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1. Introduction

Let p be an odd prime. For any integer g with (g, p) = 1, we call g as a primitive root modulo
p, if gk . 1 (mod p) for all 1 ≤ k ≤ p − 2. For example, if p = 5, then g = 2 is a primitive root
modulo 5; If p = 7, then g = 3 is a primitive root modulo 7. It is known that for any odd prime p,
there are ϕ(p − 1) primitive roots in the reduced residue system modulo p, where ϕ(n) is the Euler’s
totient function. Here, ϕ(n) is defined to be the number of positive integers not exceeding n that are
relatively prime to n. About the various properties of a primitive root modulo p, one can find them in
many elementary number theory books, such as [1–4]. In [5], Brizolis asked if for any prime p > 3
there exists a primitive root g of p and a positive integer x < p such that x ≡ gx mod p. If so, can g
also be chosen so that (g, p − 1) = 1?

Regarding this problem, W. P. Zhang [6] proved a qualitative conclusion for the first time. That is,
for any prime p large enough, there exists a primitive root g modulo p and a positive integer x such
that the congruence x ≡ gx mod p.

Based on the idea of W. P. Zhang in [6], M. Levin, C. Pomerance, and K. Soundararajan in [7]
solved this problem completely.

In this paper, we use the elementary method to prove a more general conclusion. Namely, we have
the following:
Theorem 1. Let p be a large enough prime number. Then, for any fixed positive integer k and distinct
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primitive roots 1 < g1, g2, . . . , gk < p − 1 modulo p with (g1g2 · · · gk, p − 1) = 1, there exist primitive
roots q1, . . . , qk modulo p such that for each i ∈ {1, . . . , k} we have

gi ≡ qgi
i (mod p).

Let us note that when p is large enough, there exists a primitive root g modulo p such that (g, p −
1) = 1. There is an asymptotic formula for the number N(p) of primitive roots modulo p that satisfy
such a condition. That is,

lim
p→+∞

p · N(p)
ϕ2(p − 1)

= 1.

Therefore, for any positive integer k, when prime p is large enough, there exist k distinct primitive
roots 1 < g1, g2, · · · , gk < p − 1 modulo p such that (g1g2 · · · gk, p − 1) = 1.
Corollary 1. There exist two primitive roots 1 ≤ g, g1 ≤ p − 1 modulo p such that (gg1, p − 1) = 1
when p ≥ 3600163.

2. Two auxiliary lemmas

To illustrate the existence of some special primitive roots modulo p, we need the following two
simple lemmas.
Lemma 1. Let p be a prime and a be an integer with (a, p) = 1. Then we have the identity

ϕ(p − 1)
p − 1

∑
d|p−1

µ(d)
ϕ(d)

∑
χ

ord(χ)=d

χ(a) =

1, if a is a primitive root modulo p,

0, otherwise

where µ is the Möbius function, and χ runs over Dirichlet characters modulo p.

Proof. See Proposition 2.2 in [4]. �

Lemma 2. Let p be a prime, and N(p) denote the number of all primitive roots g modulo p in the set
{1, 2, . . . , p − 1} with (g, p − 1) = 1. Then we have the estimate

N(p) >
ϕ2(p − 1)

p − 1
−
ϕ(p − 1)

p − 1
· 4ω(p−1) ·

√
p · ln p,

where ω(n) denotes the number of distinct prime factors of n.

Proof. For any positive integer n, we have

∑
d|n

µ (d) =

1 i f n = 1,
0 i f n > 1.

By Lemma 1 we have

N(p) =

p−1∑
a=1

(a,p−1)=1

ϕ(p − 1)
p − 1

∑
d|p−1

µ(d)
ϕ(d)

∑
χ

ordχ=d

χ(a)
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=
ϕ(p − 1)

p − 1

∑
d|p−1

µ(d)
ϕ(d)

d∑′

k=1

p−1∑
a=1

(a,p−1)=1

χk,d(a)

=
ϕ(p − 1)

p − 1

∑
d|p−1

µ(d)
ϕ(d)

d∑′

k=1

p−1∑
a=1

∑
r|(a,p−1)

µ(r)χk,d(a)

=
ϕ(p − 1)

p − 1

∑
d|p−1

µ(d)
ϕ(d)

d∑′

k=1

∑
r|p−1

µ(r)

p−1
r∑

a=1

χk,d(ar)

=
ϕ(p − 1)

p − 1

∑
d|p−1

µ(d)
ϕ(d)

d∑′

k=1

∑
r|p−1

µ(r)χk,d(r)

p−1
r∑

a=1

χk,d(a)

=
ϕ2(p − 1)

p − 1
+
ϕ(p − 1)

p − 1

∑
d|p−1
d>1

µ(d)
ϕ(d)

d∑′

k=1

∑
r|p−1

µ(r)χk,d(r)

p−1
r∑

a=1

χk,d(a), (2.1)

where
∑′d

k=1 denotes the sum of all values k that satisfy (k, d) = 1, χk,d denote a d-order character
modulo p.

For any non-principal character χ modulo p, from Pólya’s inequality (see [1]) we have the estimate∣∣∣∣∣∣∣∣∣
p−1

r∑
a=1

χ(a)

∣∣∣∣∣∣∣∣∣ ≤
√

p · ln p, (2.2)

where r is a positive integer with r | p − 1.
Note that ∑

d|p−1

|µ(d)| = 2ω(p−1).

From (2.1) and (2.2) we have the estimate

N(p) ≥
ϕ2(p − 1)

p − 1
−
ϕ(p − 1)

p − 1

∑
d|p−1
d>1

|µ(d)|
ϕ(d)

d∑′

k=1

∑
r|p−1

|µ(r)| ·
√

p · ln p

=
ϕ2(p − 1)

p − 1
−
ϕ(p − 1)

p − 1

∑
d|p−1
d>1

|µ(d)| ·
∑
r|p−1

|µ(r)| ·
√

p · ln p

>
ϕ2(p − 1)

p − 1
−
ϕ(p − 1)

p − 1

∑
d|p−1

|µ(d)|


2

·
√

p · ln p

=
ϕ2(p − 1)

p − 1
−
ϕ(p − 1)

p − 1
· 4ω(p−1) ·

√
p · ln p.

This proves Lemma 2. �

AIMS Mathematics Volume 10, Issue 11, 27513–27518.



27516

3. Proof of the main result

In this section, we provide direct proofs of Theorem 1 and Corollary 1.

Proof of Theorem 1. Let p be a prime large enough. Then for any fixed positive integer k, from
Lemma 2 we know that there exists k distinct primitive roots gi modulo p with (gi, p − 1) = 1,
i = 0, 1, 2, · · · , k.

Fix a primitive root g modulo p. We know that there is a positive integer yi ≤ p−1 such that gi ≡ gyi

(mod p). Since gi is a primitive root modulo p, we have (yi, p−1) = 1. Solve the following congruence
for xi.

xi · yi ≡ gi (mod p − 1). (3.1)

Let xi be such that xi · xi ≡ 1 (mod p − 1) and qi ≡ gxi (mod p) for each 1 ≤ i ≤ k. Since
(xi, p − 1) = 1, so qi ≡ gxi (mod p), there exist primitive roots q1, . . . , qk modulo p. Now, from (3.1)
we have

gi ≡ gyi ≡
(
gxi·xi

)yi
≡

(
gxi

)yi·xi
≡ qgi

i (mod p).

Hence, there exist k primitive roots 1 < q1, q2, · · · , qk < p − 1 such that the following congruence
holds.

gi ≡ qgi
i (mod p), i = 1, 2, . . . , k.

This completes the proof of our theorem. �

Example 1. Let p = 13 and i = 1. Fix g = 2. Given g1 = 7, we consider the congruence 7 ≡ 2y1

(mod 13). We get y1 = 11. Solve xi · yi ≡ gi (mod p − 1).

11x1 ≡ 7 (mod 12) =⇒ x1 ≡ 5 (mod 12).

Then, we construct q1 = gxi ≡ 25 ≡ 6 (mod 13). Finally qg1
1 = 67 ≡ 7 (mod 13). Thus, we have

gi ≡ qgi
i (mod p).

Proof of Corollary 1. Indeed, note that for any integer n ≥ 3 we have (see [8])

ϕ(n) >
ln 2
2
·

n
ln n

, (3.2)

and (see [9,10])

ω(n) ≤ 1.3841 ·
ln n

ln ln n
. (3.3)

Using (3.2), (3.3), and Lemma 2, one can calculate that if p ≥ 3600163, then N(p) ≥ 2. That is, there
exist two primitive roots 1 ≤ g, g1 ≤ p−1 modulo p such that (gg1, p−1) = 1 when p ≥ 3600163. �
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4. Conclusions

The main purpose of this paper is to study a problem from [5] posed by Brizolis. We proved a more
general and stronger result than the affirmative answer to the mentioned problem. Namely, for any
sufficiently large prime p, fixed positive integer k and k distinct primitive roots 1 < g1, g2, . . . , gk < p−1
modulo p with (g1, g2, . . . , gk, 1) = 1, there exist k distinct primitive roots 1 < q1, q2, · · · , qk < p − 1
modulo p such that

gi ≡ qgi
i (mod p), i = 1, 2, · · · , k.

We believe that the research method in this paper can be used as a reference for further research on
similar problems.
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