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1. Introduction

The notion of an almost distributive lattice (ADL) was introduced by Swamy and Rao [9] as a
unifying algebraic framework that generalizes both Boolean algebras and distributive lattices. Their
motivation was to capture the essential distributive features found in these classical structures while
extending their applicability to broader algebraic systems, particularly those inspired by ring theory.
In their pioneering work, they also formulated the idea of ideals in ADLs, mirroring the role of ideals
in distributive lattices, and proved that the set of all principal ideals, denoted by G*#(A), forms a
distributive lattice. This significant result laid the groundwork for transferring several key concepts
and theorems from traditional lattice theory into the newly defined class of ADLs.
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Subsequent research enriched the theory by introducing new structural notions. Cornish [2, 3]
developed the ideas of normal lattices and n-normal lattices, contributing to the deeper structural
understanding of distributive systems. Building upon these foundational ideas, Rao and Ravi Kumar
[7] introduced the concept of minimal prime ideals corresponding to a given ideal in an ADL and
explored their algebraic properties. Later, in [8], the same authors proposed the concept of normal
ADLSs and presented several equivalent conditions for an ADL to be normal, expressed through its
annulet structure.

Further progress was made by Kumar et al. [5], who introduced and analyzed the concept of
F—filters in lattices. They established a series of equivalences characterizing when a proper F—filter
becomes a prime F—filter, offering new insights into filter theory.

Motivated by these advancements, the present study extends the investigation of F—filters and their
prime counterparts to the class of almost distributive lattices. We introduce the definitions of F—filters
and prime F—filters in ADLs and derive necessary and sufficient conditions for a proper F—filter to be
prime. It is shown that every maximal F—filter in an ADL is prime. Moreover, for any prime F—filter
U of an ADL A, we demonstrate that OF(U) = {s € A | s € (p, F) for some p € A\ U} is precisely the
intersection of all minimal prime F'—filters contained in U. Finally, the paper presents a characterization
of ADLs in terms of prime and minimal prime F—filters, as well as relative annihilators with respect
to F.

2. Preliminaries

This section compiles essential definitions and key results drawn from [6, 9], which will serve as
foundational tools throughout the remainder of this work.

Definition 2.1. /9] An algebra (A, V, A,0) of type (2,2,0) is said to be an almost distributive lattice
(ADL) with zero if it satisfies the following axioms:

(1) (pV@ ANr=({@pAr)V(gAr);

(2) pA@Vr)=(pAgV(pAT);

(3) PV rg=gq;

(4) (pVa@)Ap=p;

(5) pV(pAg) = p;

(6) OANp =0, forany p,q,r € A.
Example 2.2. Every non-empty set B can be regarded as an ADL as follows. Let sy € B. Define the
binary operations V, \ on B by

s i ti
Gy if s+ 8o . if s+ S

So if s =50.
Then, (B,V, A, 5¢) is an ADL (where s is the zero) and is called a discrete ADL.

Let us define a partial order < on the set A by the condition that also, for all p, g € A, we write p < g
iff p = p A g, or equivalently, p vV g = g.

This relation clearly satisfies the requirements of a partial order on A. As usual, an element m € A
is called maximal if it is a maximal element in the partially ordered set (A, <). That is, for any p € A,
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m < p = m = p. The set of all elements possessing this property is denoted by Myaxeis- According
to Swamy’s findings in [9], it can be observed that an ADL A satisfies almost all the properties of a
distributive lattice except the right distributivity of V over A, commutativity of V, and commutativity
of A. Any one of these properties make an ADL A a distributive lattice. A subset J of A is defined
to be an ideal (or a filter) if it is nonempty and satisfies the following: For all p,q € J and s € A, the
elements p V g and p A s (respectively, p A g and s V p) belong to J. An ideal (or filter) P of A is
called prime if it is proper and whenever two elements s and 7 from A satisfy s A t € P (respectively,
sVt € P), then either s € Port € P. A proper ideal (filter) U of A is said to be maximal if it is not
properly contained in any proper ideal (filter) of A. It can be observed that every maximal ideal (filter)
of A is a prime ideal (filter). For any subset G of A, the smallest ideal containing G is given by (G] :=

(\/ p)As|pieG,seAneN} Let G = {p} be a singleton subset of A. The ideal generated by p is

denoted as (p], which is referred to as a principal ideal. Likewise, for any subset G C A, the smallest
filter containing G is given by

[G)={sV(/\p)|pi€G, seA, neN).

i=1

When G is a singleton {p}, this filter is written as [p) and is referred to as the principal filter of
A. For elements p,g € A, it holds that (p] V (qg] = (p V ¢q] and (p] N (g] = (p A g]. Therefore,
the structure (PZ(A), vV, N), comprising all principal ideals, forms a sublattice of the complete lattice
(3(A), v,N) of all ideals. In parallel, the collection F¥(A) of all filters, under join and meet, forms a
bounded distributive lattice. In the setting of ADLs, it was established in [7] that a proper ideal P is
prime if and only if its complement A \ P is a prime filter. Unless otherwise specified, the notation A
will denote an Almost Distributive Lattice that includes maximal elements, and F will refer to a filter
within A.

3. On prime F—filters

This section presents the notations of F—filters, prime F—filters within an ADL, and examines their
properties. It establishes a set of conditions under which each proper F—filter of an ADL becomes as
prime. Furthermore, it demonstrates that every maximal F—filter in an ADL qualifies as prime.

Definition 3.1. A filter J of A is referred to as an F—filter of A if F is contained in J.
Let us now look at an example of an F—filter in the context of an ADL.

Example 3.2. Consider the set A = {0,p,q,r,d,e, g, f}, with the operations V (join) and N (meet)
defined on A as follows:
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ANlO|plg|lr|d|e|lglf VIiO|plg|lr|d|e|lg|f
0j0j]0]O[0O[O0|O]|0O]O 0|O0|plg|r|d|le|g|f
p|O0lplg|ridielg|f plplp\p|\p|P|P|P|P
q|0|plg|r|d|e|lg|f 914919199 |49|49|49|4
r{0|r|r{r{0|0|r|0 ririplglriplql|lglg
d{0|(d|e|0|d|e|f|f dld|p|p|lpld|d|pl|d
e|l0|d|e|O|d|e|f|f ele|lqlqglqglele|lqgle
g10glg|r|flflelf ARAN AN ARAN AKX ARAR
SIOLALSIO LA SfLS flflpla|lgld|ie|sg|f
Thus, (A,V, A) is an ADL. It is evident that F = {p,q, g} and J = {p,q,r, g} are filters of A with

F C J. Hence, J qualifies as an F—filter of A.
The validity of the following result can be readily verified.

Lemma 3.3. For each non-void subset G of A, the expression [G) V F represents the smallest F—filter
of A that includes G.

We represent [G) V F as GF', meaning G = [G) V F. For the case when G = {p}, we simply denote
this as (p)F instead of {p}F. It is evident that (p) is the smallest F-filter that contains p, which is
referred to as the principal F—filter generated by p.

Lemma 3.4. For any pair of elements s and t in A, the following is true:
(1) (0) =

(2) (m)F = F where m € Muax eirs

(3) s < timplies (1)F C (s)F

(4) (sAnf =" v OF

(5)(svnf =" n@F

(6) (s)f = Fifand only if s € F.

Proof. (1) Now, (0)f =[0)VF =AV F = A.

(2) Now, (m)f = [m) v F = {m} v F C F. Clearly, we have F C (m)F. Therefore, F = (m)".

(3) Let s < t. Then, [f) C [s). Now, (1) = [t) V F C [s) V F = (s)F. Therefore, (t)F C (s)".

(4) Clearly, we have that [sA?) = [s)V[£). Now, (sADF = [sAH)VF = [s)V[OVF = ([s)VF)V([H)VF)) =

() v (1)F. Therefore, (s A ) = (s)F v (1)F.

(5)Since s < svrtandr <tV s, then[sVi) C[s)and [tV s) C [¢). Since [s V) = [tV s), then

[sve) C [s)N[r). Letb € [s)N[¢). Then, b € [s), b € [¢). This gives bVs = b, bVt = b. Now, bA(sVt) =

(bAs)V(bAt)= sVt Thisimplies bV (s V) = b, and hence b € [s V t). Therefore, [s) N [t) C [s V7).

Thus, [sV#) = [s)N[t). Now, (sV) = [sVOVF =([s)N[)VF =(s)VE)N([HVF) =)' n@r.

Hence, (s V H)f = (9)f n (»)F.

(6) Assume that (s)" = F. Then, [s) V F = F. This implies [s) C F, and hence s € F. Conversely,

assume that s € F. Then, [s) € F. This implies that [s) V F C F. As F C [s) V F, it follows that
= [s) V F. Therefore (s)f = F. m]

We represent F(A), F(A), and FF(A) as the collections of all filters, F—filters, and principal
F—filters of A, respectively.
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Theorem 3.5. The collection F(A) constitutes a distributive lattice that is contained in F(A), while
7 (A) serves as a sublattice of FF(A).

Definition 3.6. An F—filter (C) is called proper if C C A. A proper F—filter C is said to be maximal if
there exists no other proper F—filter of A that strictly contains it. Furthermore, a proper F—filter C in
A is called prime if it satisfies the standard definition of primeness in A.

We represent Maxp(A) and Specr(A) as the collections of all maximal F'—filters and prime F—filters
of A, respectively.

Example 3.7. Let Y = {0, p,q,r, 1} represent a distributive lattice, and let D = {0/, p’} denote a
discrete ADL.

It is evident that
A=DxY ={0,0),0,p), 0, q), 0,0, 1), 0,7, p), P9, P, (p', D} is an ADL with
zero element (0,0").

Consider the filters

Fy ={0, p), (0, n), 0, 1),(p",p), (P, D, (p', 1)}
Fr ={(0, 1), (p’, D}

F3 ={(0,9), (0, n, 0, 1),(p", D, (p",q), (P, N}
Fy=A{(p’,p), (0", ), (p’, D}

Fs ={(p’.q),(p’,r),(p’", D}

Fe={(p’,n,(p’, D}
Fr={0,n),(p",n,(p",1),0, 1)}

Here, F1, F5, and F; are Fy—filters. Clearly, F\ and F; are prime F,—filters. But, F; is not a
prime F,—filter, because (p’,q) vV (p’, p) = (p’,r) € F7, while (p’, q),(p’, p) ¢ F7. Here, F, and Fs are
Fe¢—filters. Fs is a prime F¢—filter. But, F,4 is not a prime Fg—filter, because (0',p) vV (p’,q) = (p’,r) €
F4, while (0',p) ¢ Fyand (p’,q) ¢ F4.

Theorem 3.8. For each C € F'(A) of A, the subsequent conditions hold true equivalently:
(1) C € Specr(A)

(2) for every J,Y € FF(A), INYCC=JCCorYCC

(3) for every s,t € A,(s) N cC=seCorteC.

Proof. (1) = (2) : Assume (1). Let J, Y € &F(A) with the condition that J N'Y C C. We want to
show that either / C C or Y C C. Assume, for contradiction, that neither J nor Y is a subset of C.
Therefore, we can select elements s and ¢ such that s € J\ C and ¢ € Y \ C. Given that s is in J and
t is in Y, it follows that the join s V # should belong to the intersection J N ¥, which is contained in C.
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Therefore, sVt € C. However, since s,t ¢ C, we have sVt ¢ C as well, leading to a contradiction. This
contradiction implies that our assumption must be false. Hence, it follows that either / € C or Y C C.

(2) = (3) : Assume (2). Let s, € A such that (s)" N (r)f C P. Since both (s)F and (1)* belong to F'(A),
our assumption implies that either (s) C P or (1) C P. Consequently, this leads to the conclusion that
sePorteP.

(3) = (1) : Assume (3). Let s, € A be such that s V ¢ € C. As C € F'(A), it follows that (s)F N (1) =
(s V Hf € C. Based on this assumption, we conclude that either s € C or t € C. Therefore, we can
deduce that C is prime. O

Theorem 3.9. In an ADL A, each maximal F—filter is prime.

Proof. Let W € Maxp(A). Consider two elements p,q € A such that both p and ¢ are not in W. This
means that we have W v (p)f = A and W Vv (g)F = A. From these relationships, we can deduce that

A=WV (@ n@H=wvpver

If both p vV g € W, then we would conclude that W is equal to A, resulting in a contradiction. Hence,
we must conclude that p vV g ¢ W. This establishes that W is a prime filter.
O

Corollary 3.10. Consider the maximal F—filters Wi,W,,..., W, and W in A. If it is given that
w1 Wi C W, then it can be concluded that there is some j € {1,2,...,n} which satisfies W; C W.

Theorem 3.11. A proper F—filter C in A is prime if and only if the complement A \ C € Specp(A) and
(A\C)NF =0.

Proof. Assume that C is a prime F—filter of A. It follows that A \ C forms a prime ideal in A. We will
demonstrate that (A \ C) N F = (. Suppose, for contradiction, that (A \ C) N F is not empty. This
implies that there exists some element s € (A \ C) N F. Consequently, s belongs to F, and since F' C C,
it must also be true that s € C. This results in a contradiction, as s cannot belong to both C and A \ C.
Thus, we conclude that (A \ C) N F = (. Conversely, let’s assume that A \ C is a prime ideal of A
and that (A \ C) N F = (. Under these conditions, it can be shown that C is indeed a prime filter of A.
Furthermore, since F C A\ (A \ C) = C, we conclude that C € Spec,(A). O

Theorem 3.12. Let J € F'(A), and Q be a non-void subset of A that is closed under vV, which satisfies
J N Q =0.Then, there is F—filter C € Spec(A) that contains J and satisfies C N Q is empty.

Proof. Consider the collection § = {Y | Y € §(A),J C Y,Y N Q = 0}. By applying Zorn’s lemma,
it follows that there is at least one maximal element within §&, which we denote as C. Therefore, C
qualifies as an F—filter of A with the properties that / € C and C N Q = (. Now, consider elements
s,t € A such that s vV r € C. We will show that at least one of s or  must belong to C. Assume, for
contradiction, that neither s nor ¢ is in C.

If this is true, then both C V (s)* and C Vv (¢)!" are F—filters of A, and it holds that C € C V (s)" and
ccCv@®r.

Since C is maximal in &, we conclude that both (C V (s))NQ # 0 and (CV (1)) N Q # 0.
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Next, let a be an element from (C V (5)/) N Q and b be an element from (C Vv (t)7) N Q. Thus, we
have a € (C V (s)), b € (C Vv (t)F), and both a and b are members of Q. Since Q is closed under the
operation V, we can assert that a V b € Q. We can express a V b as follows:

avb={Cvsin{Cvei=cvie n®fy=Ccv(svr.

Since sVt € C,thena V b € C. However, since a V b is also in Q, we reach a contradiction with the
assertion a V b € C N Q, violating the condition that C N Q = (. As a result, we conclude that at least
one of s or t must be in C. Thus, we confirm that C € Spec(A). |

Corollary 3.13. If J € FF(A) with s ¢ J, then there is C € Specy(A) in A such that J is contained in C
and s is not included in C.

Corollary 3.14. For any F—filter J of an ADL A, J = N{C|C is a prime F — filter of A and J C C}.
Corollary 3.15. F can be represented as the intersection of every prime F—filter in A.

Proof. Let C be any prime F—filter of A. It is evident that F C () C. Now, let C be a prime F—filter of
A, and suppose s € () C. If we assume s ¢ F, then there exists a prime ideal W such that s € W and
WNF =0. This leads to s ¢ A\ W and implies that ¥ € A\ W. Thus, A\ W € Spec(A), and since
s ¢ A\ W, we reach a contradiction. Thus, we conclude that s € F, which means (| C C F. Therefore,
we establish that F' = (" C. m|

Theorem 3.16. The equivalence of the following statements holds in an ADL:
(1) Any proper F—filter is prime;

(2) FF(A) is a totally ordered set;

(3) F°F(A) is a totally ordered set.

Proof. (1) = (2) : Assume (1). It is evident that (F'(A), C) forms a poset. Let H and X be two proper
F—filters of A. According to (1), the intersection H N X is prime. Since HN X C Hand HN X C X, it
follows that either H C HNX C X or X € HN X C H. Thus, we conclude that " (A) forms a totally
ordered set.

(2) = (3) : It is straightforward.

(3) = (1) : Assume (3). Suppose J is a proper F—filter of A. We will demonstrate that J € Spec,(A).
Consider the elements s, ¢ € A with (s)" N ()F C J. By our assumption, it follows that either (s) C ()F
or ()f C (s)F. This leads us to conclude that s € () = () N CJorte O =) N C J
Thus, we establish that J € Spec,(A). |

The concept of a relative annihilator is introduced below.

Definition 3.17. For any nonempty subset H of A, define (H,F) ={p € A|aV p € F foralla € H}.
This set is referred as a relative annihilator of H with respect to F.

When H = {a}, we write ({a}, F) as (a, F).

Lemma 3.18. Consider nonempty subsets H and X in A. The statements below are true:
(1)(A,F)=F = ({0}, F)

(2)(F,F)=A

(3) F < (H,F)
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(4) (H,F) € F"(A)

(5)IFHC F iff (H,F) = A

(6) H C X implies (X, F) € (H, F) and (H, F), F) C (X, F), F)
(7)H C (H, F), F)

(8) (H,F),F),F)=(H,F)

(9)(H,X) =([H),F)

(10) N(H;, F) = (U H,, F)

(11) (H.F) C (H N X. (X, F))

(12) If H C X then (H, (X, F)) = (H, F)
(13) (HU X, F) C (H.(X.F)) C (H N X, F)
(14) (H.(H.F)) = (H. F).

Proof. (1). Assume s € (A, F). Then, for any p € A, we have p V s € F. Thus, s V s € F, which leads
to the conclusion that s € F. Therefore, we can assert that (A, F') C F. Next, consider s € F. In this
case, for every p € A, it follows that p v s € F. Consequently, we conclude that s € (A, F), resulting in
F C (A, F). Thus, we establish that (A, F) = F. It is evident that ({0}, F) = F.

(2). Let s € F. Then, for every p € A, we have s vV p € F. Since this holds for all s € F, we deduce
that p € (F, F) for all p € A. Consequently, we can conclude that A C (F, F'), leading to the result that
A= (FF).

(3). Let s € F. Thus, forall r € A, itholds that # V s € F. Thus, forall p e H C A, wehave pV s € F as
well. This means s € (H, F). Therefore, we can conclude that F C (H, F).

(4). Let p,q € (H,F). Foranya € H,wehaveaV pandaVqgin F. Thisleadsto (aV p)A(aV q) € F,
which implies thata V (p A g) € F. Therefore, p A g is an element of (H, F). Now, assume p € (H, F)
and g € A such that p < g. Foreverya € H,wegetaVpe FandaV p <aV q. Since F is a filter and
aV p € F, we can conclude that a V g € F. Hence, ¢ lies in (H, F) for all a € H, showing that (H, F)
forms a filter on A. Since F C (H, F), we get that (H, F) is an F-filter of A.

(5). Assume that (H, F) = A. Then, 0 belongs to (H, F). This means that for any p € H, we have
p=pVO0eF. Hence, p € F for all p € H, which implies F containing H. Conversely, suppose
HC F.Letse A. From afilter F, it gives pV s € F forany p € H C F. Thus, s € (H, F), which leads
to (H,F) = A.

(6). Let us consider the case where H C X. If p € (X, F), then for every b € X, itholds thatb Vv p € F.
Given that H C X, it follows that for all a € H, a vV p € F. This indicates that p belongs to (H, F).
Therefore, we have (X, F') C (H, F), which leads us to conclude that ((H, F), F) C (X, F), F).

(7). Assume s € (H, F). For every a € H, it holds that a V s € F. This implies that s V a € F for all
s € (H, F). Thus, we can conclude that a € ((H, F), F) for each a € H. Therefore, we establish that
HC ((H,F),F).

(8). From (7), we have ((H, F),F),F) € (H, F). Now, suppose s ¢ ((H,F), F), F). This implies
there is p ¢ ((H,F),F) such that p vV s ¢ F. Given that H C ((H, F), F), we conclude that p ¢ H.
Consequently, we find that p V s ¢ F and a ¢ H. Therefore, s ¢ (H, F). This leads to the conclusion
that (H, F) € (((H, F), F), F). Thus, we arrive at the equality ((H, F), F), F) = (H, F).

(9). From H C [H), we can conclude that ([H), F)) C (H, F). Let s be an element of (H, F'). For every
p € H C [H), it follows that p V s € F. This leads us to conclude that s € ([H), F). Thus, we have
(H,F) C ([H), F). Hence, we arrive at the equality (H, F) = ([H), F).
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(10). Since §; € | H; for all i € A, it gives (U H,, F) C (H;, F) for every i € A. This implies that

ien ieA

(U H,, F) C N(H;, F). Let s € ((H;, F). Then, s belongs to (H;, F) for all i € A. This means that

ieA ien ieA

pV s e Fforall pe H; C|JH;. Thus, we conclude that (" (H;, F) C (U H,-,F). Therefore, we arrive

IEA i€A

at the equality "(H, F) =|UJ H;, F|.

ieA icA
(11). As F is a filter in A, it follows that F C (X, F). Consequently, we can deduce that (H, F)
(H,(X, F)). Since HN X C H, we get (H, (X, F)) C (HN X, (X, F)). Thus, we conclude that (H, F)
(HNX, (X, F)).
(12). Let H and X be two non-void subsets of A with H C X. As F C (X, F), it concludes (H, F) C
(H,(X, F)). Now, take s € (H, (X, F)). For every p € H, it follows that p V s € (X, F)). Consequently,
this means p vV s € (H, F) for all p € H. Since p V s belongs to (H, F), we also havea V (p V s) € F
for all a € H, which indicates that p V s € F for every p € H. As a result, we conclude that s € (H, F).
This leads (H, (X, F)) C (H, F). Therefore, we arrive at the final equality (H, (X, F)) = (H, F).
(13). Itis evident that (HU X, F) C (H, F) and F C (X, F). Consequently, we can deduce that (H, F') C
(H, (X, F)). Moreover, since H N X C H, we find that (H, (X, F)) C (H N X, F). Thus, it follows that
(HUX,F)C(H,(X,F))C(HNX,F).
(14). It is evident from (12). O

-
c

Proposition 3.19. The statements below are true for all H, X € &(A):
(I)(H,F)N((H,F),F)=F

(2)(HVX,F)=H,F)n (X, F)
(3)(HNX,F),F)C((H,F),F)n((X,F), F).

Proof. (1). Clearly F € (H,F) N ((H,F),F). Let s € (H,F) N ((H,F),F). Then, s € (H, F) and
se€((H,F),F).Since s € (H, F), F)), we have that p vV s € F, for all p € (H, F). Since s € (H, F), we
get that s € F. Therefore, (H, F) N ((H, F), F) C F. Hence, (H,F)N((H,F),F) = F.

2. AsHCHvVvXand X CHVX,weget(HV X),F)C (H,F)and (HV X),F) C (X, F), which
gives((HV X),F) C(H,F)N(X,F).Let s € (H,F)N(X,F). Then, s € (H,F) and s € (X, F). This
leads to thata Vv s € F foreverya € H,and bV s € F for every b € X. This implies (aV s) A(bV s) € F,
and hence (a Ab)V se F.Sincea€ Handb € X,aANb € HV X. It follows that (a A b) V s € F, for
everya Ab e HV X. This leads to s € (H V X, F). It follows that (H, F) N (X, F) C (H V X, F). This
concludes that (H, F)N (X, F)=(HV X, F).

3). AsHNXCHand HNX C X, it follows that (H, F) C(HN X, F) and (X, F) C (HN X, F). This
leadsto (HNX,F),F) C (H,F),F)and (HNX,F),F) C (X, F), F). Therefore, (HN X, F),F) C
(H,F),F) N ((X, F), F).

O
Theorem 3.20. Assume H C A is non-empty. Then (H, F) = () ([a), F).
acH
Proof. Let s € (\([a), F). Then, s € ([a), F) for alla € H. We get b vV s € F for every b € [a) and

acH
a € H. This gives a V s € F for every a € H. It follows that s € (H, F). Thus, s € (([a), F) C (H, F).
acH
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Let a € H with b € [a). Then, we obtain b V a = b. Now, s € (H,F). This gives a V s € F for
every a € H. This implies bV a vV s € F for every b € [a) C H and for every a € H. From this, we
obtain b V s € F for every b € [a) and a € H. It follows that [a) V s C F for every a € H, which
implies s € ([a), F) for every a € H. Therefore, s € () ([a), F) and hence (H, F) € () ([a), F). Thus,

acH acH
(H,F) = f){([a),F)- o
Corollary 3.21. Consider an element s € A and let H be any subset of A. It follows that (H, [s)) can
be expressed as () (p, s).
peH

Corollary 3.22. Given any elements s and t from A, the following statements hold:
(1) ([s), F) = (s, F)

2)s<t=> (s, F)C(F)

(3)(sAt,F)=(s, F)n(t, F)

(4)((sV1,F),F)=((s,F),F)N(({tF),F)

(5)(s,F)=Ao selF.

Proof. (1). Leta € ([s), F). Then, bV a € F, for all b € [s). Since s € [s), we have s V a € F, and hence
a € (s, F). From this we can conclude that ([s), F) C (s, F). Leta € (s, F). Then, sVa € F. Let b € [s).
Then, bV s =b.Since sVae F,wegetbVa=bVsVacF, andhence bV a € F forall b € [s).
Therefore, a € ([s), F). Thus, (s, F) C ([s), F). Therefore, ([s), F) = (s, F).

(2). Assume that s < t. Leta € (s, F). Then, s Va € F and hence, s V¢V a € F. This impliest Va € F.
Therefore, a € (t, ).

(3). Clearly, we have that (sAt, F) = (tAs, F), and hence (sAt, F) C (s, F)N(t, F). Leta € (s, F)N(t, F).
Then, sVa e FandtVa e F. This impliesa V s,a V t € F, and hence (a V 5) A (a V t) € F. Therefore,
sV (s At)e F. This gives that (s Af) Va € F.Hence, s € (s At,F). Thus, (s At,F) = (s, F) N (¢, F).
4). As(sVt,F)=(Vs,F),itis verified easily.

(5). Assume that (s, F) = A. Then, O € (s, F) and hence sV 0 € F. Therefore s € F. Conversely, assume
that s € F. Then, s V a € F for all a € A. Therefore, a € (s, F) for all a € A. Hence, (s, F) = A. |

Proposition 3.23. For every prime F—filter C of A, p ¢ C = (p,F) C C for any p € A.

Proof. Let C be any prime F—filter A with p ¢ C. Suppose (p, F) € C. Then, there exists an element
a€ (p,F)suchthata ¢ C. Then, pVvVae F C C. Since C is prime and a ¢ C, we get p € C, which is a
contradiction to p ¢ C. Hence, (p, F) C C. O

4. On minimal prime F—filters

In this section, we prove that OF (M) can be expressed as the intersection of all minimal prime
F—filters contained in M, where M is a prime F—filter. Finally, the notation of F—normal ADLs is
introduced and characterized in terms of relative annihilators with respect to a filter F.

The definition is stated as follows.

Definition 4.1. A prime F—filter U of an ADL A that contains an F—filter J is referred to as minimal
belonging to J if there does not exist any prime F—filter W for which J C W C U.
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We represent Ming(A) as the collections of all minimal prime F—filters of A. It is important to
observe that if we set F' = J in the definition above, then we refer to U as a minimal prime F—filter.

Example 4.2. From Example 3.7, we see that F5 is a prime F¢—filter, while Fs is an F¢—filter of A. It
is evident that Fs C F5. Furthermore, there does not exist a Fe—filter W of A such that Fs C W C Fj;.
Therefore, we conclude that F5 is a minimal prime F¢—filter belonging to Fs.

Proposition 4.3. Let J € §(A) and U € Spec(A) such that J C U. Then, U is minimal belonging to
Jifandonly if A\ U € Maxp(A)and (A\U)NJ = 0.

Proof. Note that A\ U is a proper ideal, and it follows that (A\ U)NJ = 0. Let W be a proper ideal of A
suchthat WNJ =0 and A\ U C W. This implies that J C A\ W, and thus A\ W C U. As U € Ming(A,)
we conclude that A\ W = U. Hence, we establish that A\ U is maximal with (A\U)NJ = (. Conversely,
assume that A \ U is maximal with (A\ U)NJ = (). We now show that U is minimal. Suppose W is any
prime F—filter of A such that F € J C W C U. This gives that A\ W is an ideal for whichA\U C A\ W
and (A \ W)n J = 0, leading to a contradiction. Thus, U € Ming(A) and U C J. O

Theorem 4.4. Let J € FF(A) and U € Specy(A) with J C U. Then, U is minimal prime F—filter
contained in J iff for every p € U, there is q ¢ U satisfies pV q € J.

Proof. Let U € Ming(A) with U C J. It follows that A\ U is a maximal ideal, satisfying (A\U)NJ = 0.
Take any p € U. Since p ¢ A\ U, it gives A\ U C (A \ U) V [p). By the maximality of A \ U, we must
have (A\U) VvV [p)NJ # 0. Now, leta € (A\ U) VvV [p)) NJ. Then, there are g € A\ U and a € J
such thata = g vV p, where ¢ € A\ U and a € J. Therefore, g V p € J. Conversely, assume that for each
p € U there is some g ¢ U such that p V g € J. Suppose, for contradiction, that U is not minimal prime
F—filter contained in J. Then, there must exist a prime F—filter W such that F' € J € W C U. Choose
some p € U \ W. By assumption, there is some g ¢ U such that p vV g € J € W. Since p ¢ W, it follows
that g € W C U, which gives a contradiction. Thus, U must be minimal prime F—filter contained in
J. |

Corollary 4.5. A prime F—filter U of A is minimal iff for any p € U, there is q ¢ U such that pV q € F.
Definition 4.6. For any U € Spec.(A), consider the set OF (U) as follows:

Of(U)={scA|setF), forsomet ¢ U)

It is evident that OF (U) = g)(t, F).
I

Lemma 4.7. Let U be a prime F—filter of A. Then, OF(U) € &' (A) and OF (U) C U.

Proof. Let p,q € OF(U). There are elements a ¢ U snd b ¢ U such that p € (a, F) and g € (b, F). This

implies that ((a, F), F) C (p, F) and ((b, F), F) C (g, F). Consequently, we get
((@Vb,F),F)=(a,F),F)Nn((b,F),F)C(p,F)N (g, F)=(pAg,F)

Thus, p A g belongsto (pA g, F),F)C(((aVvb,F),F),F)=(aVvb,F).SinceaV b ¢ U, it follows
that p A g € OF(U). Now, let p € OF(U) and suppose p < g. There is a ¢ U such that p € (a, F). As
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(a, F) € F(A), it follows that g € (a, F). Therefore, g € OF (U), confirming that OF (U) is a filter in A.
Furthermore, it is evident that F € OF (U). Thus, O (U) is an F—filter in A. Now, let p € OF(U). Then,
there exists a ¢ U such that p € (a, F). This implies that p V a € F C U. Since U is a prime filter, we
conclude that p € U. Therefore, we have OF (U) C U.

m|

Corollary 4.8. For any U € Specy(A), OF(U) = U if and only if U € Ming(A).
Theorem 4.9. Every member of Ming(A) is a member of OF (U) and contained in U.

Proof. Let W € Minp(A) and belong to OF (U). Assume, for the sake of contradiction, that W ¢ U.
Choose p € W\ U. Then, there is ¢ ¢ W such that p vV ¢ € OF(U). Thus, we have p V g € (a, F) for
some a ¢ U, which leadstogV (pVa) € F C U.Since p ¢ U and a ¢ U, and U is a prime filter, it
gives p V a ¢ U. Consequently, we find that ¢ € OF (U) C W, leading to a contradiction. Therefore, we
conclude that W C U. O

Theorem 4.10. For any (C € Spec(A)), the set OF (C) is expressed as the intersection of all members
of Ming(A) contained in C.

Proof. Consider {X;|i € A} as the class of members of Ming(A) with X; C C foralli € A. Let p € OF(C).
Then, p € (g, F) for some g ¢ C. This implies pV g € F C X, for all i € A. Since X; C C, we have
that g ¢ X; for every i € S. Since g ¢ X; for every i € A, and each X; is prime, we get that p € X; for
all i € S. Therefore, p € NX;, and hence O'(C) C NX;. Let p ¢ OF(C). Take X = (A\ C) V [p). We
prove that F N X = (. Suppose F N X # (. Then, we can choose g € F N X. Hence, ¢ € X and g € F,
and there exists s € A\ C suchthat g = aV pand a Vv p € F. This implies p € (a, F). Since a ¢ C,
we get that p € OF(C), which leads a contradiction. Therefore, X N F = (. It follows that there is a
maximal ideal W of A satisfying X € W, W N F = (. Hence, A \ W is a minimal prime F filter, and

(A\W)CC,p¢A\W, which gives p ¢ N, X;. Hence, NX; € OF(C). Therefore, OF(C) = Nies X;. O

Proposition 4.11. Consider two prime F—filters, U, and U,, in A, with U, C U,. It then follows that
OF (U,) is a subset of O (U)).

Proof. Assume s € OF(U,). Then, there is some p ¢ U, with s € (p, F). Since p ¢ U, as well, it leads
to that s € OF (U). Consequently, OF (U,) € OF (U)). o

Proposition 4.12. Given any element p € A that is not maximal and satisfies p ¢ F, there is a member
of Ming(A) not containing p.

Proof. Let p be a non-maximal element of A such that p is not an element of F. By the assertion in
Corollary-3.13, there is a prime F—filter P in A that does not contain p. Now, consider the collection
consisting of all prime F—filters C in A that satisfy p ¢ C and are contained within P. This collection
satisfies the conditions of Zorn’s lemma, which guarantees the existence of a minimal element within
it. We will denote this minimal element as U. Hence, U is minimal and does not include p. O

Theorem 4.13. The statements given below are equivalent for any prime F—filter U in A :
(1) U is minimal

(2) U =0"()

(3) the filter U contains exactly one of the elements s or (s, F), for every s € A,
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Proof. (1) = (2) : Assuming (1), let s € U. There is t ¢ U such that s vV ¢t € F. Consequently, this
means s € OF (U). Thus, we have U € OF (U). Given that OF (U) € U, we obtain U = O (U).

(2) = (3) : Assume (2). Let s be an element of A with s ¢ U. Consider an element p in (s, F). Since
pV sisin F, it follows that p V s is also an element of U. This leads to the conclusion that p must be
in U. Since s is not in U, we can deduce that the entire interval (s, F)) is contained in U.

(3) = (1) : Consider any prime F—filter C in A such that C C U. Choose an element s from U
that is not in C. This situation implies that (s, F) is contained in C while also not being contained
in U. Consequently, this leads to the conclusion that (s, F') cannot be a subset of U, resulting in a
contradiction. O

Definition 4.14. A is referred to as an F—semi-complemented if, for any 0 # s € A, there exists a
t & Mugarcens which is not in F such that sV t € F.

Example 4.15. Let D, = {0,p} and D, = {0,q1,9.} be two discrete ADLs. Then,
A = Dy x D, = {(0,0),(0,91),(0,g),(p,0),(p,q1), (p,q2)}. Then, (A, A,V,0) is an ADL, but not a
lattice, because (p,q1) N (p,q2) = (p.q2) # (P.q) = (P.q2) N (p.q).  Clearly,

F = {0,491),0,92),(p,0),(p,q1), (p,q2)} is an F—filter of A. It is evident that for any non-zero
element s in A, there exists a t ¢ Myuxens Which is not in F for which s V p lies in F. This
demonstrates that A is an F—semi-complemented ADL.

Theorem 4.16. An ADL A is F—semi-complemented if and only if the intersection of all maximal ideals
that are not intersecting with F is equal to {0}.

Proof. Assume that A is F'—semi-complemented. Let us define
0= ﬂ{U | U is a maximal ideal of A such that U N F = 0}.

We aim to show that Q = {0}. Suppose s € Q and s # 0. This implies that s is an element of every
maximal ideal U that does not intersect F, hence s ¢ F. Given that s is non-zero and A is F—semi
complemented, there exists a non-maximal element ¢ ¢ F such that s V ¢ € F. This leads us to conclude
that s v ¢ ¢ U, which further implies that U V (s V f) = A. Since ¢ is non-maximal in F, we can find a
minimal prime F—filter W in A such that r ¢ W. Consequently, ¢ belongs to A \ W, and we also have
(A\ W)n F = 0, indicating that A \ W is maximal of A. Thus, both s and ¢ are in A \ W. Therefore,
sV iteA\ W This results in (A \ W) N F # 0, leading to a contradiction. Hence, we conclude that
s = 0, establishing that Q = {0}. Next, we consider the converse. Suppose

ﬂ{U | U is a maximal ideal of A and U N F = 0} = {0}.

Let s be any non-zero element in A. This implies that there exists at least one maximal ideal U such
that s ¢ U and UNF = (). Consequently, we have U V (s) = A. For some element p € U, the expression
p V s is also maximal. Since p is part of U and U N F' = 0, it follows that p ¢ F. Moreover, we get
pV s € F. This represents that for every non-zero element s in A, there is a non-maximal element p ¢ F
such that p v s € F. Thus, we conclude that A is F'—semi-complemented.

O

Definition 4.17. We say A as F—normal if, for every pair of elements p,q € A with the property that
pV q € F, there exist elements s € (p, F) and t € (q, F) such that s A t = 0.
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Example 4.18. Consider G = {0, p}, a discrete ADL, and K = {0, p’, q’, 1'}, a distributive lattice. The
Hasse diagram for K is shown below:

~
~

0/
Consider A = G x K = {(0,0'), (0, p),(0,4),(0,1),(p,0), (p, p). (p.q )., (p, 1)}. Clearly, A is an
ADL with zero element (0,0).
Consider a filter F = {(p, 0), (p,p'), (p, q'), (p, 1). Clearly, A is F—normal.

The result presented below follows directly from the definition mentioned earlier.

Theorem 4.19. The condition for A to be F—normal is equivalent to the assertion that for any p,q € A
satisfying p V q € F, the equation (p, F) V (¢, F) = A holds true.

Definition 4.20. Two F—filters J, and J, of A are said to be co-maximal if J, vV J, = A.

Example 4.21. Based on Example 3.7, it can be observed that F; and F4 are Fe—filters of A. Clearly,
F5 Vv Fy = A. Therefore, F5 and F4 are co-maximal. Also, we have that F's and F; are Fe—filters of A,
but not co-maximal.

Theorem 4.22. The following statements are equivalent in the context of an ADL A :
(I)pvqgeF=(p,F)V(q,F)=A,forevery p,ge A

(2)(p,F)V(q,F)=(pV q,F), forevery p,q € A

(3) Every two distinct members of Ming(A) are co-maximal

(4) Every prime F—filter contains a unique minimal prime F—filter

(5) For any P € Spec(A), OF(P) € Spec(A).

Proof. (1) = (2) : Suppose s,t € A. Then, we have that (s, F)V(¢, F) C (sVt, F).Letb € (sVvt, F). Then,
bV (sVt) € F,and hence (bVs)V(bVt) € F.By (1), we have that (bV s, F)V(bVt, F) = A. So, we have that
be (bVs,F)V(bVt, F). This implies there exists s; € (bV s, F)and s, € (bVt, F) such that sy A s, = b.
This implies bV s, € (s, F),bVs, € (t,F),and b = bvb = bV (s1As2) = (bVs)A(bV sy) € (s, F)V(t, F).
Therefore, (s vV, F)=(s,F) Vv (t,F)

(2) = (3) : Assume (2). Suppose U and W are two disjoint minimal prime F—filters of A. Thus, there
arepe Uandg € Wsuchthatp ¢ Wand g ¢ U. Then, pva e Fandgqvbe F = pvaVvqVb e F,and
hence A = (pVvaVvgqgVvb)torsomea ¢ Ub ¢ W).Forqgé¢ Uad¢ Uwegetavg¢ U = (aVg,F)C U.
Similarly, we get that (b Vv p, F) C W.

SinceA=(gVaF)V(pVvbF),wegetACUYV W Hence,A=UV W.

(3) = (4): Assume (3). Consider a prime F—filter U contained in two distinct minimal prime F—filters
say Q1 and Q,,1.e. Q; € U, Q, € U with Q; # Q,. By assumption, it follows that A = Q; V O, C
U. = A = U, and we get a contradiction. Hence, (4) holds.

(4) = (5) : Itis clear by Corollary 3.29.

(5) = (1) : Assume (5). Let s,t € AwithsVvire F.If (s,F)V (t,F) # A, then (s, F) V (t, F) C U for
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some maximal F—filter U of A. This leads to (s, F) € M, (t, F) C U. Hence, s ¢ O"(U) and t ¢ OF (U).
Since OF (U) is prime, it gives s V t ¢ OF(U). Thus, F ¢ OF(U). We get a contradiction. Hence,
(s, F)V (1, F) = A. O

Theorem 4.23. The conditions listed below are equivalent in any ADL:

(1) A is F—normal

(2) For every two disjoint maximal Jy, J, in A satisfying JINF =0, J,NF =0, therearep ¢ J|, q ¢ J»
such thatp ANqg =0

(3) For every maximal ideal J satisfying J N F = 0, J is the unique maximal containing A \ OF (P).

Proof. (1) = (2): Assume (i). Let J;, J, be two distinct maximal ideals of A such that J1NF = J,NF =
(0. Consequently, A \ J;, A\ J, form distinct minimal prime F—filters in A. Given our assumption, it
follows that A \ J;, A\ J, are co-maximal, which implies (A \ J;) V (A \ J») = A. Since 0 € A, there
exist elements p € A\ J;, g€ A\ J, suchthat p A g =0.

(2) = (3): Assume (2). Let J represent any maximal ideal in A such that J does not intersect with F
and the complement of OF (P) in A is contained in J. Now consider another maximal ideal J; which
also satisfies the condition that J; N F = @ and A \ OF(P) C J,. We aim to establish that J = J;.
Suppose, for contradiction, that J and J; are disjoint. Under this assumption, there exist elements p
and g such that p ¢ J; and g ¢ J, and these elements satisfy p A g = 0. Since neither p nor g can
belong to A \ OF(P), it follows that both elements must be part of OF (P). Therefore, we can conclude
that p A g € OF (P). This implies that 0 € OF (P), leading us to the conclusion that OF (P) = A. Such a
finding contradicts our earlier assumptions. Hence, we deduce that J = J;.

(3) = (1): Assume (3). Now, consider a prime F—filter P in A. Assume that P contains two distinct
minimal prime F—filters, C; and C,, such that both C; and C, are subsets of P. This implies that
Of(P) c O"(C)) and OF (P) € O (C,). Thus, we can conclude that P is contained within both OF(C))
and OF (C,). From this, it follows that C, is a subset of C;, and C; is a subset of C,. Consequently, we
deduce that C; = C,. O

5. Conclusions

In this paper, we introduced the notions of F—filters and prime F—filters in almost distributive
lattices (ADLs). We examined their basic structure and explored several fundamental properties.
Equivalent conditions were established for a proper F—filter to be prime. It was proved that every
maximal F—filter in an ADL is necessarily prime. The relationships between maximal and prime
F—filters were carefully analyzed. We further characterized prime F—filters through their minimal
counterparts. For any prime F—filter M in an ADL A, the set OF (M) was shown to be the intersection
of all minimal prime F—filters contained within M. This result provides an intrinsic representation of
prime F—filters. Our findings enhance the theoretical understanding of filter systems in ADLs and
pave the way for further generalizations in lattice theory.
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