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1. Introduction

Let p be an odd prime. For any integer g with (g, p) = 1, we call g as a primitive root modulo
p,if g # 1 (mod p) forall 1 < k < p — 2. For example, if p = 5, then g = 2 is a primitive root
modulo 5; If p = 7, then g = 3 is a primitive root modulo 7. It is known that for any odd prime p,
there are ¢(p — 1) primitive roots in the reduced residue system modulo p, where ¢(n) is the Euler’s
totient function. Here, ¢(n) is defined to be the number of positive integers not exceeding n that are
relatively prime to n. About the various properties of a primitive root modulo p, one can find them in
many elementary number theory books, such as [1-4]. In [5], Brizolis asked if for any prime p > 3
there exists a primitive root g of p and a positive integer x < p such that x = g¢* mod p. If so, can g
also be chosen so that (g,p— 1) = 1?

Regarding this problem, W. P. Zhang [6] proved a qualitative conclusion for the first time. That is,
for any prime p large enough, there exists a primitive root g modulo p and a positive integer x such
that the congruence x = g* mod p.

Based on the idea of W. P. Zhang in [6], M. Levin, C. Pomerance, and K. Soundararajan in [7]
solved this problem completely.

In this paper, we use the elementary method to prove a more general conclusion. Namely, we have
the following:

Theorem 1. Let p be a large enough prime number. Then, for any fixed positive integer k and distinct
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primitive roots 1 < g1, g2,..., & < p — 1 modulo p with (g1g> - gx, p — 1) = 1, there exist primitive
roots ¢, . . ., gy modulo p such that for each i € {1,...,k} we have

gi=q¢’ (mod p).

Let us note that when p is large enough, there exists a primitive root g modulo p such that (g, p —
1) = 1. There is an asymptotic formula for the number N(p) of primitive roots modulo p that satisfy
such a condition. That is,
p-N(p) _
poreo g2 (p = 1)
Therefore, for any positive integer k, when prime p is large enough, there exist k distinct primitive
roots 1 < g1, g2, -+, & < p — 1 modulo p such that (g1g,---gr,p—1) = 1.
Corollary 1. There exist two primitive roots 1 < g, g; < p — 1 modulo p such that (gg,p—1) =1
when p > 3600163.

2. Two auxiliary lemmas

To illustrate the existence of some special primitive roots modulo p, we need the following two
simple lemmas.
Lemma 1. Let p be a prime and a be an integer with (a, p) = 1. Then we have the identity

( - 1) (d) 1, if ais a primitive root modulo p,
elp—1) Z Ha) Z @) =

= 1‘:"(‘1) % 0, otherwise
ord(y)=d

where u is the Mobius function, and y runs over Dirichlet characters modulo p.
Proof. See Proposition 2.2 in [4]. O

Lemma 2. Let p be a prime, and N(p) denote the number of all primitive roots g modulo p in the set
{1,2,...,p— 1} with (g, p — 1) = 1. Then we have the estimate

2
e (p—-1) lp-1)
N - ~4“P70 . {[p - Inp,
(p) > P P p-Inp

where w(n) denotes the number of distinct prime factors of n.

Proof. For any positive integer n, we have

1 ifn=1,
WIGE |

0 ifn>1.
By Lemma 1 we have

p-1

SD(P - 1) u(d)
OENSY ZMZ (@)
a=1 dip—1
(a,p-D=1 ord,\/ d
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~1 d &
_ sO(p ) N Hd) Z e

_ so(p— 1) Z p(d)

0 D urea(@

dlp-1 k=1 a=1 rl(a,p-1)

_ e(p-1) u(d)
= 0T e )Z Zu(r)Zxkd(aw

k=1 r|p-1

_oelp-1) o pud)
) W)kzl rlpzlu(r)xkdmz)(kd(a)

_@p-D ep-1) o @
) [9—1 ’ ]9—1 dip-1 (,0( )kZ1 Apzllu(r))(kd(r)z)(kd(a) (2'1)

d>1

where Z’Zzl denotes the sum of all values k that satisfy (k,d) = 1, yxq denote a d-order character
modulo p.

For any non-principal character y modulo p, from Pélya’s inequality (see [1]) we have the estimate

p]

Z}((a) < +p-Inp, (2.2)

a=1

where r is a positive integer with r | p — 1.

Note that
D, @) =220,

d\p—1

From (2.1) and (2.2) we have the estimate

d
Ny s £@=D ¢ =D 5 @) S S - VB p

p—1 p-1 dip-1 (d) 4= Ap—1
d>1
2
-1 olp-1
= EE =B Y @) ) ) VB Inp
p P dlp-1 rip—-1
d>1

p-1 ¢p-1

\Y

2
[Z |y<d>|] VP Inp
dip-1

p—1 p—1
2
e (p—1 -1 -
p-1  p-1 A0 ypInp.
This proves Lemma 2. O
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3. Proof of the main result

In this section, we provide direct proofs of Theorem 1 and Corollary 1.

Proof of Theorem 1. Let p be a prime large enough. Then for any fixed positive integer k, from
Lemma 2 we know that there exists k distinct primitive roots g; modulo p with (g;,p — 1) = 1,
i=0,1,2,--- k.

Fix a primitive root g modulo p. We know that there is a positive integer y; < p— 1 such that g; = g
(mod p). Since g; is a primitive root modulo p, we have (y;, p—1) = 1. Solve the following congruence
for x;.

Xi-yi=g (modp-1). (3.1

Let X; be such that X; - x;, = 1 (mod p — 1) and ¢; = g (mod p) for each 1 < i < k. Since

Xi,p—1)=1,s0¢q; = g" (mod p), there exist primitive roots g, ..., g, modulo p. Now, from (3.1)
we have

g =g = (gxz"fi)yi = (gf")yi.x'. =¢ (mod p).

Hence, there exist k primitive roots 1 < q;, q2, -+, qx < p — 1 such that the following congruence
holds.

gi=q" (modp)i=1,2 ..., k

This completes the proof of our theorem. O

Example 1. Let p = 13 andi = 1. Fix g = 2. Given g; = 7, we consider the congruence 7 = 2
(mod 13). We get y; = 11. Solve x; - y; = g; (mod p — 1).

Ilx; =7 (mod 12) = x; =5 (mod 12).

Then, we construct ¢g; = g% = 2° = 6 (mod 13). Finally ¢{' = 6’ = 7 (mod 13). Thus, we have
g =q;' (mod p).

Proof of Corollary 1. Indeed, note that for any integer n > 3 we have (see [8])

In2 =n
. 3.2
@(n) > > nn (3.2)
and (see [9,10])
Inn

w(n) < 1.3841 - (3.3)

Inlnn

Using (3.2), (3.3), and Lemma 2, one can calculate that if p > 3600163, then N(p) > 2. That is, there
exist two primitive roots 1 < g, g; < p—1 modulo p such that (gg;, p—1) = 1 when p > 3600163. O
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4. Conclusions

The main purpose of this paper is to study a problem from [5] posed by Brizolis. We proved a more
general and stronger result than the affirmative answer to the mentioned problem. Namely, for any
sufficiently large prime p, fixed positive integer k and k distinct primitive roots 1 < g1, 82,...,8 < p—1
modulo p with (g1, 82,...,8 1) = 1, there exist k distinct primitive roots 1 < g1,¢q2, -+ ,qx < p — 1
modulo p such that

gi=q; (modp),i=1.2,--,k

We believe that the research method in this paper can be used as a reference for further research on
similar problems.
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