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methods was evaluated via extensive simulation studies , and meanwhile, two real-world data examples
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1. Introduction

Lifetime distributions play a crucial role in statistical inference and data analysis, and various
distributions (e.g., Weibull, gamma, lognormal and exponential distributions) are widely applied in
practice. It is noted that such distributions exhibit infinite support by definition; however, the range of
lifetimes may be limited, and in turn, distributions with bounded support may be more appropriate in
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data analysis (e.g., Jodra [16], Jodra and Jimenez-Gamero [17], Korkmaz [18], Krishna et al. [21]).
Specially, unit bounded distributions with support (0, 1) have attracted much attention due to the
popularity of unit data in practice, and such data frequently appears in various fields, including
biological studies, finance, mortality, actuarial science, and measurement science, among others.
Various unit-bounded distributions have been proposed in practice, including the Kumaraswamy
distribution (Al-Babtain et al. [3]), Topp-Leone distribution (Atchadé et al. [6]), unit Burr-XII
distribution (Korkmaz and Chesneau [19]), unit log-log distribution (Korkmaz and Korkmaz [20]),
and unit-Gompertz distribution (Mazucheli et al. [22]), among others. In this study, another
distribution with unit support-referred to as the Kies distribution-is discussed. Its cumulative
distribution function (CDF) and probability density function (PDF) can be expressed as follows:

Fap)=1-e ) 0<x<l, (1.1)
and

(B-1) !
a/ﬁx e_a'(ﬁyf’

f(xa.p) = 1 —nfD

0<x<l, (1.2)
where @ > 0 and 8 > 0 denote the scale and shape paramers of the distribution, respectively. For
simplicity, the Kies distribution with parameters @ and 3 is hereafter denoted as K(«, 5). Compared to
modern bounded models such as the aforementioned unit distributions, although the Kies distribution
was proposed earlier, it still offers advantages for modeling bounded lifetime data. Specifically, its
CDF employs a logit transformation that elegantly maps the bounded interval to (0,1) and
incorporates an exponential-power structure that enables flexible hazard rate modeling. This
formulation also provides superior parameter interpretability and mathematical tractability.
Correspondingly, the survival function (SF) and hazard rate function (HRF) of the Kies distribution at
mission time ¢ are presented as follows:

S(t;.B) = exp {—a(%_t)ﬂ} and  H(t; . ) = a(ﬁ)ﬁ. (1.3)
For illustration, plots of PDF and HRF of the Kies distribution are presented in Figure 1 for different
parameter values. It is noted that the PDF of the Kies distribution exhibits diverse characteristics, which
enables it to effectively fit data with different features. Meanwhile, the HRF of the Kies distribution
exhibits two typical shapes, namely bathtub-shaped and monotone increasing, which are consistent
with practical reliability phenomena-including aging tests, service life characteristics, and wear-out
periods. Therefore, the Kies distribution offers greater flexibility in data analysis.
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Figure 1. Plots of PDF and HRF for the Kies distribution.

With the development of technology, modern products often exhibit high reliability and long life
cycles; conducting full life tests is often impractical due to practical time and cost constraints.
Therefore, censoring schemes are frequently employed in lifetime experiments to enhance
experimental efficiency. Although various censoring schemes are used in practice—including Type-I
censoring (e.g., Almetwally et al. [5]), Type-II censoring (e.g., Almetwally et al. [4]), progressive
censoring (e.g., Chandra et al. [8], Dey et al. [9], ElGazar et al. [10]), hybrid censoring (e.g.,
Elshahhat and Abu El Azm [11]), and generalized censoring (e.g., Aboul-Fotouh Salem et
al. [2])-Type-II censoring, as one of the traditional schemes, still attracts much attention in lifetime
experiments. In this scheme, n identical and independent units are tested, and the test terminates when
the first r failure times are observed. In this paper, Type-1I censoring is adopted for statistical
inference, and this choice is justified by its strong theoretical foundations and practical advantages in
reliability analysis. Theoretically, Type-II censoring has a well-established probabilistic framework,
which provides analytical tractability that simplifies statistical inference compared to more complex
schemes (e.g., progressive or hybrid censoring). For instance, the likelihood function under Type-II
censoring retains a straightforward structure, which may enable closed-form maximum likelihood
estimation for many common reliability models (e.g., exponential, Rayleigh, and Weibull
distributions). This reduces computational burden-a critical consideration for small sample sizes or
non-regular datasets commonly encountered in data analysis. Practically, Type-II censoring also
ensures experimental efficiency: it only requires pre-specifying the number of failures before test
termination, thus avoiding the logistical complexity of time-dependent decisions or progressive unit
removal-issues inherent in modern alternative schemes. This simplicity minimizes experimental bias
and operational costs, particularly in scenarios with constrained resources (e.g., equipment or human
supervision). Furthermore, Type-II censoring also aligns closely with field applications in reliability
engineering, where halting testing after observing a fixed number of failures is standard practice for
balancing data informativeness and resource constraints. Given these advantages, this paper focuses
on statistical inference for the Kies distribution under the Type-II censoring scheme.

In statistical inference, classical likelihood-based estimation—particularly maximum likelihood
estimation (MLE) - remains a cornerstone of parametric estimation. Its compelling theoretical
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advantages include consistency, asymptotic normality, and asymptotic efficiency; additionally, it fully
exploits data information by leveraging the joint distribution, retains invariance under parameter
transformations, and relies on a mature theoretical framework adaptable to diverse models. However,
these properties may be heavily affected by sample size, especially when the number of observations
is limited due to practical time and cost constraints. Motivated by these limitations of MLE, this paper
explores parameter estimators for the Kies distribution under the Type-II censoring scheme. Classical
likelihood methods and generalized approaches are proposed for comparison. For completeness and
clarity, some potential contributions of this paper are provided as follows: First, maximum likelihood
estimators for unknown parameters are derived, and the corresponding existence and uniqueness of
these estimators are established for the Kies distribution under the Type-II censoring scheme. Second,
two types of pivotal quantities are constructed, and in turn, alternative generalized inferential
approaches are proposed for parameter estimation. From simulation studies and real-world examples,
it is noted that the proposed generalized estimation methods perform better in most cases than
classical likelihood-based results-even for small sample sizes. However, the generalized estimators
based on the proposed pivotal quantities are relatively complex, which increases the computational
burden.

The remainder of this paper is organized as follows. Section 2 discusses the likelihood estimation
for the Kies parameters under the Type-II censoring scheme. Two generalized estimation methods
are proposed in Section 3 based on the constructed pivotal quantities. Section 4 conducts extensive
simulation studies to illustrate the performance of various methods, and two real-life examples are
presented in Section 5 to demonstrate the applications. Finally, some concluding remarks are given in
Section 6.

2. Classical inference

In this section, we derive the MLE for the Kies distribution under Type-II censoring, obtain the MLE
for the unknown parameters, and accordingly construct the asymptotic confidence intervals (ACI) for
these parameters.

2.1. Maximum likelihood estimation

Suppose there are n units tested in the experiment, and X; < X, < - - < X, are the Type-II censored
data of size r from the Kies distribution K(a, 8). The likelihood function of parameters @ and 8 can be
constructed as follows:

Lo, AX) = | | £ 0. ) (S (s 0, )",
i=1

r B-1) S\ B
p X —a| 7L | —an-r)( 12
- (@ l_[ (1 —x~)(ﬂ+1)e (7] T, 2.1)

i=1

and the the corresponding log-likelihood function is given by

r B-1) r - B
f(a,,B):rlna/+rlnﬁ+Zln(xi— aZ( all )
i=1

)P0 LTy
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B
—a(n— r)( ) . (2.2)

1-x,

Based on Eq (2.2), the MLE of parameters « and 3, denoted as (&, 3), could be obtained by solving the
following equations:

o@p) _, . O@p)

e P =0, (2.3)

where the first-order partial derivatives of the log-likelihood function £(a,f) can be directly
computed; details are omitted here for concision. To solve for the MLE, numerical methods (e.g.,
Newton-Raphson and quasi-Newton methods) can be used to find the parameter estimates. However,
these methods can be computationally time-consuming and resource-intensive. Alternatively, this
paper uses the profile likelihood method to obtain the MLE of the unknown parameters by
maximizing the profile likelihood function. For the specific implementation process, details of this
method could be found in Barndor-Nielsen and Cox [7].

Theorem 2.1. Suppose X; < X, < --- < X, are the Type-II censored data of size r from the Kies
distribution K(a, ). For r > 0 and given 3, the MLE & of parameter a can be expressed as

r

&= . (2.4)
S () +e-n ()

Proof. See Appendix A. O

Replacing @ in Eq (2.2) with @, the log-likelihood function of the profile of S can be obtained as

5 r
£(B)  rln L +B-D> Inx,
Si () -0 () Z
-G+ D Z In(l - x;). (2.5)
i=1

Correspondingly, the MLE 3 of the parameter 3 is shown in the following.

Theorem 2.2. Suppose X; < X, < --- < X, are the Type-II censored data of size r from the Kies
distribution K(a, B). The MLE 3 of B exists uniquely being the solution to the equation Q(B) = 0 with

X;i)ﬁln(lf_ix,-)-"(n_r)(lf )ln( x)
S () + -0 ()

B
+Zln(1_x1) (2.6)

i=1

T

Qp) =

Proof. See Appendix B. |
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It is noted that there is no closed-form of 3, and an algorithm called Algorithm 1 is proposed to
compute 3. Once the f is obtained, & could be obtained via Theorem 2.1 as

&= r . 2.7)

izt (lfix,-)ﬁ +n- D(lfrxr)ﬁ

Algorithm 1: Tterative method for obtaining 3.
Step 1 Set an initial guess B of 8 with ¢ = 0.

Step 2 Calculate 89D = Qy(8'?) with function

Q) = :
o0 L f il oo (25 ) ()

;- l(l T ;
= —X; —Xj
r ! i i

s (2 ron (25 )

-2 h’( 12(,)

Step3 Setg=¢g+ 1 withg=1,2,---.

Step 4 Given a predetermined precision level &, if [34™) — 8| < g, terminate the iterative process;
otherwise, repeat Steps 2 and 3 until convergence.

Furthermore, the MLE of SF and HRF denoted as S(7) and H(¢), can be obtained based on the
invariance principle as follows

. . 5
$() = S(t:4,B) = exp {—a(%_t) } 2.8)

and
t

. . 5
A() = H 6, ) = a(l—_t) . 2.9)

2.2. Asymptotic confidence intervals

Since the precise distribution of the MLE is not readily available, we construct the ACI in this
section based on asymptotic theory and the delta method. From Eq (2.2), the observed Fisher
information matrix for & and 3 can be expressed as

Pl Ple.p)

A AN oa? (900,8
I(@,p) = _Ola.p)  Pla.p) ’
0adp B peap
where

a,p) _
R

) ) r Y ,

(e, B) _ 0 l(a,p) _ Z A Y

dadp  0pda I=x) \l-x

i=1
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x YV X,
_(n_r)(l—x,) ln(l—xr)’

625(0,,8)_ r . X; 4 o X
op? __E_QZ(l—xf) tn (1—Xi)

B
X, S X
—a(n—r)(l_xr) In (l—x,).

Let g(v) be the arbitrary continuous function of parameter v with v = («,8), and g(v) be the MLE of
g(v) with ¥ = (&, 3), then under mild regularity conditions, the asymptotic distribution of (v) can be
constructed based on asymptotic theory and the delta method (e.g., Oehlert [25]) as

20 ~ N (g), var(g(»)).

where
var(g(v) = V(g®NI (@, PIV(g®)],

with V(g(¥)) = (% ﬁg_(ﬂw)

(@B)=(aB) ‘
Therefore, for arbitrary 0 < y < 1, the 100(1 —v)% confidence intervals of g(v) could be constructed

by
(§(V) — Uy var(g(v)), 8(v) + Uy2 VG@V))) ,

where u, denotes the upper 100y% percentile of the standard normal distribution. Sometimes, the
lower confidence bounds may yield negative values-values that are not meaningful for the positive
parameters. In such a case, the logarithmic transformation and the delta method could be used to
achieve asymptotic normality of the distribution of In(g(¥)), as shown below:

In(g(¥) - In(g(v)) ~ N(0, var(In(g(®))),

where var(In(g(¥))) = vaﬁg\(v)) /(g())*. Therefore, the 100(1 — y)% modified confidence interval for
g(v) could be established as follows:

Gl 80D exp{uy2 VVar@)) .

exp {2 /VarG(v)))

In this manner, the AClIs of parameters a, 8, SF S (), HRF H(¢) could be constructed consequently due
to above results, and the details are omitted here for concision and saving space.

3. Generalized estimation

In this section, two distinct pivotal quantities are constructed based on Type-II censored data from
the Kies distribution, and alternative generalized point and interval estimation methods are introduced
for parameters o and 8 as well as for the reliability indices. Similar studies based on the generalized
inferential approaches have been reported by many authors, interested readers may refer to the works
of Guo et al. [13], Toulis [28] for a review.
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3.1. FC pivotal based generalized estimation

In this subsection, generalized point and interval estimators are proposed based on pivotal quantities,
which are constructed using F-distributed and chi-square-distributed statistics (FC). For concision,
these generalized estimators are hereafter referred to as FC generalized estimators.

Theorem 3.1. Denote pivotal quantities

n

Gi(B) =(r 1)(n_r+1)(%)/34_2;]1(%),3_”’ (3.1)
and
o\ SR
Bmmﬁ):&ﬂn—r+b(yfr)+202;(1:M). (3.2)

Then, G(B) follows the F-distribution with 2 and 2(r — 1) degrees of freedom, and B:(«, ) follows the
chi-square distribution with 2r degrees of freedom. Additionally, G,(8) and B,(a,3) are statistically
independent.

Proof. See Appendix C O

Lemma 3.1. For arbitrary numbers a and b withQ < a < b < 1, denote function g(t) = (Zﬁ:z;)t , >0,
then function g(t) increases in t with lim,_,, g,(¢) = 1 and lim,_, ., g1(t) = +oo.

Proof. The results could be established by direct computation, and the detailed proof is omitted for
concision. O

According to Lemma 3.1, the following result is obtained in consequence, and the detailed proof is
omitted for concision.

Corollary 3.1. According to Lemma 3.1, the pivotal quantity G(B) is decreasing in [ with
range (0, 4+00).

Based on Theorem 3.1 and Corollary 3.1, for given random number g; ~ F,,-2), equation G(8) =
g1 possesses a unique solution with respect to parameter 3, and the solution is denoted as Brc = 8(g1]x)
that could be regarded as the pivotal based generalized estimate from the perspective of inverse moment
estimation. Subsequently, it is deduced from Theorem 3.1 that parameter « can be expressed as

b,

- ith b, ~ 2.
) 2(n—r+1)(1f—;r)ﬁ+22f;1] (%)ﬁ with Oy ~ x5,

Therefore, using the substitution method of Weerahandi [31], a generalized pivotal quantity for
parameter « is constructed by substituting B¢ for 8 as

b,
2m—r+1Wf§f”+2z;MJL

l—x,-

(3.3)

Qrc = PR
)ﬁFc

AIMS Mathematics Volume 10, Issue 11, 27480-27512.



27488

Further, let 6 = (@, ) and R(0) be an arbitrary function of parameter 6, then based on the substitution
method of Weerahandi [31], the associated FC pivotal quantity-based generalized estimator of R(6) can
be constructed as

Rrc(0) = R(@rc, Bre). (3.4)

Specifically, when the function R(6) is chosen as the reliability indices (e.g., S (#; @, 8) and H(t; @, 3))
and the original model parameters @ and 5, we can accordingly establish the FC-based generalized
estimator using FC pivotal quantities; the detailed expressions are omitted for brevity.

It is noted from the above results that the proposed generalized pivotal quantities for parameters
a,B and R(#) could not be estimated directly. Consequently, an FC-based Monte-Carlo sampling
approach-namely Algorithm 2-is introduced to compute the associated point and interval estimates;
the associated FC-based results are referred as FC-based point estimates (FCPE) and the FC-based
confidence intervals (FCCI), respectively.

Algorithm 2: FC-based Generalized Estimation pivotal quantities.

Step 1 Generate a random data g, ~ F(2»,-2), and a generalized observation of BFC is obtained from
equation G{(8) = g;.

Step 2 Generate a random data b, from y3,, and a generalized observation for 3 is obtained from Eq

(3.3).
Step 3 Repeat Steps 1 and 2 N times, and N estimators of a and 8 are obtained as &%, &fé, e &gvc)
d A1) A(2) H(N)
and Byc,Brcs - - Bre-

Step 4 Using substitution method, N generalized estimates of R(6) are further constructed as
RY. =R@\., B, i=1,2,...,N.

Step S Let ® be parameters, a, 8 or R(6), respectively, and based on the estimates from Steps 3 and 4,
a natural FCPE of @ is constructed as O¢ = Ly, @%

Step 6 To construct the FCCI of O, arrange estimates (:)%, @fg e (:)(FNC) in ascending order as
(:)EVI]C: (:)E]C: ..., For arbitrary 0 < y < 1, a series of 100(1 — )% FCCI of ® can be expressed
as (@Ei]c, ®;{2N_LN”]), where [ = 1,2,--- ,| Ny] and [.] refers to the ceiling function. Therefore,

the 100(1 — y)% FCCI of O is selected as the [*th interval estimate satisfying

[Nyl

ALF+N—=[Ny+1]] AL _ AL+N—Ny+1]] Al
Orc —Opc = min (®FC - ®FC) .

3.2. CC pivotal based generalized estimation

In this subsection, generalized point and interval estimators are proposed based on pivotal quantities,
which are constructed using two proposed types of chi-square distributions (CC). For concision, these
generalized results are hereafter referred to as CC based generalized estimators.
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Theorem 3.2. Denote pivotal quantities

o elex\B
- S (DY (i 4+ 1)
Ga(f)=-2) In—— () : (3.5)
4 —1 xk(l—x;))'B 4 xr(l—x;))/”
i=1 k=1 (Xi(l—xk) tn—r+ )(Xi(l—xr)
and
X B r—1 X B
By(a,B) = 2a(n—r+ 1 — | +2 — . 3.6
2@, f) = 2a(n - r )(1_ ) “;(1-x,-) (3.6)

Quantity G,(B) and By(a,B) follow chi-square distribution with 2(r — 1) and 2r degrees of freedom,
respectively. Additionally, G,(B) and B,(a, ) are statistically independent.

Proof. See Appendix D O
Using Lemma 3.1, the following result holds consequently.
Corollary 3.2. The pivotal quantity G,(B) increasing in 8 with range (0, +o0).

Based on Theorem 3.2 and Corollary 3.2, for given random number g, ~ )((22&_2), equation G,(B) =
&> possesses a unique solution with respect to parameter 3, and the solution is denoted as Sc¢c = B(g2]x),
which could be regarded as the pivotal based generalized estimate from the perspective of inverse
moment estimation. Subsequently, it is deduced from Theorem 3.2 that parameter « can be expressed
as

with by ~ x3,.

a= >
2n—r+ (= f 425 ()

Therefore, using the substitution method of Weerahandi [31], a generalized pivotal quantity for
parameter « is constructed by substituting B¢ for 8 as

b,
P (3.7)

fee = Pec |
2n—r+ D (=) + 230 ()
Similarly to Subsection 3.1, the generalized estimator based on the CC pivotal quantities, Roc(6) for
parameter function R(6) could be constructed based on the substitution method of Weerahandi [31].

Consequently, the reliability indices SF and HRF could be obtained when the function R(0) takes its
special expressions, and the details are omitted to save space and concision. Similarly, as the CC based
generalized estimators could not be used directly, another Monte-Carlo sampling approach, namely,
Algorithm 3, is also introduced for computing the associated CC-based point (CCPE) and confidence
interval estimates (CCCI), which are called CCPE and CCCI, respectively.
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Algorithm 3: CC-based Generalized estimation pivotal quantities.

Step 1 Generate a random data g, ~ )((22 22 and a generalized observation of Bcc can be obtained
from equation G,(8) = g».

Step 2 Generate a random data b, from y3,, and a generalized observation for 3 is obtained from Eq

3.7).
Step 3 Repeat Steps 1 and 2 N times, and N estimators of a and 8 are obtained as &(Clé, &(Czé, e Agvc)
d A1) A(2) AWN)
and B.;,Bics - -+ Bec-

Step 4 Using the substitution method, N generalized estimates of R(6) are further constructed as
RY. =R@Y.BO), i=1,2,...,N.

Step 5 Let ® be parameters, a, 8 or R(0), respectively, and based on the estimates from Steps 3 and 4,
a natural CCPE of @ is constructed as O¢ = % >V, (:)(Cfé

Step 6 To construct the CCCI of ®, arrange estimates (:)gé, (:)(Czé, e (:)(CNC) in ascending order as

(:)g]c, (:)E:Z(];, .. ,(:)[CNC]. For arbitrary 0 < y < 1, a series of 100(1 — y)% CCCI of ® can be
expressed as (@)glc, (:)EZN_LN”]), where [ = 1,2,--- ,|Ny] and |.] refers to the ceiling function.

Therefore, the 100(1 — y)% CCCI of O is selected as the /“th interval estimate satisfying

VY]
Al +N—-|Ny+1]] Al _ : All+N—-|Ny+1]] Al
0 - 6¢/ = min (B¢, -6).

cC cC

4. Simulation study

In this section, extensive simulation studies are conducted to evaluate the performance of the
proposed methodology. Absolute bias (AB) and mean square error (MSE) are used to assess the
performance of point estimates, while average lengths (AL) and average lower/upper bounds are used
to evaluate the performance of intervals at the 95% confidence level.

In numerical experiments, sample size n, number of failures, r and parameters (@, 8) are randomly
selected. Criteria quantities for model parameters and reliability indices (i.e., SF, HRF) are calculated
over 10,000 replications, with results in Tables 1-8. In addition, visualizations of @ and 8 are provided
in Figures 2—4 for illustration. Similar visualizations for SF and HRF could also be constructed. The
simulation studies were conducted using R software, and the associated codes are provided in the
supplement.
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Table 1. Results of point estimates with (a,8) = (0.5, 0.3) and mission time ¢ = 0.5.

MLE FCPE CCPE
n r  para.
AB MSE AB MSE AB MSE
14 7 a 0.2759 0.0963 0.1799 0.0526 0.1732 0.0490
B 0.2130 0.0864 0.0823 0.0100 0.0704 0.0081
S() 0.0951 0.0133 0.0728 0.0078 0.0481 0.0035
H(t) 0.2796 0.1540 0.2001 0.0781 0.1239 0.0306
10 o 0.2096 0.0852 0.1387 0.0287 0.1263 0.0189
B 0.1697 0.0514 0.0619 0.0069 0.0422 0.0025
S() 0.0651 0.0069 0.0409 0.0023 0.0333 0.0013
H(1) 0.1549 0.0687 0.0817 0.0131 0.0601 0.0057
24 16 a 0.2041 0.0551 0.1000 0.0179 0.0953 0.0165
B 0.1634 0.0473 0.0506 0.0049 0.0411 0.0023
S() 0.0607 0.0053 0.0361 0.0020 0.0306 0.0010
H(1) 0.1285 0.0397 0.0746 0.0108 0.0534 0.0037
19 o 0.1455 0.0293 0.0892 0.0144 0.0721 0.0081
B 0.1493 0.0418 0.0445 0.0029 0.0340 0.0017
S() 0.0429 0.0022 0.0194 0.0005 0.0157 0.0003
H(p) 0.0603 0.0045 0.0256 0.0008 0.0226 0.0006

AIMS Mathematics Volume 10, Issue 11, 27480-27512.
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Table 2. Results of interval estimates with (a, ) = (0.5, 0.3) and mission time ¢ = 0.5.

ACI FCCI CCCI
n r  para.
Lower Upper AL Lower Upper AL Lower Upper AL
14 7 a 0.0728 1.2401 1.1673 0.2195 1.0945 0.8749 0.2233 0.9287 0.7054
B 0.1376 1.0272 0.8896 0.2345 0.9924 0.7579 0.2655 0.8888 0.6233
S 0.5015 0.8655 0.3639 0.4808 0.8095 0.3286 0.4603 0.7736 0.3133
H(t) 0.1281 0.8036 0.6756 0.2003 0.7256 0.5252 0.2554 0.7804 0.5250
10 a 0.0196 0.7823 0.7627 0.1309 0.6653 0.5344 0.1443 0.5823 0.4380
B 0.1537 0.7410 0.5873 0.1323 0.5064 0.3741 0.1457 0.4361 0.2904
S 0.5008 0.8508 0.3500 0.4726 0.7953 0.3226 0.4741 0.7767 0.3026
H(1) 0.1720 0.7902 0.6182 0.2140 0.7341 0.5201 0.2511 0.7531 0.5020
24 16 a 0.2226 0.8419 0.6193 0.3148 0.8680 0.5532 0.3484 0.8116 0.4632
B 0.2123 0.6950 0.4827 0.1577 0.5001 0.3424 0.1928 0.3827 0.1898
NG 0.6494 0.9201 0.2707 0.6344 0.8783 0.2439 0.6315 0.8581 0.2266
H(1) 0.0622 0.4519 0.3897 0.1306 0.4569 0.3263 0.1535 0.4615 0.3080
19 a 0.2208 0.6745 0.4537 0.3325 0.7454 0.4129 0.3230 0.7196 0.3966
B 0.2441 0.6154 0.3713 0.1471 0.3911 0.2440 0.1907 0.3728 0.1821
NG 0.6484 09117 0.2633 0.6304 0.8581 0.2277 0.6351 0.8574 0.2223
H(p) 0.0783 0.4478 0.3695 0.1526 0.4612 0.3085 0.1466 0.4447 0.2981
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Table 3. Results of point estimates with (e, 8) = (0.4,2.0) and mission time ¢ = 0.5.

MLE FCPE CCPE
n r  para.
AB MSE AB MSE AB MSE
16 12 a 0.1664 0.0513 0.1415 0.0322 0.1243 0.0268
B 0.6578 0.5127 0.4445 0.2600 0.3503 0.1926
S() 0.1105 0.0145 0.0808 0.0066 0.0630 0.0040
H(t) 0.3094 0.1691 0.1700 0.0330 0.1267 0.0176
14 a 0.1239 0.0243 0.1162 0.0224 0.0987 0.0218
B 0.6555 0.4946 0.3775 0.1773 0.3405 0.1474
S 0.0806 0.0097 0.0536 0.0032 0.0414 0.0019
H(1) 0.2282 0.0994 0.1117 0.0152 0.0843 0.0085
26 20 a 0.1220 0.0191 0.1087 0.0152 0.0688 0.0070
B 0.5211 0.3305 0.2186 0.0709 0.2018 0.0638
S() 0.0643 0.0056 0.0449 0.0029 0.0382 0.0018
H(1) 0.1073 0.0192 0.0749 0.0088 0.0612 0.0052
23 o 0.0932 0.0140 0.0728 0.0105 0.0426 0.0028
B 0.4984 0.3218 0.1978 0.0536 0.1870 0.0535
S() 0.0345 0.0017 0.0269 0.0016 0.0112 0.0008
H(p) 0.0426 0.0024 0.0366 0.0026 0.0116 0.0016
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Table 4. Results of interval estimates with (a, ) = (0.4, 2.0) and mission time ¢ = 0.5.

ACI FCCI CCCI
n r  para.
Lower Upper AL Lower Upper AL Lower Upper AL
16 12 a 0.2180 0.8678 0.6498 0.3243 0.7604 0.4362 0.3212 0.6893 0.3681
B 1.7007 3.1072 1.4065 1.2377 2.4363 1.1986 1.2850 2.3861 1.1012
S() 0.5378 0.8022 0.2644 0.5611 0.7835 0.2224 0.5769 0.7730 0.1961
H() 0.2677 0.7278 0.4601 0.2374 0.5755 0.3381 0.2495 0.5468 0.2973
14 a 0.2154 0.7525 0.5371 0.2899 0.6751 0.3851 0.2969 0.6434 0.3465
B 1.8342 3.1478 1.3136 1.2838 2.4504 1.1666 1.3621 2.4002 1.0381
S() 0.5602 0.7993 0.2391 0.5720 0.7913 0.2193 0.5899 0.7799 0.1901
H() 0.3024 0.6809 0.3785 0.2243 0.5537 0.3294 0.2460 0.5270 0.2810
26 20 a 0.2598 0.6859 0.4261 0.4126 0.6797 0.2671 0.3660 0.5647 0.1987
B 3.0963 4.0195 0.9232 1.3701 1.9476 0.5775 1.3299 1.7885 0.4586
S() 0.5678 0.7875 0.2197 0.5943 0.8054 0.2111 0.6043 0.7876 0.1833
H(r) 0.3382 0.6744 0.3363 0.2186 0.5230 0.3044 0.2390 0.5056 0.2666
23« 0.2290 0.6179 0.3890 0.3995 0.6551 0.2556 0.4421 0.6196 0.1775
B 3.4663 4.3697 0.9033 1.3767 1.9329 0.5562 1.3939 1.7204 0.3265
S@  0.6938 0.8855 0.1918 0.7140 0.8702 0.1562 0.7326 0.8780 0.1454
H(r) 0.1317 0.3804 0.2488 0.1396 0.3381 0.1984 0.1305 0.3122 0.1817
Table 5. Results of point estimates with (e, 8) = (2.0, 0.8) and mission time ¢ = 0.5.
MLE FCPE CCPE
n r  para.
AB MSE AB MSE AB MSE
18 13 a 0.6549 0.4354 0.4409 0.2720 0.3278 0.1788
B 0.3210 0.1099 0.2480 0.0684 0.1870 0.0417
S() 0.0807 0.0076 0.0743 0.0065 0.0645 0.0048
H(t) 0.1224 0.0177 0.1060 0.0122 0.0930 0.0097
17 a 0.4435 0.2198 0.3783 0.2040 0.3136 0.1728
B 0.2603 0.0801 0.2135 0.0522 0.1646 0.0331
S() 0.0472 0.0030 0.0434 0.0025 0.0398 0.0022
H() 0.0931 0.0132 0.0785 0.0073 0.0699 0.0067
28 22 o« 0.3144 0.1194 0.2841 0.1091 0.2631 0.0909
B 0.2235 0.0632 0.1921 0.0473 0.0905 0.0119
S() 0.0471 0.0027 0.0281 0.0009 0.0197 0.0004
H(t) 0.0777 0.0068 0.0540 0.0037 0.0392 0.0021
25 a 0.3008 0.1031 0.2622 0.1029 0.1804 0.0525
B 0.2050 0.0484 0.1132 0.0178 0.0842 0.0102
S() 0.0380 0.0020 0.0190 0.0005 0.0040 0.0001
H(t) 0.0701 0.0061 0.0330 0.0013 0.0134 0.0004
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Table 6. Results of interval estimates with (a,8) = (2.0, 0.8) and mission time ¢ = 0.5.

ACI FCCI CCCI
n r  para.
Lower Upper AL Lower Upper AL Lower Upper AL
18 13  « 0.2772 2.4130 2.1358 0.9420 2.3084 1.3664 1.1381 2.4594 1.3213
B 0.0520 1.1140 1.0619 0.3234 0.8015 0.4781 0.4328 0.7867 0.3539
S() 0.4009 0.8315 0.4306 0.6737 0.8150 0.1413 0.6035 0.7197 0.1162
H() 0.2227 0.8688 0.6461 0.2071 0.4012 0.1941 0.3217 0.4992 0.1775
17 « 0.5573 2.5557 1.9984 1.1059 2.2694 1.1635 1.2788 24136 1.1348
B 0.0619 1.0231 0.9612 0.3864 0.8045 0.4181 0.4769 0.7888 0.3120
S() 0.4259 0.8268 0.4009 0.6475 0.7801 0.1326 0.5988 0.7133 0.1145
H() 0.2089 0.8412 0.6324 0.2480 0.4353 0.1873 0.3130 0.4884 0.1754
28 22« 0.8545 2.5167 1.6622 1.4129 1.8957 0.4828 1.6066 2.0375 0.4309
B 0.1219 1.0311 0.9092 0.6633 0.9342 0.2709 0.6693 0.8919 0.2227
S() 0.4244 0.8206 0.3963 0.6482 0.7629 0.1148 0.6254 0.7142 0.0889
H(r) 0.2209 0.8385 0.6176 0.2723 0.4368 0.1645 0.3288 0.4599 0.1311
25« 0.7494 2.2035 1.4541 1.2341 1.6722 0.4381 1.5324 1.9016 0.3692
B 0.1796 1.0104 0.8308 0.6232 0.8800 0.2568 0.6522 0.8570 0.2048
S@® 04379 0.8297 0.3917 0.6284 0.7387 0.1103 0.6200 0.6969 0.0769
H(r) 0.2158 0.8194 0.6036 0.2936 0.4525 0.1589 0.3637 0.4796 0.1159
Table 7. Results of point estimates with (e, ) = (1.8,2.0) and mission time ¢ = 0.5.
MLE FCPE CCPE
n r  para.
AB MSE AB MSE AB MSE
20 15 a 0.6923 0.4941 0.5562 0.3410 0.5351 0.3338
B 0.5906 0.4950 0.3829 0.2333 0.3048 0.1608
S() 0.1041 0.0133 0.0971 0.0099 0.0803 0.0071
H() 0.2800 0.1434 0.2292 0.0714 0.2104 0.0706
18 a 0.6123 0.4000 0.5315 0.3258 0.4717 0.2990
B 0.4969 0.3336 0.2571 0.0844 0.1992 0.0700
S() 0.0717 0.0075 0.0534 0.0038 0.0525 0.0035
H() 0.1692 0.0546 0.1265 0.0282 0.1220 0.0248
30 24 a 0.3951 0.2199 0.3302 0.1349 0.2712 0.0902
B 0.3211 0.1414 0.2075 0.0827 0.1425 0.0234
S() 0.0453 0.0027 0.0417 0.0023 0.0275 0.0013
H() 0.1268 0.0383 0.1177 0.0264 0.0931 0.0211
27 a 0.3352 0.2086 0.2041 0.0494 0.1923 0.0459
B 0.2555 0.1097 0.1917 0.0620 0.1080 0.0218
S() 0.0428 0.0021 0.0309 0.0012 0.0165 0.0004
H(t) 0.1016 0.0165 0.0827 0.0110 0.0537 0.0067
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Table 8. Results of interval estimates with (a, ) = (1.8, 2.0) and mission time ¢ = 0.5.

ACI FCCI CCCI
n r  para.
Lower Upper AL Lower Upper AL Lower Upper AL
20 15 a 0.4348 1.7806 1.3458 0.8730 1.8138 0.9408 0.9871 1.7512 0.7641
B 0.0524 3.5039 3.4515 1.3375 29516 1.6141 1.4406 2.3984 0.9578
S 0.2616 0.6930 0.4313 0.4326 0.6688 0.2362 0.4232 0.6201 0.1969
H(t) 0.7445 1.2555 0.5111 0.4146 0.8487 0.4341 0.4708 0.8510 0.3802
18 a 0.5687 1.8068 1.2381 0.9836 1.8694 0.8857 1.0708 1.8242 0.7534
B 0.5658 2.8607 2.2949 1.3648 2.4703 1.1055 1.4359 2.3109 0.8750
NG 0.4247 0.8122 0.3875 0.5719 0.7854 0.2135 0.5299 0.7259 0.1960
H(1) 0.2990 0.8055 0.5065 0.2244 0.5421 0.3177 0.3051 0.6223 0.3172
30 24 a 0.8720 2.0450 1.1729 1.0634 1.8734 0.8100 1.2687 1.9752 0.7065
B 0.9068 2.7010 1.7941 1.4883 2.1219 0.6336 1.7297 2.2062 0.4766
S 0.4273 0.7849 0.3576 0.5608 0.7505 0.1898 0.5856 0.7719 0.1862
H(1) 0.3621 0.7851 0.4230 0.2548 0.5499 0.2950 0.2604 0.5374 0.2770
27 a 0.8641 2.0360 1.1719 1.1564 1.9647 0.8083 1.1921 1.7588 0.5666
B 1.0692 2.8230 1.7538 1.6547 22234 0.5687 1.8117 2.2563 0.4445
NG 0.5605 0.8656 0.3051 0.6744 0.8589 0.1845 0.7134 0.8534 0.1400
H(p) 0.1803 0.5354 0.3550 0.1363 0.3754 0.2392 0.1596 0.3380 0.1784
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Figure 2. Criteria ABs of point estimates for parameters a and 3.
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From the results presented in Tables 1 to 8 and Figures 2 to 4, the following conclusions can be
drawn:

With the increase of sample size n and number of failures r, the AB and MSE of MLEs and
generalized estimates generally decrease. This indicates that the performance of different methods
is satisfactory, exhibiting consistency as the effective sample size increases.

For fixed n and r, the generalized point estimates (e.g., FCPEs and CCPEs) have smaller ABs
and MSEs than those of MLEs, indicating that generalized estimates are superior to classical
likelihood-based MLE:s.

For fixed sample size n and r, CCPEs generally outperform FCPEs in terms of both ABs and
MSEs.

For interval estimates, AL generally decreases as n and r increase. Additionally, the ALs of
different interval estimates perform well even when the sample size is relatively small.

For different interval estimates, the CCClIs and FCCIs have relatively shorter interval lengths
than ACIs for both model parameters and reliability indices. This phenomenon persists when the
sample size is small (less than 30), indicating the better performance of generalized intervals.
For fixed n and r, CCCls outperform FCClIs in terms of ALs in most cases, revealing that CC-
based generalized interval estimates are superior to FC-based intervals.

In summary, the simulation results indicate that generalized methods exhibit better performance
than the classical likelihood based methods in terms of the evaluation criteria. Furthermore, CC-
based estimates outperform FC-based ones consequently. For clarity, the overall performance ranking
for both point and interval estimation is generally as MLE(ACI) < FCPE(FCCI) < CCPE(CCCI) in
general.

5. Real data illustration

In this section, two real-life examples illustrate the practical implications of the proposed methods.

5.1. Example one: system failure data

In this subsection, a real-life dataset introduced by Meeker et al. [23] is used for illustration, which
consists of 30 failure times of a device from the field-tracking study of a larger system. To ensure the
data falls within the (0, 1) range for fitting, all observations were normalized by dividing by 120; the
normalized data is presented in Table 9.

Table 9. Dataset of system failure.

0.0008 0.0017 0.0083 0.0167 0.0250 0.0500 0.0583 0.0917 0.1000 0.1500
0.1750 0.2667 0.3000 0.3333 0.3750 0.3833 0.3917 0.4167 0.4583 0.5000
0.5250 0.5583 0.6000 0.6250 0.6583 0.6833 0.6917 0.7000 0.7083 0.7167
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Before proceeding, the Kies distribution and several candidate distributions (e.g., Topp-Leone, Beta,
exponential, Weibull and gamma distributions) were used to fit the data. The Kolmogorov-Smirnov (K-
S) distances and the associated p-values are presented in Table 10. It is noted that the Kies distribution
provides the best goodness-of-fit in this example compared with other distributions. Additionally, plots
of the empirical cumulative distribution function (ECDF) versus the fitted Kies distribution, along with
probability-probability (P-P) and quantile-quantile (Q-Q) plots for the Kies distribution, are presented
in Figure 5 for visual inspection. From the empirical distribution plots, the comparison between the
empirical data distribution (histogram or density plot) and the fitted Kies distribution curve shows good
concordance. Meanwhile, points in the P-P plot lie tightly along the diagonal line, validating that the
cumulative probabilities align closely with their theoretical counterparts (from the Kies distribution).
The Q-Q plot further shows that observed quantiles align closely with theoretical quantiles along the
reference line. These plots thus indicate that the Kies distribution is an appropriate model for fitting
this data.
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Figure 5. ECDF, P-P and Q-Q plots of the Kies distribution for system failure dataset.
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Table 10. K-S test of system failure dataset under different distribution.

distribution K-S distance p-value

Kies distibution 0.1214 0.7239
Topp-Leone distribution 0.2586 0.0294
Beta distribution 0.1607 0.3799
exponential distribution 0.1884 0.2091
Weibull distribution 0.1928 0.1882
Gamma distribution 0.2004 0.1564

Furthermore, two sets of Type-II censored data were obtained with » = 17 and 21, respectively. The
corresponding point and interval estimates were calculated, and the results are presented in Table 10 at
the 95% significance level for interval estimates, with interval lengths provided in square brackets.

Table 11. Point and interval estimates for Kies model for failure data with mission time
t=0.5.

r para. MLE ACI FCPE FCCI CCPE CCCI
17 (0.4556,1.4539) (0.6994,1.3390) (0.7335,1.3204)
@ 1.0308 1.0280 1.0375
[0.9982] [0.6396] [0.5869]
(0.1950,0.7228) (0.3418,0.7464) (0.4464,0.6863)
B 0.5552 0.5475 0.5672
[0.5278] [0.4045] [0.2398]
(0.3475,0.7051) (0.3798,0.5758) (0.3861,0.5770)
S 0.5263 0.4799 0.4838
[0.3576] [0.1960] [0.1909]
(0.2833,1.2015) (0.5415,0.9586) (0.5410,0.9433)
H() 0.7424 0.7500 0.7417
[0.9181] [0.4171] [0.4023]
21 (0.6024,1.5439) (0.8040,1.3341) (0.8176,1.3386)
a 1.0786 1.0734 1.0731
[0.9415] [0.5301] [0.5210]
(0.3007,0.8276) (0.3798,0.7736) (0.4851,0.6921)
B 0.5776 0.5761 0.5932
[0.5268] [0.3937] [0.2070]
(0.3622,0.6550) (0.3789,0.5681) (0.3991,0.5706)
S 0.5086 0.4803 0.4796
[0.2928] [0.1892] [0.1716]
(0.4027,1.2641) (0.5507,0.9551) (0.5555,0.9108)
H() 0.8334 0.7487 0.7478
[0.8614] [0.4043] [0.3553]

From Table 11, with a fixed sample size (n = 30) and two different censoring levels (r = 17,21),
the generalized point estimates and MLEs are close in these two scenarios. Additionally, the
generalized interval estimates(i.e., FCCIs and CCClIs) are superior to the ACIs in terms of interval
lengths. Furthermore, CCClIs for model parameters and reliability indices perform better than FCClIs
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based on their interval lengths. It is also noted that despite the finite sample size (n = 30) in this
example,both classical likelihood-based ACIs and generalized interval estimates are still acceptable.
For completeness, plots of the profile log-likelihood function for parameter S and associated contour
plots for the log-likelihood function ¢(«, 5) are presented in Figures 6 and 7, respectively, which are
consistent with Theorem 2.2.
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Figure 7. Contour plots of log-likelihood function £(e, 5) under practical failure data.

5.2. Example two: remission times data

Another real-life dataset is discussed, consisting of 22 survival times(in weeks) of patients suffering
from acute Myelogeneous Leukaemia. The original data was introduced by Feigl and Zelen [12] and
has also been analyzed by Nassar et al. [24], Abouelmagd et al. [1], and Sen et al. [26]. For illustration,
the original data was divided by 200, and the transformed data is presented in Table 12.
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Table 12. Dataset of remission times.

0.0050 0.0100 0.0150 0.0200 0.0250 0.0350 0.0400 0.0800 0.0850 0.1100
0.1300 0.1500 0.1950 0.2150 0.2800 0.3250 0.5000 0.5400 0.6050 0.6700
0.7150 0.7800

Before proceeding, goodness-of-fit tests are conducted for some candidate models, with results
presented in Table 13. In addition, empirical distribution plots, P-P plots, and Q-Q plots for the Kies
distribution are presented in Figure 8. Similar to Example 1, it is visually observed that the Kies
distribution is a proper model for this real-world dataset.
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Figure 8. ECDF, P-P and Q-Q plots of the Kies distribution for remission times dataset.
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Table 13. K-S test of remission times dataset under different distribution

distribution K-S distance p-value

Kies distibution 0.0945 0.9788
Topp-Leone distribution 0.4185 0.0005
Beta distribution 0.1083 0.9342
exponential distribution 0.1711 0.4877
Weibull distribution 0.8379 0.2300
Gamma distribution 0.1241 0.8466

Furthermore, for Type-II censored data with » = 15 and r = 20, different point and interval estimates
are presented in Table 14 at the 95% confidence level. A similar phenomenon to Example 1 is observed:
the generalized methods outperform classical likelihood-based methods. For illustration, the profile
log-likelihood function of 8 and contour plots for the log-likelihood function £(a, ) are provided in
Figures 9 and 10, respectively.

Table 14. Point and interval estimates for Kies model for remission data with mission time
t=0.5.

r  para. MLE ACI FCPE FCCI CCPE cccl
15 (0.3238,2.5865) (2.1260,3.2957) (1.9301,2.6794)
@ 2.2913 3.0909 2.3525
[2.2627] [1.1697] [0.7493]
(0.0383,0.7564) (0.6940,0.9826) (0.6441,0.7754)
B 0.6690 0.8764 0.7268
[0.7181] [0.2886] [0.1312]
(0.3319,0.6636) (0.4563,0.5502) (0.4040,0.4674)
S 0.4978 0.5106 0.4301
[0.3318] [0.0939] [0.0634]
(0.4556,1.4071) (0.6169,0.8543) (0.7301,0.9136)
H() 0.9314 0.7579 0.8248
[0.9514] [0.2374] [0.1835]
20 (0.8671,2.3038) (1.4262,1.8486) (1.5035,1.8601)
a 1.6271 1.6597 1.6683
[1.4367] [0.4223] [0.3566]
(0.2638,0.7575) (0.6267,0.8499) (0.5618,0.6379)
B 0.5749 0.7901 0.6102
[0.4937] [0.2232] [0.0761]
(0.3387,0.6611) (0.4330,0.5216) (0.3853,0.4435)
NG 0.4999 0.4907 0.4086
[0.3223] [0.0886] [0.0582]
(0.4928,1.3957) (0.6140,0.8088) (0.7803,0.9201)
H() 0.9443 0.7461 0.8732
[0.9029] [0.1949] [0.1399]
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Figure 9. Profile plots of log-likelihood function for S under different censoring schemes for
remission times dataset.
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Figure 10. Contour plots of log-likelihood function ¢(«, 8) under remission times dataset.

From the above two real-world examples, it is noted that our proposed methods perform
satisfactorily. For completeness, some practical implications of the results are also summarized. First,
due to practical constraints (e.g., cost and time), sample sizes may be limited (e.g., medium or small),
and the proposed generalized inferential approaches provide potential ways to investigate product
reliability with better performance. Second, the proposed estimates can be applied to various practical
scenarios (e.g., lifetime prediction, predictive maintenance, and aging tests), which will help improve
the quality of reliability management.
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6. Concluding remarks

This paper investigates parameter estimation for the Kies distribution under the Type-II censoring
scheme. Classical MLEs and ACIs are derived, and the existence and uniqueness properties of the
model parameter MLEs are also established and provided. For comparison, two types of pivotal
quantities are constructed, and alternative generalized inferential approaches are accordingly
proposed for parameter estimation. Simulation studies and real-world examples demonstrate that the
proposed generalized methods outperform the classical likelihood-based method. Additionally, the
estimation method based on CC pivotal quantities outperforms that based on FC pivotal quantities.
Although the discussion is conducted based on Kies model with Type-II censoring, the results could
be extended to other distributions such as Weibull, Kumaraswamy, and Gompertz and other
distributions, with minor modifications under general censoring scenarios including adaptive
censoring and progressive censoring. For future research, inference with regression models (e.g.,
Ishag et al. [14] and Ishag et al. [15]), general data types (e.g., large-scale samples and
high-dimensional covariates) and other methods (e.g., Bayesian methods, bootstrap resampling
approaches) also seem interesting, which will be discussed in the future.
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Appendix
A. Proof of Theorem 2.1

By taking derivative of the log-likelihood function (2.2) with respect to @ and equating it to zero, the
MLE & = a(pB) can directly derive for a given . Further, we will show that & achieved the maximum
of the log-likelihood function {(a, B) for given B. Using the inequality In(r) < 7—1,7> O for ¢ = £, one
has that

a N a N
rlna=rIn(=)+rna<r—-r+rha.
a @

Using the above inequality and ignoring the constant terms, it is noted that

r B-1) , 5
X; .
) < rind+ring+ ) I &Z( X; )
i=1

1 —x)#D —\ 1 = x;

B
—&(n—r)(lxr ) = (@),

- Ar

where the equation holds if and only if @ = @(f). Therefore, the assertion is completed.
B. Proof of Theorem 2.2

By taking the derivative of the profile log-likelihood function, the likelihood equation Q(8) = 0
could be established in consequence.

To show the existence of the MLE fJ for parameter j3, the limitations of the function Q(3) are
established by taking direct computation at 8 — 0 and § — oo, respectively, as

—+00 1—x;

r X;
lim Q(B) = +o0, lim Q(B) = lim In —rlns*| <0,

where s* = max {( Al ),( 2 ), ,( 2 )} Further, it is noted that continuous function Q(8) changes

1-x; 1-xp 1-x,
from positive to negative when 8 € (0, +0), then the MLE 3 of parameter 3 exists.
Additionally, by taking derivative of function (8) with respect to S, one has that

aQp) _ r
dp B Y P+ m-npf

X {(Z P 10 (p) + (n = np] 1n2<pr>] . [Z P+ - r)pf)

i=1 i=1
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, 2
[ D> ) + (n = rpf 1n<p,)) } ,
i=1

where p; = f—x, i =1,2,...,r. From the Cauchy-Schwartz inequality, it is noted that the numerator

T
in the second expression of the above derivative is positive, implying that the derivative is @ < 0.
Therefore, function Q(f) is monotone and changes from positive to negative within its range 8 € (0, 00),

the MLE 3 uniquely exists, and the assertion is completed.
C. Proof of Theorem 3.2

Suppose X; < X, < --- < X, are Type-II censored data of size r from the Kies distribution K(a, 8).

Forr>0,andlet L, = « (%)ﬁ withi=1,2,---,r. Then, L, Ly, - - , L, are the Type-II censored data
from the standard exponential distribution with a sample size of r.

Making transformations

U, = nl,,
U, =(n—- 1)L, - Ly),

U-=m-r+1)(L, - L),

it is seen that quantities U;, U,,---,U, are independent random variables from the standard
exponential distribution due to the memoryless property of the exponential distribution (e.g., Viveros
and Balakrishnan [29], Wang and Ye [30]).

Define W, = 2U; and W, =2}/, U;, and one has W; ~ X% and W, ~ X(22r—2)' Therefore, quantities

Wi/2 n
Gi(f) = — 5 = (-1
16) W, /2(r—1) (r )(n oy 1)(x,(1—x1))'B + Zr—l (x,—(l—xl))ﬁ —n

x1(1=x,) =1 \x;(1-x7)

~ Fpar),

and

PR Cl eV
Bl(a/,ﬁ):W1+W2:2a/(n—r+l)(1 : )+2QZ( l )N)(%r,

- X, P 1—x

and that G(8) and B, («, 8) are statistically independent. Therefore, the assertion is shown.
D. Proof of Theorem 3.2

From the Proof of Theorem 3.1, it is noted that quantities U;, U,, - - - , U, are independent random
variables from exponential distribution. Furthermore, denote quantities

My=U,M,=U,+U,,--- M, =U,+Uy+---+U,.

It is noted from Stephens [27] that the following quantities
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are independent random variables from the standard uniform distribution.
Furthermore, pivotal quantities can be constructed as follows

1 xi(l—x)\B .
r—1 r=1 Z‘jzll (:f((ll_;;) +(n—-i+1) )
GyB)=-2) InN;j=-2>"In ' ~ Xar-2p
4 & r-1 (Xk(l—xi))’B +(m—r+1) (M)ﬁ
i=1 i=1 k=1 \ x;(1-xz) xi(1=x,)

and

X, B r—1 x; B )
By(@,B) = 2M, = 2a(n — r + 1)(1 _Xr) + 20/;(1 —x,-) ~ X3,

and that G,(8) and B,(«a, ) are statistically independent. Therefore, the assertion is completed.
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