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1. Introduction

Fourth-order partial differential equations with time-fractional derivative have been widely applied
in various fields, because they can describe many complex physical engineering and life phenomena
more accurately. This includes applications in environmental science, high-energy physics, fluid
dynamics, electronic science, diffusion, heat transfer, solid mechanics, bridge slabs, floor systems,
window glass, airplane wings, and the problems of non-stationary and nonlinear systems such as
economic and biological systems [1,2]. Therefore, constructing a high-order numerical solution of
a fourth-order partial differential equation is a significant research topic. This paper will consider
the temporal high-order uniform accuracy numerical for the fourth-order time fractional partial
differential equation (TFPDE). Many numerical schemes have been developed to solve fourth-order
TFPDE:s, such as the quintic spline technique [3], Legendre-Galerkin spectral method [4], mixed finite
element method [5], radial basis functions [6], mixed Legendre-Galerkin approximations [7], compact


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20251202

27339

difference scheme [8,9], and B-spline collocation method [10], etc.
We consider the following equations:

Dzx, D)+ Az(x, 0= f(x,0), X1)eQxI, (1.1)
(x.1) = azg;, D_0. 1) ecoxl, (1.2)
72(x,0) = z0(x), x€Q, (1.3)

d

where the bounded area of the Lipschitz continuous boundary 0Q is Q = n(ai, b;) with d > 1 as the
i=1

dimension of the space. x = (x|, X, -+, x;) € R% A is a Laplace operator, A> means applying the

Laplacian twice, T > 0,0 < k < 1, and I = (0, T'], « is the order of the temporal fractional derivative, n

is the outward normal unit vector, and the function f(x, ) € Q X I. In (1.1), , Dz is the k-order Caputo

fractional derivative, defined as:

1 " 0.7(X,7T)

D¥ = 1
oDiz (X, 1) FO-0 Jo G-1F dr,0 <k <1,

where I'(-) represents the gamma function. The minimum condition for the existence of the Caputo
derivative D}z (X, 1) of order between 0 and 1 of a function is that the function is absolutely continuous
on the interval of interest.

The research on the high-order efficient numerical scheme for fourth-order TFPDEs has always been
one of the hot topics in TFPDEs, and many researchers have made significant research achievements
in fourth-order TFPDEs. In [11], a space-time Petrov-Galerkin spectral method for the fourth-order
TFPDE was explored. In [12], they gave a numerical scheme for the fourth-order TFPDE by the Petrov-
Galerkin approach in time and the Galerkin approximation in space. In [13], they presented an L2
scheme and the fourth-order compact numerical differential method for solving fourth-order TFPDE:s.
In [14], a mixed virtual element method was used to solve fourth-order TFPDEs with an initial weak
singularity solution. Based on the implicit method, an efficient numerical scheme was constructed for
fourth-order TFPDEs in [15]. In [16], they used the graded L1 scheme and the local discontinuous
Galerkin method to solve the TFPDE in time and space, respectively. In [17], they proposed a compact
difference-Galerkin spectral method that can handle some complex boundary cases. In [18], they used
the L2 scheme and direct meshless local Petrov-Galerkin technique to solved the fourth-order TFPDE
in time and space with the convergence order and unconditional stability. In [19], a new method
was presented and the shifted fractional Jacobi collocation method was extended to solve the fourth-
order TFPDE. They proposed an effective Galerkin spectral method to solve the fourth-order TFPDE
in complex regions in [20]. A spectral-Galerkin method for the fourth-order problem of cylindrical
regions based on Legendre-Fourier approximation was studied in [21]. In [22], the spectral method for
the fourth-order problem defined on a quadrilateral was studied. In [23], they used second-order finite
differences and the Galerkin method for discretization to solve the fourth-order TFPDE with a weak
singular kernel. In [24], they proposed a fully discrete scheme based on the shifted Gronwald difference
scheme and local discontinuous Galerkin method, and studied the stability and convergence analysis.
In [25], they introduced the quintic B-spline collocation method to solve fourth-order TFPDEs with
high efficiency. In [26], a fast (3 — a)-order numerical method was proposed, which can be applied to
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the TFPDE in bounded domains. In [27], the authors used the time-space spectral Galerkin method to
solved fourth-order TFPDE:s.

Considering that Galerkin spectral methods are an efficient numerical for the fourth-order partial
differential equation, many researchers use the spectral method to solve fourth-order TFPDEs. Due to
the exponential convergence of spectral methods, constructing a high-order temporal uniform accuracy
numerical scheme is a very important research topic. The exiting high-order numerical schemes for
the fourth-order TFPDE have the disadvantages of first-step theoretical convergence order reduction
and the fact that the high-order numerical scheme is only for linear TFPDEs, being not theoretically
suitable to solve the nonlinear case. In the spatial discretization, we use the Legendre-Galerkin spectral
method for its ability to capture high spatial convergence accuracy with high computational efficiency.
In the temporal discretization, we use an improved L2 scheme for its ability to obtain temporal high-
order uniform accuracy. The stability of the fully discrete numerical scheme is strictly proved by using
the inverse Laplace operator. The improved numerical scheme has the following contributions.

e An improved scheme for TFPDEs with spatial fourth-order is first established with uniform high-
order accuracy in time.

e The stability and error estimation of the present scheme are strictly based on the properties
of the inverse Laplace operator and the appropriate parameter transformations to transform the
numerical scheme into an equivalent form, where all the coefficients are positive.

e The improved numerical scheme can be used to solve linear and non-linear fourth-order TFPDEs.

The structure of this article is as follows: In Section 2, we first describe the semi-discrete scheme
of the time fractional derivative and present the truncation error, and then construct the fully discrete
scheme of the fourth-order TFPDE. In Section 3, the stability and error estimation of the scheme
are established. In Section 4, we give some numerical experiments to verify the effectiveness of our
method. In Section 5, we provide some concluding remarks.

2. Full discretization numerical scheme for the fourth-order TFPDE

First, we present the high-order uniform accuracy temporal scheme for the time fractional
derivative (1.1) by using the following L2 scheme. Let us assume ¢, = mrt, form = 0,1,--- , K,
where 7 = % is the time step. According to [28], set kg = ['(3 — k)7, and we can obtain the effective
scheme of (D{z(x, t,,) as follows:

Ky (AIZ(X’ fo) + Biz(x, 1) + Cz(x, fz)) ,m=1,
Ky (Azz(X, f0) + Baz(x, 1) + Coz(X, fz)) ,m=2,

0Dz (X, 1) = { k" {AmZ(X, to) + Buz(x, 1)) + Cuz(X, 1) (2.1)
m—1

+ D TAZX, tyog1) + Biz(X, 1) + CR(X tyie)}, m 2 3,
=1

where

Ay =@Bk—-4)/2, B =2(1-«x), C, =«/2,
Ay = Bk —2)/2%, By = —4«/2%, Cy = (k +2)/2,
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Ap=Q—-)(m—1D""2-32 - )m"™ /2 +m*™ = (m—-1)"*, m>3,
B, =2(m— 1) =2m*™* +2Q2 - x)ym' ™, m > 3,
Co=-Q=K)|m ™ +m— 1) )2+m = (m- 1) m23,
A=l —Q-r)|U-D"+ 1| )2-a -1,
B =2|Q-r)- D™+ (-1 =1,
Cr=Q-I"™ 2+ P =32 -1)1- D" /2-(1-1)**
We will introduce the local truncation error estimate related to the proposed numerical discretization
scheme (2.1) as the following Lemma 2.1.

Lemma 2.1. /28] Suppose that z(-, t) has a fourth derivative with respect to t:

R

= [oDf2(o tw) = oDz, ta)| S CT*, Ym> 1,0 <k < 1, (2.2)

where C > 0 is a constant independent of 1.
Second, we study the Galerkin spectral approximation of (1.1) in space. To simplify the notations,
d
we let Q = H(—l, 1) hereafter. Set

i=1

(u, w) = f uwdQ,  Yu,w e LA(Q), |lull} = (u,u),Yu € LX(Q),

Q
and

5 ov

Y=3ve H Q) : V| = a_|aQ =0;, (Ay,Av) = | AyAvdQ, Vy,veY.
n
Q
Let
Xy = span{Lo(x), Li(x), -+~ Ly(x)} ,

where L, (x;) are nth Legendre polynomial fori = 1,2, --- ,d. We now define a product space, described
as follows:

We denote by Qy the space consisting of all algebraic polynomials of each degree less than or equal
to N. We introduce the following finite-dimensional space Yy = Xy NY, i.e.,

ov
Yy = {VN € Oy : VNloa = 8_1:/"99 = 0}-

AIMS Mathematics Volume 10, Issue 11, 27338-27363.



27342

In order to analysis the convergence and stability of the full discrete scheme, we define the norm
Il - I, as follows:

1
vill, = (V15 + ko83 IIAVI)* (2.3)

where Sy = % > 0,Vk € (0, 1). The full discrete scheme as for (1.1) is: Find 2, € Yy,m = 1,2,--- , K,
that satisfy the following equation:

m—1
(Anzys Vi) + (Buzy, viv) + (Cuzis Vi) + (Z(Azz%"‘1 + By + CZi ™, vy)
=1
+ ko(AZy, Avy) = ko(f",vn),m > 1, (2.4)

m—1
for Yvy € Yy, where we assume that (Z(Alzﬁ_l_l + B,z%‘l + C,z%"“), vy)=0form=1,2.
=1
Similar to [28], in order to further study the stability and the convergence of scheme (2.4), form > 3,

we rewrite scheme (2.4) as follows: zy € Yy,m = 1,2,--- , K, and Yvy € Yy such that

(A, Vi) + (Buzy, viv) + (Cuziys V) + Ko(AZR, Avy) = ko(f™, vn), m = 1,2,

(2. Vi) + Koy (AZy, Avy) = (Z D 2% vw) + Koy (f™ o), m > 3,
i=1

(2.5)

where C; = % +1= ‘%K according to the coefficient expression of (2.1), so 8y = Cy. Form = 3,
Dy = —B,' (A3 + A), D} = =B, (Bs + A + By), D; = =3, (C3 + By + C),
and for m > 4,

Dy =By (Bi + C2), Dy, =~ (A1 + By + C3),
D) =By (At + Bi + Ciy1),i = 3,4, ,m =3,
Dy = =B (Co+ Aps + Bz + o), DY = =B (B + Ao + B,

D(r)n = _ﬁ(;l(Am + Am—l)-
3. Stability analysis and error estimation

In this section, we will strictly establish the stability and error estimation of scheme (2.5). First, the
properties of the coeflicients D’ . are provided in the following Lemma 3.1.

Lemma 3.1. [28] For given 0 < k < 1, m > 4, the coefficients of scheme (2.5) satisfy the following
conditions:

=0 ="5e(2)

i=1
(3)D$—l >O9i:37“' 9m;
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40<D, <

(5) Ak € (O 1), such that D), _, > 0 ifk € (0,k) and D), _, < 0if k € (ko, 1);

6) D", +— (D )’ >0.

Lemma 3.1 1mphes that the symbol of the coeflicient D, _, remains uncertain Y« € (0, 1). Therefore,
it would be very difficult to analyze the stability of our proposed numerical scheme (2.4) by applying
the classical method. Therefore, we want to use a technique to construct a new method such that

all the coeflicients of our scheme are positive. An unconditional stable numerical scheme is derived
Vk € (0, 1). Consequently, based on the properties of the coefficients of (2.5) in Lemma 3.1, we denote

m > 4.

m—1°

— 1 Dm
P=3
By using the definition of p, rewrite the last row of (2.5) as follows:

(zy — ,OZN Lvw) + koBy ' (AZy, Avy)
= P = ) + (07 + Dl ) = pd ™ vw)
+ (0 + pDh_y + Dy )@ = p2y L vn) + D@ vw)
+ 4 Dy, viv) + koBy (", vv)
= p(Ey ' = pzy 2vn) + (O + Dl )@ = pziy s vn)
+(0* +pDl_y + D )@ = pzi ™t vw)
e (O DN DY+ DI 2 o)
+ (" 4 "D ke pD + DY — p2 vy)
+ (0" + "D, + -+ D+ D)y, vn) + Koy (7 V).

Second, we denote

Dﬁ_i:pi+Zp’ ]D:Z P i=2,3,4,---,m

(3.1)
Iy=2v-pay i=12.m
Asm = 3, we get
(Zar V) + KBy (Azy, Avy) = D3(Zy, viv) + D@, viv) + Dy, viv) + koBy (f, v),
where
D} =D; -p,D; = Dip+ D;,D} = Dip + Dj.
Therefore, (2.5) can be written in an equivalent form as follows: zjy € Yy, m = 1,2,--- ,K, and
Yvy € Yy, we have
(Anzy> vN) + (Buzy, vv) + (6111Z12v’ vw) + ko(Azy, Avy) = ko(f™,vw), m = 1,2,
(2 Vi) + Koy (A2} Avy) = Z D2 vw) + Koy (7, vw)s m = 3, 42

(28, vw) + koS (AZy, Avy) = (pZ + ZDm 27+ Dy ) + Koy (F" vw), m > 4.
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Before analyzing scheme (3.2)’s stability, we will give the good properties of the coefficients, as
detailed in the following Lemma 3.2.

Lemma 3.2. [28] For given 0 < k < 1, the coefficients in the 2nd-3rd rows of (3.2) satisfy the
following conditions:

2 _
(1)0<p<§; 2)D,,_; > 0,2 <i<m;

(3)p+ZD%_,~+DS’ <1
mK
“ )_m DS U-0C-0
0
(5) D3_l. >0,i=1,2,3;
6) D} + D3+ D} < 1;
(7)D3 —p <0.
Third, we analyze the stability of the Legendre-Galerkin spectral scheme (2.4).

Theorem 3.1. Suppose {z%}ﬁzl is the numerical solution of (2.4), and this numerical solution satisfies

llzxll, + \/@”AZ%HO < 4(H ||3])g + HoCoT(1 = )] T max ||f* ||0) l<m<K (33
where Cy > 0 is a constant independent of N and 7, and
Hy = max (2(M, + p*),2(M5 + p*M))}, Hy = max {2M,, 2(My + p* M)} . (3.4)
The expressions of Mi(i = 1,2,3,4) are as follows:

_ (ISk = 18)(k — 2)

81 -kP(k+2)

2(15k — 18)(k — 2)
(1 -K)(k+2)?2 "~

L Aa-0]
8k +2)
241 —«) N 8

(k +2)? kK+2)|

(2—)[

(3.5)
M3 =

M, = —K)(Z—K)z[

Proof. Let vy = —Byzy, in (3.2) for m = 1 and vy = Cyz% in (3.2) for m = 2. Adding them, we have
T R | _ LI . 5112
=B1Bs [laaly + C1Ca [l = xoB2 ||yl + koCi Az
= —koBo(f', zy) + koC1(f%, 23) + A1 Ba(zy, 2y) — C1A (2N, Z3)-
By Young’s inequality, we obtain

BB, [} + C1Ca |2 - oBa [lAch s + xC [|AZ

. 1xoBo) B) 1( C)
< s+ 5 ekl + 5= 12 + S Al

1(AB) 1( CA)
RN+ 5 Il + 5= Il + S G

AIMS Mathematics Volume 10, Issue 11, 27338-27363.



27345

BB, C1 o)

Let us denote £; = ==, &, = and substitute them into the above inequality:

BB [+ 3GC RN - B Azl + o€ A

<Gl IR - G Il S e
Simplifying the above inequality (3.6), we have
=8B [l o+ €1 G [y — 2B [Azk o+ 26C [
o 7 e e o (T

Arranging the inequality (3.7), we can get

~BiBa |, ~ 200B: Ak

ACB ABC 2(- B) 2(C)
L =

Both sides of the inequality on the previous line are divided by —B, B,, and we obtain

2
el + 5. lazhll

< [Z(AZClBl AzBZCZ) || || 2( KOBz) 2(K()C1)
0

IR e [ 1 [N

From the characteristics of B, and 3y, we have B, < 28,. From the previous inequality, we obtain

2
e+ ot Akl < el + 3 lazhll

- 2(A2B,C, — AZCBy) ” || 2( KOBZ) 2(k
- B2C,B, 0o C,
= My 3]l + MaIT(1 = 0T z“rgfvgllf IIO’

oC1)? 5 7 i
z ]/(—B@)riggllf I

where M, M, are defined in (3.5).
Therefore, Z), = z), — pzy and 0 < p < %, when m = 1, and we obtain

R + st b1 = k- o + i [kl
= (2hs 2) — Pk 22) = P 2h) + 020 2%) + ko™ | A2k
< Jlexlls + 20 lleily el + 7 125 + kot Azl
< 2 [lahI5 + w85 1Az ) + 207 IR 5
< 2(M ||l + Mt = 0P T max [ 715 ) + 20 |3,
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= 2(My +p?) [y + 2001 - 0P T max|| ]

Similarly, it can be seen from (3.7) that

2 2 1 2 2 2 2 2K()
Il + wasa lazily < sl + =) 1Al

< Z(Aﬁélél —A%Bzéz) ” ” [2( K()Bz) 2(K0C1)
=T B o\ BB, | GG
= M|z, + M [0 = 07 T max ]|,

/€ Comax]|F;

where M3, M, are defined in (3.5).
Then m = 2, 7% = z — pz), and

2115 + s A2 = N1z = ozl + o3 lAZA G
= (B 23) = P 2) = Pk 20) + 022k ) + kB AL,
< I35 + 20 7 Il + 2 lenly + o A2
< 2 [lskllo + xaba" A2 5) + 20°( [zl + oo lazhlly)
< 2(M; [y + MaIr(L = 0P T max | 1)

+202 (M1 |4 + MaITt = 0P T*max 1)
= 2(Ms + "My )[4y + 2(Ms + 0*Ma)ITCL = 0P T max |11
For (3.8) and (3.9), we have
bl + w8 Azl < Hlldlly + Eolr (@l = P72 max [l

G411 + xao lacklly < A [l + Hlrar = P 7> ma [ 7]

where H,, H, are defined in (3.4).
When m > 3, letting vy = 2z} in (3.2), we get

2||zalls + 2Koﬁal<Az% AZD)

= 20GN" 2 +2 Z D@20 + 2D (R Z30) + 20085 (F". 2.

Using 2(Azy, AZy) = ”AZNHO + ||A N”0 - p? ||Azﬁ‘1||§ and integration by parts, we have
2[R, + w8y ||AZ7$||0 + oy |AZR ], — oo A

= 20(Zy ", 2 +2 Z Dy 20 + 2D (@R Z8) + 26085 (f". )

(3.8)

(3.9)

(3.10)

(3.11)
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= 202", ) +2 Z Diyn G 2y + 2D (25 Z0) + kol (M) ™, AZy),

where (A)~! is the inverse operator of A.
By using the basic inequality, we obtain

2|l + xoBa lazily + xoBs" [[AZh]l, — xobo ' [[AZ
m—1
< ([l + llzwll ) + 25 Dinca sl + Mzl ) + Dol + Exly)
i=2

+xoBo A1 + koo |Aza - (3.12)

By rearranging (3.12), we immediately obtain

2|zl + o (| Az - xoBo'o? [|AZe

m—1

<plla '+ (o + D5 + 3 i) =3l
i=2

m—1

+lzlle + DR + x5t ) -

i=2

From (5)—(7) in Lemma 3.2, we can observe that the above inequality satisfies for m = 3. Through
detailed calculation, it can be inferred that p + D{’ + l_); < 1. From (3) in Lemma 3.2, we have

p+ ). Dp +Dy <1,and then

el + woo lally = s 'o? i

m—1
< plla s+ 2 Do sl + 05 Nl + ot ™ 771

i=2

According to (1) and (4) in Lemma 3.2 and % < By < 2in Lemma 3.1, we get
llly + xaso llazil

m—1
< oIl + o8 e llacy ™) + Z Dy 571 + D N1l + ol £l

._.

Sp(llfﬁ*lli+KoﬁalpllAz]’G‘lllﬁ)+ D (N + xoss" Az )
l
+ Dy (|3 + —K° IIO)
m—1 5
< o( [z IE + ka5 o Iz [E) + Y D ([ + s laze )

i=2
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. 2 Ko m

< o[z |2 + o' 2| +Zz‘>x_l 2o + b [|Azi )
i=2

_ I'l —xT*

<Dyl + =52 IR
m—1

< o[ + w85 o A ) + > D + o [|A )
i=2

_ I'(1 T“C

oy(J3E + L)fnf'"n)

(||z’" 1||O + KofBy! ||Az%‘1||o) + Z DZ_ "” l”o + koS! ||Az ||3)
i=2
+DY( A + €T = oT< 11" 1), 3.13)

where Cy > 0 and depends on the function f.
To prove the following estimate, we will adopt mathematical induction:

Z2ll> + %085 |Azzlls < Hi||23]J; + HaCAIT(1 — QPT™ max 7, m=3. (3.14)

According to (3.10) and (3.11), (3.14) is obviously valid for m = 1,2. It can be easily proved
that (3.14) holds when m = 3. We assume that (3.14) also hold for j =3,4,--- ,m—1,

2012+ s A< = b + 1y 101~ 0P T [ 1< <

We deduce from (3.13) that

m—1
8 o il < o+ 35 B 25 )l s = oy )

1<i<K
i=2

According to (3.14), we can obtain

1
oy [[azall, < (|3 + HaC oIt - o] TZKmafo’H ). (3.15)
lExl, < (B (IS5 + HCora = 0P T max ||f’||0) . (3.16)

Finally, by (3.16) and the triangle inequality to estimate ||z}|lo, we obtain

il = 13 + oz3v”'ll,

1
< p !l + (B 15 + HoC/ i = 0PT*max [l )°

< oo 2l + e [+ HaCort - 0P max [

AIMS Mathematics Volume 10, Issue 11, 27338-27363.
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1
(H1 ||zN|| + HyCy[T(1 = «)] Tz"max”f’H )2

1<i<K

=

<< (Ltp+e+p" 240" (H1 ||ZN||0 + HyCr[T(1 = 0] TZKmaX If ”0)

1<i<K
1 _pm K i 7
< Al + mra - o ma )
1
< 3(H [l + HoCoAr( — 0P T max |1 )
Therefore we obtain
1
lll, + JxoB5 |Azall, < 4(H: |35 + HaColr = w0) T2 max £ ). (3.17)
form=1,2,---,K.
The proof is complete. O

Lemma 3.3. [4] Define the projection operator kg’ v - Y o Yy which satisfies for any u € Y that
(A =5 yp), Avy) =0, Yvy € Yy.
Then for any u € H1(Q) NY and q > 2, we have
|l = %3 |, < CN*luall,,  k=0,1,2.

Theorem 3.2. Let z(X,1) and zj,m = 1,2,--- | K, be the exact solution and the approximate solution
of (1.2) and (2.5), respectively. Assume that z(-,t) € C*[0,T] and z(x,-) € HI(Q) NY,q > 2. Then we
can obtain the following error estimation:

llze =z, t)ll, < CE@™* + N*9), m=1,2,--- K,

where C is a positive constant independent of N and T.

Proof. Denote
Ay — 2%, b)) = 2y — K9 N 2(X, 1) + KD \2(X, 1) — 2(X, 1) = 0" + 17", (3.18)

where 0" = 23 — K \2(X, 1), 1" = K \2(X, b)) = 2(X, 1), form = 1,2, K
When m = 1,2, from the definition of kg, v and (2.2), Yvy € Yy, we have

An(2(X, 10), vi) + Bu(z(X, 11), vy) + Cul2(X, 12), Vi) + ko(AKS y2(X, 1), Avy) = Ko(f™, Vi) — Ko(RY, vy).
By subtracting the corresponding formula in (2.5) for m = 1,2, we can obtain:
An(@ +1°,v8) + Bu(8' + 1", vn) + Cu(6 + 177, i) + ko(AG", Avy) = Ko(RY, V). (3.19)

Let vy = —B,6" in (3.19) for m = 1, vy = C,6* in (3.19) for m = 2, and add them. Then, using
Young’s inequality, we get

BB+ |1 - o [0+ s a6
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= —koBy(RL, 0") + koC1(R2,6%) + A B,(n°, 0") + B1By(n', 0") + C1 Bo(*, 6")
- CiAn, 60%) - Cle(Ul 6°) — C1Co(n*, 0%) + A1 Bo(6°,6") — C1A5(6°, 6%)

S L e e
S 252 e [<B;ﬁ;) [
+[(B;ff) +s iif” I + [0 + S5 a2
Lets = —Blsgz,sz GG in (3.20), and we get
BB ]+ CoC P - 20 0 + 20
sitgééi i§+§?§;i 3§+5ABCI ABZCQH0||0
A B C1 A2 B2C2 ” 0“ B C1 BZB C2 ” ” C2C131 C? 32 ” 2” . (32D

According to (3.21), and Lemmas 2.1 and 3.3, inequality (3.21) becomes

2
I3 + o5 [la6' 5 < fl6'[lg + ? lae]l;
A B C A B,C
<5 St 22||O||0 (BZ C332

5 SkCi )

i= 12
ABC ABC BC BBC CCB C?B _

+ s |y + 52— 2|| 'y + 5———=——17lly| /-B:B)

5
= 2um, e°||0 I gMz[m - oF T ]G+ i [ ||o A
< C(T ™ + N7,

where M, M, are defined in (3.5), and
YA ClalU R VR CLl U (3.22)

(1—)k+2)"7 " 16(1 — k)2

Based on (2.3), we have

llzy, — 2, )l < 118" + 'l < 6], + Il
< CE@™ + N+ CN* < C(@™* + N*79).

Similarly, according to (3.20),

2K0

6215 + ot Al < 2l + = 1Al
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< STRD TP O+ (5 - e b )
20141
SEBC 0y BB R

s [°ll + s ”771”0 + N [l

5 5
M 6°]|; + SMAIT(1— 0P T may

C(T>™* + N9,

IA

5(32 - 16«)

where M3, M, are defined in (3.5), N; is defined in (3.22), and N3 = k1 2)
K

123 = 206, )l < P + Ml < ||6]], + [|72]1,
<CTT*+ N9+ CN"1 < C(T* + N*79),
For m > 3, we obtain

(X, ), Vi) + KBy (AKD y2(X, 1), Avy)

= > D@, i), vw) + KofSg (F", v) — Ko (RY,vy), v € Y.

By subtracting (2.5) from (3.23), we have

m

(Hm + r]m, VN) + KOﬁ(;](AHm, AVN) = Z Dz_i(gm_i + rlm_i? VN) + KOﬁ(_)l(R:-n, VN)’ VVN € YN-

i=1

According to Lemma 2.1 and (3.24), it can be easily obtained that
(0", vv) + Koy (AG", Avy)

= > D@ vw) = [ vw) = Y Dl " vw) = Kol (R )]
i=1 i=1

= Dz—i(gm_i7 VN) - (kg’NZ()g tm) - Z(Xa tm), VN)

=1
N m 0 -1 m
* Z D760 20X, i) = 20X, i), Vi) + KBy (R, v)

m—i

Ms

DI (0" v) + (1= 2 )X, 1), Vi)

1l
—_

i

— (I =18,) > Dln (2%, tuoi), vi) + KofS (RY, )
i=1

(0" ) + (=K )G 1) — Z Dy 2(X, t-), V) + KBy (RY, vw)

= > D (0" vw) + (=5 W (koBy (0D z(X, 1) — RY, vy)) + kofBy (R, vy)

m—i

. So we get

17| /(€1 C)

(3.23)

(3.24)
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D" o) + kg (T = S () (0DS2(X, 1) = RY) + RY, viy)
i=1

Z Dy (6", vw) + kB ({Nz,vw),  Yvn € Yy, (3.25)
i=1

where {jz = (I - kg’N)(onz(x, tn) — R7) + R, I is the identity operator, and R is defined by (2.2).
Applying the triangle inequality yields

lznzll, < /(7 =13 o Dsz(x, )|, + |7 = 63 DRZ|, + [IRZ ], -
It can be obtained from Lemma 2.1 that
|RT 0 S Ccr7,

and according to Lemma 3.3, it can be seen that

(7 = %3 ) 0D z(X, 1), < CN79.

Combining Lemmas 2.1 and 3.3, we have
|2 =163 )R], < CN79T7.

Thus, we have

|Gnz]|, < € + N9+ TN 79), (3.26)

Let 6 =6 —p0~',i=2,--- K, and it is observed that (3.25) can be rewritten in the following
form:

(@, vw) + Koy (AG™, Avy)
m—1

= p@ ", vy) + Z D@ vy) + 1381(90, vN) + Koﬁal(fxz, VN),
=2

where D’]’? is defined in (3.1). The similar technique used in Theorem 3.1 enables us to obtain

16”1113 = 1161l + kB A6
2 < T
< Hy [Pl + HoCoAT (1 = 0P T max [|£3],
S CE ™+ N7+ TN,
Based on the above estimation and (2.3), we have

=y = 20¢ )l < 6™l + "1l < 16" 112 + [l7™ I,
SCE@ ™+ N7+ N9+ CN*" < C(r ™ + N9,

where C is a positive constant and independent of 7 and N.
The proof is complete. O
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4. Numerical validation

4.1. Algorithm implementation

Before providing the caculation examples for verification, we briefly described the algorithm

process with space dimension d = 1 for completeness. According to [29], we select the basis function
as:

22i+5 2i+3
Lo - 222 22w, =00 N-4
V2(2i + 3)2(2i + 5) 2i+7 2i+7

%

0
This satisfies ¢(+1) = G_(il) = 0. We choose an appropriate function space below:
n

¢i(x) =

YN = {¢0(X), ¢l(x)a ) ¢N_4(X)} .

The function zj is presented as

N—4
Zy = ZZT%(X)-
j=0

We select vy = ¢;(x) in scheme (2.5) and rewrite it for m = 1, 2 as follows:

=
IS

{Bl(¢j, ¢z + Ko(Adj, Ap)z; + Ci(;, ¢’i)25} =Hj,

(=]

2\

—4

{Ba(ej. 92 + ko(Agj. A$)Z; + Caley. 92} = H,

Jj=

(=]

where the expressions for H 11 and sz are as follows:
N-4
H} = xo(f' ) = > Ailey 602,
Jj=0

N—4
H7 = ko(f*, ¢i) — Z Ay 47

=0

Let us denote
N-4 N-4
A=[@p0], . B=[00.00)] .
Zm = (Z81’ Z’i’l’ tt ’Z;‘(}_4 b Hm = (Hm’ H’l/n’ te b H}Cl_4)_
We can obtain a matrix form:

(BIA + K()B CIA ) ((ZI)T) (Hl)T

Volume 10, Issue 11, 27338-27363.
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Solving (4.1), we obtain z' and z°.
Based on (2.5) for m > 3, we have

(A + ko' BYZ" = koffg' " + A Y Dpp_ 2", 4.2)

i=1
where
£ = (0 A I f = (7 80)
We solve (4.2) and get z" for m > 3.

4.2. Numerical results

In this part, we will use three examples to verify the accuracy of the theory, which proves the error
estimation of the time step 7 and the spatial polynomial N of the improved numerical scheme in solving
fourth-order TFPDEs. Define

en(r) = max [l2(x, ) = i,

and the convergence order in time is as follows:

Order = log, (eN(ZT)) ,

en(7)
when N is sufficiently large.

Example 4.1. We choose
2(x, 1) = t*sin’ x;

as the smooth exact solution of (1.1), where d = 1,Q = (—1,1). It is easy obtained that f(X,t) is as
Sfollows:

2 2

I'(5) A
I'6-«)

~*sin® x; + (8% sin® x; — 87 cos? mx) ).

fx,0n=

First, we check the temporal convergence order by choosing a sufficiently large spatial polynomial
N, where the error caused by spatial approximation can be ignored.

In order to test the temporal order of accuracy, we choose K = 2",m = 5,---,9, with N = 80
for different « in Table 1. The convergence orders tend to 2.3,2.5,2.7, for k = 0.7,0.5,0.3. It can be
clearly observed that the temporal accuracy given by the scheme in terms of time is (3 — k), which is
consistent with the result of Theorem 3.2.

Table 1. The errors and temporal convergence order with k = 0.3,0.5, and 0.7.

k=03 Order k=0.5 Order k=0.7 Order
2.63224x107% - 9.31583%x107% - 2.86133x10™° -
4.33805x1077  2.60117 1.72424x107% 2.43372 6.01858x10°° 2.24919
6.98610x107% 2.63449 3.12908x10~7 2.46215 1.24452x10°° 2.27384
ﬁ 1.10996x107% 2.65399 5.61859%x107% 2.47746 2.55136x1077 2.28625
513 1.74841x107° 2.66639 1.00287x107% 2.48607 5.20733x10°% 2.29265
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Second, we consider the spatial spectral accuracy, by using a sufficiently small time step so that the
resulting error does not affect the spatial accuracy. A logarithmic scale is now used for the error-axis.
From Figure 1, we choose N = 11,13,--- ,27 and K = 2'2. For k = 0.3,0.5,0.7, the errors decay
exponentially with the increase of the approximation order of the spatial polynomial, and are close
to 10711,

Finally, it can be found from Figure 1 that the error variation has a linear relationship with the
polynomial order N. This indicates that the improved numerical scheme achieves spectral accuracy
convergence in space. It is consistent with the theoretical result of Theorem 3.2.

102

104

108 &

error

10% ¢

1010k

1012 I I I I I I I I
10 12 14 16 18 20 22 24 26 28
N

Figure 1. The error varies with the approximation order N of the spatial polynomial for
k =0.3,0.5,0.7.

Similar to [30], in Tables 2 and 3, we selected the same parameters K = 2",m = 5,---,9, with
N = 80 as in Table 1 and discretized the time using the L1 and L1 — L2 schemes, respectively. When
k=0.3and K = 2°, the error is 7.90177x 107" in Table 2, while it is 1.74841x 107° in Table 1. We find
that the errors for different k in Table 1 are smaller. The time convergence order is approximately 2 — k,
while the order is 3 — k in our Table 1. From the results of Table 3, we find that the L1 — L2 scheme
convergence order is close to 3 — k for large k and 1. For small k and 1, we find that the error is small
but the convergence order is not close to 3 — k. That is to say, the impact of the first-step L1 scheme
is more evident, which is easy to see from the last line in Table 3. It is easy to see that the errors of
Table 1 are smaller than Table 3 for different k. Therefore, the present L2 scheme has more significant
advantages in terms of convergence order and absolute error than the L1 — L2 scheme.

Table 2. The errors and temporal convergence order with x = 0.3,0.5, and 0.7 in the L1

scheme.
T k=073 Order k=0.5 Order k=07 Order
% 7.43911x107° - 2.55286x107* - 7.50699%x10~* -

61—4 2.43228x107°  1.61282 9.34308x10~> 1.45015 3.11115x107* 1.27078
lé—g 7.83541x107°  1.63423 3.37997x107> 1.46689 1.27850x10~* 1.28300
ﬁ 2.49777x107°  1.64937 1.21369x10™> 1.47761 5.22842x10~> 1.29000
513 7.90177x1077  1.66039 4.33691x107° 1.48466 2.13215x107> 1.29406
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Table 3. The errors and temporal convergence order with k = 0.3,0.5, and 0.7 in the L1 — L2

scheme.
T k=073 Order k=0.5 Order k=07 Order
% 2.72560x10°° — 9.63809x10°° — 2.95938x107° -

61—4 4.41289x1077 2.62678 1.75302x107% 2.45890 6.11839x107% 2.27407
% 7.10401x107%  2.63502 3.15601x1077 2.47367 1.25470x107° 2.28581
ﬁ 1.44507x107% 229749 5.71581x1078 2.46507 2.56332x1077 2.29126
5}—2 9.36375x1077  0.62598 1.36232x10™% 2.06890 5.29827x107% 2.27442

Example 4.2. In this example, we consider the non-smooth exact solution of problem (1.1) as z(X,t) =
£ sin® 7tx; ford = 1,Q = (—=1,1). Through calculation, we can obtain the right-hand term f(X,t) as
Jollows:

fx,0) =T +«) sin® 7mx; + (87 sin’ rx; — 87 cos? x; )t~

We can see that this exact solution does not meet the conditions of Theorem 3.2. Similar to [31], we
need to use the graded mesh t,, = (%)",m = 1,--- , K, to increase the order of temporal convergence.
We have adopted two different sets of r parameters. When T = 1, the errors and convergence orders of
different k and r in the time direction are shown in Tables 4 and 5.

First, when r = 1, it is a uniform mesh. In Table 4, for K = 32,64, 128,256,512 and N = 80, due
to the low regularity of the exact solution, the convergence order is also low for k = 0.3,0.5, and 0.7.
Therefore, we adopt graded mesh to improve the convergence order.

Table 4. The maximum errors and temporal convergence orders with 7 = 1, 7 = %, N = 80,
and r = 1.

T k=03 Order k=0.5 Order k=0.7 Order

% 3.76959x10°"  — 2.16506x10°1  — 1.24350x10°!  —

é 3.06186x107!1  0.30000 1.53093x10™! 0.49999 7.65466x107> 0.69999
ﬁ 2.48700x107!  0.30000 1.08253x107! 0.50000 4.71199x1072 0.70000
2;—6 2.02008x107!  0.30000 7.65466x1072  0.49999 2.90057x107> 0.70000
ﬁ 1.64081x107"  0.29999 5.41266x1072 0.50000 1.78551x1072 0.69999

Second, in order to reach the theoretical order, we choose r = (3 — k)/k. The error and time
convergence order of the obtained numerical solutions are listed in Table 5 for different k. It is easy
for us to notice that the temporal convergence orders gradually decrease with the increase of the value
of k, which is consistent with our theoretical analysis.
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Table 5. The maximum errors and temporal convergence orders with 7' =1, 7 = % N = 80,
and r = 3 —kx)/«k.
T k=03 Order k=0.5 Order k=0.7 Order

= 1.51160x1073 - 1.65086x107% - 5.59258x10™*  —

L 3.48304x10™* 2.11765 3.73259x10~* 2.14497 1.50613x107* 1.89267
== 7.00722x107>  2.31343  8.06936x10™> 2.20965 3.85068x10~> 1.96766
ﬁ 1.19702x107>  2.54939 1.51649x10™> 2.41172 9.01072x107% 2.09540
=5 1.91404x107%  2.64475 2.71390x107° 2.48229 1.94391x107% 2.21268

Finally, on the graded grid r = (3—«k)/x, wefix N =9,11,--- ,25, T = 1, K = 2'2. These values are
sufficient to make the temporal errors negligible compared with the spatial error for k = 0.3,0.5,0.7 in
Figure 2. As expected, the error variation basically has a linear relationship with the approximation
order of the spatial polynomial and eventually tends to stabilize. We verify that the new numerical
algorithm has high accuracy even when the exact solution is a low smoothness.

10 £

error

105 E

100 F

107

108 | | | | | I I I
8 10 12 14 16 18 20 22 24 26
N

Figure 2. The error varies with N in Example 4.2 with r = (3 — «)/k for k = 0.3,0.5,0.7.

Example 4.3. We consider the following equations:

oDz (x, 1) + A’z (x,1) = f (X, 1) + 2(x,1) = 22(x,1), in Q,
z2(x,1) = % =0, on 0Q,
2(x,0) =0, in Q.

Case 1. The space is one-dimensional. Given the exact solution z(x,t) = t* sin 7rxy, Q = (=1, 1).
The source term f(X,t) can be directly obtained through calculations:

re) .
I'(S -«

~sin® 7tx; + (87* sin® wx; — 87* cos? wx))r* + 112 sin® x; — * sin® mx;.

fx0 =

We set T = 1, the step size T = % and K =2".
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Table 6 gives the maximum errors and temporal convergence order of the proposed scheme for
different k. We choose m = 4,--- ,8 and N = 80. The results show that the temporal convergence
order (3 — k) is highly consistent with the theoretical expectation.

Table 6. The errors and temporal convergence orders for Example 4.3 with x = 0.3,0.5,
and 0.7.

T k=073 Order k=05 Order k=07 Order
% 1.64970x107> — 5.21424x107 - 1.41468x107™% —

% 2.73061x107% 2.59491 9.66438x107% 2.43171 2.97138x10™> 2.25127
61—4 4421061077 2.62676 1.75784x107% 2.45887 6.14340x107% 2.27402
% 7.11698x107%  2.63505 3.16471x1077 2.47366 1.25984x107° 2.28580
ﬁ 1.44667x107%  2.69853 5.73118x10™® 2.46517 2.57382x1077 2.29126

In Figure 3, we plot the obtained errors for N = 11,--- ,27 and K = 2'° based on different values of
k. The variation of the error is also linearly related to the approximation order of the spatial polynomial
and eventually tends to stabilize. From Table 6 and Figure 3, it can be see that the method studied in
this paper can numerically solve nonlinear spatial fourth-order partial differential equations with time
fractional derivative.

error
=
o

——O0——0

1010 . . . . . . . .
10 12 14 16 18 20 22 24 26 28
N

Figure 3. The error varies with N for Example 4.3 for « = 0.3,0.5,0.7.

Case 2. The space is two-dimensional. The exact solution of the equation is z(X,t) =
sin® 27tx; sin® 27tx,, Q = (=1, 1) x (=1, 1), and the corresponding function f(X,t) is

OR

I'6-«
) 12 ;6 .6 4.2 .2

— cos4mxy sin” 2wxy) + ¢ sin” 27wxy Sin” 27xy — ¢ sin” 27rxp Sin” 27x5.

l‘4

~*sin’ 27x; sin® 27x, + 1287**(cos 4mx; cos 4mx, — cos 4mx; sin® 27x,

f&x,0 =

Fixm =2,---,6 and N = 120. Table 7 shows the errors and temporal convergence orders of the
method for k = 0.4,0.6, 0.8 with different T. The results in this table confirm that the scheme has (3 — k)
temporal accuracy.
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Table 7. The errors and temporal convergence orders for Example 4.3 with x = 0.4,0.6,

and 0.8.
T k=04 Order k=0.6 Order k=0.8 Order
i 1.96963x10~* — 5.30046x107% - 1.04878x1073 —
% 3.86943x107°  2.34773 9.92428x10™° 2.41708 2.27435x10™* 2.20519
% 7.01935x107% 2.46271 2.02014x107> 2.29651 5.24735x10™> 2.11582
% 1.22720x107% 2.51597 3.98027x107% 2.34352 1.17586x107°> 2.15784
é 2.13088x1077 2.52585 7.76810x10~7 2.35723 2.59946x107° 2.17744

To test the accuracy in space, we present the plot of the error at different N for k = 0.4,0.6,0.8 and
K =2'° As we can see, the results of Figure 4 confirm the accuracy of the method in space.

—6— k=04

error

10-10 L I L
15 20 25 30 35 40

N

Figure 4. The error varies with N for Example 4.3 for « = 0.4,0.6,0.8.

5. Concluding remarks

An improved scheme for the fourth-order TFPDE is established by using the temporal uniform
convergence order L2 scheme and spatial Galerkin spectral method. Based on the properties of the
inverse Laplace operator, the stability and convergence of the present scheme are proved. This novel
stability analysis method has significant reference value for the theoretical analysis of spatial high-order
derivative equations. Through experiments, we have verified that this improved numerical scheme can
be used to solve high-dimensional nonlinear fourth-order TFPDEs. In the future, we will focus on
adapting the present scheme to solve fourth-order TFPDE optimal control problems using the ideas
in [32]. Considering the high computational efficiency of the present high-order uniform temporal
numerical scheme, we will establish a fast algorithm to solve fourth-order TFPDEs based on the
sum-of-exponential method using ideas from [26]. The research on efficient numerical algorithms for
optimal control problems of fractional-order integral differential equations is also a hot topic. Based
on the methods of three-layer FDM [33], alternating direction implicit difference scheme [34, 35],
superconvergence analysis [36], shifted Chebyshev-Galerkin operational matrix methods [37], Hexic
shifted Chebyshev polynomials [38], spectral collocation [39], Lucas polynomial approximation [40],
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spectral Tau method [41], Cutting-edge spectral [42] and the algorithm proposed in this paper, we will
study high-precision numerical algorithms for optimal control problems of fractional-order integral
differential equations.
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