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Abstract: We introduce uniform, one-sided conformal prediction bands for forward realized volatility
(FRV) paths that control the entire trajectory up to a fixed horizon H with finite-sample, distribution-
free marginal validity. The construction is model-agnostic: A monotone (isotonic) baseline across
horizons and robust per-horizon scales are fitted to the training data; a scaled sup-norm score calibrated
on a chronological holdout yields the uniform envelope. To address serial dependence, we employ
block-maxima calibration; for regime sensitivity, we add group conditional (Mondrian) variants based
on training-only state variables. On eight liquid assets, the method achieves conservative uniform
coverage while adapting the width to tail risk: Bands are widest for crypto and oil, and tightest for
broad equities and treasuries. A simple operational law emerges, namely that the mean one-sided
width grows approximately with

√
H, turning the horizon design into a transparent safety-tightness

trade-off. Practical guidance is given as follows: α≈0.05 is a reliable default for thinner tails, while
α∈ [0.05, 0.025] increases safety where bursts are frequent. Relative to parametric benchmarks such as
heterogeneous autoregressive realized volatility (HAR-RV) and generalized autoregressive conditional
heteroskedasticity (GARCH) models, our bands remain valid across regimes and stay width competitive
in calmer markets. The algorithm is linear in nH and agrees with deployment diagnostics. Overall,
uniform FRV envelopes provide an operationally transparent, model-agnostic tool for pathwise volatility
control, with tunable conservatism and simple extensions for dependence, covariate shift, and cross-split
stability.
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1. Introduction

Volatility is a central object in empirical finance and risk management. Modern practice constructs
ex post measures such as realized volatility and deploys forecasting models to anticipate future variation
for trading, margining, and stress testing [1–3]. While point or interval forecasts at a single horizon are
standard, many applications require pathwise control over a forward horizon: One seeks guarantees that
the realized volatility trajectory remains below a safe envelope for all steps up to a prespecified H. This
is intrinsically a functional problem: The target is a curve indexed by the horizon. Here, H denotes the
forward horizon measured in trading days, and h = 1, . . . ,H indexes the cumulative window length;
operationally, margining or stop policies may trigger at any intermediate h, so uniform control over h
(rather than at a single endpoint) is the relevant objective.

We propose a simple, model-agnostic solution: Uniform, one-sided prediction bands for forward
realized volatility (FRV) curves via split-conformal prediction [4–6]. The bands control the entire future
path simultaneously, not just pointwise, and enjoy finite-sample, distribution-free marginal validity
under the exchangeability of the calibration and test blocks. By “uniform”, we mean a guarantee of
the form P{X⋆(h) ≤ U(h) ∀h ≤ H} ≥ 1 − α, which is strictly stronger than separate pointwise coverage
at each horizon. For consistency with Section 2, we denote this envelope by Û when it is constructed
from training and calibration data. We henceforth use FRV (forward realized volatility) to refer to
the forward path Xt, reserving RV (realized volatility) for single-horizon realized volatility if needed.
The construction exploits two domain features. First, the forward RV baseline is nondecreasing in
the horizon (it cumulates future squared returns), which we encode with isotonic regression across
horizons [7,8]. Second, empirical returns are heavy-tailed with clustered extremes; robust, training-only
per-horizon scales stabilize the conformal scores [9–11]. Calibrating a scaled sup-norm nonconformity
score then yields an upper envelope with uniform (pathwise) coverage [5, 6].

Our work connects three strands. (i) In realized volatility modeling, heterogeneous autoregressive
(HAR) summaries capture long memory while stochastic volatility (SV) models specify the latent
variance dynamics [2, 3]. These typically deliver single-horizon targets and are not distribution-free. (ii)
Conformal prediction provides finite-sample coverage for regression and quantile tasks, with refinements
such as jackknife+ and covariate shift adjustments [5, 6, 12–14]. Functional variants operating in the
sup-norm naturally deliver uniform control across an index set. (iii) Functional data analysis offers
shape constraints and inference for curve-valued data [15, 16]; our monotone baseline is a minimal,
domain-correct prior consistent with cumulated L2 construction. This shape prior enforces coherence
across h and prevents spurious long horizon dips that would be economically problematic when h serves
as a decision clock.

We target an upper envelope aligned with the risk priorities. Monotonicity across horizons reduces
variance and prevents economically incoherent long horizon dips [7]. Robust per-horizon scales dampen
bursts and jumps [9,10]. Validity is marginal and finite-sample: Conditional on training-only estimators,
calibration and test curves are exchangeable [5]. In serially dependent data, chronological splits and
blockwise scoring mitigate dependence in ranks; rolling or cross-split aggregation can further stabilize
performance [12,17]. Economically, uniform control over h supports conservative capital planning: The
band width increases with h but, empirically, does so sublinearly, enabling horizon choices that balance
safety and tightness.

We (i) formulate FRV path control as a functional prediction task and construct uniform, one-sided
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bands with distribution-free, finite-sample validity; (ii) leverage a minimal yet domain-correct shape
prior (a monotone baseline across horizons) together with robust, training-only per-horizon scales
to stabilize efficiency under heavy tails and volatility clustering; (iii) characterize the efficiency level
horizon trade-offs, documenting a near

√
H law for one-sided widths that enables transparent operational

tuning; and (iv) provide a linear time implementation in nH with practical diagnostics (hit/miss paths
and cumulative/rolling coverage). Throughout, we set H=30 (approximately six trading weeks) as the
default and report sensitivity to H; the near

√
H law is observed consistently across-assets and regimes.

On eight liquid assets—BTC-USD (Bitcoin versus US dollar), ETH-USD (Ether versus US dollar),
SPY (S&P 500 ETF), QQQ (Nasdaq-100 ETF), GLD (gold ETF), GDX (gold miners ETF), TLT (20+
year US Treasury bond ETF), and USO (crude oil ETF)—over 2019–2024, the primary specification
(monotone baseline + robust scaling + split-conformal calibration) achieves conservatively valid uniform
coverage while adapting the width to the cross-sectional tail behavior and volatility clustering: The
envelopes are widest for crypto and oil (USO), intermediate for precious metals/miners (GLD/GDX),
and tightest for broad equities/treasuries (SPY/QQQ/TLT). In controlled simulations under SV-AR(1) (a
stochastic volatility model with AR(1) log variance) and log-HAR-RV (log heterogeneous autoregressive
realized volatility) scaled to the same daily standard deviation, the bands preserve conservative coverage,
and the widths are larger under SV-AR(1), consistent with stronger persistence and heavier effective
tails. A level sweep corroborates the expected monotonic coverage width trade-off induced by order
statistic calibration [5, 6].

2. Methods

We develop uniform one-sided functional conformal bands for FRV curves built from asset returns.
For brevity and consistency with the introduction, we refer to the forward path simply as FRV and use
FRV to denote Xt(·) throughout. The construction follows the split-conformal template, which provides
finite-sample, distribution-free marginal validity via calibration order statistics [4–6]. Concretely,
(i) A training block produces training-only shape-constrained location and robust per-horizon scale
summaries, (ii) a calibration block yields the conformal quantile, and (iii) the resulting band covers the
entire test curve uniformly over the forecast horizon. Throughout, we enforce a leak-safe chronology
(strict train→ calibration→ test) and report the empirical pathwise coverage on held-out windows. We
refer to the baseline as UIR–SC (monotone upper baseline via isotonic regression + split-conformal
calibration with a scaled sup-norm score).

2.1. Functionalization

Let Pt be the close price and define the daily log returns rt = log Pt − log Pt−1, which are the standard
input for realized volatility analyses [1, 2]. Fix H ∈ N and define the forward RV curve as

Xt(h) =
( h∑

j=1

r2
t+ j

)1/2
, h = 1, . . . ,H, (2.1)

which is nondecreasing in h by construction (cumulative L2 aggregation of future realized variance).
Computing (2.1) for all feasible (t, h) is O(nH) using prefix sums of r2

t [3]. We do not normalize rt or Xt;
scale invariance is achieved at the score level by dividing the residuals by robust σ̂(h). All computations
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are performed on the asset’s own trading calendar; horizons count trading days only, and no zero returns
are imputed across market closures, so the realized sums remain additive on the business day grid. We
henceforth refer to Xt as the FRV curve indexed by h. By convention, we set Xt(0) = 0 (the nonrandom
baseline at h=0), so the FRV plots begin at zero and the band attaches naturally to the origin.

We partition indices chronologically into training Itr, calibration Ical, and a final test index ⋆. The
training curves {Xi : i ∈ Itr} ⊂ R

H feed the estimators (̂µ, σ̂), while {Xi : i ∈ Ical} is reserved for
calibration [5]; X⋆ denotes the held-out test curve. We use (0.7, 0.15, 0.15) or (0.6, 0.2, 0.2) splits;
Section 3 documents that the 0.7/0.15/0.15 split yields narrower bands because the larger training
block sharpens (̂µ, σ̂) enough to reduce the calibration scores (despite a slightly coarser quantile grid).
All splits and estimators are computed assetwise in the primary specification (no cross-asset pooling),
unless explicitly noted in grouped extensions.

2.2. Training-based statistics

Because Xt(h) is cumulative in h, a nondecreasing baseline across horizons is natural. We estimate it
via isotonic regression as follows:

µ̂ ∈ arg min
µ(1)≤···≤µ(H)

H∑
h=1

{X(h) − µ(h)}2, X(h) = |Itr|
−1
∑
i∈Itr

Xi(h), (2.2)

computed by the pool-adjacent-violators (PAV) algorithm [7, 8]. The shape constraints of this form
are classical and stabilize the long horizon tail of the RV curve. Monotonicity is enforced only on the
training summaries; the test curve is never projected, ensuring valid uncertainty quantification around
the unaltered path. The baselines µ̂ and scales σ̂ are computed separately for each asset; cross-asset
pooling is reserved for the optional grouped/Mondrian variants.

Let Ri(h) = Xi(h) − µ̂(h). We estimate a strictly positive per-horizon dispersion σ̂(h) using either the
median absolute deviation (MAD) or Huber’s M-scale,

σ̂(h) =

1.4826 mediani∈Itr |Ri(h)|, (MAD) [10]

Huber-s, (Huber) [9]
(2.3)

with a small training-only floor (we use 10−6 in RV units) for numerical stability [11]. For Huber’s
M-scale, we use Proposal 2 with the tuning c = 1.345, solving |Itr|

−1∑
i ψ(Ri(h)/s) = 0 (equivalently

1
|Itr |

∑
ρ(Ri(h)/s) = b) with the usual b for Fisher consistency. When σ̂(h) is extremely small on quiet

horizons, the positive floor avoids division by zero and prevents undue inflation of q driven by numerical
noise.

Discretized curves Xt ∈ R
H may be interpreted as functional observations under mesh refinement; the

functional data analysis (FDA) literature provides the ambient spaces and regularity language [15, 16].
Our bands operate on the grid and, under mild continuity, conservatively approximate continuous time
bands. All reported widths are in raw RV units; a two-sided equivalent width equals 2q (see §2.3).

2.3. Scores and bands

We conformalize using a one-sided, scaled sup-norm score tailored to the upper tail control,

S (x) = max
1≤h≤H

(x(h) − µ̂(h))+
σ̂(h)

, (u)+ = max{u, 0}. (2.4)
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Let S i = S (Xi) for i ∈ Ical and m = |Ical|. For a target α ∈ (0, 1), define

k = ⌈(m + 1)(1 − α)⌉, q = S (k), (2.5)

the k-th order statistic of calibration scores [5]; ties are broken conservatively toward larger values of q.
Unless noted otherwise, we set H=30 and α=0.05, with q defined by (2.5).
The uniform upper band is

Û(h) = µ̂(h) + q σ̂(h), h = 1, . . . ,H. (2.6)

Unless stated otherwise, the reported widths are relative to the baseline, i.e.,

width :=
1
H

H∑
h=1

(
Û(h) − µ̂(h)

)
,

and we also summarize efficiency by the two-sided equivalent 2q. Throughout, we use q generically for
the calibration quantile, so that in the block-maxima setting q coincides with qB from Proposition 2.1.

Lemma 2.1. For any c > 0, replacing {Xi} by {cXi} multiplies (̂µ, σ̂, Û) by c and leaves S i and q
unchanged.

Both MAD and Huber-s are scale equivariant; thus Ri 7→ cRi and σ̂ 7→ cσ̂, so S i is invariant and the
order statistic q is unchanged.

The score in (2.4) is also translation equivariant relative to µ̂, ensuring comparability across-assets
and enabling cross-asset coverage/width summaries. We focus on upper one-sided control, since the
capital, margins, and risk limits are driven by right tail excursions of forward RV; lower deviations are
economically benign.

If a training-only grouping G : RH→{1, . . . ,K} (e.g., terciles of recent volatility) is available, one may
compute groupwise quantiles qg and use Ûg(h) = µ̂(h)+qgσ̂(h) when G(X⋆) = g, preserving finite-sample
validity conditional on the group (“Mondrian” conformal prediction) [4, 5]. In our implementation, G
uses training-only features (the recent RV level and slope) with fixed tercile thresholds; at the test time,
the current features route the curve to a group g, and we report both the global q and qg.

2.4. Uniform one-sided bands: Assumptions and guarantees

Assumption 2.1. µ̂, σ̂ depend only on {Xi : i ∈ Itr} (i.e., are Ftr-measurable) [5].

Assumption 2.2. σ̂(h) > 0 for all h (ensured by robust scales and a small floor) [11].

Assumption 2.3. µ̂(1) ≤ · · · ≤ µ̂(H) (isotonic fit) [7, 8].

Assumption 2.4. Conditional on Ftr, {Xi : i ∈ Ical} ∪ {X⋆} are exchangeable; equivalently, the scores
are exchangeable given Ftr [4, 5].

Lemma 2.2. For any x ∈ RH, S (x) ≤ q if and only if x(h) ≤ µ̂(h) + q σ̂(h) for all h.

Lemma 2.3. Under Assumption 2.4, conditional on Ftr, P(S (X⋆) ≤ S (k) | Ftr) ≥ k/(m + 1) ≥ 1 − α.

Theorem 2.1. Under Assumptions 2.1–2.4, the band Û satisfies P{X⋆(h) ≤ Û(h) ∀h} ≥ 1 − α.
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Proof sketches and additional technical details are collected in Appendix A.3. We report empirical
coverage as the proportion of held-out curves that remain below Û on all horizons; the widths are
summarized by the mean raw width and the two-sided equivalent 2q. Formally, for a test index set Ite,
we have

ĉov :=
1
|Ite|

∑
i∈Ite

1
{
Xi(h) ≤ Û(h) ∀h ≤ H

}
,

and we accompany ĉov with 95% Wilson binomial confidence intervals based on the test-block
proportion of hits; these can be supplemented by moving–block bootstrap intervals if one wishes to
account more explicitly for serial dependence.

To relax exchangeability, calibrate on the block-maxima so the between block dependence vanishes
asymptotically while the within block dependence is absorbed by the max [17]. Intuitively, maxima
compress within block serial correlation into a single tail statistic; ranks across blocks then behave
nearly identically and independently distributed (i.i.d.), enabling order statistic calibration.

Assumption 2.5. {Xt : t ∈ Ical ∪ {⋆}} is strictly stationary and β-mixing with coefficients β(ℓ) → 0.
Partition Ical into mB = ⌊|Ical|/B⌋ consecutive blocks Jb (with the last block truncated if needed) with
B = B|Ical | → ∞, mB → ∞, and β(B)→ 0 as |Ical| → ∞.

Define Mb = maxi∈Jb S (Xi), let kB = ⌈(mB + 1)(1 − α)⌉, and set qB = M(kB). Form ÛB(h) =
µ̂(h) + qB σ̂(h).

Proposition 2.1. Under Assumptions 2.1–2.3 and 2.5, conditional on Ftr

lim inf
|Ical |→∞

P
{

X⋆(h) ≤ ÛB(h) ∀h = 1, . . . ,H
}
≥ 1 − α.

Ties in block-maxima are broken conservatively toward larger values of qB. In finite-samples, we
keep the last incomplete block; empirically, the coverage is flat in B ∈ [10, 30], matching the expected
insensitivity of maxima based ranks. We set B=20 to mitigate serial dependence across blocks while
keeping a sufficiently fine quantile grid; sensitivity is flat over B∈{10, 15, 20, 30}.

With S ±(x) = maxh |x(h) − µ̂(h)|/σ̂(h) and q± its calibration quantile, the band [̂µ(h) ± q±σ̂(h)]
achieves ≥ 1 − α uniform coverage [6].

2.5. Extensions: Dependence, shift, and stability

Jackknife+ or split averaging reduces the splits’ randomness while retaining the guarantees [12].
Let Zi be training-only state features (e.g., the recent RV level/slope and realized quarticity). Fit a

logistic density ratio model on Itr to estimate ŵ(Z) ∝ πte(Z)/πcal(Z), freeze ŵ, and use the smallest q
such that

∑
i: S i≤q ŵ(Zi) ≥ (1−α)

∑
i ŵ(Zi); clip ŵ ∈ [0.1, 10] for stability. Approximate validity requires

standard overlap (positivity) and bounded-weight conditions [13].
For monitoring, we compute rolling coverages over windows of size w (typically, w = 100) on the

test stream; this does not alter the guarantees but diagnoses local miscalibration and regime shifts.
HAR-type summaries [3] can aid grouping G(·) or diagnostics; inference remains model-agnostic.

2.6. Algorithm, complexity, and diagnostics

Implementation mirrors [5]: Compute forward curves, fit (̂µ, σ̂) on the training [7–10], calibrate the
scores by (2.4), take the order statistic q, and form (2.6).

AIMS Mathematics Volume 10, Issue 11, 27314–27337.



27320

(1) Build Xi(h) for all i ∈ Itr ∪ Ical and h = 1:H using prefix sums.
(2) Fit µ̂ by isotonic regression using the pool-adjacent-violators (PAV) algorithm on X(h); compute

residuals Ri(h) and robust scales σ̂(h) with a small positive floor.
(3) Define training-only groups G and/or weights ŵ(Z); freeze them.
(4) Compute scores S i on Ical (or block max scores Mb), take the (weighted) (1 − α) order statistic q

(or qB).
(5) Output Û(h) = µ̂(h) + q σ̂(h) (with q equal to the chosen calibration quantile, e.g., q or qB) and

report the diagnostics.

The forward curve’s construction is O(nH), isotonic PAV is O(H), calibration scoring is O(mH)—all
linear in H [7]. The memory is O((|Itr|+|Ical|) H) with a streaming option that keeps only the running
means and per-horizon robust scale summaries. We report 95% Wilson confidence intervals for coverage
in the main tables. Where interval estimates for width are needed, a simple option is a moving–block
bootstrap on the test stream.

3. Empirical analysis

We study eight liquid assets spanning cryptocurrencies, broad equities, precious metals, energy,
and interest-rate exposure: BTC-USD, ETH-USD, SPY, QQQ, GLD, GDX, USO, and TLT. Daily
adjusted closes from 2019 to 2024 are obtained from Yahoo Finance [18] and converted to close-to-close

log returns rt = log Padj
t − log Padj

t−1. For each date t, we construct FRV curves Xt(h) =
(∑h

j=1 r2
t+ j

)1/2
,

the square root of forward realized-variance, and evaluate uniform one-sided split-conformal bands
Û(h) = µ̂(h) + q σ̂(h) under strict chronology, with block-maxima calibration (baseline B=20; see
Proposition 2.1); see (2.5) and (2.6).

3.1. Data characteristics and stylized facts

Table 1 summarizes distributional diagnostics (Jarque–Bera) and short-memory tests (Ljung–Box
on returns and squared returns). Returns are negatively skewed (especially for crypto and USO),
strongly leptokurtic (most pronounced for BTC/ETH/USO), and exhibit marked volatility clustering
in squares, motivating a monotone baseline in h, robust per-horizon scales, and an upper one-sided
uniform objective.

Table 1. Descriptive statistics of daily log returns.
Distribution JB Ljung–Box Q(10)

Symbol Class N Mean SD Min Max Skew Kurt Stat p Levels p Squares p
BTC-USD Crypto 2190 0.0015 0.0343 −0.4647 0.1718 −1.1025 21.25 30841.8 0.0000 21.0 0.0209 48.2 0.0000
ETH-USD Crypto 2190 0.0014 0.0436 −0.5507 0.2307 −1.1301 18.34 21931.4 0.0000 37.2 0.0001 83.2 0.0000
SPY Equity 1507 0.0006 0.0125 −0.1159 0.0867 −0.8430 16.19 11104.1 0.0000 222.8 0.0000 2080.2 0.0000
QQQ Equity 1507 0.0008 0.0154 −0.1276 0.0813 −0.5752 9.49 2727.9 0.0000 138.3 0.0000 1265.6 0.0000
GDX Commodity 1507 0.0004 0.0241 −0.2591 0.1686 −0.6170 16.19 11019.4 0.0000 12.9 0.2307 987.6 0.0000
GLD Commodity 1507 0.0005 0.0094 −0.0552 0.0474 −0.3450 5.70 486.7 0.0000 12.0 0.2879 168.6 0.0000
USO Commodity 1507 0.0000 0.0270 −0.2919 0.1542 −2.0945 25.41 32640.7 0.0000 28.3 0.0016 378.0 0.0000
TLT Treasury 1507 −0.0001 0.0108 −0.0690 0.0725 0.0944 7.21 1117.2 0.0000 49.7 0.0000 1353.8 0.0000

Figure 1 visualizes the distributional shape (histogram with Gaussian overlay and quantile–quantile
(Q–Q) plots), highlighting heavy tails and left skew in crypto and USO.
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Figure 1. Distributional diagnostics by asset: Histograms with Gaussian overlays and Q–Q
panels.
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Figure 2 shows autocorrelation functions (ACFs) for levels and squares: Return autocorrelation is
modest (GLD/GDX is weakest; SPY/QQQ/TLT and crypto are stronger at short lags), while squared
returns are highly persistent, consistent with volatility clustering.

Figure 2. Autocorrelation diagnostics: ACF of returns (left) and squared returns (right).

Heavy tails and clustering jointly endorse (a) the monotone baseline µ̂, (b) robust per-horizon scales
σ̂, and (c) an upper one-sided uniform objective.

3.2. Primary empirical specification (upper isotonic regression with scaled conformal score, UIR–SC):
H=30, α=0.05

Under the UIR–SC design (monotone µ̂, robust σ̂, sup-score S ), out-of-sample uniform coverage
is at/above 95% for all assets, near ceiling for SPY/QQQ/TLT; the widths adapt strongly to tail risk.
Figure 3 displays the last test FRV envelopes by asset, and Table 2 summarizes the coverage (with
Wilson CIs), mean one-sided width, and the calibrated q. The tightest bands appear in GLD/TLT;
BTC/ETH/USO remain wider yet conservative. For an audit table with calibrated thresholds and
two-sided equivalents, see Appendix A, Table A1; a policy map summarizing coverage width trade-offs
is provided in Appendix A.2, Figure A1.

AIMS Mathematics Volume 10, Issue 11, 27314–27337.
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(a) BTC–USD (b) ETH–USD

(c) SPY (d) QQQ

(e) GLD (f) GDX

(g) USO (h) TLT

Figure 3. Uniform one-sided FRV bands for the last test curve (H=30, α=0.05).
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Table 2. UIR–SC baseline (H=30, α=0.05, split 0.6/0.2/0.2, robust scale =MAD).

Symbol Coverage (%) CI low CI high Mean width q
BTC-USD 96.99 94.92 99.23 0.23 2.03
ETH-USD 98.15 96.39 99.06 0.31 2.39
SPY 99.66 98.11 99.94 0.09 2.31
QQQ 99.66 98.11 99.94 0.12 2.33
GLD 96.28 93.47 97.91 0.06 2.62
GDX 98.99 97.06 99.65 0.16 2.93
USO 96.62 93.89 98.15 0.16 1.39
TLT 99.66 98.11 99.94 0.08 3.37

3.3. Robustness across design choices

Table 3 shows a monotonic increase in coverage as α decreases, as implied by order statistic
calibration. Figure 4 plots the two-sided equivalent width 2q vs. α with the steepest slopes in
BTC/ETH/USO, consistent with thicker tails.

Table 4 and Figure 5 indicate near-linearity in
√

H for mean one-sided width, reflecting the L2

aggregation geometry; deviations are asset-specific but modest.

Table 3. Coverage by miscoverage level α.

Symbol α = 0.10 (%) α = 0.05 (%) α = 0.025 (%)

BTC-USD 91.20 96.99 99.77
ETH-USD 93.52 98.15 99.54
SPY 98.99 99.66 100.00
QQQ 99.32 99.66 100.00
GLD 91.55 96.28 97.97
GDX 97.30 98.99 99.66
USO 92.91 96.62 99.32
TLT 95.61 99.66 100.00

Table 4. Mean one-sided width by horizon H.

Symbol H=15 H=30 H=45
BTC-USD 0.17 0.23 0.28
ETH-USD 0.21 0.31 0.37
SPY 0.07 0.09 0.12
QQQ 0.09 0.12 0.14
GLD 0.05 0.06 0.07
GDX 0.12 0.16 0.19
USO 0.11 0.16 0.21
TLT 0.06 0.08 0.09
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27325

Figure 4. Alpha sensitivity: Two-sided equivalent width 2q vs. α.

Figure 5. Horizon sensitivity: Mean one-sided width vs.
√

H.

Table 5 and Figure 6 show that larger training shares sharpen (̂µ, σ̂) and shrink q at a fixed α; equities
and treasuries benefit most, with a mild counterexample in USO, reflecting regime shifts.
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Table 5. Two-sided equivalent width 2q by sample split (training/calibration/testing;
dimensionless).

Symbol 0.6 / 0.2 / 0.2 0.7 / 0.15 / 0.15

BTC-USD 4.05 2.80
ETH-USD 4.79 1.82
SPY 4.62 1.58
QQQ 4.66 1.77
GLD 5.24 4.73
GDX 5.86 3.34
USO 2.79 2.99
TLT 6.74 5.18

Figure 6. Sensitivity to training–calibration–testing split: Two-sided equivalent width 2q
across-assets.

Table 6 and Figure 7 jointly show that Huber’s s is typically more conservative than MAD (larger 2q)
when the baseline dispersion is small (SPY, QQQ, TLT), reflecting its greater sensitivity to heavier tails.
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Table 6. Two-sided equivalent width 2q by robust scale estimator.

Symbol MAD Huber’s s
BTC-USD 4.05 5.02
ETH-USD 4.79 5.33
SPY 4.62 5.86
QQQ 4.66 6.04
GLD 5.24 5.79
GDX 5.86 6.66
USO 2.79 3.79
TLT 6.74 7.22

Figure 7. Robust scale comparison (MAD vs. Huber’s s): Effective width 2q.

Figure 8 documents flat realized coverage over B ∈ {10, 15, 20, 30}, indicating the insensitivity of
rank dependence in this range. Appendix A.2, Figure A1 provides a compact policy map, juxtaposing
coverage versus the effective width (2q) across α and block choices; it confirms flat B sensitivity and
monotonic gains as α decreases, with stronger trade-offs for crypto and USO. Figure 9 shows that
union of scores and jackknife+ retain nominal coverage while mildly tightening 2q, especially for
SPY/QQQ/TLT.
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Figure 8. Block length robustness: Realized coverage vs. block size B ∈ {10, 15, 20, 30};
coverage is essentially flat across B.

Figure 9. Cross conformal aggregation (union of scores; jackknife+): Coverage with 95%
CIs.

3.4. Aggregation and conditional validity

Table 7 reports the test block coverage under union and jackknife+; both stabilize high rank order
statistics without sacrificing validity. Figure 10 displays the Mondrian grouping: group-wise qg rises
across low/medium/high volatility terciles, as expected under conditional regime risk.
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Table 7. Cross conformal coverage (union; jackknife+), test block.

Symbol Union cov (%) Jackknife+ cov (%)
BTC-USD 98.61 99.31
ETH-USD 99.31 99.31
SPY 100.00 100.00
QQQ 100.00 100.00
GLD 96.28 96.96
GDX 99.32 99.32
USO 99.32 99.32
TLT 99.66 99.66

Figure 10. Mondrian grouping: group-wise qg across low/medium/high volatility regimes.

3.5. Benchmarks and unconditional performance

Table 8 summarizes unconditional parametric benchmarks from the heterogeneous autoregressive
realized volatility (HAR-RV) and GARCH(1,1) models at H=30, α=0.05. HAR-RV tends to undercover
broad equities (SPY, QQQ), whereas GARCH(1,1) attains near ceiling coverage there with similar
or slightly smaller widths. For crypto and commodities, both specifications are conservative, with
GARCH(1,1) generally yielding narrower bands. Figure 11 visualizes the coverage width trade-off.

Table 8. Parametric benchmarks at H=30 and α=0.05.
Symbol Cov HAR (%) Mean W HAR 2q HAR Cov GARCH (%) Mean W GARCH 2q GARCH
BTC-USD 98.61 0.4391 29.2276 96.53 0.2742 4.0723
ETH-USD 98.61 0.5019 25.5504 96.06 0.3356 3.9574
SPY 90.20 0.0835 16.2227 100.00 0.0889 4.3636
QQQ 91.22 0.1146 16.0980 100.00 0.1138 4.1291
GDX 95.27 0.1929 15.7066 98.65 0.1777 4.4267
GLD 94.59 0.0799 13.6832 95.95 0.0721 4.3308
USO 92.91 0.1608 14.9052 98.65 0.1536 3.2725
TLT 93.92 0.0996 13.9013 99.32 0.0789 3.8360
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Figure 11. Parametric benchmarks at H = 30 and α = 0.05: Top: Unconditional coverage
(dashed line = nominal 95%); bottom: Mean raw width. Markers: Circles = GARCH(1,1),
triangles = HAR-RV.

3.6. Dynamic reliability diagnostics

Figure 12 shows rolling coverage (W=100). SPY/QQQ/TLT are near degenerate at one;
BTC/ETH/USO exhibit rare, clustered misses during volatility bursts (consistent with marginal
guarantees); GLD dips mid-sample toward nominal levels and recovers thereafter.

3.7. Practical implications and notes about the methods

Doubling H increases the one-sided band width by approximately
√

2; achieving envelopes that are
about 50% wider requires H to be roughly 2.25 times larger. For BTC-USD, ETH-USD, and USO,
moving from α=0.05 to 0.025 yields meaningful safety gains, whereas for SPY, QQQ, and TLT, α=0.05
already delivers near saturated reliability. We accompany coverage estimates with Wilson confidence
intervals; block-maxima scoring handles weak dependence asymptotically (Proposition 2.1); union of
scores/jackknife+ and Mondrian conditioning preserve finite-sample distribution-free guarantees while
improving stability and conditional reliability.
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(a) BTC–USD (b) ETH–USD

(c) SPY (d) QQQ

(e) GLD (f) GDX

(g) USO (h) TLT

Figure 12. Rolling coverage (W=100) by asset. Dashed line: Nominal 1 − α = 95%.
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4. Simulation

We evaluate the finite-sample behavior of the uniform upper band in (2.6), using the block-maxima
calibrated quantile qB of Proposition 2.1, under two standard daily return data generating processes
(DGPs):

(i) An SV-AR(1) model with log volatility (stochastic volatility with autoregressive AR(1) log
variance)

ht = µ + ϕ (ht−1 − µ) + σηηt, rt = exp(ht/2)ϵt,

(ii) A log–HAR–RV where RVt = exp(vt) and

vt = c0 + βd log(RVt−1) + βw log RV t−1:t−5 + βm log RV t−1:t−22 + σuut,

and the return is defined as rt =
√

RVt ϵt for HAR. Here, (ϵt, ηt, ut)
i.i.d.
∼ N(0, 1). To place both DGPs on

a common scale, we target the same unconditional daily standard deviation σ0=0.015 for rt. For HAR,
this yields

c0 = (1 − βd − βw − βm)
{

log(σ2
0) − 1

2σ
2
u

}
,

which follows the common quasi-autoregressive of order one (AR(1)) approximation for vt = log RVt

with a lognormal correction −1
2σ

2
u; we verified numerically that it yields E(r2

t ) ≈ σ2
0. For SV, stationarity

with Var(ht) = σ2
η/(1 − ϕ

2) and E(r2
t ) = E(exp(ht)) = σ2

0 gives

µ = log(σ2
0) − 1

2

σ2
η

1 − ϕ2 .

Unless stated otherwise, we set ϕ=0.98 and ση=0.20 for the SV model, and
(βd, βw, βm)=(0.55, 0.30, 0.10) with σu=0.20 for the HAR specification. We simulate N=6500 daily
returns, discard the first 500, construct FRV curves with horizon H=30, and use a chronological
0.6/0.2/0.2 training/calibration/testing split. Calibration employs non-overlapping block-maxima
scores with block length B=20 (ties broken conservatively); results are stable for B ∈ [10, 30] up to
Monte Carlo noise. In this section, the reported q and 2q therefore correspond to the block-maxima
quantile qB. Table 9 summarizes the baseline simulation results: coverage is conservatively above the
nominal 95% for both DGPs, and the SV-AR(1) bands are wider, reflecting heavier effective tails and
stronger persistence at a fixed unconditional scale. Coverage is computed as the fraction of test curves
uniformly below Û(h) for all h ≤ H. Widths are in FRV units, while 2q is a dimensionless two-sided
equivalent. Mean one-sided width grows approximately linearly in

√
H, consistent with the L2

aggregation geometry of FRV.

Table 9. Simulation baseline (H=30, α=0.05; block length B=20).

Model Coverage (%) Mean width (one-sided) q 2q
SV-AR(1) 99.7 0.222 9.08 18.20
HAR-RV 98.5 0.109 4.51 9.01

Table 10 summarizes the level sensitivity of the bands. Three patterns emerge. First, conservative
uniform validity is maintained across levels: Both DGPs exceed the nominal 95% at α=0.05, with
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wider bands under SV-AR(1), again reflecting persistence and heavier effective tails. Second, level
monotonicity is clearly visible: Lowering α increases coverage and 2q as implied by order statistic
calibration [5]. Third, the design is robust: The results are insensitive to block lengths B ∈ [10, 30], with
coverage and 2q remaining essentially unchanged across this range.

Table 10. Level sensitivity: Coverage and 2q as α varies (H=30, B=20).

Coverage (%) 2q

Model α=0.10 α=0.05 α=0.025 α=0.10 α=0.05
SV-AR(1) 98.9 99.7 100.0 14.60 18.20
HAR-RV 97.1 98.5 99.0 8.28 9.01

5. Conclusions and recommendations

We introduce uniform, one-sided conformal bands for FRV curves that provide pathwise protection
over a fixed horizon. The construction is model-agnostic: A monotone (isotonic) baseline across horizons
and robust, training-only per-horizon scales yield a scaled sup-norm score whose order statistic on a
chronological calibration block delivers a uniform upper envelope. On eight liquid assets (2019–2024),
the baseline specification achieves conservative uniform coverage while adapting the width to tail
risk—widest for crypto and oil, tightest for broad equities and treasuries. A stable empirical regularity
emerges: The mean one-sided width increases nearly linearly with

√
H, turning horizon selection into a

transparent safety–tightness trade-off. Controlled simulations under SV-AR(1) and log-HAR-RV at a
common unconditional scale corroborate these findings: Both exceed nominal coverage, with wider
bands under SV reflecting persistence and heavier effective tails.

(i) For relatively thin-tailed series, α≈0.05 with H∈ [20, 40] is a dependable default; heavier tails
warrant either a smaller α or a shorter H. (ii) One-sided width scales approximately as

√
H: Doubling

H inflates the width by ≈
√

2; achieving ∼ 50% wider envelopes requires H to be roughly 2.25 times
larger. (iii) Larger training shares sharpen (̂µ, σ̂) and typically reduce the calibrated q at a fixed α,
provided that the calibration block still contains tens to low hundreds of curves; split aggregation
(union; jackknife+) mitigates split randomness without sacrificing validity. (iv) MAD scaling yields
tight, stable envelopes, while Huber’s s is more conservative and helpful when quiet horizons produce
very small σ̂(h). (v) Block-maxima calibration with moderate block sizes (B∈ [10, 30], default B=20)
effectively reduces rank dependence and is empirically insensitive within this range. In deployment,
tracking hit/miss sequences, cumulative coverage, and rolling coverage offers low friction monitoring
and triggers for recalibration. Relative to parametric sets (e.g., HAR/GARCH) that can be narrow
in calm regimes yet have low coverage in turbulence, the proposed bands maintain distribution-free
validity across regimes while remaining width competitive in quieter markets. Guarantees are marginal
and rely on exchangeability across calibration and test blocks; pronounced regime shifts can cause
localized undercoverage even when averages meet the target. The calibration grid is discrete—thresholds
move in steps of 1/(m+1)—so mild overcoverage is typical for small m. Our empirical work uses
daily close-to-close inputs with cumulative L2 aggregation; intraday measures could further tighten
short horizon dispersion. The main analysis adopts a single chronological split (partly offset by split
aggregation) and treats assets independently; joint multi-asset/multi-horizon envelopes are left open and
may be more challenging under rough/fractional volatility and long memory [19–21].
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Several extensions preserve the distribution-free spirit while improving reliability under shift:
Mondrian (group conditional) and importance weighted calibration, split aggregation as a default
stability layer, intraday realized measures for short horizons, and non-asymptotic theory under explicit
dependence. Multivariate, portfolio-level uniform control is a natural next step. Beyond finance,
model-agnostic pathwise safe envelopes can support operational risk management in energy and
computing, where distribution-free protection against extreme excursions is valuable [22–24]. Overall,
the method is simple, fast, and operationally transparent: Its near

√
H scaling, tunable conservatism via

α, and compatibility with grouping and split aggregation make uniform, one-sided FRV bands a
practical tool for pathwise volatility control in production settings.
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A. Appendix

A.1. Supplementary table

Table A1. Uniform one-sided FRV bands: Audit table for the held-out test block (H=30,
α=0.05). Two-sided equivalent equals 2q.

Symbol Coverage (%) q 2q
BTC-USD 98.61 2.429 4.857
ETH-USD 99.31 2.722 5.444
SPY 99.66 2.311 4.622
QQQ 99.66 2.328 4.656
GDX 98.99 2.929 5.858
GLD 96.28 2.622 5.245
USO 96.96 1.476 2.952
TLT 99.66 3.369 6.739

A.2. Supplementary figure

Figure A1. Coverage width trade-off under α and a block length of B.

A.3. Proof sketches and technical details

Let c>0. Both the isotonic baseline and the robust per-horizon scales are scale equivariant, so (̂µ, σ̂)
computed from {cXi} satisfy

(̂µ, σ̂) 7→ (ĉµ, cσ̂),

and the residuals transform as Ri(h) = Xi(h) − µ̂(h) 7→ cRi(h). Since the score

S (x) = max
1≤h≤H

(x(h) − µ̂(h))+
σ̂(h)
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is homogeneous of degree zero, we have S (cXi) = S (Xi) for all i. The calibration order statistic q = S (k)

is therefore invariant, and the band
Û(h) = µ̂(h) + q σ̂(h)

scales linearly, Û(h) 7→ cÛ(h), when the input curves are multiplied by c.
Under Assumptions 2.1–2.4, the calibration and test scores are exchangeable conditional on the

training σ-field Ftr. With m = |Ical| and

k =
⌈
(m+1)(1−α)

⌉
, q = S (k),

exchangeability implies the usual order statistic bound

P
(
S (X⋆) ≤ q | Ftr

)
≥

k
m + 1

≥ 1 − α.

By Lemma 2.2, S (x) ≤ q is equivalent to

x(h) ≤ µ̂(h) + q σ̂(h) for all h ≤ H.

Applying this to X⋆ yields

P
{
X⋆(h) ≤ Û(h) for all h ≤ H

}
= P
(
S (X⋆) ≤ q

)
≥ 1 − α,

which is the stated uniform (pathwise) coverage guarantee.
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