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Abstract: Play-based preschool education has emerged as a promising model for enhancing early
childhood learning engagement and outcomes. However, traditional assessment models often fail to
account for the dynamic and heterogeneous nature of learners, including cognitive differences,
temporal interaction patterns, and individualized developmental trajectories. To address the neglect of
learner dynamic heterogeneity in play-based preschool education, this paper proposed an adaptive
assessment framework that integrated dynamic graph neural networks (GNNs) and evolutionary multi-
objective optimization (EMO). The framework modeled curriculum—learner relationships by
constructing heterogeneous interaction graphs, extracting temporal structural representations using
GNNs, and balancing three pedagogical objectives—knowledge acquisition, engagement, and
adaptability—through an EMO algorithm. A closed-loop feedback mechanism drove the co-evolution of
both the model and the curriculum. Experimental results demonstrated that the proposed framework
significantly improved post-test scores (by 0.2—0.7 points), learner engagement (correlation R = 0.608),
and individualized satisfaction, particularly among visual and kinesthetic learners. Comparative
analyses further highlighted the robustness, scalability, and adaptability of the proposed method,
establishing it as a computationally grounded and dynamically optimized intelligent curriculum design
paradigm for early childhood education.
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1. Introduction

In recent years, with the rapid advancement of information technology and artificial intelligence
(Al), early childhood education has increasingly adopted gamified approaches to foster engagement and
interactivity. Gamification has been shown to stimulate children’s interest in learning while promoting
the development of cognitive and social skills within enjoyable, play-based environments [1,2]. Despite
these benefits, traditional evaluation methods and optimization strategies in gamified preschool
programs often face significant challenges. Most current assessment systems rely on standardized tools
that inadequately capture learners’ heterogeneous needs—such as learning styles, cognitive levels, and
game preferences—resulting in misaligned course design and suboptimal teaching effectiveness [3—6].
Furthermore, weak correlations between course content and children’s individual characteristics limit
dynamic adaptation, hindering the achievement of sustained learning outcomes. Consequently,
designing intelligent, personalized, and dynamically adjustable gamification strategies has become an
urgent priority in early childhood education.

To address these issues, scholars have increasingly explored the integration of intelligent
technologies with gamification. At the primary education level, Leung et al. [7] demonstrated through
field experiments that personalized gamification can significantly increase online course completion
rates, especially when game mechanics align with learners’ cognitive preferences. Similarly, Oliveira
et al. [8] showed that adaptive game elements enhance learning motivation by up to 40% through
optimized flow experiences. In teacher training contexts, Zourmpakis et al. [9] validated the
effectiveness of adaptive gamification in science education and emphasized the importance of
improving teachers’ understanding of personalization mechanisms. Gm et al. [10] identified
personalized recommendation systems as a crucial technological pathway for improving participation
in online learning, while Rodrigues et al. [11] confirmed that adaptive difficulty adjustment plays a
pivotal role in maintaining learner motivation during gamified review activities. Bennani et al. [12]
further observed that adaptive gamification continues to face challenges, such as limited contextual
awareness in engineering education. Dehghanzadeh et al. [13], through a systematic review of K—12
education, stressed that gamification design must correspond to learners’ cognitive development stages.
Meanwhile, Lee et al. [14] found that gamified learning improved attention and memory retention
among preschool-aged children (3—6 years), though adaptation to individual differences remained
inadequate.

In parallel, research in intelligent education has increasingly focused on the convergence of
personalized learning strategies and gamification. Cevikbas et al. [15] confirmed the positive impact
of personalized learning strategies on teaching sustainability in flipped classrooms. Ford [16]
demonstrated that gamification design enhances learning motivation, while Marougkas et al. [17]
revealed that immersive virtual reality (VR) significantly boosts learning outcomes by providing
contextualized experiences. Adaptive feedback mechanisms have also emerged as a promising solution:
Qi et al. [18] proposed a self-optimizing massive open online course (MOOC) system that dynamically
adjusts learning activities, establishing a paradigm for intelligent personalization. Castellano et al. [19]
further integrated gamification with Al in anatomy education, verifying the role of intelligent
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recommendation in facilitating knowledge internalization. Khaldi et al. [20] emphasized that
gamification must be deeply aligned with learners’ cognitive traits to maximize its benefits, while
Altaie et al. [21] developed an adaptive framework that successfully enhanced computational thinking
in adolescents aged 8—13 [22]. With the rise of Al technologies, Ma et al. [23] analyzed the application
pathways of educational chatbots, and Major et al. [24] underscored the importance of personalized
gamification mechanisms in sustaining learner motivation in MOOC:s.

The integration of evolutionary multi-objective optimization and deep learning has demonstrated
strong potential in intelligent education. Beyond traditional algorithms such as Non-Dominated
Sorting Genetic Algorithm II (NSGA-II) and Multi-Objective Evolutionary Algorithm Based on
Decomposition (MOEA/D), recent research has begun exploring the combination of generative
adversarial networks with evolutionary multi-objective optimization (EMO) for Pareto front
approximation in multimodal educational data. Other studies have employed Transformer architectures
to model temporal learning behaviors and dynamically predict multi-objective learning effectiveness.
However, most of these methods target K—12 or higher education contexts and fail to account for the
nonlinear cognitive development and tightly coupled interactive characteristics of early childhood
learning. This paper, for the first time, combines dynamic GNNs with EMO to construct an
interpretable, evolutionary optimization framework for gamified preschool education (ages 3-6),
filling the research gap in dynamic tuning of personalized courses for this developmental stage.

Building upon these insights, this study proposes a novel framework integrating GNNs, including
graph convolutional network (GCN) and graph attention network (GAT) variants) with a genetic
algorithm—based multi-objective optimization (GA-MOO) approach for evaluating and personalizing
gamified preschool curricula. Specifically, the framework constructs a course evaluation graph to
capture relationships between course modules and learner attributes, enabling GNNs to extract
structural dependencies for personalized recommendations. A GA-MOO strategy is then employed to
optimize multiple pedagogical objectives—knowledge acquisition, engagement, and adaptability—
through a feedback-driven mechanism that continuously refines course configurations. Experimental
validation demonstrates that this framework substantially enhances personalization and teaching
effectiveness, addressing heterogeneous learner needs and advancing intelligent gamification in early
childhood education.

2. Methods
2.1. Graph neural network model (GCN/GAT) to construct course evaluation graph

This study formalizes the dynamic optimization of gamified courses as a multi-objective
optimization problem (MOP). Let the decision variable vector x€Rrepresent the course configuration

parameters, including the difficulty of each module {d;}, the intensity of interactivity {i;}, the weight

of interest {fy }, and the matching coefficient with learner characteristics {,}. The objective function

1s defined as:

. T
HEHF (X) = ['Gknowledge (X) > 'Gengagement (X) » 'Gadaptivity (X) ]

: (M)
s.t. XEXCR",
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Here Ginowledge s Gengagement s Gadaptivity ar€ composed of the learning outcome predictions,

engagement scores, and fitness scores output by the GNN, respectively, y representing the feasible
domain of the course parameters (e.g., difficulty d;€[1,5]). In this framework, the GNN plays a dual
role as a feature extractor and an effectiveness evaluator: taking a heterogeneous graph as input, it
generates embeddings through multi-layer GCN/GAT propagation h,and maps them to the three
objective function values. This formal definition gives the optimization problem a clear mathematical
structure, facilitating algorithm implementation and result reproduction.

In optimizing gamified early childhood courses, the relationships between course content and
student characteristics are highly complex and interdependent. To achieve effective personalized
recommendations, this paper employs a GNN to construct a course evaluation graph, where nodes
represent either course modules or individual children. Node features integrate both course content
attributes and learner-specific characteristics, while edges encode the relationships between courses
and students, as well as peer interactions among students.

By leveraging GNNs to learn from node and adjacency relationships, the framework dynamically
adjusts course recommendation strategies, ensuring a closer alignment between educational content
and the individualized needs of children. Specifically, this study integrates two complementary GNN
architectures: the GCN and the GAT. The GCN aggregates information through a weighted averaging
of neighboring node features, making it well-suited for regular graph structures. In contrast, the GAT
introduces a self-attention mechanism that dynamically adjusts the weights of neighboring nodes,
enhancing the model’s adaptability to irregular graph topologies and enabling more precise and
context-sensitive recommendations.

The training of the graph neural network follows the graph convolution operation, expressed in
formula (2) [24]:

H(lﬂ)zc(RH(DW(D), (2)

where H(Drepresents 1 the node features at the layer, is Athe normalized adjacency matrix, wOis 1

the weight matrix at the layer, ¢ and is the activation function. Graph convolution gradually updates
the node representation by taking a weighted sum of the features of adjacent nodes and applying it to
a nonlinear activation function. Through multiple layers of graph convolution, we ultimately obtain
node features that effectively represent the complex relationships between courses and students.

In practical applications, the construction of the course evaluation graph considers several key
aspects. First, the characteristics of course content evolve alongside children’s cognitive development
and gaming preferences; thus, the course content must be dynamically adjusted based on learners’
historical performance data. Second, individual differences—such as children’s unique needs, learning
styles, and motivational factors—Ilead to varying preferences for course materials. Consequently, the
training process of the graph neural network requires continuous updating of learner representations,
allowing the recommendation strategy to adapt in real time to each child’s evolving profile [25,26].

Through layer-by-layer graph convolution propagation, the model effectively integrates both the
individualized needs of learners and the dynamic features of course content, enabling the system to
recommend the most suitable course modules for each student.

After training the graph neural network, the system generates an embedding vector for each child
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within the course evaluation graph. These embedding vectors capture rich, multidimensional
information—including learning progress, evolving interests, and cognitive difficulty levels. By
comparing the embeddings across different learners, the system can identify similarities and clusters
among children, thereby refining course recommendations to ensure that each child engages with
content at an appropriate level of difficulty, interest, and developmental alignment.

Figure 1(a) illustrates the node embedding space distribution of the GNN model. To visualize the
high-dimensional relationships, t-distributed stochastic neighbor embedding (t-SNE) dimensionality
reduction is applied to the 128-dimensional feature representations of 300 nodes. Distinct node types—
course modules, child nodes, and knowledge units—are differentiated through color and markers,
reflecting their distribution patterns in the high-dimensional space. The t-SNE visualization reveals a
clear clustering tendency among node types, with noticeable separation between course modules and
child nodes. This demonstrates that the GNN model effectively captures and distinguishes the feature
representations of heterogeneous nodes within the course evaluation graph.

Figure 1(b) presents the probability distribution of attention weights. By fitting an exponential
distribution to the model’s attention weights, it is observed that these weights are highly concentrated
between 0 and 1. This indicates that when processing information from different nodes, certain
nodes—such as specific course modules or child nodes—receive higher attention weights, signifying
their greater influence on the overall model learning process.

(a) GNN Node Embedding Space Distribution ) (b) Attention Weight Probability Distribution

) Course Modules
/% Child Nodes Empirical Distribution

Exponential Fit

[1  Knowledge Units

t-SNE Dimension 2
Probability Density

-8 6 4 2 0 2 4 0 0.5 1 1.5 2 25
t-SNE Dimension 1 Attention Weight Value

Figure 1. Node embedding space distribution and probability distribution of attention weights.

The training of the GNN not only enhances personalized recommendations by propagating
information through local neighborhood structures, but also effectively models large-scale relational
dynamics between students and courses. When combined with the genetic algorithm—based
optimization framework, the output embeddings of the GNN serve as the input features for the genetic
algorithm, further refining the course configuration parameters. This integration enables more efficient,
accurate, and adaptive course recommendation and optimization.

2.2. Genetic algorithm to optimize course configuration

Genetic algorithms (GAs) are global optimization techniques inspired by the principles of natural
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selection and evolutionary adaptation, well-suited for solving complex curriculum design problems.
In this study, the GA is employed to optimize the configuration parameters of gamified preschool
courses. Each curriculum design is treated as an individual in the population, with parameters including
course difficulty, interactivity, and enjoyment level, as well as their alignment with children’s
individual characteristics.

After generating the initial population, each individual is evaluated using a fitness function that
comprehensively considers factors such as course difficulty, interactivity, and entertainment value,
along with children’s learning styles, cognitive levels, and gaming preferences. The optimization
process proceeds iteratively through selection, crossover, and mutation operations [27,28],
progressively improving the population toward optimal solutions. Ultimately, this evolutionary
approach yields a globally optimized curriculum configuration that dynamically adapts to the
individual needs and developmental trajectories of preschool learners.

In this process, the fitness function can be expressed by the following formula (3):

f(x)=w;-D(X)+w,-1(x)+w;3-F(x)+w, P(x). 3)

Among them, f(x) represents the adaptability of the course configuration D(x), x represents the
adaptability of the course difficulty, 1(x) represents the interactivity of the course, F(x) represents
the fun of the course, and P(x) represents the matching degree of the child's individual needs, and
W1, Wo, W3, Wy 1s the corresponding weight coefficient. The design of the fitness function ensures that
the course configuration optimization process can take into account various requirements and achieve
balanced and diverse course content.

The core mechanism of the genetic algorithm (GA) lies in its evolutionary process, which
comprises three main operations: selection, crossover, and mutation.

During the selection phase, a roulette wheel selection or tournament selection strategy based on
fitness values is employed, giving priority to individuals with higher fitness scores for entry into the
next generation [29]. This ensures that superior course design solutions are preserved and continue to
contribute to subsequent optimization iterations.

In the crossover operation, two individuals are selected as parents, and new offspring are produced
through the exchange of partial genetic material (i.e., course configuration parameters). This process
enables the exploration of new curriculum design possibilities. To enhance the diversity and global
search capability of the algorithm, the crossover operation can adopt various strategies such as single-
point or multi-point crossover.

The mutation operation introduces random perturbations to the course parameters of certain
individuals, mimicking the natural process of gene mutation. This prevents the algorithm from
becoming trapped in local optima and broadens the search space, improving the robustness and
adaptability of the optimization process.

Through multiple generations of iterative evolution, the GA progressively converges toward the
optimal combination of curriculum configurations. With each generation, the fitness level of the
population improves, eventually stabilizing at an optimal solution that best satisfies the personalized
learning needs of each child. To further enhance optimization effectiveness, this study implements an
adaptive weight adjustment strategy, dynamically modifying the weight coefficients in the fitness
function based on real-time feedback during the optimization process. This allows the algorithm to
achieve a more balanced trade-off among multiple optimization objectives [30].

Moreover, the parameter settings of the GA significantly influence its optimization performance.
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In this study, standard GA parameters were employed: a population size of 100, a crossover probability
of 0.8, a mutation probability of 0.1, and a maximum generation count of 1000. These configurations
ensured a comprehensive search for optimal solutions while maintaining computational efficiency and
convergence stability.

Figure 2 illustrates the key stages in the GA optimization process.

Figure 2(a) presents the evolution of fitness values, where the horizontal axis represents the
number of generations and the vertical axis represents the fitness score. As shown, the best individual
fitness steadily increases with each generation, indicating that the optimization process of the GA is
progressively converging toward an optimal solution. Meanwhile, the average population fitness
exhibits slight fluctuations across generations, reflecting the influence of individual diversity within
the population on the overall optimization trajectory. This trend aligns with the goal of optimizing
gamified early childhood courses—continuously enhancing adaptability and learning effectiveness by
dynamically adjusting course content through iterative evolution.

Figure 2(b) depicts the evolution of the course difficulty parameter, where the horizontal axis
represents the number of generations and the vertical axis denotes the value of the course difficulty.
As the number of generations increases, the difficulty parameter distribution gradually converges
toward higher values, suggesting that course difficulty is adaptively adjusted to better match the
evolving learning needs and developmental levels of different children.
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Figure 2. Evolution of fitness and changes in difficulty parameters during optimization.
2.3. Multi-objective optimization strategy

In the design and optimization of gamified early childhood education, course effectiveness
depends not only on the content itself but also on the interaction and balance among multiple
pedagogical factors. To holistically address the diverse learning needs and objectives in the
optimization process, this study introduces a multi-objective optimization strategy that simultaneously
refines several key indicators: children’s learning outcomes, course enjoyment, and learning progress.

In multi-objective optimization, it is essential to clearly define the objective functions to be
optimized. In this study, the three core objectives are as follows:
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® [earning effectiveness: Enhancing children’s knowledge acquisition, comprehension, and

cognitive development.

® Course fun: Ensuring that course content stimulates curiosity, sustains engagement, and

fosters intrinsic motivation.

® [earning progress: Maintaining an appropriate learning rhythm and adjusting course

difficulty dynamically to match each child’s cognitive pace [31,32].

To optimize these objectives simultaneously, the weighted summation method is adopted. This
approach combines multiple objective functions into a comprehensive objective function, where each
objective is assigned a specific weight coefficient representing its relative importance to the overall
course design. By appropriately calibrating these weights, the optimization process can effectively
balance educational effectiveness, engagement, and adaptability. The formulation of this composite
objective function is presented in formula (4),

F total (X) Wi Flearning (X) Wy Ffun (X) Tws F progress (X) . (4)

Wherein, Fio,(x) is the comprehensive optimization goal, Fieaming(X) is the learning effect Fyy,(x)

goal, is the course fun goal, Fpogress(X) is the learning progress goal, and wy, w,, w; is the weight

of the corresponding goal. The weight coefficient is adjusted according to the specific educational
goals and course characteristics to ensure balance and coordinated optimization among the various
goals.

In the multi-objective optimization process, each objective function is first optimized
independently, followed by a composite optimization through a weighted summation approach. To
enhance the performance and balance of the optimization results, this study introduces the concept of
the Pareto optimal solution—a state in which improvement in one objective cannot be achieved
without compromising another. Through this mechanism, the optimization process identifies a set of
trade-off solutions that represent ideal compromises among competing objectives, rather than a single
absolute optimum [33].

The optimization framework integrates a GA with a GNN. The GNN models the complex
relationships between curriculum elements and children’s individualized learning needs, while the GA
iteratively refines the curriculum configuration parameters through multiple generations of
evolutionary operations. Within the multi-objective optimization process, the GA’s selection, crossover,
and mutation mechanisms work collaboratively to optimize multiple objectives simultaneously during
each generation. Specifically:

Selection prioritizes individuals with higher fitness scores, ensuring that superior curriculum
designs are preserved for future generations.

Crossover combines the genetic information (i.e., course parameters) of parent individuals to
create new curriculum configurations, facilitating exploration of a diverse solution space.

Mutation introduces random variations to individual genes, preventing premature convergence
and guiding the algorithm toward a global optimum.

The design of the fitness function plays a pivotal role in the multi-objective optimization process.
In this study, the fitness function integrates multiple pedagogical objectives—Ilearning effectiveness,
enjoyment, and learning progress—while also incorporating learner-specific characteristics such as
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learning styles, cognitive development levels, and gaming preferences. This comprehensive design
ensures that, during optimization, the curriculum not only enhances children’s cognitive abilities and
learning motivation but also dynamically adjusts difficulty levels and content alignment based on
individual progress and developmental needs.

To achieve efficient computation and balance across multiple objectives, this study employs the
NSGA-II. NSGA-II effectively manages conflicts among competing objectives by maintaining a
Pareto front of non-dominated solutions. Through iterative refinement, the algorithm identifies an
optimal set of curriculum configurations that best satisfy the personalized needs of preschool learners
while maintaining equilibrium among learning effectiveness, engagement, and adaptability [34].

Figure 3 presents the three core components of the multi-objective optimization process.

Sub-Figure 3(a) illustrates the distribution of Pareto optimal solutions, where the horizontal axis
represents learning effectiveness and the vertical axis represents fun. The scatterplot displays the
spread of solutions generated during the optimization process. Through iterative refinement, the
selected solutions achieve an optimal balance between learning effectiveness and enjoyment, enabling
the design of gamified curricula that are both pedagogically effective and engaging for young learners.

Sub-Figure 3(b) depicts the evolution of objective functions across optimization iterations. The
three objective functions—Ilearning effectiveness, fun, and learning progress—show consistent upward
trends as the number of iterations increases, indicating that the optimization process progressively
enhances the overall quality and adaptability of the course design.

Sub-Figure 3(c) demonstrates the impact of the progress weight coefficient on the overall fitness
value. The horizontal axis represents the progress weight coefficient, while the vertical axis indicates
the overall fitness. As the weight of learning progress is adjusted, the corresponding changes in fitness
reflect how the balance among learning outcomes, engagement, and progression influences the
effectiveness of the optimized curriculum.
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Figure 3. Multi-objective optimization process.

Throughout the multi-objective optimization process, the adaptability of the curriculum content
is continuously refined. This ensures that course design not only strengthens learning effectiveness,
but also enhances interest, interactivity, and engagement. Simultaneously, the system dynamically
adjusts course difficulty in accordance with each child’s cognitive development and learning progress,
allowing learners to advance at a pace most conducive to their individual growth. Moreover, this
adaptive optimization fosters sustained motivation and active participation, helping children maintain
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a positive learning attitude within the gamified learning environment.
2.4. Personalized course recommendation system

The personalized course recommendation system employs a GNN to construct a relationship
graph linking course content with individual child characteristics. This system captures complex, non-
linear interactions between children and learning materials by representing child attributes and course
elements as interconnected nodes, while edges denote the strength and nature of these relationships.

In this framework, each child’s learning style, cognitive level, age, and game preferences are used
as input features, whereas course modules, difficulty levels, and interactive design elements are
modeled as nodes within the GNN. Through training, the GNN learns the underlying structural
relationships and optimizes learning paths tailored to each learner.

The system first encodes the child’s characteristics into a feature vector, which is then input into
the trained GNN to generate a personalized course list. The final recommendations are dynamically
adjusted based on the weighted relationships between nodes, ensuring that the system remains
responsive to evolving learner profiles. For example, kinesthetic learners receive recommendations
emphasizing interactive and movement-based games, while visual learners are guided toward image-
and video-rich content. This adaptive recommendation process enables targeted allocation of learning
resources, ensuring that every child engages with content best suited to their unique learning
preferences and developmental trajectory.

Figure 4 presents the results of the personalized match assessment. The horizontal axis represents
the child’s ID number (ranging from 1 to 120), while the vertical axis indicates the degree of interest
match between each child and the recommended curriculum. Each dot in the scatterplot corresponds
to an individual child, and the color intensity represents the match level—darker colors signify a higher
degree of match. The black dashed line denotes the average interest match across all participants. The
data show that the overall match values range between 0.7 and 0.9, indicating that most children exhibit
a high degree of alignment between their interests and the recommended curriculum content.
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Figure 4. Results of personalized matching evaluation.
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To further enhance recommendation quality, this study integrates a GA to iteratively optimize the
recommendation system. Specifically, the GA refines the configuration of course content derived from
the GNN. Each course configuration (comprising course content, difficulty, interactivity, and other
design parameters) is treated as an individual, and a fitness function evaluates its effectiveness based
on each child’s characteristics and game preferences. This fitness function is designed according to
personalized learning needs, assessing multiple dimensions such as course enjoyment, learning
outcomes, and learning progress [35,36]. Through iterative operations of selection, crossover, and
mutation, the GA continually adjusts course recommendations to ensure that every child achieves the
most effective and engaging learning experience.

Within the recommendation system, the GA continuously explores new combinations of course
configurations, thereby avoiding local optima and improving system adaptability and recommendation
accuracy. Evaluation metrics—including interactivity, fun, and learning progress alignment—are used
within a multi-dimensional fitness function to assess performance. The system then integrates child
feedback and learning data to quantify recommendation effectiveness in real time. Additionally, a
dynamic feedback mechanism continuously adjusts recommendation strategies based on behavioral
data—such as academic performance, engagement levels, and attention span—thereby ensuring that
course content remains personalized and balanced between each child’s learning progress and interests.

2.5. Feedback mechanism and optimization iteration

To ensure continuous optimization and adaptability of the gamified preschool curriculum, this
study proposes a dynamic optimization mechanism grounded in student feedback. This mechanism
forms a closed-loop optimization cycle by collecting real-time behavioral data during learning
activities. It dynamically adjusts recommendation strategies and continuously optimizes course design
based on children’s learning performance and engagement, thereby enhancing the system’s
personalization accuracy and adaptability.

The feedback mechanism aggregates data from multiple sources, including children’s learning
progress, interaction frequency, task completion rates, answer accuracy, emotional responses, and
overall engagement. For example, learning progress data reflects each child’s mastery and cognitive
development within individual modules, while interaction data—such as click frequency and task
participation—reveal interests and motivational trends. These insights enable the system to
dynamically adjust subsequent course content and enhance learning motivation.

After preprocessing and feature extraction, the collected data is transformed into optimized inputs
for updating course recommendation strategies. The core of this feedback mechanism lies in real-time
behavioral analysis, which identifies learning bottlenecks or declining interest and triggers
corresponding adjustments. Specifically, feedback data is used to fine-tune parameters within both the
GNN and the GA.

In the GNN, feedback updates children’s feature vectors and modifies the correlation weights
between course content and child characteristics. For instance, if a child underperforms in a specific
module, the system prioritizes course recommendations that better align with their cognitive level,
avoiding content that is too easy or too difficult.

In the GA, feedback dynamically updates the fitness function and optimization strategy,
influencing the operations of selection, crossover, and mutation. When learning difficulties are
detected, the fitness function increases the difficulty adaptation weight, ensuring that subsequent
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course configurations more closely match the learner’s progress and abilities.

To achieve real-time optimization, the system employs incremental learning, which gradually
incorporates newly collected feedback into model training. This approach allows for rapid adaptation
to changing learner needs while avoiding the computational overhead of full model retraining. As a
result, the recommendation system remains continuously up to date, reflecting each child’s current
behavior and development.

The feedback mechanism not only adjusts course content but also fine-tunes multiple dimensions,
including difficulty, engagement, and interactivity. For example, if a child loses interest, the system
can increase interactivity or gamified challenges; if progress slows, it can reduce difficulty or shorten
task duration. This closed-loop adaptive framework ensures that the system evolves continuously—
each cycle of data collection and analysis provides the foundation for updates, steadily improving
recommendation precision and personalized adaptability. Moreover, it can predict and accommodate
future learning needs, ensuring that curriculum design consistently aligns with the individual
characteristics and developmental trajectories of young learners.

3. Method effectiveness evaluation

To validate the effectiveness of the proposed gamified curriculum optimization method, this study
constructed and utilized a comprehensive experimental dataset. The dataset was derived from actual
teaching records across three kindergartens and includes detailed learning behavior data and
curriculum information for 120 children. Over an eight-week gamified learning period, each child
generated approximately 320 behavioral records, encompassing metrics such as task completion rates,
number of interactions, learning time, answer accuracy, and game preferences.

The curriculum comprised 50 distinct gamified units, each rated on a five-point difficulty scale.
Interactivity and fun were evaluated using teacher ratings and children’s engagement levels, both
measured on a 1-10 scale. The dataset also includes key demographic and psychological attributes,
such as age (3—6 years), gender, learning style (visual, auditory, or kinesthetic), cognitive development
level (low, medium, or high), and home learning environment. To assess personalized recommendation
effectiveness, children’s knowledge acquisition and interest changes were recorded before and after
the course.

3.1. Evaluation indicators: Learning outcome and engagement

Learning outcomes were primarily assessed through measures of knowledge acquisition,
cognitive improvement, and task completion within the gamified courses.

Knowledge acquisition was evaluated using pre- and post-tests to measure children’s mastery of
knowledge and their ability to comprehend and apply course content.

Cognitive improvement was gauged by observing changes in thinking patterns, problem-solving
abilities, and conceptual understanding before and after the intervention.

Task completion was assessed by tracking metrics such as completion rates, error frequency, and
problem-solving speed, providing insight into learners’ performance during gameplay-based learning
activities.

Engagement was evaluated through behavioral indicators including interaction frequency,
number of questions answered, time spent on game tasks, and duration of sustained participation.
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These measures reflect each child’s level of involvement, motivation, and persistence, offering a
comprehensive understanding of their engagement within the gamified learning environment.

Figure 5(a) presents a comparison of learning outcomes across ten course modules, measured
using standardized pre- and post-test scores. The results clearly show that post-test scores are
consistently higher than pre-test scores across all modules, indicating a significant improvement in
children’s learning performance. The observed score increases range from 0.2 to 0.7 points,
demonstrating that the gamified curriculum design had a substantial positive impact on learning
outcomes. These findings highlight that the optimized course structure effectively promotes knowledge
acquisition and cognitive development, particularly evident in the marked improvement of post-test
results.

Figure 5(b) illustrates the relationship between engagement levels and learning improvement. The
scatter plot reveals that children with higher engagement scores tend to exhibit greater gains in learning
outcomes. Regression analysis shows a correlation coefficient (R?) of approximately 0.608, indicating
a moderate positive correlation between engagement and learning improvement. The inclusion of
confidence intervals around the regression line further confirms the reliability and statistical robustness
of this relationship, underscoring the critical influence of engagement on children’s learning
performance within gamified educational settings.

. 2(a) Learning Effect Comparison of Course Modules (1h% Correlation Between Engagement and Learning Effect
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Figure 5. Learning effect and participation evaluation.
3.2. Course satisfaction survey

The course satisfaction survey collected comprehensive feedback from both children and parents
through structured questionnaires. The survey assessed children’s satisfaction across several
dimensions, including interest level, content suitability, interactivity, entertainment value, and
educational significance. These responses were used to quantitatively evaluate the overall popularity
of the curriculum and to determine whether it effectively met learners’ expectations and developmental
needs.

Parent feedback provided additional insights into how the gamified curriculum complements
family-based education. By reflecting on children’s engagement and progress at home, parents helped
evaluate the broader educational impact and quality of the program. Collectively, these survey results
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serve as an important benchmark for assessing whether the course is achieving its pedagogical
objectives—fostering not only knowledge growth and cognitive improvement but also enjoyment and
motivation in early learning experiences.

Figure 6 presents the results of the course satisfaction and learning outcome survey.

Figure 6(a) displays the distribution of satisfaction scores across different course types, each
evaluated by 30 participants on a 1-10 scale. The boxplot visualization highlights the variability in
satisfaction ratings among course types, revealing distinct fluctuations and median differences across
the various designs. These variations suggest that course type significantly influences participants’
perceived satisfaction, indicating differing degrees of engagement and enjoyment among learners.

Figure 6(b) illustrates the relationship between course satisfaction and learning outcomes through
a scatterplot with a regression line. Data points are categorized by learning style—visual, auditory, and
kinesthetic—and distinguished by color. The results reveal a positive correlation between satisfaction
scores and learning improvement: participants who reported higher satisfaction generally achieved
greater learning gains. This trend is particularly evident among visual and kinesthetic learners, who
show a stronger alignment between engagement, satisfaction, and performance. The regression line
confirms that higher satisfaction levels correspond to improved learning outcomes, while variations
across learning styles provide valuable insights into customizing course design to enhance both
learning experiences and results.
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Figure 6. Survey results on course satisfaction and learning outcomes.
3.3. Personalized matching evaluation

The personalized matching evaluation assesses the effectiveness of the personalized course
recommendation system compared with traditional curriculum designs. The primary goal of this
evaluation is to determine how personalized recommendations enhance children’s learning outcomes
and motivation by aligning educational content more closely with individual learner characteristics.

The evaluation process involves collecting learning data from ten randomly selected children
participating in both curriculum models, as summarized in Table 1. The data include indicators such
as academic performance, engagement levels, and learning interest. Statistical analyses are then
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conducted to compare outcomes under personalized and conventional course settings.

Results demonstrate that courses designed using the personalized recommendation system show
stronger alignment with children’s cognitive levels, learning styles, and interests. Learners in the
personalized setting exhibited higher knowledge acquisition, greater engagement, and improved
intrinsic motivation compared with those following standard course designs. Overall, the findings
confirm that a high degree of personalized fit significantly enhances both learning effectiveness and
interest, validating the proposed system’s value in improving the quality and adaptability of gamified
preschool education.

Table 1. Personalized matching evaluation table.

Personalized Conventional ) . Personalized )
) Personalized Conventional Conventional
Child course course course
i : course course ) course
ID learning learning interest .
engagement engagement Interest score
score score score
1 85 75 90 80 7
2 80 70 85 75 8 6
3 90 85 95 80 9 8
4 75 65 &0 70 7 6
5 92 78 88 72 9 7
6 78 72 82 74 8 6
7 85 79 90 77 9 7
8 80 73 86 74 8 6
9 88 80 93 80 9 8
10 84 76 &9 76 9 7

3.4. Achievement of teaching objectives

The assessment of teaching goal achievement evaluates whether the gamified curriculum has
successfully fulfilled its intended educational objectives, encompassing cognitive, skill-based, and
emotional goals.

® (Cognitive goal assessment: This dimension measures children’s understanding and mastery

of curriculum knowledge. It evaluates their ability to recall, comprehend, and apply key
concepts, providing insight into how effectively the course fosters knowledge acquisition and
conceptual development.

® Skill goal assessment: This component examines children’s practical skill development by

assessing their ability to apply learned knowledge in real tasks, such as completing
challenges or solving problems within the gamified environment. It reflects the extent to
which the curriculum cultivates hands-on competence and problem-solving ability.

® Emotional goal assessment: This aspect evaluates the emotional and affective outcomes of

learning. It captures changes in children’s attitudes, motivation, and emotional responses
toward the curriculum. Data is collected through questionnaires, interviews, and behavioral
observations to assess improvements in self-confidence, cooperation, persistence, and
emotional expression.
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By integrating findings across these three dimensions, a comprehensive evaluation of the
curriculum’s effectiveness can be achieved. This holistic approach provides a deeper understanding of
how well the gamified preschool curriculum supports cognitive development, skill acquisition, and
emotional growth, thereby ensuring that the teaching objectives are fully met and aligned with the
developmental needs of young learners.

Table 2 presents the results of each child’s achievement across cognitive, skill-based, and affective
goals. For instance, Child 3 achieved 88% in cognitive goals, 83% in skill goals, 92% in affective goals,
and 88% overall, indicating consistently strong performance across all learning dimensions. In contrast,
Child 4 demonstrated lower achievement levels, with 75% in cognitive goals, 70% in skill goals, 80% in
affective goals, and 75% overall, reflecting difficulties in cognitive comprehension and skill mastery.

Table 2. Teaching goal achievement evaluation table.

. Cognitive objective  Skill objective En.lotlf)nal Overall objective
Child ID achievement (%) achievement (%) objective achievement (%)
achievement (%)
1 85 78 90 84
2 80 74 85 80
3 88 83 92 88
4 75 70 80 75
5 90 85 95 90
6 78 72 85 78
7 84 80 88 84
8 80 76 82 80
9 87 82 90 86
10 83 77 89 83

The variability observed among children across these goal dimensions highlights the individual
differences in learning outcomes, suggesting that the curriculum must accommodate diverse
developmental needs through adaptive adjustments and personalized recommendations. Such
differences underscore the necessity of tailoring instruction to each child’s learning profile—balancing
cognitive development, practical skill acquisition, and emotional growth. These findings provide
valuable insights for refining curriculum design and enhancing the achievement of educational
objectives through individualized learning pathways.

3.5. Assessment of learning progress adaptability

The adaptive assessment of learning progress evaluates how effectively the system adjusts course
content in response to each child’s personalized learning trajectory. This assessment focuses on
whether dynamic modifications to the difficulty level and learning pace align with individual learning
progress and engagement.

The adaptive mechanism operates as follows:

When the system detects that a child’s learning progress is slower than expected, it automatically
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reduces course difficulty or extends learning duration to allow more time for mastery.

Conversely, if a child demonstrates rapid progress, the system increases the level of challenge or
introduces advanced learning tasks, promoting continued cognitive engagement and preventing
stagnation.

The evaluation process records and analyzes various indicators of learning adaptability, including
learning duration, task completion speed, and error rate, under different adjustment conditions. These
metrics are used to determine whether the adaptive interventions effectively support each child in
maintaining an optimal learning rhythm.

Ultimately, this adaptive assessment ensures that every learner can progress at a suitable pace and
difficulty level, providing a personalized, responsive, and developmentally appropriate learning
experience. The results also offer crucial feedback for refining the adaptive mechanisms of the
gamified curriculum, ensuring that learning pathways remain both challenging and supportive across
diverse learner profiles.

Figure 7 presents the results of three distinct assessments of learning progress adaptability.

Figure 7(a) compares the error rates and task completion times of ten children before and after
adaptive difficulty adjustments. Prior to adjustment, the average error rate was 0.25, and the average
task completion time was approximately 8 minutes. Following the difficulty adjustment, the error rate
decreased to 0.18, and task completion time was reduced to 7 minutes, indicating that adaptive
difficulty tuning significantly enhanced learning efficiency and performance.

Figure 7(b) compares the effects of four learning progress adjustment strategies—linear, step-
based, adaptive, and mixed adjustments—on adaptability scores over ten weeks. In the first week, the
adaptive adjustment strategy achieved an adaptability score of 0.56. Over time, the adaptability scores
for all strategies gradually improved, but the adaptive adjustment strategy consistently outperformed
the others, reaching a peak score of 0.99 by week 10. The other three strategies showed only marginal
improvement throughout the same period. These results clearly demonstrate that adaptive adjustment
mechanisms are markedly more effective in enhancing learning progress adaptability, particularly in
the later stages of learning, where personalization plays a crucial role.

(a) Difficulty Adj Effect Comparison (b) Effect of Different Adjustment Strategies
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Figure 7. Results of learning progress adaptability evaluation.
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3.6. Ablation experiment analysis

To verify the contribution of each key component in the proposed framework, an ablation
experiment was conducted with four control groups:

® Complete model — incorporating the full framework (GNN + EMO + feedback mechanism).

® GNN removed — the graph neural network was replaced with an average feature

representation.

® Single-objective optimization — GNN retained, but only knowledge acquisition was

maximized (multi-objective optimization removed).

® Feedback mechanism removed — closed-loop feedback was disabled, and parameters were

statically fixed.

Evaluation results on the same dataset revealed that the complete model achieved significantly
superior outcomes compared to the other three groups. Specifically, post-test scores improved by +0.62
points, engagement increased by +0.35 points, and satisfaction rose by +0.41 points (p <0.01). Notably,
among kinesthetic learners, the improvement reached 12.8%, highlighting the framework’s strong
adaptability for diverse learning styles. These findings confirm that the structural modeling capabilities
of GNN, the multi-objective optimization mechanism, and the dynamic feedback loop are all
indispensable components, collectively forming the core advantages of the proposed system.

4, Conclusions

This study proposes a novel framework for the evaluation and optimization of gamified preschool
courses, integrating graph neural networks (GCN/GAT) with GA. The framework effectively combines
personalized recommendation, multi-objective optimization, and a dynamic feedback mechanism to
enhance course adaptability, engagement, and learning effectiveness. Specifically, the GNN captures
complex, non-linear relationships between children’s characteristics and course content, while the GA
optimizes course configuration parameters to improve design precision. The feedback-driven adaptive
mechanism ensures that the system continuously refines itself based on real-time learning data,
enabling truly personalized learning experiences.

Experimental results validate the efficacy and robustness of the proposed framework. Post-test
scores increased by 0.2—0.7 points compared to pre-test results, while engagement demonstrated a
moderate positive correlation (R? = 0.608) with learning outcomes. Course satisfaction showed a
significant positive correlation, particularly for visual and kinesthetic learners. In addition, adaptability
evaluations confirmed that the adaptive adjustment strategy produced the most substantial gains in
learning progress adaptability.

Despite these encouraging outcomes, the framework still faces certain limitations related to data
collection complexity, feedback precision, and generalization across diverse learning contexts. Future
work will focus on three key directions:

® [ntegrating reinforcement learning to develop an “exploration—exploitation” balanced course

recommendation strategy, allowing the system to autonomously identify and cultivate
learners’ potential interests.

® Introducing multimodal perception—including eye-tracking and voice emotion

recognition—to enrich learner state modeling and enhance the ecological validity of GNN
input features.
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® [Extending the framework to cross-cultural and multilingual preschool education settings to

further test and improve its generalization ability.

Additionally, future development will include optimizing the open-source course application
programming interface (API) and lightweight model deployment to support kindergarten teachers in
implementing personalized gamified teaching on devices with limited computing power. These
advancements aim to facilitate the practical application of this research framework, promoting scalable
and adaptive early childhood education in real-world learning environments.
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