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Abstract: Developing low-cost and easy-to-deploy table tennis training robots is a significant
challenge, largely due to the stringent, time-consuming, and error-prone camera calibration required by
traditional visual servoing systems. This paper directly addressed this problem by proposing a robust,
calibration-free visual control framework that enables a robotic manipulator to perform training tasks
using a single monocular camera with completely unknown intrinsic and extrinsic parameters. This is a
depth-independent visual feedback controller that directly translates the pixel error between the racket
and the ball into control actions. To handle the unknown camera projection model, a computationally
efficient adaptive law was designed. This law utilizes a regression matrix to isolate the unknown
parameters and updates them in real time, completely eliminating the need for any pre-calibration
process. The stability of the entire closed-loop system was rigorously proven via the Lyapunov method,
guaranteeing the convergence of the tracking error. Extensive simulations on a manipulator validated
the method’s effectiveness and practicality. The results demonstrated that the system achieves rapid
and precise tracking, with the image error converging completely to zero in under 0.8 second. The
controller’s robustness was further confirmed in scenarios with varying target positions and continuous
multi-stroke sequences, demonstrating its suitability for dynamic and realistic training environments.

Keywords: table tennis training robot; calibration-free; visual control technology; adaptive
technology
Mathematics Subject Classification: 93C85, 93C40

1. Introduction

Table tennis is a sport where rapid reactions and precise techniques are critical [1-3]. Ball speeds
often exceed 100 kilometers per hour, with complex spins and trajectories that require players to make
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split-second adjustments. Athletes dedicate extensive time to training [4], to improve shot accuracy,
anticipate opponent actions, and maintain performance during competitive matches. Traditional table
tennis training has notable limitations. Human partners experience fatigue—reducing practice quality
over time—and often have limited availability, which disrupts training routines [5]. Moreover, the
cost of hiring a dedicated coach is undoubtedly substantial, which conflicts with the goal of widely
accessible training [6]. Therefore, the development of a simple and low-cost table tennis practice robot
technology is a pressing need [7].

For a table tennis training robot to effectively simulate real match scenarios, it must first accurately
perceive the movement of the ball. The position, speed, and spin of the ball during play are dynamic
variables that directly determine how the robot should respond with a return shot. To capture these
variables in real time, a reliable visual system is essential [8—10]. Visual sensors, as the simplest and
most direct means of feedback, are the most commonly adopted solution in existing research [11,12]. A
dual-ANN (Artificial Neural Network) method was proposed to predict table tennis trajectories as two
parabolas, achieving better accuracy (mean error: 39.6 mm) than single-network models (42.9 mm)
and physical models (57.9 mm) with fewer parameters and shorter training time, though it still has
prediction errors in physical experiments [13]. A trajectory prediction model combining simple
physical motion constraints and dual LSTM (Long Short Term Memory) neural network correction
based on binocular vision was developed to improve trajectory extraction and prediction accuracy with
a certain hitting success rate, but exhibits low trajectory recognition accuracy when the target is far
from the camera or when the image resolution is excessively high [14]. While the aforementioned
articles proposed highly innovative methods for the visual recognition of table tennis motion states,
integrating these perception methods with robotic control remains a key challenge.

To address the integration challenge mentioned above, visual feedback-based robotic systems have
emerged as a critical solution in bridging visual recognition and robotic control [15, 16]. In response
to this challenge, a deep reinforcement learning approach with spin velocity estimation capability
was developed to learn ball stroke strategies, ensuring desirable target landing locations and over-net
heights. A virtual environment was built for effective pre-training, and experimental results show
superior performance compared to traditional aerodynamics-based methods, with an average landing
error around 80 mm and a landing-within-table probability over 70%, though it is sensitive to position
estimation errors [17]. An augmented reality system (avaTTAR) with on-body and detached visual
cues was developed for table tennis stroke training, enabling real-time comparison with expert strokes
via 3D pose estimation and IMU (Inertial Measurement Unit) sensors, and user studies confirmed its
effectiveness in improving training results [18]. An improved multi-modal table tennis robot system
with four frame-based cameras, two event-based cameras, and a KUKA robot arm was developed,
featuring novel calibration for multi-modal perception, accurate spin estimation, and SNN (Spiking
Neural Network)-based ball detection using event cameras, with high accuracy and fast reaction;
however, spin estimation may fail for extremely high or low spins, and event-based camera calibration
has higher reprojection errors compared to frame-based ones [19]. To address simultaneous input dead-
zone and field-of-view (FoV) constraints in visual servoing, an adaptive neural network controller,
featuring a novel zone barrier Lyapunov function (zBLF), was developed in [20]. The key advantages
of this method are its ability to strictly enforce state constraints while significantly reducing control
energy consumption by activating the controller only when necessary. However, these advanced
systems share a common dependency on precise camera calibration. This calibration process is not
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only time-consuming and requires technical expertise, but it must be meticulously repeated whenever
the camera is moved or replaced. This dependency poses a significant practical barrier to developing
low-cost, flexible, and truly “plug-and-play” robotic training systems, creating a clear need for robust
calibration-free alternatives.

In response to the challenge about camera calibration, numerous scholars have conducted
relevant research on the rapid calibration of cameras and direct control under uncalibrated camera
conditions [21,22]. A transformer-based method for single-image camera calibration was proposed,
integrating image and line segment features with an auxiliary line classification task to estimate camera
parameters, outperforming existing methods in accuracy for vertical orientation, pitch, roll, FoV, and
horizon line AUC (Area Under Curve); however, it relies on detected line segments, which may
limit performance in scenes with few lines [23]. In [24], a new method for single-image camera
calibration was proposed by introducing Perspective Fields, a per-pixel representation containing
up-vectors and latitude values, which enables robust estimation of camera parameters via neural
networks and outperforms existing methods on cropped images. A method using referring expression
segmentation was proposed for uncalibrated image-based visual servoing (UIBVS), with CLIPUNetr
network leveraging CLIP’s vision-language representations and U-shaped architecture to generate
high-quality segmentations, improving boundary and structure measurements by 120% and enabling
real-world robot control [25]. In [26], a novel uncalibrated model-free visual servo control scheme
for robotic-assisted minimally invasive surgery was proposed, featuring gradient neural network-
based Jacobian and interaction matrix estimation, a quadratic programming framework incorporating
multiple constraints, and a predefined-time convergent solver, with simulations showing effectiveness
in feature regulation and tracking. As an engineering example, in the research [27], to address the
challenges of jamming and computational complexity in multi-pin assembly, an uncalibrated visual
servoing framework was developed which employs a projective homography-based task function for
computational efficiency, a virtual image plane for spatial path constraint, and an LSTM-compensated
Kalman filter for robust Jacobian matrix estimation. Further advancing this trend, the work in [28]
presents a position-based visual servoing (PBVS) scheme that operates without prior hand-eye
calibration. Instead of estimating the unknown parameters online, the authors approach the problem
from a robust control perspective. The unknown camera-to-flange transformation was treated as a
bounded uncertainty, allowing the corresponding Jacobian to be embedded within a convex polytope.
This framework enables the design of a controller with proven convergence, demonstrating a valuable
alternative to adaptive methods for uncalibrated control. While these studies provide a valuable
foundation, there remains a need for an integrated, dynamics-aware framework specifically tailored
to the high-speed requirements of a table tennis training robot.

Motivated by these challenges, this paper proposes a visual control scheme for a table tennis robot
that uses an uncalibrated pinhole camera. Our control system employs an uncalibrated monocular
vision camera with unknown intrinsic and extrinsic parameters for visual feedback. The camera only
needs to provide images obtained through its projection. Through feature recognition technology, we
can calculate the error between the table tennis racket and the ball. Then, by constructing a depth-
independent visual feedback controller and a parameter update law for adaptively updating controller
parameters, we establish a calibration-free control framework for the manipulator of the table tennis
training robot. Furthermore, the stability of the proposed scheme is proven using the Lyapunov method.
Finally, its feasibility is verified through simulation experiments. In summary, the contributions of this
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study can be concluded as follows:

1) A practical “plug-and-play” visual control architecture is proposed, which eliminates the complex
and time-consuming camera calibration process. This significantly lowers the technical barrier
and cost for deploying table tennis robots, allowing the system to operate effectively even if the
camera is moved or replaced.

2) A lightweight online parameter estimation scheme is equipped for the uncalibrated camera of the
table tennis robot. By constructing a regression matrix to directly estimate the task-relevant image
Jacobian, the method avoids the need for explicit reconstruction of camera parameters, making it
computationally efficient and suitable for real-time applications.

3) In contrast to purely kinematic-based control approaches, the proposed scheme incorporates the
robotic dynamics, thereby exhibiting enhanced disturbance rejection and greater robustness.

2. System models

The system under consideration is a table tennis training robot equipped with a fixed robotic arm,
with a racket mounted on its end-effector. A fixed monocular vision camera is utilized to provide
feedback on the positional error between the racket and the table tennis ball. This visual feedback
enables the designed controller to drive the robotic manipulator to complete the ball-intercepting task.

2.1. Kinematics model

In our design, the world frame and base frame are coincident and marked on the table. The
transformational relationship from the base frame to the camera frame can be described in the
following form:

x¢ =Tx, 2.1)

where x¢ and x are 4 X 1 position vectors, represent the spatial coordinates of the racket in the camera
frame and base frame, respectively, and 7T is the transform matrix. Consider a rigid-link robotic
manipulator, based on the kinematics, where the joint angle is denoted as an n X 1 vector g, where n is
the number of links. From the principles of kinematics, we have the following Jacobian relationship:

x=Jq, (2.2)

where J is the robotic Jacobian matrix. Consider the camera visual feedback image, where the feedback
image coordinates are denoted as y = (yi, y», 1), and the pinhole projection model is given as

1
-OTx (2.3)
Z

y

1
= —Px,
Z

where O is the intrinsic parameter matrix of the camera and P = OT is the projection matrix, whose
rank is 3 and z > 0 is the depth value of the racket with respect to the camera, which is expressed as

= p3X, (2.4)

where p; is the jth row of P. Furthermore, through differential operations, we have
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1
y=-T% (2.5)

I=(P=y"ps). (2.6)

where the matrix I” is called the depth-independent image Jacobian matrix, since its elements are not
related to the camera depth information. In the following proposition it holds that:

Property 1. For any matrix-vector product of I' and a vector @, it holds that

I'o =21, 2.7
where X is a regression matrix, which excludes camera parameters.  is a vector, which includes all
unknown camera parameters.
2.2. Dynamics model

For a rigid robotic manipulator, we use the Lagrange equation to model its dynamic characteristics
as follows:

1.
M(q)g + EM(q)q +Cq, Pg+g=T1, (2.8)

where M(q) is the Inertia matrix, C(q, ¢) is Coriolis force matrix, g represents the gravity effect, which
is related to the robot state g, and 7 is the joint torque acting on the robot joint, which is the system
control input. Further, the robotic rigid dynamics equation holds for the following proposition:

Property 2. For any vector a, we have

a’C(g,g)a = 0. (2.9)
3. Controller design

The primary control objective is to drive the racket, mounted on the end-effector, to intercept the
table tennis ball. This task is accomplished using visual feedback from a single, uncalibrated camera.
The physical platform framework is as show in Figure 1.

Computer Controller Positional Monocular Camera

=
|

Robotic Manipulator

b\\ Visual Feedback System //

Figure 1. The physical platform framework employed.
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3.1. Visual controller

To accomplish this task, we identify the positions of the table tennis racket and the table tennis ball
in real time via visual feature recognition technology. Herein, the image feature position of the table
tennis racket is denoted as y, and the image feature position of the table tennis ball is denoted as y,.
Therefore, the control error for this study is set in the following form:

e=y—-y,. 3.1

Applying the adaptive technology, the adaptive visual controller is designed in the following form:
|
r=g-Kg-J" (r + EeTﬁ3) Ke, (3.2)

where K, K, are the adjustable control gain matrices, and I, D3 are the estimation parameters of [, ps,
which are updated by an adaptive algorithm. In addition, J € R**" is the robotic linear velocity Jacobian
matrix. It should be noted that this Jacobian maps the joint velocities to the time derivative of the 3D
homogeneous coordinates, which is specifically required for our visual servoing formulation.

Combining with the robotic dynamics in Eq (2.8), we have the following closed-loop
dynamics equation:

1. A 1o
M(9)q + 3 M(@)q + C(q.9)q = —Kig = J’ (r + EeTP3) Kse (3.3)

1 |
=-Kig-J" (r + EeTp3) Kye—J" (r + Ee%) Kse,

where I = ' = I', p3 = p3 — ps are the estimation errors of the adaptive parameters. It then follows
from Property 1 that:

-J! (f + %e%) Kae = Q(q, )9, (3.4)

where Q(q,y) is a regression matrix, which is independent of the unknown camera parameters, and
¥ = ¥ — ¥ 1s the estimation error.

3.2. Adaptive algorithm

Since in the actual practice environment the camera is usually hard to calibrate, the following
adaptive rule is designed to update the controller parameters I, p3. The adaptive law is designed
as follows:

& = -K5'0"(q,1)d, (3.5)

where K3 is the positive updating gain matrix. It should be noted that the parameter adaptive update
law designed in this paper is only applicable to updating the parameters of the image Jacobian matrix in
the controller, and does not necessarily converge to its actual physical true value. The flowchart of the
proposed calibration-free visual control algorithm is shown in Algorithm 1. The relevant convergence
proof will be elaborated in the next section.
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Algorithm 1 Adaptive visual control for a table tennis robot

AN A Rl > s

=

Notation:

g, ¢: Robot joint angle and velocity vectors.

v, yq: Image coordinates of the racket and the ball, respectively.
e: Image error vector (y — y ).

9: Vector of estimated unknown camera parameters.

7: Joint input torque vector.

K, K>, K5: Positive-definite gain matrices.

Initialization:

8: Set gain matrices K, K;, K.

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24

25:
26:

Initialize the parameter estimation vector 19(0).

while ¢ # 0 do
Step 1: Acquire real-time system state
Read racket image position y(#) and ball image position y,(¢) from the camera.
Read robot joint angle ¢(7) and velocity ¢(¢) from encoders.
Step 2: Calculate image error
e(r) « y(1) — ya(0).
Step 3: Calculate control torque using current estimates (3.2)
Get robot’s gravity term g(¢(¢)) and Jacobian J(gq(?)).
Construct estimated matrices 7'(f) and p3(t) from the current parameter vector ﬁ(t).
Fuisua < J@O) (@) + 3o ps(0)) Kre(?).
T(t) — g(‘](t)) - Klq(t) = Frisual-
Apply torque 7(¢) to the robot’s joints.
Step 4: Update parameter estimates for the next cycle (3.5)
Construct the regressor matrix Q(g(t), y(t)) as defined in (3.4).
Calculate the rate of change of parameters: ﬁ(t) «— —-KJ LOwq(), y())g(®).

Update parameters via numerical integration: 9(¢ + Af) « 9(r) + 9(t) - At.
end while

4. Stability

In this section, we prove the stability of the proposed control scheme using the Lyapunov method.

We assume that the robotic manipulator operates within a singularity-free workspace.

Theorem 1. The robotic manipulator equipped with the controller (3.2) with the adaptive parameter
updating rule (3.5) can catch the table tennis ball through visual feedback using an uncalibrated
camera and the image error converges to zero.

Proof. For the visual control system, the positive Lyapunov function is given in the following form:

1 o
L= (4" Mg + ze" Kze + D7 K3D). 4.1)
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Remark 1. It should be noted that the term ze! K,e is positive, since the z with respect to the camera
frame keeps a positive value. 7 is only used for the stability analysis, and is not required for the
controller’s implementation. Hence, this ensures that the overall function L remains positive definite,
thereby satisfying the conditions required by Lyapunov’s second method.

Taking the time derivative of L yields:

. 11 s
L=g"Mg+ 4" Mg+ Sze" Kre + e Ko + 07 K. (4.2)

By pre-multiplying ¢ to the closed-loop Eqs (3.3) and (3.4), we hold

1 .
q" M(q)g + chM(q)cz +¢"C(q,¢)q = (4.3)

1 ~
-4 Kig-4¢"J" (F + 56Tp3) Kye + 4" 0(q,y)9.

Using the Proposition 2 and Eqgs (2.2), (2.4), and (2.5), we can get

1 . 1 -
q" M(q)g + chM(q)q =-4"Ki1q — zyKze — zieTKze +4" 0(q, y)9. (4.4)

Substituting Eq (4.4) into Eq (4.2), we obtain the expanded form of L:

. 1 1 y
L= (—qT Kig — 729" Kre + 5zeT1<2e +4"0(q,y)0)| + 5zeTKze + ze! Kye + 97 K30 (4.5)

We now simplify this expression. Furthermore, as the gain matrix K, is positive-definite and
symmetric (K, = K1), the scalar term ze” K»¢ is equal to its transpose, zé' K] e = ze’ K»é. Therefore,
the terms —zy” K»e and +ze” K»é cancel each other out. The expression for L simplifies to:

L=-4"Kig+q" Q(q,y)d + " K39. (4.6)

Next, we substitute the corrected adaptive law from Eq (3.5), & = —-K;'0"(g,y)q. Noting that ¢ is a
constant vector, we have = 9. The last term in Eq (4.6) becomes:

97K = 0" Ky (-K5' 0(g.)" ) = =97 Q(q. )" . (4.7)

The term ¢” Q(g,y)?d is a scalar and is therefore equal to its own transpose: (¢’ Q%) = 97Q7¢.
Substituting this back into Eq (4.6), we can see that the final cancellation occurs:

L=-4"Kig+(9"Q"(q.9q) - (5" Q" (4.y)q)
- —4"K\q. (4.8)

We have L > 0 and L < 0. Hence, L, e, §, and ¥ are bounded. Furthermore, ¢ is bounded and ¢ is
uniformly continuous. Apply Barbalet’s lemma, and we conclude that

lim ¢ = 0. (4.9)

t—00
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Furthermore, at the equilibrium where lim,_,., ¢ = 0, the system dynamics reduce to:
1
J! (r + 5eTp3) Kye = 0. (4.10)

For the stability analysis to hold, it is required that the robot’s trajectory ¢(¢) remains in a region
where the manipulator Jacobian J(g) is of full rank. Specifically, we define the singularity set as
S = {g € Q]rank(J(g)) < min(m,n)}, where Q is the joint space and m, n are the dimensions of the
task and joint spaces, respectively. The control objective is valid under the condition that the initial
configuration ¢(0) and the target y, are chosen such that the resulting trajectory g(¢) does not enter S.
This implies that the term in the parentheses must be zero:

1
(r + zeTp3)1<2e =0. 4.11)

Since the gain matrix K, is positive-definite, K;e = 0 if and only if ¢ = 0. Now, we prove by
contradiction that e = 0 is the only possible solution to (4.11).

Assume that the system reaches equilibrium with a non-zero error, i.e., e # 0. Letv = Kye, sov # 0.
The condition becomes:

1
(r + 5eTp3)v =0. 4.12)
Expanding I" = P — y” p3, we get
1
(P - yTp3 + EeTp3)v =0. 4.13)
T 1 T
Pv = (y p3 — Ee p3) V. (4.14)

Recalling that P = [py, p», p3]?, we can write this as

[p1, P2, p31'v = aps, (4.15)
vVip1 t vap2 + v3p3 = aps, (4.16)
vip1+vapa+(v3 —a)ps =0, 4.17)

where @ = (y - %e) v, v; are the elements of the non-zero vector v. This equation states that the vectors
D1, P2, p3 are linearly dependent, a non-trivial linear combination of them equals zero. However, for
a standard pinhole camera model, the projection matrix P must be of full rank, meaning its three row
vectors (p1, p2, p3) must be linearly independent. The result of linear dependence thus contradicts the
fundamental properties of the camera projection model.

The contradiction arises from our initial assumption that e # 0. Therefore, the assumption must be
false. This rigorously proves that the only possible equilibrium state is when the error is zero. Thus,
we can conclude that:

lime = 0. (4.18)

—0o0

O
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Remark 2. It is important to note that the proposed controller (3.2) does not include an explicit
singularity avoidance mechanism. The stability proof relies on the Jacobian J(q) remaining full-rank
along the trajectory. In practical applications, this is often ensured through careful task planning,
workspace definition, and selection of initial/target configurations far from known singular positions.
For tasks where the robot must operate near singular configurations, the control law would need to be
augmented with techniques such as the damped least-squares (DLS) method. The development of an
explicit singularity-robust controller is an important direction for our future work.

5. Simulation

In this section, a simulation using a PUMA robotic manipulator was conducted to verify
the proposed control scheme. The simulation environment was constructed using MATLAB
R2021a/Simulink. The physical characteristics of the robotic arm were described using the Denavit-
Hartenberg (D-H) parameters and implemented with the Robotics Toolbox. The corresponding D-H
parameters are presented in Table 1. The initial parameter configuration of the controller is as follows:
K, =1[30,32,18], K, = diag([0.0035, 0.0045, 0.0025]),

K5 = diag([0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 50, 50, 50]), and

9y = [759.1338, 364.8237, —352.3898, 478.9258, 6.3236, —162.8226, —890.7926, 511.7079, 0.9754,
10.2822, 8.9988],

where diag(-) is the diagonal matrix operator.

Table 1. Manipulator parameters.

Parameter Symbol Joint 1 Joint 2 Joint 3
6 (rad) q1 q> qs3

d (m) 0 0 0.15005
a (m) 0 0.4318 0.0203
a (rad) /2 0 —/2

m (kg) 0 17.4 4.8

*Note: 6 = joint angle, d = offset, a = link length, @ = twist angle, m = mass.

The control block diagram is shown in Figure 2. In the feedforward loop, the controller outputs
the required torque for each joint, while the adaptive law is responsible for updating the variation of
the adaptive parameters in the controller. In the feedback loop, the joint positions and velocities of the
robotic arm are obtained through the encoders configured in the joints, while the image coordinates of
the racket and table tennis ball are directly fed back by the vision camera. Considering the high-speed
nature of table tennis rallies, the simulation time is set to 2 s in this study. The proposed algorithm
is required to ensure that the error converges within 0.8 s. The following are the main experimental
results of this simulation.
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Updating Rule Strike

b= —K;'Q(a,v)

Pinhole Visual Camera | z,4 Table Tennis Ball

Td

1
= =P
y=e

Figure 2. The framework of the proposed control scheme.

According to the simulation results, the variations of the joint velocities and joint angles of the
robotic manipulator over time are shown in Figure 3. It can be observed that as time progresses,
the system tends to stabilize, with the velocities decaying to zero and the joint angular positions
approaching stability. This indicates that the proposed control scheme effectively stabilizes the system
through visual feedback. The convergence of the image error over time is depicted in Figure 4. As
shown, the image error converges to a value close to zero at approximately 0.6 s. By 0.8 s, the system
error has completely converged to zero, further demonstrating the effectiveness and applicability of the
proposed method. Furthermore, the trajectory of the racket is illustrated in Figure 5. We can see that
after rapid movement, the racket reaches the desired position. In addition, the control torque output
of the actuator is shown in Figure 6. It can be seen that there is no obvious chattering in the torque
output in this simulation, suggesting that the system avoids singularities. This satisfies the condition
that the Jacobian matrix J is of full rank as mentioned in Theorem 1. As can be seen from Figure 7, the
adaptive parameters are updated in real time along with the convergence of the system, which further

ensures the stability and convergence of the system.

Joint Velocity ¢

Joint Angle ¢

Figure 3. The variation of robot joint velocity ¢ and angles g with time.
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Figure 6. The variation of controller torque output 7 with time.

To further validate the applicability of the proposed scheme, two additional experiments were
conducted. First, based on the above experiment, the robotic manipulator was used to drive the racket
to hit different targets, with the norm of the error adopted for evaluation. The experimental results are
shown in Figure 8. It can be observed that the system exhibits excellent convergence performance in
table tennis practice with different targets. Furthermore, we designed an experiment where the table
tennis ball continuously hits different targets within 10 seconds to simulate the scenario of continuous
training. The error convergence of this experiment is shown in Figure 9. It can be seen that the proposed
scheme still maintains excellent control performance in the continuous hitting training environment.

AIMS Mathematics Volume 10, Issue 11, 27364-27380.



27376

—352.38
800 1000 r
3 3 L —352.39
> 700 > >
500
—352.4
0 0.5 1 1.5 2 0 1 2 0 1 2
Time(s) Time(s) Time(s)
480 0
200
+ 479 - —100 -
® = 200 > 0
478 =300 —200
0 05 1 L5 2 0 1 2 0 1 2
Time(s) Time(s) Time(s)
—600 513 1.2
OS —700 cg) 5192 cg )
—800
511
—900 0.8
0 1 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2
Time(s) Time(s) Time(s)
12 2
9.5
(=] — (]
<1 s 21
10 9 0
0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2
Time(s) Time(s) Time(s)

Figure 7. The variation of adaptive parameter ¢ with time.
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Figure 8. The convergence of the norm of image errors ||e|| for different tracking endpoints.
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Figure 9. The image error convergence in continuous strokes tests.
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To validate the controller’s ability to handle the high-speed dynamics characteristic of a table
tennis rally, a dynamic tracking experiment was designed. In this test, the desired target position
in the image plane y; was subjected to a sequence of high-frequency step changes at 0.07-second
intervals (approximately 14.3 Hz). The results, presented in Figure 10, demonstrate the controller’s
excellent tracking performance. As can be seen, the tracking error consistently and rapidly converges
to zero after each abrupt change in the target. A quantitative analysis of this response shows that the
average settling time is 0.920 second.
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Figure 10. Convergence of the image error norm in response to rapid step changes in the
target position.

Furthermore, to assess the algorithm’s robustness under non-ideal conditions, a second experiment
was established. In this scenario, the system was simultaneously subjected to several real-world
factors: 1) Broadband white noise (Simulink’s White Noise block, power = 0.1) was added to both the
control signals and the image feature measurements; and 2) a random time delay, uniformly distributed
between 0 and 50 ms, was introduced into the visual feedback loop. The results of this robustness test
are shown in Figure 11. It is evident that even in the presence of these combined disruptive factors, the
controller maintains system stability, confining the error to a small, bounded region around the origin.
The steady-state root-mean-square (RMS) error is calculated to be 5.26 pixels, with the maximum error
peak not exceeding 15.77 pixels, confirming the practical robustness of the proposed method.
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Figure 11. error convergence under dynamic tracking with simulated noise and delays.

6. Conclusions
This paper proposes a calibration-free visual control technique for table tennis training robots. The
proposed control framework does not require precise camera parameters, but instead requires only the

image information fed back by the camera. Within this framework, the unknown camera parameters
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in the controller are updated in real time based on the system state through adaptive algorithms. The
stability of the proposed algorithm was proven by the Lyapunov method, and the effectiveness and
practicality of the proposed method were verified through simulation experiments.
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