is defined as a zero-dimensional ring, indicating
that it has a Krull dimension of zero. In the context of commutative rings, if a ring R is characterized by
not being zero-dimensional while simultaneously ensuring that every prime ideal within it is classified
as either minimal or maximal, it follows that R is defined to possess a Krull dimension of one. Given
that R possesses a Krull dimension of 0, it can be concluded that R[z] has MR|[z] as its maximal ideal,
which consequently indicates that the dimension of R[z] is 1. Additionally, since 7" — 1 ¢ MR[z], we
can deduce that R(R, n) is a zero-dimensional ring.

Lemma 1. The units of R(R, n) are

Y1(2) + 72(2)p + ¥3@p” + vya(2), (4.1)

where ¥1(2) # 0,7:(2), 73(2), and y4(2) belong 1o R (Ey, n).

Proof. Suppose a(z) is a unit. Then, it can be expressed as

@(z) = 11(2) + p2(2) + P*y3(2) + vya(2), (4.2)

with y1(2), ¥2(2), ¥3(2), v4(z) € R(F,»,n). Since a(z) is a unit, it must be a regular element of ‘R(R, n).
Consequently, y;(z) cannot divide 7" — 1. Indeed, suppose there exists B(z) € R(F,»,n) such that
v1(2)B(z) = 7" — 1. Then, it would follow that B(z)a(z) = 0. If B(z) # 0, this would force a(z) to be
a zero-divisor, contradicting the assumption that a(z) is a unit. Thus, we must have 5(z) = 0, which
implies that deg(y;) = 0 and y,(z) # 0.

Conversely, suppose a(z) = ¥1(2) + 72(2)p + y3(2)p* + vya(z), where ¥1(2),v2(2), ¥3(2), va(2) €
R(F =, n), and assume either that deg(y;(z)) = 0 with y;(z) # 0, or that y;(z) t z* — 1. In either case,
¥1(2) is a regular element of R(F,», n), and therefore a(z) is regular in R(R, n), which means «(z) is a
unit. O

Representation (A)

Let 6;(z) be in R(F,n, n), and suppose that f;(z) = < (‘Z; Also, let I be an ideal in R(R, n)) with the
following form:

I = (6p(2) + p(2) + vPs(2) + p*P3(2),
P01(2) + vI4(2) + p*I95(2),
v0,(2) + p*s(2),
P05(2)).

4.3)

(i) Conditions involving 6,(z) :
01(2) | 6o(2) | (2" — 1), deg(dy) < deg(6y) or ¥(z) = 0,
61(2) | 91(2) bo(2),

(ii) Conditions involving 6,(2) :

AIMS Mathematics Volume 10, Issue 11, 27535-27559.
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0:(2) | 60(2), deg(¥4) < deg(6>) or ¥4(z) = 0,
6:(2) | 94(2) 61 (), deg(11,) < deg( ged(d4, 6,)) or ¥(z) = 0,
0,(2) | 92(2) B0(2)01 (),

(iii) Conditions involving 6;(z) :

0:(2) | 0:(z), i=0,1,2, deg(J¢) < deg(6s) or J¢(z) = 0,

05(2) | 96(2) B5(2), deg(19s) < deg( gcd(ds, 65)) or ¥5(z) = 0,
6:(2) | 95(2) 1(2)62(2), deg(;) < deg( gcd(ds, ¢, 63)) or ¥3(z) = 0,
65(2) | 93(2) Bo(2)01(2)0: ().

Assume 7, : R — GR(p?, m) is the mapping such that 1,(r) = 7 = r (mod v). Since v* = p*a = 0,
it follows that the images of n, lie in R; = %}W
cyclic codes over GR(p?, m). Using this foundation, we explicitly describe the generator structures of
the ideals in R(R, n), which represent cyclic codes over R. Initially, no assumption is made regarding
gcd(n, p) = 1. However, by later imposing this condition, the algebraic structure becomes more

manageable, facilitating the analysis of these codes.

. Our next goal is to identify the generators of

4.1. Constructions of cyclic codes over R,

In this section, we present structural results concerning cyclic codes of length n over

R, = GR(p*, m)[v]
Ty

Theorem 4. Let C be a cyclic code of length n defined over R,. Then, C can be described by a
generating set of the form

C = (00(2) + p31(2) + v(2), pb(2) +vI3(z), vO:(2)). (4.4)
Proof. Define the natural homomorphism
m : R(Ri,n) — R(GR(p*,m), n) (4.5)

by extending linearly as
M (o(2) + py1(2) + vy2(2)) = y0(2) + py1(2), (4.6)

for all yo(2), ¥1(z), ¥2(z) € R(Fn,n). Then, ker(n,) N C forms an R(F,», n)-submodule of vR(F,n,n).
Consequently, there exists some 6,(z) € R(F,», n) with 6,(z) | (" — 1) such that

ker(n,) N C = (v6(2)).
Since 7, is surjective, the image 7,(C) is an ideal of R(GR(p?, m), n). By Theorem 4,

m(C) = (6o(2) + pt(2), pbi(2))
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for some 6y(z), 6:(z), 91(z) € R(F,m,n) satisfying Representation (A). This implies 6,(z) | 6y(z) and
0,(2) | 91(2)00(2), with either deg(¥) < deg(6,) or ¥(z) = 0.
Hence, we can express

C = {(6o(2) + pt1(2) + via(2), pbi(2) + vi}s(2), vOa(2)),

for some ,(z) € R(F,», n), noting that vfy(z) = v(6y(z) + pt1(2)) € ker(np,) N C = (v6,(2)).
Next, define the map 17, : R(Ry,n) = R(E,» + vF,n,n) as

1,(¥0(2) + py1(2) + vy2(2)) = y0(2) + vy2(2),

for each y((z), y1(z), y2(z) € R(F,n, n). A similar argument shows that

1p(C) = (00(z) + vi(2), vI(2)),

where 9(z) = ged(¥3(2), 62(2)), which implies deg(,) < deg(ged(¥3(z), 62(2))).
Finally, it follows that

v33(2)80(2)81(2) = 80(2)81(2)82(2)[00(2) + ph(2) + vih(2)],
and
vi93(2)01(2)02(2) = 60(2)01(2)[p (2) + vI3(2)],
which implies 6,(z) | 92(2)80(2)81(z) and 6,(z) | 93(2):(2).
Thus, with Representation (A) satisfied, we conclude
C = (00(2) + pt1(2) + vih(2), poi(2) +vi3(2), vOa(2)).

O

If we set n = p*, then z— 1 is nilpotent in R(R,, p*), with (z—1)**" = 0. Consequently, every element
of R(Ry, p*) can be expressed as a polynomial in z— 1 with coefficients in F,». In particular, this applies
to the polynomials 6y(z), #:(z), 61(z), and 6,(z). Therefore, we obtain specific structural results for this
case.

Corollary 1. Assume C is a cyclic code in R(Ry, p*). Then, Representation (A) has the form
C=(z= 1)+ plz = 1)*60(2) + v(z = 1)"61(z), pz = 1) + v(z = 1)6:(2), v(z — 1)°), 4.7)

where
0<a<p’
0<b<min{p*,al,a+b<p* and t,+deg(f) <b,
0<c<a and t +deg(0))<c,t,+deg(b,) <c,

0,(z) are either zeros or units.

AIMS Mathematics Volume 10, Issue 11, 27535-27559.
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Assume that y = p or y = v, and that ¢, = b or ¢, = p* — a. For a polynomial

Y@ =xz=1) ) iz = 1) € R(Ri, p"),

i=0
we define its dual as
paly +d—t—j
, a —f - R
)/J_(Z) — Z ( Z(_l)a+t+/+1( . ])yj)(z — 1y,
i=0 \ j=0

where d = min{b, c}.
Moreover, let

(=P ifpl—d < b,
S =
0, otherwise.

We now describe the structure of C* for any cyclic code of length p*® over R;. Note that in R(Ry, p*)
we have

(@1 ==pi- D" 9. (4.8)

where ¥(z) € U(R(R;, p*)) is a unit. This relation implies that
pz—1 =0 and w(iz-1) =0.
Theorem 5. Suppose C is an ideal of R(Ry, p*). Then, its dual C* can be represented as

CH=( - D"+ poz— 1)’ = p(z - 1y =g ()
—v(z = 101 (2), pz = 1) vz = 1P,
where 6 (2) and 6 (z) are the duals of the polynomials 6y(z) and 6,(z), respectively over F .

Proof. Suppose that C is uniquely represented by the polynomial generators of the form g,(z) = (z -
1)+ p(z = 1)°6p(2) + v(z = 1)1601(2), 82(2) = p(z = 1)” + v(z = 1)262(2), and g3(2) = v(z — 1)°. Then, it is
easy to verify the following:

21| (@ = 1™ + poz = 1YY" 9(2) = plz = P " 00(2) - vz = )P (1) | = 0,

Moreover, g,(2)(p(z — 1)) = 0 and g,(2)(v(z — 1)”"~%) = 0. Since Ann(C) is an ideal of R(R;, p*), then
I =(G1(2), G2(2), G5(2)) € Ann(C), where

Gi(2) = (z— )" + ps(z — " ~9(z)

— plz = 1P 0gy(2) — v(z — 1P 10, (2),
Gy(2) = p(z - 1),
G;(2) = v(z - 1)"5_“.
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Observe that 7,(Ann(C)) = Ann(n,(C)), and thus Ann(C) = (/;(2), [x(2), 3(z)). By the nature of the
map 7,, we get such that n,(/;(z)) = 1,(G(z)), more explicitly,

1(2) = (2= D7+ pd(z = D" ~9(z) — p(z — P4 H06(2) + v(z — 1) 0, (2),
L(z) = pz — 1)’ + v(z — 1)205(2),
L(z) =v(z - 1),

where 6] (z) and ,(z) are arbitrary elements of R(R;, p°*) with ¢/ +deg(6}) < ¢’ fori = 1, 2. Compatibility
with the generators g;(z) forces ¢’ = p*—a, 1|, = p’—a—d+1,, 0](z) = —0,(2), and 6(z) = 0. Therefore,
Ann(C) = I. Finally, since b < p*~! and d = min{b, ¢}, then d < b < p*'s. It follows that ip*~! —d > b
for i > 1. Consequently, the dual code C* is given by

C =(z— D"+ psz - 1)~ = p(z — P40t (5)
—v(z = 1Yol (2), p(z — 1P, vz — 1)P 7).
O

We now turn to the characterization of self-dual codes when p # 2. Assume that C is a self-dual
code over R, of length p*. In this situation, it follows that a + ¢ = p*, which further implies b = ¢ since
a+ b < p*. Hence, we have d = ¢ = b. Moreover, if 6 = 0, then we obtain

(=17 = @= 1" = = plz = )" 2 9(2) = 0,
where %(z) € U(R(R,, p*)) is a unit. Therefore, we have the following result.
p g

Theorem 6. Let C be a cyclic code over R, of length p* with 6 = 0. Then, C is self-dual if and only if
it admits the representation

C=(z-D"" p-1 vz=1)").
However, when 6 # 0, the term (z — 1)*”'~2¢ may no longer vanish. Indeed, we have
(2= 172 = = pz = 17 294 (2).
Therefore, for odd primes p and y = 271 it follows that
(= D4 pa= 1P = (@ P pye = D7) =0,

Theorem 7. Assume that p is an odd prime and 6 # 0. A cyclic code C over Ry is self-dual precisely
when it can be represented as

C={z-D""+pyc-1""" pa-1" vz-1)".
Theorem 8. Over Ry, the only LCD cyclic code of length p° is the trivial code C = 0.

Proof. Suppose that C is a cyclic LCD code. Since p(z — 1)” € CNC* and v(z — 1)° € C N C*, where
e = max{c, p* — a}, it follows that b = p* and ¢ = p’. Consequently, we must also have a = p*, which
implies C = 0.

The converse is immediate, as the zero code is trivially LCD. m]
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Theorem 9. Let C be a cyclic code of length p® over R,. Then, C is proper self-orthogonal precisely
when C = 0.

Proof. Suppose that C is a self-orthogonal cyclic code, so that C € C*. From the general structure of
cyclic codes of length p*, we have a + ¢ = p*, which implies that C* = (G(z), p(z — 1), v(z — 1)°),
where G(z) = (z — D"'™ + pd(z — D" ~49(2) — p(z — DP'=06L(2) — v(z — P "H161(2). Let
g(@) = (z— D%+ p(z—1)°0y(z) + v(z— 1)"0,(z) € C*. Then, there exist y;(z), ¥2(z) € R(R;, p*) such that
8(2) = G()+pz—1)’y1(2)+v(z—1)y2(2). Consequently, G(z) = g(z)—p(z—1)"y1(2)—v(z—1)y(2) € C,
which shows that C* € C. Combining this with C C C*, we conclude that C = C*. Therefore, no
non-trivial proper self-orthogonal cyclic code exists.

The converse is immediate since Ann(0) = R(R;, p*). O

4.2. Structures of cyclic codes over R

In this section, we investigate the algebraic description of cyclic codes of length n over R, extending
the framework of cyclic codes over R, established in Theorem 4.

Theorem 10. Every cyclic code of length n over R admits a representation of the form given in
Representation (A).

Proof. Define the homomorphism
m 2 R(Ri,m) — R(GR(p*, m), n)

by setting
(Yo + Py1 +vy2) = Yo + Py,

for all vy, y1,¥2 € R(E,», n). For a cyclic code C over R, the intersection ker(7,) N C is an R(Fm, n)-
submodule contained in vR(F,», n). Hence, there exists some 6,(z) € R(F,»,n) with 6,(2) | (z" — 1)
such that

ker(n,) N C = (v62(2)).

Since 7, is surjective, its image 1,(C) is an ideal of R(GR(p?, m), n), which by Theorem 4 takes the
form (6y(2) + pY(z), pb(2)) for some y(2), 01(z), }1(z) € R(F,n,n) satisfying Representation (A). It
follows that C can be expressed as

C = (O(2) + p1(2) + v2(2), pb(2) +vI4(z), v02(2))- (4.9)

Next, consider a cyclic code C over R of length p* and define the map 7,2 : R(R,n) — R(R,,n) by
1,2(Yo + PY1 + P*y2 +vy3) = yo + py1 + vy for each ¥, 71,72, 73 € R(Fpn, n). Then,

n,2(C) = (0o(2) + pP1(2) + viha(2), pbi(2) + vi¥3(2), v6a(2)),
and hence
C = (60(2) + pt1(2) + v2(2) + P*B3(2), pOI(2) + vDa(2) + P*I5(2), v0x(2) + P Ds(2), PP63(2) ),

for some 63(2), 93(2), ¥5(2), 96(2) € R(Fpm,n). Letting $(z) = ged(P4(2), 63(2)), we obtain 7,2(C) =
(00(2) + pt1(2) + via(2), pbi(2) + via(2), vi(2)) with deg(¥s) < deg(6).
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By Theorem 4, 6,(2) | 6y(2) | 2" — 1, which extends to 6,(z) | 6y(z) and 65(z) | 6y(z) via the map 7,2
Furthermore, 6,(z) | 91(z)8y(z). Considering the map n, + RR,n) - RE» + vE,n,n), a similar
argument  gives  17,(C) = Ho(z) + vih(2), vis(2), v (2)), which  reduces to
1,(C) = (b(2) + va(2), vi(2)) with (z) = ged(Pa(2), 62(2)), implying deg() < degl(ged(ds, 62)).
Similarly, it can be shown that 6,(z) | ¥94(2)0(z) and 6,(z) | ¥2(2)00(2)0:(z). Moreover, the elements
P*93(2)00(2)01(2)6>(2), p*I9s5(2)01(2)02(2), and p*Ie(2)f>(z) all lie in (p*65(z)), which ensures that
0:(z) | 93(2)00(2)01(2)02(z), 65(2) | 95(2)01(2)0>(z), and 65(z) | P6(z)B>(z). This establishes the
representation of any cyclic code over R of length n as claimed. O

4.3. Cyclic codes and their dual codes over R of length n when gcd(n, p) = 1.

In this subsection, we show that if gcd(n, p) = 1, the set of generators of the ideal corresponding
to a cyclic code C over R of length n, as given in Theorem 10, can be expressed in a simplified form.
Utilizing this reduced generating set, we provide an explicit description of the dual code C*+, compute
the cardinality of C, and determine the total number of self-orthogonal codes of length n over R.

For the remainder of this work, unless otherwise specified, the polynomials

60(2), 01(2), 0:(2), 63(2), 01(2), 92(2), 93(2), 94(2), ¥5(2), F6(2)

are assumed to lie in R(F,», n) and to satisfy Representation (A). Throughout, we adopt the standing
assumption that gcd(n, p) = 1.

Lemma 2. Suppose C is a cyclic code over R.

(i) For any y1(2),¥2(2), v3(2), v4(2) € R(Epm,n), we have y1(z) € (y1(2) + py2(2) + p*y3(2) + uys(2)).
Farticularly, it follows that

712), py2(2) + P*y3(2) + uys(2)) = (71(2) + pya(2) + p*y3(2) + uya(2)).
(ii) In R(R, n), we have

(602) + p1(2) + vi(2) + P*93(2),

PO1(2) + vI4(2) + p*Is5(2),
v03(2) + p*I6(2),

P05@)) = (86(2) + po1(2) + via(2) + P I5(2), vE1(2), P05(2)).

Proof. For (i), let 2" — 1 = a(2) - - - au(z) be the prime factorization in F,»[z]. This factorization is

unique up to units, and by Hensel’s lemma, each «;(z) is irreducible in R. As ged(n,p) = 1, 7" -1

has no repeated factors, so @;(z) # «@;(z) for i # j. By the Chinese Remainder Theorem, R (F,n, n) =
Fnldl .

Ry X---XR,, where R; = o s a field. Hence, R(R,n) = [1,(R; + pR; + P*R; + uR;). Now, write

¥i(2) = (Yi1(2)s - - -, Yim(2)) With y;;(2) € R;. If y1;(z) # O, then 4 is a unit of R}, so
2 1-p2
Y1 = i+ P2+ Py +vya)’ viT € nij+ pyaj + PPYaj F vYa)).

If y,; = 0, then clearly y,; € (y1; + py2j + p*y3j + vya)). Therefore, y1(2) € (y1(2) + py2(2) + p*y3(2) +
vY4(2)), and the first statement follows. The second statement is immediate from the first.
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For (i1), all conditions of Representation (A) hold. Since 7" — 1 factors into distinct irreducibles,
gcd(0,(2), 00(z)) = 1, s0 61(z) | D1(z). If deg(d,) > 0 and 9(z) # O, then deg(d;) < deg(6,) by
Theorem 10, a contradiction. Hence, ¢(z) = 0, and similarly when deg(6,) = 0. By (i), we then have

C = (00(2), via(2) + p*D3(2), pb:(2) + va(2) + p*I5(2), v6a2(2) + P*P6(2), P*65(2)).

Since v} (z) + p*¥3(z) € ker(1,) N C = (v0,(2)), it follows that 6,(z) | F»(z) and 6,(z) | ¥3(z). Degree
constraints then force 9,(z) = ¥3(z) = 0. Applying (i) again gives (v6(z) + p*96(2)) = (v6>(2), p*Fs(2)),
which similarly implies #¢(z) = 0. Hence,

C = (00(2) + pbi1(2) + vI4(2) + p*95(2), v2(2), p*65(2)).

Finally, since 65(z) | 6,(z) and v* = p?a with @ # 0, we obtain the simplified representation
C = {60(z) + pb1(2) + v¥4(2), v6r(2)).

O

Lemma 2 implies that every non-principal ideal of ‘R(R,n) can be generated by a set of three
polynomials. Specifically, these generators can be taken as 94(z), and the polynomials 6;(z) for
i =0,1,2, all of which belong to R(F, n).

Corollary 2. Let n be a positive integer such that gcd(n, p) = 1. Then, every ideal C of R(R,n) is
written as
C = (60(2) + pb1(2) + vI4(2), v01(2)), (4.10)

where 6y(2), 0(2), 62(2), 94(z) € R(Fm, n).
In the next theorem, we describe the structure of the duals of cyclic codes under ged(n, p) = 1.

Theorem 11. Let C be a cyclic code over R of length n corresponding to an ideal C = {(0y(2) + pb:(z) +
vi$4(2), v0>(2)) of R(R, n). Then,

n

7" =1
ged(62(2), 01(2))

Ann(C) = < + plo(2), véo<z)> :

Moreover, the ideal

7'=1 N N
< gcd(65(z), 61(z))* + pby(2), vHO(Z)>

corresponds to the dual code C* of C.

Proof. First, note that both 6,(z) and 6,(z) divide 7" — 1 since 7" — 1 is a product of distinct irreducible
polynomials in F,~[z]. By Lemma 2, we have

Ann(C) = (6y(2) + pb)(z) + vi}(2), v05(2)) = (6,(2), pb,(2), v65(2))

for some  6)(z),0(2),0;(z) € R(F,m,n) satisfying Representation (A). Then,

(0y(z) + p8(2) + vI¥(2))vOa(z) = 0, 50 2" — 1 | 6(2)62(2), and thus %(‘Zl) | 6;(z). Similarly, by Lemma 2

(i), v65(2) + vi(z) € C and Gj(z) € Ann(C), which gives Z= | 6)(z) and 5% | )(z). Hence,
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_ "1 Fplzl . . ..
0,(z) = m [(z) for some I(z) € <z,5—1>' Taking into account that 6,(z) also divides 6)(z), we

conclude 6(z) = ml(z). Analogously, ¢/(z) = éo—(_;)l: (z) and ¥)(z) = %l”(z) for some
I'(2),l"(z) € R(Epn,n). Finally, v65(2)0y(z) = 0, thus 05(z) = 6y(2)lx(2) for some 1,(z) € R(F,m,n).

Therefore, by Lemma 2, we obtain

7'—=1
ged(62(2), 61(2)
The reverse inclusion is straightforward to check, so the equality follows.

The statement for the dual code C* is an immediate consequence of the above and the discussion
preceding Lemma 2. O

Ann(C) C < + pbo(2), Vé0(2)>-

Lemma 3. Let C and C’ be cyclic codes over R of length n such that C C C’, with gcd(n, p) = 1.
Assume that 6y(z), 01(2), 62(2), 05(2), 0,(2), 05(z) € R(Fm, n) satisfy Representation (A), and that

C = (00(2) + pbi(2) + vi4(2), v02(2)),
C' = (6y(2) + pb(2) + vi¥,(2), v05(2)).

Then, the following divisibility relations hold:
00(2) | 60(z),  01(2) 1 01(2), and ged(03(2), ¥4(2) | ged(02(2), P4(2)).

Proof. Since C is contained in C’, we can express 6y(z) as

60(z) = (0)(2) + pb(2) + vi¥y(2))(a1(2) + pba(2) + p*as(z) + vas(z))
+ v05(2)(b1(2) + vb1(2)).

for some a;(z), 62(2), a3(z), as(2), 81(2), g2(z) € R(F,»,n). From this decomposition, it follows
immediately that 6y(z) = 6,(z)a:(z). Similarly, for the p-component, we have

PO1(2) = (0)(2) + pO;(2) + v ¥12) + py2(2) + P*Y3(2) + vya(2))
+ v05(2)(¥5(2) + pYs(2) + PPya(2) + vys(2))

for some y;(z) € R(F,»,n). Comparing the coefficients of p gives 0,(z) = 6,(z)y:(z) + 6,(z)y2(z). Since
6, (z) divides 6)(z), we conclude that ¢|(z) | 6,(z). For the v-component, we find

94(2) = 93(2)y1(2) + 05(2)y3(2) + 65(2)y5(2).

Using the fact that 65(z) | 6;(z) (by part (4) of Theorem 4), it follows that gcd(65(2), 9,(2)) | ¥4(2).
Finally, considering the v-term v6,(z), we can write

v0:(2) = (0h(2) + pb;(2) + vI4(2)(y1(2) + py2(2) + P*¥3(2) + vya(2))
+ v85(2)(a1(2) + paa(z) + pPas(z) + vay(z)).

for some y;(2), @i(z) € R(F,»,n). Comparing the coefficients of v yields 6,(z) = 0,(2)y3(2)+ 9, (2)y1(2)+
0,(z)a(z). By an argument similar to the previous cases, we deduce that gcd(¥)(z), 8;(z)) | 6,(z). Hence,
we conclude 6(2) | o(2), 8;(2) | 61(z), and gcd(5(z), 7(2)) | gcd(6a(z), F4(2)). |
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As a consequence of the earlier results, the generator polynomials for the ideals of R(EF,,n)
corresponding to self-orthogonal and self-dual codes over R can be explicitly described.

Theorem 12. Suppose C is a cyclic code given by C = (0y(z) + p01(2) + vi14(2), v0,(2)). Then,
(i) C is self-orthogonal if and only if
7' =1
ged(62(2), 61(2))*

(i) There do not exist any self-dual cyclic codes over R.

| 6o(2).

Proof. (i) Assume C is self-orthogonal. Hence, Theorem 11 and Lemma 3 imply m | 60(2).

gcd(ez(z) Bl(z)) | 60(2), then it follows that " — 1 —(" = D" | (6o(z) ged(62(2), 61(2))")".

Hence, 7" — 1 | 6;(z) ged(62(2), 6,(2)), and consequently - () | gcd(6,(2), 01(2)). Furthermore from the

Conversely, if

first paragraph of the proof of Theorem 11, we also have ged(61(z), 61(2)) | 94(2), leading to 5= (Z) L 94(2).
Therefore, by Lemma 3, C is self-orthogonal.

(i1) By contradiction, we assume C is self-dual, and let g(z) = gcd(6»(2), 61(z)). Then, by Lemma 2 and
Theorems 10 and 11, we can write

n }’l

-1
)Yz(z) P4(2) = 0,05(2) = ( )Yx(Z)

_ Z
@ = ( RE)

1 }’l
@ ))71(2), 01(2) = (9*( )

for some units y;(z), y2(z), y3(z) in R(E,n, n). It follows that

7'—1 7'—1
q(z) = ged(62(2), 61(2)) = — and  6o(z) = ( )71(2) 6o(2)y1(2).
0p(2) *(2)
Since 6,(z) | 6y(z) by Theorem 10, we must have 2 e_(z) | 6p(z). Given that z* — 1 factors into distinct
irreducible polynomials, this forces 6y(z) = z" — 1, yielding C = (p,v), which is impossible because
pC # 0 and vC # 0. Therefore, we have the result. O

We conclude this section by providing a characterization (Proposition 1) and a mass formula
(Theorem 13) for cyclic LCD codes with ged(n, p) = 1.

4.4. Mass identity of cyclic LCD and self-orthogonal codes over R.

In this section, we let gcd(n, p) = 1. For elements x,y € R, we write y ~ x if x = uy for some unit
u€<R.

Theorem 13. Let a(2), ..., a,(z) be the irreducible factors of 7" — 1 in Fpn[z], where ay;_1(z) ~ a5(2)
for 1 <i <k, and aj(z) are self-reciprocal for 2k + 1 < j < t. Define the set Q of polynomials
00(z) € Fx[z] such that

@241(2) @ (2) | Oo(2) | 2" — 1,
and for each 1 < i < k, at least one of a,;_1(z) or ay(z) divides 6y(z). Then, the total number of cyclic
self-orthogonal codes is given by

Natow= ). | D, Rof, .11)

h@EQ| Z=10:(2)0(2)
E
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where
R, = Z (p)deeteor-deg(ecd@:0.0:).

Z-1
%|91(Z)90(Z)

Proof. For a fixed 6y(z) € Q, it holds that at least one of a;(z) or a;(z) divides 6(z) foreach 1 <i <t
Equivalently, a;(z) | 6o(z) for i > 2k, and for each 1 < i < k, at least one of ay;_ 1(z) or () divides
60(z). Consider the polynomials 6>(z), 61(z) € R(R, n) such that =L = () | 62(2) | 60(2), 5 (Z) | 61(2) | Bp(2).
Using the polynomials 6y(z), 6,(z) and 6,(z), define the ideal I = (90(z) + pb1(2) + vﬂ4(z) v0,(z)). The
total number of such distinct ideals is then given by

I

h@EQ| 2116220 (2)
0 <,

By Theorem 12, each of these ideals corresponds to a self-orthogonal code. O

Proposition 1. Let gcd(n, p) = 1, and let C be a cyclic code over R of length n with corresponding
ideal (6y(z) + pO1(2) +v94(2), v62(2)). Then, C is an LCD code if and only if deg(6y) = deg(6,) = deg(6,)
and 6;(z) | 6p(2).

Proof. Observe that

< 7' -1 -1 7' 1>
s Py V—
gcd(62(2),01(2)) © Gy(z)  65(2)
is the ideal corresponding to C* by Theorem 10. Suppose C N C* = {0}. Since p R ( 00(z) e CNCH

it follows that g R 1)90(z) = 0, so 6;(z) | 6o(z). Hence, if g(z) is an irreducible factor of " — 1 over F»

dividing 6y(z), then g*(z) also divides 6y(z), giving Ho(z) B6,(z) for some nonzero 5 € F,». On the

other hand, (p6,(z) + vﬂ;;(z))%[z; € CNCH 50 0()s= & (Z) = 0 and 6; | 6,(z). Since 6y(z) | 6;(z) and

01(2) | 6p(z) by Representation (A), we deduce deg(6;) = deg(6y). Moreover, because gcd(6,(z), 0;(2)) |
74(z) (see proof of Theorem 11), we must have 94(z) = 0 by Representation (A) Conversely, assume
deg(f)o(z)) = deg(f(z)) = deg(601(2)),%4(z) = 0, and 6;(2) | 6(z). Then, vi—t e 560:(2) € CNCHs

- (Z) 19 (z) = 0, which implies deg(6,) = deg(6,) by the same argument as for 6,(z). Hence, the ideals

correspondlng to C and C* are

(00(2), pOo(2), vOy(z)) and <Zn -1 -1 2= 1>

0@ Pow o

respectively. Suppose I(z) € C N C*. Then, there exist y;(z), a;(z) € R(R,n) for i = 1,2, 3 such that

n n n

-1
Ho(z) ai(2) + pe() ay(2) + o(Z) a3(2).

00(2)y1(2) + pOo(2)y2(2) + vOy(2)y3(2) =

This implies 6y(z2)yi(z) = & ( )a i(z), foreach i = 1,2,3. Since 6y(z) = B6,(z) for some B € Fm, it

follows that 6y(z) | @i(z), and therefore all terms vanish; 6y(2)y1(2) + po(2)y2(z) +vy(2)y3(z) = 0. Thus,
CNC*t ={0},soCisanLCD code. O
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Corollary 3. Suppose gcd(n, p) = 1. Let ey (resp. e;) denote the number of irreducible factors 6(z) of
7" — 1 over F,n satisfying 6(z) = £6"(2) (resp. 6(z) # £6"(z)). Then, the total number of cyclic LCD
codes of length n over R is given by

()
261+ 2.

Proof. According to Proposition 1, a cyclic LCD code of length n over R is uniquely determined by
a choice of polynomial 6y(z) € R(R,n) with the condition that whenever an irreducible divisor of
7" — 1 over F,» divides 6y(z), its reciprocal polynomial must also divide 6y(z). Counting the possible
selections of such factors yields the formula 2¢1+¢2/2, i

Using Theorem 5, we can explicitly compute the number of cyclic LCD codes over R of length n
with ged(n, p) = 1 in the following example.

5. Numerics

This section presents examples that illustrate our findings.

Example 1. We illustrate Representation (A) given in Theorem 4. Let us consider the ideals in
R(R,,4), where R, = SR&mU]

2.pv)

(1) Let C; be the ideal generated by (z — 1)*>. Theorem 4 gives the representation as
Ci={z= 122 =172 vz=1)?%), where 6)(z)=6(z) = 6,(z) = (z—1).
However, as an ideal, C yields the following as possible constructions:
(z=1D%0), (-1 +2z-1%0), (-1>+2@-1),0),

and {((z— 1) +2(z— 1)’ +2(z - 1)*,0).
Thus, the construction obtained above is not unique in general.

(2) Let C, be the ideal generated by (z — 1)°. Theorem 4 gives the representation as

Cr={z-1° 2@z-17 viz-1D%),
60(z) = (z— 1)° = 02(2),61(2) = (z - 1%,

while the ordinary representation will be {(z — 1)*). From the last representation, we see that the
ideal is generated by one element. However, we cannot immediately know all the deg(8,), deg(6,),
and deg(6,) of the ideal from its algebraic structure, whereas in the Representation (A), we know
all the degrees of 0y, 8, and 6,.

Now, we find the duals of C; and C, :
Ci =(z-1D%2z- 1)’ v(z—1%), C; ={z-1*2(z-1),vz—- D).
We note that C, is a self-dual code over GR(4, m)[Vv].
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Example 2. After calculations, the polynomials 93 and Hll in representation of C* in Theorem 5 take
the forms in some cases where b = 0,1 and a = p*, p° — 1, p* — 2, p* — 3 (Table 2),

o) =14 b =0,
’ =)™y, ifb =1,

0,
(=1)**"16, o,

ifa=p’,
ifa:ps_l’

(=120, + (=12 (1 +d = 1)010 + (=10, ) @~ 1), ifa=p -2,

0i(2) = 1 1 2
(=)0 0 + ((—1) (1 +d=1)00+ (=1) +t191,1) (z—-1),
H(-Dn g, o+ (=12 d — 1 — Dby, ifa=p*-3,
+H=1*"16012)(z - 1),
Table 2. Cyclic codes and their dual codes over R.
Cyclic Code C Dual Code C*
<1,3,V> <(Z_1)3»37V(Z_1)3>
(z=1),3,v) (2= 13,z - 1%

((z=1) +vb1 9,3 +vB9v(z — 1))

(= 1) +v610,3,v(z— 1)%)

((z=1)+3600,3(z—1),v)

((z=1)* =3600,3,v(z - 1D?)

<(Z - 1) + 39(),0 + V91’0, 3(2 - 1) + V92,(), V(Z - 1))

((z—= 1% =360 +v010,3(z— 1),v(z - 1)*)

((z-1)%,3,v)

((z-1)3,3,v(z-1))

((z=1)? +v610,3 + vbp,v(z — 1))

(= 1) +v610,3,v(z — 1))

(=1 +v(B19+601,1(z— 1)),3+ (020 + 62
(z-D),vz— 1%

((z=1)° +v610,3(z— 1), v(z - 1))

((z=1)* +3600,3(z = 1),)

(=10 =3610,3(z = 1),v(z - 1))

<(Z - 1)2 + 390’0 + Vel,(), 3(2 - 1) + V92,0, V(Z - 1)>

<(Z - 1)2 - 391,0 + Vel,(), 3(Z - 1), V(Z - 1)>

{(z—=1)%+ 3600 + (010 + 61.1(z— 1)),3(z = D+
V(60 + 02,1 (z — 1)), v(z = 1)%)

((z=1)2 =301+ vb10,3(z = 1), v(z - 1))

(2= 1,3z = 1" + v(z = 1)262(2), v(z — 1))

(2= 13z~ 1),v)

Example 3. Let R, = GR(3%, 1)[v] and v* = 3v = 0. We investigate cyclic codes of length 3 over R, . In
particular, we list all cyclic codes and their duals.

Example 4. We illustrate the application of Theorem 13 by computing the number of cyclic
self-orthogonal codes over R = GR(3%, 3)[v]/(v* — 3%a, 3v) for parameters (n, p,m) = (2,3, 3).

(1) Factorization. Over Fy;, the polynomial 72 — 1 decomposes as

Z—1=(z-DE+D.
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Both factors are irreducible and self-reciprocal up to a unit, since (z—1)(z) = —z+1 ~z—1and
(z+ D*(zx) =z+ 1. Hence, e; =2, ¢, =0, and k = 0.

(2) Construction of Q. As all irreducible factors are self-reciprocal, the defining condition in
Theorem 13 reduces to

Z =116 -1,
sothat @ ={z* —1}.

-1

(3) Computation of L. For 0y(z) = 2> — 1, we have 0,(z) = Z-1,and L = 5o = 1. Consequently,
0
the formula in Theorem 13 simplifies to

N, self-orth = Z NO s

-1
% 62(2)60(2)

where
NO — Z (33) deg(f)z(z))—deg(gcd(é)z(z)ﬂl(z))) .

-1
% 161 (2)00(2)

Because the divisibility conditions are automatically satisfied, the summations extend over all
divisors of 7> — 1.

(4) Evaluation of the summation. The divisors of 7 — 1 are 1, z — 1, z+ 1, and 7> — 1. For each
ordered pair (6,(z2), 62(z)), we compute

(3%) dea(E)~deg(eed@(.01(2)) _ 977 deg(ba(2)-deg(eed@2().01(2))

The resulting values are summarized as follows:

th(z)=1: Zel(z) 27° = 4,
0(z)=z—-1: 27+1+27+1 =256,
O(z)=z+1: 56,

h()=z>—1: 277 +27+27+1 =784

Thus, Neelf-orth = 4+ 56+ 56 + 784 = 900.

(5) Result. Since |Q| = 1, the total number of cyclic self-orthogonal codes over R for
(n, p,m) = (2,3,3) is Neeit-on = 900. This computation verifies the consistency of Theorem 13
and demonstrates how the mass formula systematically enumerates cyclic self-orthogonal codes
via the factorization of 7" — 1 and the interplay of divisor degrees in F,»[z] (Figure 2 (a)).

Example 5. Tables 3 and 4 list the total number of LCD codes over R for various lengths
n=915,10,14,13,8,12,6,21,24, 18 with primes p = 3,7,13, and 11.
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Table 3. Number of cyclic LCD codes over R for various parameters (n, p, m).

Parameters  Factorization e; e, Number of
(n, p,m) of 7" -1 LCD codes
(14,3,1)  (@-DE+DE@+2++2+27+z+1) 4 0 16

B +2P2 + 2 +22 + 2 +27+1)
(11,5,2) @+4@+20+42 +2 +z7+4) 12 4

(2 +4' +42 + 2+ 32+ 4)
(10,3, 1) Z-De+ D +2+2+z+1) 4 0 16

(F+223+22+2z+1)

Table 4. Number of cyclic LCD codes over R for various parameters (n, p, m) (continued).

Parameters Factorization e; e,  Number of
(n, p,m) of 7" —1 LCD codes
(24,11, 3) z+DGE+10) 2+ D@ +z+ D +2z+10) 7 6 1024
(22 + 82+ 10)(% + 5z + 1)(Z% + 52+ 10)(% +
10z+ 1)
(22 + 9z + 10)(% + 3z + 10)(? + 62+ 1)( +
6z + 10)
(13,5, 1) G+ +2+42+2+1) 4 0 16
(z4+2z3+z2+21+ 1)
(F+32+3z+1)
(12, 13,2) Z+DE+2)(z+4)(z+8)(z+3)z+6) 2 10 128
z+12)z+ 1Dz +9)(z+5)(z+ 10)(z+ 7)
8,5, 1) (z— D+ 1)(z=2)(z+2)(2* +2)(* +3) 2 4 16
(21, 13, 3) Z+ D+ 12)z+10)(P +z+3) (> +2z+3) 4 8 256
(22 +2z+9) (2 +3z+ 1)(Z> + 62+ 1)(22 +62+3)
(Z+92+9)(Z* +5z+ ) +52+9)
(12,7, 1) z-DE+D(Ez-3)z+3)(z-2)(@+2)(FP+1) 3 6 64
Z+2)(Z+4)
(18,7,2) (z+ DE+3)(z+2)(z+6)(z+4)(z+)5) 2 8 64
(& + 3@+ +AE +5)
9,7, 1) (z—DEz=-3)z=-59 +3)P +9) 1 4 8
(6,11,1) z-DE+ D@ +z+ D@ +10z+ 1) 4 0 16
(15,11, 1) z-2)(z-6)z-Nz-8)(z-10)(Z+z+1) 2 8 64
(22 +32+9) (22 +42+5) (22 +52+3)(2% +92+4)
(12, 13, 3) z+DE+2)(z+d)(z+8)(z+3)z+6) 2 10 128
z+12)(z+1D)(z+9)(z+5)(z+ 10)(z+7)
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s - M s M
Input: Ring R = Input: Ring R =
GR(p*, m)V]/(v* = p*a, pv) GR(p®, m)[v]/(* — p*a, pv)

\ l J I\ J
s . M s l M
Factorization Factorization
Factor 2" — 1 over Fym Factor 2" — 1 over Fym
into irreducibles @;(z) into irreducibles «;(z)

N ¢ J N l J
( . . M - N

R.eclpr(?cal Analysis Reciprocal Computation
Identify pairs: @1 ~ aj; Compute @(z) = z%¢@a;(1/z)
Count self-reciprocal factors for each irreducible factor
\ ¢ J \ i J
s X N s ~
Set Construction Classification
Build Q = {6)(z) : e; = # self-reciprocal factors
W1y | G0 | 2" = 1) e, = # non-self-reciprocal factors
N ¢ J L Y,
( I h ( ¢ 0
Initialization Algebraic Structure
For each 6y € Q: Analyze generator polynomials
Compute L = (" — 1)/6; from reciprocal relationships
\ ¢ J N ¢ J
s M s M
Outer Sum Counting Formula
Sum over 6, satisfying: Apply: Nicp = 2°1+e2/?
L | 6,60 and 6, | (" — 1)/6, using classification parameters
& ¢ J g J
s M s ¢ M
Inner Sum Verification
For each 6,, sum over 6;: Compare with explicit counts
L | 616 and 6, | (2" — 1)/ for small parameters (Table 3)
I\ J L ¢ J
| ; \
s N i
Weight Computation Extepsnon
Compute: (p")deett)-deg(ecd(®y.6,) Apply to various (n, p, m)
), using computational results
\ J
s N l
Output: Total count of Output: Complete classification
cyclic self-orthogonal codes over R and enumeration of LCD codes

(a) Self-orthogonal codes enumeration (b) LCD codes enumeration

Figure 2. Enumeration procedures for (a) cyclic self-orthogonal codes using the mass
formula (Theorem 13) and (b) cyclic LCD codes using the classification formula (Corollary
3), over the ring R.

Remark 1. The computation in Appendix A provides a symbolic verification of the factorization
patterns that underpin our enumeration formula for cyclic LCD codes. This exercise highlights a key
conceptual distinction from earlier works, particularly that of [25]. While their analysis relies on
polynomial factorizations over the base field F,, our investigation is conducted within the more
structurally intricate setting of the Galois ring GR(p?, m).

This shift in the algebraic framework is significant. By working over the extension field F,» as the
residue field, our approach captures a richer and more refined factorization of 7" — 1, which directly
determines the structure and enumeration of the corresponding cyclic codes. Moreover, by formulating
our results over a local Frobenius non-chain ring of higher characteristic p* endowed with a specific
nilpotent structure, we demonstrate that the principles of code enumeration can be systematically
extended beyond simpler, non-Frobenius or chain-ring contexts.

Consequently, the enumeration formulas derived in this work are not merely analogous to those
in [25]; they constitute a substantive generalization to a broader and more algebraically complex
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class of rings. This advancement broadens the scope of enumerative coding theory and deepens our
understanding of code structures over mixed-characteristic, non-chain rings.

6. Conclusions

In this work, we have investigated cyclic, self-dual, and linear complementary dual (LCD) codes of
length n over the local Frobenius non-chain ring

R=GR(p’,mv], v’ =p’a, @ €F}., pv=0. 6.1)

We first established a complete algebraic framework describing the structure of cyclic codes of
arbitrary length over R. For the case gcd(n,p) = 1, we derived explicit forms of generator
polynomials and characterized the corresponding ideals in (ZR;[_Z]U. Building on this foundation, we
constructed and enumerated both self-dual and LCD cyclic codes, providing necessary and sufficient
conditions for their existence. The resulting mass formulas and enumeration theorems extend known
results for chain and Galois rings to a broader class of non-chain Frobenius rings.

Additionally, we verified the enumeration formulas through explicit examples and computational
cases for small parameters, confirming the validity of Theorem 13. These examples also highlight the
combinatorial growth of self-orthogonal code families, emphasizing the structural richness of cyclic
codes over R.

Our findings contribute to a deeper understanding of the algebraic structure and enumeration of
codes over non-chain local rings, bridging the gap between theoretical ring properties and their
coding-theoretic applications. Future research may extend these results to analyze the Gray images
and minimum distance properties of the constructed codes, explore new classes of double circulant
and quasi-cyclic codes over R, and develop algorithmic constructions for optimal and quantum codes
derived from this framework.
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Verification of polynomial factorizations

This appendix provides computational verification of the polynomial factorizations reported in

Table 3 using Magma. We illustrate the procedure with one representative example; the remaining
cases were confirmed analogously. All computations were carried out in Magma on a standard
finite-field environment.
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Example: Verification for (n, p,m) = (14,3, 1)

The factorization of z'* — 1 over F; in Table 3 is

M1=C-De+ D+ ++ 2+ 2+ 2+ DL -2+ -2+ -z + D).

The following MaGma code verifies this result:

>p :=3; n := 14;

> F 1= GF(p);

> P<z> := PolynomialRing(F);
> Factorization(z'n - 1);

(A.1)

The computation returns:

[
<z + 1, 1>,
<z + 2, 1>,

<z"6+z2°5+24+2z23+z2°2+2z+1, 1>,
<z"6 + 2%*z"5 + 274 + 2%z"3 + z2°2 + 2%z + 1, 1>

]

This is algebraically equivalent to the factorization shown in Table 3, since, (z +2) = (z — 1) in Fs.

e
Hence, we obtain e¢; = 4 and e, = 0, giving 26‘+72 = 16 cyclic LCD codes, as reported in Table 3.
All remaining factorizations in Tables 3 and 4 were verified in the same way using Figure 2 (b).
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