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Abstract: Play-based preschool education has emerged as a promising model for enhancing early 

childhood learning engagement and outcomes. However, traditional assessment models often fail to 

account for the dynamic and heterogeneous nature of learners, including cognitive differences, 

temporal interaction patterns, and individualized developmental trajectories. To address the neglect of 

learner dynamic heterogeneity in play-based preschool education, this paper proposed an adaptive 

assessment framework that integrated dynamic graph neural networks (GNNs) and evolutionary multi-

objective optimization (EMO). The framework modeled curriculum–learner relationships by 

constructing heterogeneous interaction graphs, extracting temporal structural representations using 

GNNs, and balancing three pedagogical objectives—knowledge acquisition, engagement, and 

adaptability—through an EMO algorithm. A closed-loop feedback mechanism drove the co-evolution of 

both the model and the curriculum. Experimental results demonstrated that the proposed framework 

significantly improved post-test scores (by 0.2–0.7 points), learner engagement (correlation R² = 0.608), 

and individualized satisfaction, particularly among visual and kinesthetic learners. Comparative 

analyses further highlighted the robustness, scalability, and adaptability of the proposed method, 

establishing it as a computationally grounded and dynamically optimized intelligent curriculum design 

paradigm for early childhood education. 
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1. Introduction 

In recent years, with the rapid advancement of information technology and artificial intelligence 

(AI), early childhood education has increasingly adopted gamified approaches to foster engagement and 

interactivity. Gamification has been shown to stimulate children’s interest in learning while promoting 

the development of cognitive and social skills within enjoyable, play-based environments [1,2]. Despite 

these benefits, traditional evaluation methods and optimization strategies in gamified preschool 

programs often face significant challenges. Most current assessment systems rely on standardized tools 

that inadequately capture learners’ heterogeneous needs—such as learning styles, cognitive levels, and 

game preferences—resulting in misaligned course design and suboptimal teaching effectiveness [3–6]. 

Furthermore, weak correlations between course content and children’s individual characteristics limit 

dynamic adaptation, hindering the achievement of sustained learning outcomes. Consequently, 

designing intelligent, personalized, and dynamically adjustable gamification strategies has become an 

urgent priority in early childhood education. 

To address these issues, scholars have increasingly explored the integration of intelligent 

technologies with gamification. At the primary education level, Leung et al. [7] demonstrated through 

field experiments that personalized gamification can significantly increase online course completion 

rates, especially when game mechanics align with learners’ cognitive preferences. Similarly, Oliveira 

et al. [8] showed that adaptive game elements enhance learning motivation by up to 40% through 

optimized flow experiences. In teacher training contexts, Zourmpakis et al. [9] validated the 

effectiveness of adaptive gamification in science education and emphasized the importance of 

improving teachers’ understanding of personalization mechanisms. Gm et al. [10] identified 

personalized recommendation systems as a crucial technological pathway for improving participation 

in online learning, while Rodrigues et al. [11] confirmed that adaptive difficulty adjustment plays a 

pivotal role in maintaining learner motivation during gamified review activities. Bennani et al. [12] 

further observed that adaptive gamification continues to face challenges, such as limited contextual 

awareness in engineering education. Dehghanzadeh et al. [13], through a systematic review of K–12 

education, stressed that gamification design must correspond to learners’ cognitive development stages. 

Meanwhile, Lee et al. [14] found that gamified learning improved attention and memory retention 

among preschool-aged children (3–6 years), though adaptation to individual differences remained 

inadequate. 

In parallel, research in intelligent education has increasingly focused on the convergence of 

personalized learning strategies and gamification. Cevikbas et al. [15] confirmed the positive impact 

of personalized learning strategies on teaching sustainability in flipped classrooms. Ford [16] 

demonstrated that gamification design enhances learning motivation, while Marougkas et al. [17] 

revealed that immersive virtual reality (VR) significantly boosts learning outcomes by providing 

contextualized experiences. Adaptive feedback mechanisms have also emerged as a promising solution: 

Qi et al. [18] proposed a self-optimizing massive open online course (MOOC) system that dynamically 

adjusts learning activities, establishing a paradigm for intelligent personalization. Castellano et al. [19] 

further integrated gamification with AI in anatomy education, verifying the role of intelligent 
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recommendation in facilitating knowledge internalization. Khaldi et al. [20] emphasized that 

gamification must be deeply aligned with learners’ cognitive traits to maximize its benefits, while 

Altaie et al. [21] developed an adaptive framework that successfully enhanced computational thinking 

in adolescents aged 8–13 [22]. With the rise of AI technologies, Ma et al. [23] analyzed the application 

pathways of educational chatbots, and Major et al. [24] underscored the importance of personalized 

gamification mechanisms in sustaining learner motivation in MOOCs. 

The integration of evolutionary multi-objective optimization and deep learning has demonstrated 

strong potential in intelligent education. Beyond traditional algorithms such as Non-Dominated 

Sorting Genetic Algorithm II (NSGA-II) and Multi-Objective Evolutionary Algorithm Based on 

Decomposition (MOEA/D), recent research has begun exploring the combination of generative 

adversarial networks with evolutionary multi-objective optimization (EMO) for Pareto front 

approximation in multimodal educational data. Other studies have employed Transformer architectures 

to model temporal learning behaviors and dynamically predict multi-objective learning effectiveness. 

However, most of these methods target K–12 or higher education contexts and fail to account for the 

nonlinear cognitive development and tightly coupled interactive characteristics of early childhood 

learning. This paper, for the first time, combines dynamic GNNs with EMO to construct an 

interpretable, evolutionary optimization framework for gamified preschool education (ages 3–6), 

filling the research gap in dynamic tuning of personalized courses for this developmental stage. 

Building upon these insights, this study proposes a novel framework integrating GNNs, including 

graph convolutional network (GCN) and graph attention network (GAT) variants) with a genetic 

algorithm–based multi-objective optimization (GA-MOO) approach for evaluating and personalizing 

gamified preschool curricula. Specifically, the framework constructs a course evaluation graph to 

capture relationships between course modules and learner attributes, enabling GNNs to extract 

structural dependencies for personalized recommendations. A GA-MOO strategy is then employed to 

optimize multiple pedagogical objectives—knowledge acquisition, engagement, and adaptability—

through a feedback-driven mechanism that continuously refines course configurations. Experimental 

validation demonstrates that this framework substantially enhances personalization and teaching 

effectiveness, addressing heterogeneous learner needs and advancing intelligent gamification in early 

childhood education. 

2. Methods 

2.1.  Graph neural network model (GCN/GAT) to construct course evaluation graph 

This study formalizes the dynamic optimization of gamified courses as a multi-objective 

optimization problem (MOP). Let the decision variable vector x∈Rdrepresent the course configuration 

parameters, including the difficulty of each module {di}, the intensity of interactivity {ij}, the weight 

of interest {fk}, and the matching coefficient with learner characteristics {μ
l
}. The objective function 

is defined as: 

min
x

F(x)=[-Gknowledge(x), -Gengagement(x), -Gadaptivity(x)]
⊤

s.t. x∈X⊆Rd,
    (1) 
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Here Gknowledge , Gengagement , Gadaptivity are composed of the learning outcome predictions, 

engagement scores, and fitness scores output by the GNN, respectively, χ representing the feasible 

domain of the course parameters (e.g., difficulty di∈[1,5]). In this framework, the GNN plays a dual 

role as a feature extractor and an effectiveness evaluator: taking a heterogeneous graph as input, it 

generates embeddings through multi-layer GCN/GAT propagation hv and maps them to the three 

objective function values. This formal definition gives the optimization problem a clear mathematical 

structure, facilitating algorithm implementation and result reproduction. 

In optimizing gamified early childhood courses, the relationships between course content and 

student characteristics are highly complex and interdependent. To achieve effective personalized 

recommendations, this paper employs a GNN to construct a course evaluation graph, where nodes 

represent either course modules or individual children. Node features integrate both course content 

attributes and learner-specific characteristics, while edges encode the relationships between courses 

and students, as well as peer interactions among students. 

By leveraging GNNs to learn from node and adjacency relationships, the framework dynamically 

adjusts course recommendation strategies, ensuring a closer alignment between educational content 

and the individualized needs of children. Specifically, this study integrates two complementary GNN 

architectures: the GCN and the GAT. The GCN aggregates information through a weighted averaging 

of neighboring node features, making it well-suited for regular graph structures. In contrast, the GAT 

introduces a self-attention mechanism that dynamically adjusts the weights of neighboring nodes, 

enhancing the model’s adaptability to irregular graph topologies and enabling more precise and 

context-sensitive recommendations. 

The training of the graph neural network follows the graph convolution operation, expressed in 

formula (2) [24]: 

H
(l+1)

=σ(ÂH
(l)W

(l)),         (2) 

where H
(l)represents l the node features at the layer, is Âthe normalized adjacency matrix, W

(l)is l 

the weight matrix at the layer, σ and is the activation function. Graph convolution gradually updates 

the node representation by taking a weighted sum of the features of adjacent nodes and applying it to 

a nonlinear activation function. Through multiple layers of graph convolution, we ultimately obtain 

node features that effectively represent the complex relationships between courses and students. 

In practical applications, the construction of the course evaluation graph considers several key 

aspects. First, the characteristics of course content evolve alongside children’s cognitive development 

and gaming preferences; thus, the course content must be dynamically adjusted based on learners’ 

historical performance data. Second, individual differences—such as children’s unique needs, learning 

styles, and motivational factors—lead to varying preferences for course materials. Consequently, the 

training process of the graph neural network requires continuous updating of learner representations, 

allowing the recommendation strategy to adapt in real time to each child’s evolving profile [25,26]. 

Through layer-by-layer graph convolution propagation, the model effectively integrates both the 

individualized needs of learners and the dynamic features of course content, enabling the system to 

recommend the most suitable course modules for each student. 

After training the graph neural network, the system generates an embedding vector for each child 
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within the course evaluation graph. These embedding vectors capture rich, multidimensional 

information—including learning progress, evolving interests, and cognitive difficulty levels. By 

comparing the embeddings across different learners, the system can identify similarities and clusters 

among children, thereby refining course recommendations to ensure that each child engages with 

content at an appropriate level of difficulty, interest, and developmental alignment. 

Figure 1(a) illustrates the node embedding space distribution of the GNN model. To visualize the 

high-dimensional relationships, t-distributed stochastic neighbor embedding (t-SNE) dimensionality 

reduction is applied to the 128-dimensional feature representations of 300 nodes. Distinct node types—

course modules, child nodes, and knowledge units—are differentiated through color and markers, 

reflecting their distribution patterns in the high-dimensional space. The t-SNE visualization reveals a 

clear clustering tendency among node types, with noticeable separation between course modules and 

child nodes. This demonstrates that the GNN model effectively captures and distinguishes the feature 

representations of heterogeneous nodes within the course evaluation graph. 

Figure 1(b) presents the probability distribution of attention weights. By fitting an exponential 

distribution to the model’s attention weights, it is observed that these weights are highly concentrated 

between 0 and 1. This indicates that when processing information from different nodes, certain 

nodes—such as specific course modules or child nodes—receive higher attention weights, signifying 

their greater influence on the overall model learning process. 

 

Figure 1. Node embedding space distribution and probability distribution of attention weights. 

The training of the GNN not only enhances personalized recommendations by propagating 

information through local neighborhood structures, but also effectively models large-scale relational 

dynamics between students and courses. When combined with the genetic algorithm–based 

optimization framework, the output embeddings of the GNN serve as the input features for the genetic 

algorithm, further refining the course configuration parameters. This integration enables more efficient, 

accurate, and adaptive course recommendation and optimization. 

2.2. Genetic algorithm to optimize course configuration 

Genetic algorithms (GAs) are global optimization techniques inspired by the principles of natural 
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selection and evolutionary adaptation, well-suited for solving complex curriculum design problems. 

In this study, the GA is employed to optimize the configuration parameters of gamified preschool 

courses. Each curriculum design is treated as an individual in the population, with parameters including 

course difficulty, interactivity, and enjoyment level, as well as their alignment with children’s 

individual characteristics. 

After generating the initial population, each individual is evaluated using a fitness function that 

comprehensively considers factors such as course difficulty, interactivity, and entertainment value, 

along with children’s learning styles, cognitive levels, and gaming preferences. The optimization 

process proceeds iteratively through selection, crossover, and mutation operations [27,28], 

progressively improving the population toward optimal solutions. Ultimately, this evolutionary 

approach yields a globally optimized curriculum configuration that dynamically adapts to the 

individual needs and developmental trajectories of preschool learners. 

In this process, the fitness function can be expressed by the following formula (3): 

f(x)=w1⋅D(x)+w2⋅I(x)+w3⋅F(x)+w4⋅P(x).      (3) 

Among them, f(x)  represents the adaptability of the course configuration D(x) , x  represents the 

adaptability of the course difficulty, I(x) represents the interactivity of the course, F(x) represents 

the fun of the course, and P(x) represents the matching degree of the child's individual needs, and 

w1, w2, w3, w4 is the corresponding weight coefficient. The design of the fitness function ensures that 

the course configuration optimization process can take into account various requirements and achieve 

balanced and diverse course content. 

The core mechanism of the genetic algorithm (GA) lies in its evolutionary process, which 

comprises three main operations: selection, crossover, and mutation. 

During the selection phase, a roulette wheel selection or tournament selection strategy based on 

fitness values is employed, giving priority to individuals with higher fitness scores for entry into the 

next generation [29]. This ensures that superior course design solutions are preserved and continue to 

contribute to subsequent optimization iterations. 

In the crossover operation, two individuals are selected as parents, and new offspring are produced 

through the exchange of partial genetic material (i.e., course configuration parameters). This process 

enables the exploration of new curriculum design possibilities. To enhance the diversity and global 

search capability of the algorithm, the crossover operation can adopt various strategies such as single-

point or multi-point crossover. 

The mutation operation introduces random perturbations to the course parameters of certain 

individuals, mimicking the natural process of gene mutation. This prevents the algorithm from 

becoming trapped in local optima and broadens the search space, improving the robustness and 

adaptability of the optimization process. 

Through multiple generations of iterative evolution, the GA progressively converges toward the 

optimal combination of curriculum configurations. With each generation, the fitness level of the 

population improves, eventually stabilizing at an optimal solution that best satisfies the personalized 

learning needs of each child. To further enhance optimization effectiveness, this study implements an 

adaptive weight adjustment strategy, dynamically modifying the weight coefficients in the fitness 

function based on real-time feedback during the optimization process. This allows the algorithm to 

achieve a more balanced trade-off among multiple optimization objectives [30]. 

Moreover, the parameter settings of the GA significantly influence its optimization performance. 
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In this study, standard GA parameters were employed: a population size of 100, a crossover probability 

of 0.8, a mutation probability of 0.1, and a maximum generation count of 1000. These configurations 

ensured a comprehensive search for optimal solutions while maintaining computational efficiency and 

convergence stability. 

Figure 2 illustrates the key stages in the GA optimization process. 

Figure 2(a) presents the evolution of fitness values, where the horizontal axis represents the 

number of generations and the vertical axis represents the fitness score. As shown, the best individual 

fitness steadily increases with each generation, indicating that the optimization process of the GA is 

progressively converging toward an optimal solution. Meanwhile, the average population fitness 

exhibits slight fluctuations across generations, reflecting the influence of individual diversity within 

the population on the overall optimization trajectory. This trend aligns with the goal of optimizing 

gamified early childhood courses—continuously enhancing adaptability and learning effectiveness by 

dynamically adjusting course content through iterative evolution. 

Figure 2(b) depicts the evolution of the course difficulty parameter, where the horizontal axis 

represents the number of generations and the vertical axis denotes the value of the course difficulty. 

As the number of generations increases, the difficulty parameter distribution gradually converges 

toward higher values, suggesting that course difficulty is adaptively adjusted to better match the 

evolving learning needs and developmental levels of different children. 

 

Figure 2. Evolution of fitness and changes in difficulty parameters during optimization. 

2.3. Multi-objective optimization strategy 

In the design and optimization of gamified early childhood education, course effectiveness 

depends not only on the content itself but also on the interaction and balance among multiple 

pedagogical factors. To holistically address the diverse learning needs and objectives in the 

optimization process, this study introduces a multi-objective optimization strategy that simultaneously 

refines several key indicators: children’s learning outcomes, course enjoyment, and learning progress. 

In multi-objective optimization, it is essential to clearly define the objective functions to be 

optimized. In this study, the three core objectives are as follows: 
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⚫ Learning effectiveness: Enhancing children’s knowledge acquisition, comprehension, and 

cognitive development. 

⚫ Course fun: Ensuring that course content stimulates curiosity, sustains engagement, and 

fosters intrinsic motivation. 

⚫ Learning progress: Maintaining an appropriate learning rhythm and adjusting course 

difficulty dynamically to match each child’s cognitive pace [31,32]. 

To optimize these objectives simultaneously, the weighted summation method is adopted. This 

approach combines multiple objective functions into a comprehensive objective function, where each 

objective is assigned a specific weight coefficient representing its relative importance to the overall 

course design. By appropriately calibrating these weights, the optimization process can effectively 

balance educational effectiveness, engagement, and adaptability. The formulation of this composite 

objective function is presented in formula (4), 

Ftotal(x)=w1⋅Flearning(x)+w2⋅Ffun(x)+w3⋅Fprogress(x).     (4) 

Wherein, Ftotal(x) is the comprehensive optimization goal, Flearning(x) is the learning effect Ffun(x) 

goal, is the course fun goal, Fprogress(x) is the learning progress goal, and w1, w2, w3 is the weight 

of the corresponding goal. The weight coefficient is adjusted according to the specific educational 

goals and course characteristics to ensure balance and coordinated optimization among the various 

goals. 

In the multi-objective optimization process, each objective function is first optimized 

independently, followed by a composite optimization through a weighted summation approach. To 

enhance the performance and balance of the optimization results, this study introduces the concept of 

the Pareto optimal solution—a state in which improvement in one objective cannot be achieved 

without compromising another. Through this mechanism, the optimization process identifies a set of 

trade-off solutions that represent ideal compromises among competing objectives, rather than a single 

absolute optimum [33]. 

The optimization framework integrates a GA with a GNN. The GNN models the complex 

relationships between curriculum elements and children’s individualized learning needs, while the GA 

iteratively refines the curriculum configuration parameters through multiple generations of 

evolutionary operations. Within the multi-objective optimization process, the GA’s selection, crossover, 

and mutation mechanisms work collaboratively to optimize multiple objectives simultaneously during 

each generation. Specifically: 

Selection prioritizes individuals with higher fitness scores, ensuring that superior curriculum 

designs are preserved for future generations. 

Crossover combines the genetic information (i.e., course parameters) of parent individuals to 

create new curriculum configurations, facilitating exploration of a diverse solution space. 

Mutation introduces random variations to individual genes, preventing premature convergence 

and guiding the algorithm toward a global optimum. 

The design of the fitness function plays a pivotal role in the multi-objective optimization process. 

In this study, the fitness function integrates multiple pedagogical objectives—learning effectiveness, 

enjoyment, and learning progress—while also incorporating learner-specific characteristics such as 
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learning styles, cognitive development levels, and gaming preferences. This comprehensive design 

ensures that, during optimization, the curriculum not only enhances children’s cognitive abilities and 

learning motivation but also dynamically adjusts difficulty levels and content alignment based on 

individual progress and developmental needs. 

To achieve efficient computation and balance across multiple objectives, this study employs the 

NSGA-II. NSGA-II effectively manages conflicts among competing objectives by maintaining a 

Pareto front of non-dominated solutions. Through iterative refinement, the algorithm identifies an 

optimal set of curriculum configurations that best satisfy the personalized needs of preschool learners 

while maintaining equilibrium among learning effectiveness, engagement, and adaptability [34]. 

Figure 3 presents the three core components of the multi-objective optimization process. 

Sub-Figure 3(a) illustrates the distribution of Pareto optimal solutions, where the horizontal axis 

represents learning effectiveness and the vertical axis represents fun. The scatterplot displays the 

spread of solutions generated during the optimization process. Through iterative refinement, the 

selected solutions achieve an optimal balance between learning effectiveness and enjoyment, enabling 

the design of gamified curricula that are both pedagogically effective and engaging for young learners. 

Sub-Figure 3(b) depicts the evolution of objective functions across optimization iterations. The 

three objective functions—learning effectiveness, fun, and learning progress—show consistent upward 

trends as the number of iterations increases, indicating that the optimization process progressively 

enhances the overall quality and adaptability of the course design. 

Sub-Figure 3(c) demonstrates the impact of the progress weight coefficient on the overall fitness 

value. The horizontal axis represents the progress weight coefficient, while the vertical axis indicates 

the overall fitness. As the weight of learning progress is adjusted, the corresponding changes in fitness 

reflect how the balance among learning outcomes, engagement, and progression influences the 

effectiveness of the optimized curriculum. 

 

Figure 3. Multi-objective optimization process. 

Throughout the multi-objective optimization process, the adaptability of the curriculum content 

is continuously refined. This ensures that course design not only strengthens learning effectiveness, 

but also enhances interest, interactivity, and engagement. Simultaneously, the system dynamically 

adjusts course difficulty in accordance with each child’s cognitive development and learning progress, 

allowing learners to advance at a pace most conducive to their individual growth. Moreover, this 

adaptive optimization fosters sustained motivation and active participation, helping children maintain 
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a positive learning attitude within the gamified learning environment. 

2.4. Personalized course recommendation system 

The personalized course recommendation system employs a GNN to construct a relationship 

graph linking course content with individual child characteristics. This system captures complex, non-

linear interactions between children and learning materials by representing child attributes and course 

elements as interconnected nodes, while edges denote the strength and nature of these relationships. 

In this framework, each child’s learning style, cognitive level, age, and game preferences are used 

as input features, whereas course modules, difficulty levels, and interactive design elements are 

modeled as nodes within the GNN. Through training, the GNN learns the underlying structural 

relationships and optimizes learning paths tailored to each learner. 

The system first encodes the child’s characteristics into a feature vector, which is then input into 

the trained GNN to generate a personalized course list. The final recommendations are dynamically 

adjusted based on the weighted relationships between nodes, ensuring that the system remains 

responsive to evolving learner profiles. For example, kinesthetic learners receive recommendations 

emphasizing interactive and movement-based games, while visual learners are guided toward image- 

and video-rich content. This adaptive recommendation process enables targeted allocation of learning 

resources, ensuring that every child engages with content best suited to their unique learning 

preferences and developmental trajectory. 

Figure 4 presents the results of the personalized match assessment. The horizontal axis represents 

the child’s ID number (ranging from 1 to 120), while the vertical axis indicates the degree of interest 

match between each child and the recommended curriculum. Each dot in the scatterplot corresponds 

to an individual child, and the color intensity represents the match level—darker colors signify a higher 

degree of match. The black dashed line denotes the average interest match across all participants. The 

data show that the overall match values range between 0.7 and 0.9, indicating that most children exhibit 

a high degree of alignment between their interests and the recommended curriculum content. 

 

Figure 4. Results of personalized matching evaluation. 
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To further enhance recommendation quality, this study integrates a GA to iteratively optimize the 

recommendation system. Specifically, the GA refines the configuration of course content derived from 

the GNN. Each course configuration (comprising course content, difficulty, interactivity, and other 

design parameters) is treated as an individual, and a fitness function evaluates its effectiveness based 

on each child’s characteristics and game preferences. This fitness function is designed according to 

personalized learning needs, assessing multiple dimensions such as course enjoyment, learning 

outcomes, and learning progress [35,36]. Through iterative operations of selection, crossover, and 

mutation, the GA continually adjusts course recommendations to ensure that every child achieves the 

most effective and engaging learning experience. 

Within the recommendation system, the GA continuously explores new combinations of course 

configurations, thereby avoiding local optima and improving system adaptability and recommendation 

accuracy. Evaluation metrics—including interactivity, fun, and learning progress alignment—are used 

within a multi-dimensional fitness function to assess performance. The system then integrates child 

feedback and learning data to quantify recommendation effectiveness in real time. Additionally, a 

dynamic feedback mechanism continuously adjusts recommendation strategies based on behavioral 

data—such as academic performance, engagement levels, and attention span—thereby ensuring that 

course content remains personalized and balanced between each child’s learning progress and interests. 

2.5. Feedback mechanism and optimization iteration 

To ensure continuous optimization and adaptability of the gamified preschool curriculum, this 

study proposes a dynamic optimization mechanism grounded in student feedback. This mechanism 

forms a closed-loop optimization cycle by collecting real-time behavioral data during learning 

activities. It dynamically adjusts recommendation strategies and continuously optimizes course design 

based on children’s learning performance and engagement, thereby enhancing the system’s 

personalization accuracy and adaptability. 

The feedback mechanism aggregates data from multiple sources, including children’s learning 

progress, interaction frequency, task completion rates, answer accuracy, emotional responses, and 

overall engagement. For example, learning progress data reflects each child’s mastery and cognitive 

development within individual modules, while interaction data—such as click frequency and task 

participation—reveal interests and motivational trends. These insights enable the system to 

dynamically adjust subsequent course content and enhance learning motivation. 

After preprocessing and feature extraction, the collected data is transformed into optimized inputs 

for updating course recommendation strategies. The core of this feedback mechanism lies in real-time 

behavioral analysis, which identifies learning bottlenecks or declining interest and triggers 

corresponding adjustments. Specifically, feedback data is used to fine-tune parameters within both the 

GNN and the GA. 

In the GNN, feedback updates children’s feature vectors and modifies the correlation weights 

between course content and child characteristics. For instance, if a child underperforms in a specific 

module, the system prioritizes course recommendations that better align with their cognitive level, 

avoiding content that is too easy or too difficult. 

In the GA, feedback dynamically updates the fitness function and optimization strategy, 

influencing the operations of selection, crossover, and mutation. When learning difficulties are 

detected, the fitness function increases the difficulty adaptation weight, ensuring that subsequent 
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course configurations more closely match the learner’s progress and abilities. 

To achieve real-time optimization, the system employs incremental learning, which gradually 

incorporates newly collected feedback into model training. This approach allows for rapid adaptation 

to changing learner needs while avoiding the computational overhead of full model retraining. As a 

result, the recommendation system remains continuously up to date, reflecting each child’s current 

behavior and development. 

The feedback mechanism not only adjusts course content but also fine-tunes multiple dimensions, 

including difficulty, engagement, and interactivity. For example, if a child loses interest, the system 

can increase interactivity or gamified challenges; if progress slows, it can reduce difficulty or shorten 

task duration. This closed-loop adaptive framework ensures that the system evolves continuously—

each cycle of data collection and analysis provides the foundation for updates, steadily improving 

recommendation precision and personalized adaptability. Moreover, it can predict and accommodate 

future learning needs, ensuring that curriculum design consistently aligns with the individual 

characteristics and developmental trajectories of young learners. 

3. Method effectiveness evaluation 

To validate the effectiveness of the proposed gamified curriculum optimization method, this study 

constructed and utilized a comprehensive experimental dataset. The dataset was derived from actual 

teaching records across three kindergartens and includes detailed learning behavior data and 

curriculum information for 120 children. Over an eight-week gamified learning period, each child 

generated approximately 320 behavioral records, encompassing metrics such as task completion rates, 

number of interactions, learning time, answer accuracy, and game preferences. 

The curriculum comprised 50 distinct gamified units, each rated on a five-point difficulty scale. 

Interactivity and fun were evaluated using teacher ratings and children’s engagement levels, both 

measured on a 1–10 scale. The dataset also includes key demographic and psychological attributes, 

such as age (3–6 years), gender, learning style (visual, auditory, or kinesthetic), cognitive development 

level (low, medium, or high), and home learning environment. To assess personalized recommendation 

effectiveness, children’s knowledge acquisition and interest changes were recorded before and after 

the course. 

3.1. Evaluation indicators: Learning outcome and engagement 

Learning outcomes were primarily assessed through measures of knowledge acquisition, 

cognitive improvement, and task completion within the gamified courses. 

Knowledge acquisition was evaluated using pre- and post-tests to measure children’s mastery of 

knowledge and their ability to comprehend and apply course content. 

Cognitive improvement was gauged by observing changes in thinking patterns, problem-solving 

abilities, and conceptual understanding before and after the intervention. 

Task completion was assessed by tracking metrics such as completion rates, error frequency, and 

problem-solving speed, providing insight into learners’ performance during gameplay-based learning 

activities. 

Engagement was evaluated through behavioral indicators including interaction frequency, 

number of questions answered, time spent on game tasks, and duration of sustained participation. 
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These measures reflect each child’s level of involvement, motivation, and persistence, offering a 

comprehensive understanding of their engagement within the gamified learning environment. 

Figure 5(a) presents a comparison of learning outcomes across ten course modules, measured 

using standardized pre- and post-test scores. The results clearly show that post-test scores are 

consistently higher than pre-test scores across all modules, indicating a significant improvement in 

children’s learning performance. The observed score increases range from 0.2 to 0.7 points, 

demonstrating that the gamified curriculum design had a substantial positive impact on learning 

outcomes. These findings highlight that the optimized course structure effectively promotes knowledge 

acquisition and cognitive development, particularly evident in the marked improvement of post-test 

results. 

Figure 5(b) illustrates the relationship between engagement levels and learning improvement. The 

scatter plot reveals that children with higher engagement scores tend to exhibit greater gains in learning 

outcomes. Regression analysis shows a correlation coefficient (R2) of approximately 0.608, indicating 

a moderate positive correlation between engagement and learning improvement. The inclusion of 

confidence intervals around the regression line further confirms the reliability and statistical robustness 

of this relationship, underscoring the critical influence of engagement on children’s learning 

performance within gamified educational settings. 

 

Figure 5. Learning effect and participation evaluation. 

3.2. Course satisfaction survey 

The course satisfaction survey collected comprehensive feedback from both children and parents 

through structured questionnaires. The survey assessed children’s satisfaction across several 

dimensions, including interest level, content suitability, interactivity, entertainment value, and 

educational significance. These responses were used to quantitatively evaluate the overall popularity 

of the curriculum and to determine whether it effectively met learners’ expectations and developmental 

needs. 

Parent feedback provided additional insights into how the gamified curriculum complements 

family-based education. By reflecting on children’s engagement and progress at home, parents helped 

evaluate the broader educational impact and quality of the program. Collectively, these survey results 
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serve as an important benchmark for assessing whether the course is achieving its pedagogical 

objectives—fostering not only knowledge growth and cognitive improvement but also enjoyment and 

motivation in early learning experiences. 

Figure 6 presents the results of the course satisfaction and learning outcome survey. 

Figure 6(a) displays the distribution of satisfaction scores across different course types, each 

evaluated by 30 participants on a 1–10 scale. The boxplot visualization highlights the variability in 

satisfaction ratings among course types, revealing distinct fluctuations and median differences across 

the various designs. These variations suggest that course type significantly influences participants’ 

perceived satisfaction, indicating differing degrees of engagement and enjoyment among learners. 

Figure 6(b) illustrates the relationship between course satisfaction and learning outcomes through 

a scatterplot with a regression line. Data points are categorized by learning style—visual, auditory, and 

kinesthetic—and distinguished by color. The results reveal a positive correlation between satisfaction 

scores and learning improvement: participants who reported higher satisfaction generally achieved 

greater learning gains. This trend is particularly evident among visual and kinesthetic learners, who 

show a stronger alignment between engagement, satisfaction, and performance. The regression line 

confirms that higher satisfaction levels correspond to improved learning outcomes, while variations 

across learning styles provide valuable insights into customizing course design to enhance both 

learning experiences and results. 

 

Figure 6. Survey results on course satisfaction and learning outcomes. 

3.3. Personalized matching evaluation 

The personalized matching evaluation assesses the effectiveness of the personalized course 

recommendation system compared with traditional curriculum designs. The primary goal of this 

evaluation is to determine how personalized recommendations enhance children’s learning outcomes 

and motivation by aligning educational content more closely with individual learner characteristics. 

The evaluation process involves collecting learning data from ten randomly selected children 

participating in both curriculum models, as summarized in Table 1. The data include indicators such 

as academic performance, engagement levels, and learning interest. Statistical analyses are then 
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conducted to compare outcomes under personalized and conventional course settings. 

Results demonstrate that courses designed using the personalized recommendation system show 

stronger alignment with children’s cognitive levels, learning styles, and interests. Learners in the 

personalized setting exhibited higher knowledge acquisition, greater engagement, and improved 

intrinsic motivation compared with those following standard course designs. Overall, the findings 

confirm that a high degree of personalized fit significantly enhances both learning effectiveness and 

interest, validating the proposed system’s value in improving the quality and adaptability of gamified 

preschool education. 

Table 1. Personalized matching evaluation table. 

Child 

ID 

Personalized 

course 

learning 

score 

Conventional 

course 

learning 

score 

Personalized 

course 

engagement 

Conventional 

course 

engagement 

Personalized 

course 

interest 

score 

Conventional 

course 

interest score 

1 85 75 90 80 9 7 

2 80 70 85 75 8 6 

3 90 85 95 80 9 8 

4 75 65 80 70 7 6 

5 92 78 88 72 9 7 

6 78 72 82 74 8 6 

7 85 79 90 77 9 7 

8 80 73 86 74 8 6 

9 88 80 93 80 9 8 

10 84 76 89 76 9 7 

3.4. Achievement of teaching objectives 

The assessment of teaching goal achievement evaluates whether the gamified curriculum has 

successfully fulfilled its intended educational objectives, encompassing cognitive, skill-based, and 

emotional goals. 

⚫ Cognitive goal assessment: This dimension measures children’s understanding and mastery 

of curriculum knowledge. It evaluates their ability to recall, comprehend, and apply key 

concepts, providing insight into how effectively the course fosters knowledge acquisition and 

conceptual development. 

⚫ Skill goal assessment: This component examines children’s practical skill development by 

assessing their ability to apply learned knowledge in real tasks, such as completing 

challenges or solving problems within the gamified environment. It reflects the extent to 

which the curriculum cultivates hands-on competence and problem-solving ability. 

⚫ Emotional goal assessment: This aspect evaluates the emotional and affective outcomes of 

learning. It captures changes in children’s attitudes, motivation, and emotional responses 

toward the curriculum. Data is collected through questionnaires, interviews, and behavioral 

observations to assess improvements in self-confidence, cooperation, persistence, and 

emotional expression. 
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By integrating findings across these three dimensions, a comprehensive evaluation of the 

curriculum’s effectiveness can be achieved. This holistic approach provides a deeper understanding of 

how well the gamified preschool curriculum supports cognitive development, skill acquisition, and 

emotional growth, thereby ensuring that the teaching objectives are fully met and aligned with the 

developmental needs of young learners. 

Table 2 presents the results of each child’s achievement across cognitive, skill-based, and affective 

goals. For instance, Child 3 achieved 88% in cognitive goals, 83% in skill goals, 92% in affective goals, 

and 88% overall, indicating consistently strong performance across all learning dimensions. In contrast, 

Child 4 demonstrated lower achievement levels, with 75% in cognitive goals, 70% in skill goals, 80% in 

affective goals, and 75% overall, reflecting difficulties in cognitive comprehension and skill mastery. 

Table 2. Teaching goal achievement evaluation table. 

Child ID 
Cognitive objective 

achievement (%) 

Skill objective 

achievement (%) 

Emotional 

objective 

achievement (%) 

Overall objective 

achievement (%) 

1 85 78 90 84 

2 80 74 85 80 

3 88 83 92 88 

4 75 70 80 75 

5 90 85 95 90 

6 78 72 85 78 

7 84 80 88 84 

8 80 76 82 80 

9 87 82 90 86 

10 83 77 89 83 

The variability observed among children across these goal dimensions highlights the individual 

differences in learning outcomes, suggesting that the curriculum must accommodate diverse 

developmental needs through adaptive adjustments and personalized recommendations. Such 

differences underscore the necessity of tailoring instruction to each child’s learning profile—balancing 

cognitive development, practical skill acquisition, and emotional growth. These findings provide 

valuable insights for refining curriculum design and enhancing the achievement of educational 

objectives through individualized learning pathways. 

3.5. Assessment of learning progress adaptability 

The adaptive assessment of learning progress evaluates how effectively the system adjusts course 

content in response to each child’s personalized learning trajectory. This assessment focuses on 

whether dynamic modifications to the difficulty level and learning pace align with individual learning 

progress and engagement. 

The adaptive mechanism operates as follows: 

When the system detects that a child’s learning progress is slower than expected, it automatically 
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reduces course difficulty or extends learning duration to allow more time for mastery. 

Conversely, if a child demonstrates rapid progress, the system increases the level of challenge or 

introduces advanced learning tasks, promoting continued cognitive engagement and preventing 

stagnation. 

The evaluation process records and analyzes various indicators of learning adaptability, including 

learning duration, task completion speed, and error rate, under different adjustment conditions. These 

metrics are used to determine whether the adaptive interventions effectively support each child in 

maintaining an optimal learning rhythm. 

Ultimately, this adaptive assessment ensures that every learner can progress at a suitable pace and 

difficulty level, providing a personalized, responsive, and developmentally appropriate learning 

experience. The results also offer crucial feedback for refining the adaptive mechanisms of the 

gamified curriculum, ensuring that learning pathways remain both challenging and supportive across 

diverse learner profiles. 

Figure 7 presents the results of three distinct assessments of learning progress adaptability. 

Figure 7(a) compares the error rates and task completion times of ten children before and after 

adaptive difficulty adjustments. Prior to adjustment, the average error rate was 0.25, and the average 

task completion time was approximately 8 minutes. Following the difficulty adjustment, the error rate 

decreased to 0.18, and task completion time was reduced to 7 minutes, indicating that adaptive 

difficulty tuning significantly enhanced learning efficiency and performance. 

Figure 7(b) compares the effects of four learning progress adjustment strategies—linear, step-

based, adaptive, and mixed adjustments—on adaptability scores over ten weeks. In the first week, the 

adaptive adjustment strategy achieved an adaptability score of 0.56. Over time, the adaptability scores 

for all strategies gradually improved, but the adaptive adjustment strategy consistently outperformed 

the others, reaching a peak score of 0.99 by week 10. The other three strategies showed only marginal 

improvement throughout the same period. These results clearly demonstrate that adaptive adjustment 

mechanisms are markedly more effective in enhancing learning progress adaptability, particularly in 

the later stages of learning, where personalization plays a crucial role. 

 

Figure 7. Results of learning progress adaptability evaluation. 
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3.6. Ablation experiment analysis 

To verify the contribution of each key component in the proposed framework, an ablation 

experiment was conducted with four control groups: 

⚫ Complete model – incorporating the full framework (GNN + EMO + feedback mechanism). 

⚫ GNN removed – the graph neural network was replaced with an average feature 

representation. 

⚫ Single-objective optimization – GNN retained, but only knowledge acquisition was 

maximized (multi-objective optimization removed). 

⚫ Feedback mechanism removed – closed-loop feedback was disabled, and parameters were 

statically fixed. 

Evaluation results on the same dataset revealed that the complete model achieved significantly 

superior outcomes compared to the other three groups. Specifically, post-test scores improved by +0.62 

points, engagement increased by +0.35 points, and satisfaction rose by +0.41 points (p < 0.01). Notably, 

among kinesthetic learners, the improvement reached 12.8%, highlighting the framework’s strong 

adaptability for diverse learning styles. These findings confirm that the structural modeling capabilities 

of GNN, the multi-objective optimization mechanism, and the dynamic feedback loop are all 

indispensable components, collectively forming the core advantages of the proposed system. 

4. Conclusions 

This study proposes a novel framework for the evaluation and optimization of gamified preschool 

courses, integrating graph neural networks (GCN/GAT) with GA. The framework effectively combines 

personalized recommendation, multi-objective optimization, and a dynamic feedback mechanism to 

enhance course adaptability, engagement, and learning effectiveness. Specifically, the GNN captures 

complex, non-linear relationships between children’s characteristics and course content, while the GA 

optimizes course configuration parameters to improve design precision. The feedback-driven adaptive 

mechanism ensures that the system continuously refines itself based on real-time learning data, 

enabling truly personalized learning experiences. 

Experimental results validate the efficacy and robustness of the proposed framework. Post-test 

scores increased by 0.2–0.7 points compared to pre-test results, while engagement demonstrated a 

moderate positive correlation (R2 = 0.608) with learning outcomes. Course satisfaction showed a 

significant positive correlation, particularly for visual and kinesthetic learners. In addition, adaptability 

evaluations confirmed that the adaptive adjustment strategy produced the most substantial gains in 

learning progress adaptability. 

Despite these encouraging outcomes, the framework still faces certain limitations related to data 

collection complexity, feedback precision, and generalization across diverse learning contexts. Future 

work will focus on three key directions: 

⚫ Integrating reinforcement learning to develop an “exploration–exploitation” balanced course 

recommendation strategy, allowing the system to autonomously identify and cultivate 

learners’ potential interests. 

⚫ Introducing multimodal perception—including eye-tracking and voice emotion 

recognition—to enrich learner state modeling and enhance the ecological validity of GNN 

input features. 
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⚫ Extending the framework to cross-cultural and multilingual preschool education settings to 

further test and improve its generalization ability. 

Additionally, future development will include optimizing the open-source course application 

programming interface (API) and lightweight model deployment to support kindergarten teachers in 

implementing personalized gamified teaching on devices with limited computing power. These 

advancements aim to facilitate the practical application of this research framework, promoting scalable 

and adaptive early childhood education in real-world learning environments. 
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