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Abstract: The presence of the jump process makes parameter estimation for stationary stochastic
differential equations particularly challenging. Moreover, existing jump parameter models often suffer
from significant systematic errors. This paper introduces a new stationary stochastic differential
equation model with jumps, in which the jump amplitude follows a binomial distribution. This
approach helps mitigate systematic errors, particularly those arising when the probability density
remains nonzero for infinitely large jump amplitudes or when it becomes excessively high at zero jump
size. On this basis, we use the stepwise estimation method to estimate the parameters of the model
(that is, first estimate parameters of the drift and diffusion term by the tool of quadratic variation, and
then estimate the parameters of the jump process), and the result has a high estimation accuracy.
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1. Introduction

Stochastic differential equations (SDEs) play a crucial role of applications in engineering, physics,
biology, and financial data research. For general stable SDEs, if a jump process is incorporated into it,
we can obtain the stochastic differential equation with jumps, which is a model can effectively capture
the dynamics of signals under the influence of sudden shocks. Its general expression can be written as
follows:

dX(t) = µ(X(t−), θ)dt + σ(X(t−), θ)dW(t) + JdM(t), 0 ≤ t ≤ T. (1)
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In the model above, W(t) is the standard Brownian motion [1–4], X(t−) means the state variable of
the stable stochastic differential equations, µ(·, θ) represents the deterministic drift term characterizing
the trend of the dynamical system, while σ(·, θ) means the stochastic diffusion term characterizing the
random fluctuations of the system induced by stochastic forces. The parameter vector θ is defined on
a typically compact set. JdM(t) represents the jump process term, in which J characterizes a random
variable displaying the jump amplitude following a kind of probability distribution, and M(t) represents
the time when the jump occurs, which also follows a certain probability distribution [5].

Modeling the jump amplitude in jump processes is an important topic in academic research [6–8] .
Currently, common kinds of models of the jump amplitude include the normal distribution, log-normal
distribution, (double) exponential distribution [9] , generalized double exponential distribution, gamma
distribution and Pareto distribution. It is recognized that the model of the log-normal distribution is
surely the most commonly applied and widely studied jump size model. People used to think that
this was the parametric model which can better fit the jump behavior of financial markets’ asset prices
[5,10]. However, this method is limited to modeling positively skewed distributions and cannot account
for negatively skewed cases.

Among the kinds of jump amplitude models mentioned above, the normal distribution, the double
exponential distribution, and the generalized double exponential distribution models can be directly
applied to simulate jump amplitudes in both directions. These models’ parameters can be adjusted for
the convenience of adapting to the characteristics of different jump processes [11]. If the normal
distribution has been truncated, it could also be applied to simulate unidirectional jumps, but
generally speaking, normal distribution is more commonly applied to simulate bidirectional jumps as
it can describe the characteristics of the jump size in both positive and negative directions [5].
Nevertheless, its systematic errors caused by symmetrical distribution compared with the generalized
double exponential distribution, may be unfavorable to describing the feature of different jump
amplitude distributions in different directions: Certainly, the double exponential distribution also has
this problem [10].

In comparison, other models such as the gamma distribution, the Pareto distribution, the log-normal
distribution, and the exponential distribution are usually applied to simulate unidirectional jumps for
their probability density functions following a skewed distribution and only being meaningful when
the independent variable is bigger than zero, so they are appropriate for describing the features of
unidirectional jumps. For parameter models that only simulate unidirectional jumps, predecessors
usually simulate the jump direction by introducing a direction variable, such as two-point distribution
or uniform distribution to simulate the probability of jumps occurring in different directions. Generally
speaking, how to choose the jump model depends on the specific questions and data features: the
apposite model should be chosen to model the jump process in line with actual demands [11].

However, a key issue with these commonly used jump amplitude models is their significant
systematic errors. For instance, when applying the double exponential distribution, the normal
distribution, and the generalized double exponential distribution to simulate jump amplitude in
different directions simultaneously, these models all have a kind of probability problem: The
probability density is too large or even the maximum when the jump amplitude is 0 [11,12]. This
problem can cause inaccurate prediction results from the chosen parameter model, especially in fields
such as financial markets where negligible jump sizes are unlikely to happen. Even though the
log-normal distribution, the Pareto distribution, the gamma distribution, and other parameter models
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are applied to simulate only unidirectional jumps, systematic errors still exist for the jump size being
infinite: for instance, when you use the Pareto distribution model, because its tail decays at a
polynomial rate but not an exponential rate, it simulates a unidirectional jump process when the
probability density is heavy at the tail, which means that the jump size it allows may be too
large [13,14]. When you use the gamma distribution to simulate a unidirectional jump, its probability
density is still unbounded on the right side, so the jump amplitude to be infinite, too [15].
Additionally, when applying common models that only describe unidirectional jumps, such as the
log-normal distribution and exponential distribution, these models also have infinite jump size; though
the probability of their infinite jump size may not be too big, it still exists [5,10]. This may cause
inaccurate prediction results of the parameter model, especially in extreme situations [16,17].

In addition to the probability distribution parameter models above, predecessors also have other
methods, using stochastic processes [18] to model jump processes including their jump sizes. The
Lévy distribution only has systematic errors of infinite jump size, but does not have systematic errors
with jump amplitude of size 0, because the domain of the Lévy distribution covers real number axis,
and the probability density is 0 at the point of 0 jump amplitude [19]. So the Lévy distribution does not
have a non-zero probability density to the location of a jump amplitude of 0. The Weibull distribution
could have systematic errors with a jump amplitude of size 0 and an infinite jump amplitude at the
same time. Nevertheless, by adjusting the parameters, the Weibull distribution could only have the
inevitable systematic error of infinite jump size [20]. Specifically, when shape parameter k of the
distribution is larger, the probability density is closer to 0 at the point of 0 jump size, thus reducing the
probability density of size 0. At the same time, when λ (the scale parameter) is smaller, the tail of the
probability density is fatter, thus increasing the probability density of infinite jump amplitude [21]. So,
by selecting suitable parameter values, the Weibull distribution could minimize the probability density
of jump amplitude of size 0, and could only have systematic errors of infinite jump size. In general, the
Lévy distribution only has a systematic error of infinite large jump size, while the Weibull distribution
may exist both kinds of systematic errors, but the probability density of jump amplitude of size 0 could
be reduced by replacing the value of parameters.

Based on the above analysis, it is reasonable to consider using alternative probability distributions
to model the probability density of jump amplitudes. If binomial distribution is applied to model the
distribution of jump size in unidirectional jump, it can avoid the systematic error mentioned above. It
is particularly important to note that the binomial distribution could adjust the skewness by adjusting
the parameters of it, which is a possible advantage [22]. Although the binomial distribution is not a
continuous probability distribution model, under small sample conditions, that is, when the number of
jumps is relatively small, the discontinuous distribution and probability model are not without merit.

To estimate the parameters of the complete stochastic differential equation with jumps, we
recommend a step-by-step approach. First, smooth the jump shock data, estimate the parameters of
the drift and diffusion terms, and then estimate the parameters of the jump process on this basis. This
helps to improve the estimation accuracy of the drift and diffusion terms and avoid excessive
interference of the jump process on the accuracy of parameter estimation. Before estimating the
parameters of the jump process, we attempt to use the Volatility occupation time (VOT) tool to
estimate the parameters of the drift and diffusion terms of SDE. VOT is a path-wise analogue of the
cumulative distribution function which measures the percentage of time that the quadratic variation of
a SDE is less than an artificially defined threshold over a period of time [23,24]. Its definition can be
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written as:

Ft(x) =
∫ t

0
1{Vs ≤ x} ds, ∀x ≥ 0, t ∈ [0,T ]. (2)

This tool can be used to measure the fluctuation intensity of a stochastic process over specific
time intervals. Though this tool may be difficult to apply, we are inspired by it to simplify it into a
quadratic variation tool, and then use it for our research. Take the partitions of the time interval [a, b]
as a = t0 < t1 < t2 < ... < tN = b, and then we can get the calculation formula of the quadratic variation
for formula (1) as follows with the longest small time interval denoted as ∥Π∥ = maxi(ti − ti−1):

[X, X][a,b] = lim
|Π|→0

N∑
i=1

[X(ti) − X(ti−1)]2 = [Xc, Xc][a,b] + [J, J][a,b] ≤ threshold, (3)

in which [·, ·] denotes the quadratic variation, Xc denotes the continuous part of Eq (1) and J denotes
right continuous pure jump process of Eq (1) [25]. When the quadratic variation falls below the chosen
threshold, we determine that the stochastic process has reached a stationary state.

We perform stepwise parameter estimation for stationary stochastic differential equations with
jumps. The process is to first use the quadratic variation tool combined with regularized maximum
likelihood estimation to estimate the parameters of the drift and diffusion terms, and then model the
jump amplitude as a binomial distribution and estimate the parameters of the jump process.

2. Methodology

2.1. Experimental scenario

The Ornstein–Uhlenbeck (OU) process with jump is used to generate data. This kind of stochastic
process is a stationary stochastic process that can be used to simulate the long-term stabilization of
currency exchange and rates [26,27]. The Poisson process can be used to simulate the jump process
with adding it to the OU process. This is equivalent to modeling a scene of currency exchange and rates
with the interference of unexpected event signals [5]. The OU process with jumps can be expressed as:

dX(t) = κ(γ − X(t)) dt + σ dW(t) + J dN(t), t ∈ [0,T ], (4)

in which κ can adjust OU process’s returning speed while it should be a real number bigger than 0 (this
can ensure the process’s returning to the mean value), γmeans the average value which the OU process
will recover to ultimately, and the σ means the degree of fluctuation of the stochastic process. In our
experiments, we set a jump term having a binomial distribution jump amplitude, Bernoulli distribution
jump direction, and Poisson distribution jump occurrence time to simulate the jump process, which
means that J = ξ · η , where ξ ∼ Bernoulli(p) determines jump direction, η ∼ Bernoulli(n, p) governs
amplitude, and N(t) represents the time when the jump occurs following the Poisson distribution.

2.2. Model formulation

Maximum likelihood estimation (MLE) is the basis in our experimental methodology [28,29]. At
first, we discretize the data, and then analyze the discretized OU process on the basis of the Markov
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assumption [30]. The Euler-Maruyama method is applied to discretize the OU process’s data to
implement MLE as follows:

Xti+1 = Xti + µ(Xti , θ)∆t + σ(Xti , θ)∆Wti , (5)

in which ∆t = ti+1 − ti, ∆Wti ∼ N(0,∆t) means the Wiener process’s increment over the differentiation
interval [ti, ti+1]. The drift term µ(θ, ·) and diffusion term σ(θ, ·) separately characterizes the OU
process’s dynamics [31]. X0, X1, ..., Xn are presumed as the observation values of the state variables at
moments t0, t1, ..., tn, so we can acquire the conditional distribution of Xti+1 based on Xti as follows:

Xti+1 | Xti ∼ N
(
Xti + µ(Xti , θ)∆t, σ(Xti , θ)

2∆t
)
. (6)

2.3. Maximum likelihood estimation and regularization

Likelihood function expression L(θ)’s general form can be acquired for the parameter vector θ due
to Markov property assumption with the observation value of state variable X0, X1, ... , Xn like below:

LN(θ | Xknown) =
N∏

i=1

p(X(ti) | X(ti−1); θ) =
N∏

i=1

1√
2πσ(Xti , θ)2∆t

exp
(
−

(Xti+1 − Xti − µ(Xti , θ)∆t)2

2σ(Xti , θ)2∆t

)
,

(7)
where p(Xti |Xti−1; θ) expresses the transition probability density, while the Xknown expresses our known
observation data Xknown = (X(t1), ..., X(tN))T which correspond to the moments of {ti : i = 1, ...,N} [32].
Afterwards, we acquire the log-likelihood function L(θ) involving parameter θ due to the observation
values of state variables X0, X1, ..., Xn:

log LN(θ | Xknown) = −
1
2

n−1∑
i=1

[
log

(
2πσ(Xti , θ)

2∆t
)
+

(Xti+1 − Xti − µ(Xti , θ)∆t)2

σ(Xti , θ)2∆t

]
. (8)

Ultimately, we hope to solve vector θ’s values of the components when L(θ) realizes its maximum
value (θ ∈ Θ, Θ ⊂ Rp expresses a compact set), called the parameter estimator of the maximum
likelihood function:

θ̂MLE = arg max
θ∈Θ

LN(θ | Xknown). (9)

To avoid overfitting and enhance the generalization of the model, in ML (machine learning),
regularization operations are often applied [33]. The most commonly employed method of
regularization is adding a penalty term to the objective function which disheartens overly complicated
models. Penalty term’s form depends on the vector θ and is scaled by λ, that is the regularization
parameter [34].

These three kinds of regularization operations are commonly employed:
L1 (Lasso Regression) regularization: R(θ) =

∑p
i=1 |θi|;

L2 (Ridge Regression) regularization: R(θ) = 1/2
∑p

i=1 θ
2
i ;

Elastic Net Regression: R(θ) = α
∑p

i=1 1/2 · θ2i + (1 − α)
∑p

i=1 |θi|.
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When elastic net regression is used, we set α = 0.5 to execute the experiment. On this basis, we
should subtract the penalty term from the expression of the original log-likelihood function, then the
regularized objective function could be acquired:

Regularized Loss = Log-Likelihood − λR(θ),

in which Log-likelihood function represents the likelihood of the observation values due to the
parameters vector θ, and λ means the penalty coefficient which adjusts the regularization strength. It
could be selected via cross-validation or other model selection criteria. R(θ) expresses the
regularization penalty term penalizing excessively large θ values: different regularization methods
(e.g., lasso regression, ridge regression, elastic net regression) can penalize parameters by different
means [35].

2.4. Determining the starting time of the stationary state and smoothing the data of jump impact
segment

Evidently, the shock of the jump could give rise to lots of noise interference to the original OU
process, and this will lead to a large error in the parameter estimation of the stationary SDE itself.
In the operation of the currency and interest rate markets, the moment when the jump caused by the
release of major events news is usually known by all, but the time of this impact’s ending is usually
unclear. The quadratic variation tool can help to judge when the interfering of the jump shock on
the stochastic differential equation ends: If the quadratic variation is stably lower than the suitable
judgment threshold within the selected time interval, we can judge that the interference caused by the
jump has, on the whole, ended. This can help us rule out the interference and improve the parameter
estimation’s accuracy of stochastic differential equation. You can witness that we do not filter out
the jump before entering the stationary state for the first time, and this method indeed cannot filter
out the jump in this stage—the stochastic process we are concerned with oscillates violently before
becoming stationary, and in fact, there is no need to screen out the jumps at this stage. What we should
pay attention to is the impact interference of the jump process encountered by the overall stationary
segment data.

The Eq (3) is used by us to judge when the OU process enters the stationary state and the moment
of its recovering from the jump impact. At first, we try to select a suitable judgment threshold. In a
time interval of appropriate length, we divide the whole interval into many small equal time groups.
Calculate the quadratic variation of all equal time groups, then select their median as the threshold.
After the stochastic process’s starting, if the quadratic variation of three consecutive small time groups
is continuously lower than the judgment threshold, we could judge that the OU process has entered
the stationary state at the left endpoint of the first time group where the quadratic variation becomes
lower than the threshold. When a jump shock happens, the quadratic variation of each time group is
calculated by us step by step. When the quadratic variation value is lower than the judgment threshold,
we think that the jump’s shock has finished and the stochastic process has recovered to stationary state
at the left endpoint of the first time group where the quadratic variation is lower than the threshold.

From the description before, we notice that our criteria for determining the start point of entering
the stationary state is stricter than the criteria for determining the end of a jump’s interference. We
determine that this criterion is logical as a financial product usually needs a period of violent
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fluctuations before it obtains a suitable price. This initial fluctuation’s amplitude is generally higher
than the short-term shock of market news (that is, the object modeled by the jump process) on
financial prices. Specifically in our experiments, we set the quadratic variation of three consecutive
time groups to be steadily and continuously lower than the threshold before we think that the OU
process has entered the stationary state. Each time group involves ten steps, which indicates that the
quadratic variation of a total of thirty steps should be stably lower than the threshold. When
recovering from a jump’s impact, we proceed step by step and calculate the quadratic variation of the
10 steps after the jump’s occurring as a time group. Based on Eq (3), and the experimental scenario
we studied is that the jump time is known, then after the jump occurs, the jump process will no longer
contribute to the calculation of the quadratic variation. Therefore, we can get the quadratic variation
calculation formula of the time window after the jump interference ends as follows:

[X, X][a,b] = [Xc, Xc][a,b] = lim
∥Π∥→0

N∑
i=1

[X(ti) − X(ti−1)]2 =

∫ b

a
σ2(θ, X(t)) dt ≤ threshold. (10)

The next step is to smooth the jump impact segment. We propose a data substitution method by
averaging the data from forward and backward SDE.

1) Forward SDE: We need to substitute all the data between the moment when the jump occurs and
when the stationary state is restored. Firstly, we perform MLE on all the data of a stochastic process
trajectory, as well as three regularized parameter calculations, then choose the one with the lowest
mean square error (MSE). Next, using this chosen parameter estimation method, we do parameter
estimation on the segment data before and after the jump impact segment, and average the parameter
estimation results of the two segments to get the parameters of the OU process that substitutes the
jump impact segment data. The stochastic process that substitutes the original jump impact segment
data begins from the last time point before the jump’s occurring, and the initial value equals to the real
state variable value at this time point. The data at the end of the substituted process is generated by the
new OU process itself and has no quantitative relationship with the original real state variable value
of the recovery stationary moment. In other words, the end time point of the stochastic process which
substitutes the original jump impact segment data is the last time point before the stationary process is
restored.

2) Backward-in-time SDE: Though the method above keeps the systematic error of the substitute
data endpoint to a certain extent, avoiding over-fitting when the start and end points are strictly
constrained, we hope to further relieve the systematic error of the substitute data endpoint on the basis
above, so as to further reduce the mean square error of the estimation result of the original OU
process to be estimated. So our method is to take the average of the best parameter estimation results
before and after the jump impact segment, and then use this set of average values to build a
backward-in-time SDE model to substitute the data of the jump impact segment. The start point of
this backward-in-time SDE is the recovery stationary moment at the end of the jump impact, and the
‘final’ point is the time step just next to the jump occurs, which also has no quantitative relationship
with the jump’s occurs. This backward-in-time SDE can be expressed in the following form:

−dX(t) =
κ̂(X(t + dt) − γ̂)

1 − κ̂dt
dt −

σ̂

1 − κ̂dt
dW(t). (11)

We will replenish the proof of the above formula form in Appendix. Aso, we need to point out that

AIMS Mathematics Volume 10, Issue 11, 26994–27015.



27001

backward-in-time SDE is not backward SDE, because the former generates stochastic process data in
reverse time, while the latter still has a forward time flow. The only similarity between the two is that
the final value of the stochastic process at the future moment is the same [36].

In the Python experiment program, Eq (11) should be expressed as below:

Xadj[i] = Xadj[i + 1] + kapa est ∗ (Xadj[i + 1] − gama est)/(1 − kapa est ∗ dt) ∗ dt

−sigma est/(1 − kapa est ∗ dt) ∗ (W[i + 1] −W[i]).
(12)

Based on this, we average the modeled data generated by the backward-in-time SDE in the jump
impact segment with the data of the forward SDE to obtain the substitute segment data set.

In summary, this method averages the data of the simulated forward SDE and the simulated
backward-in-time SDE, which clears up the noise of the unidirectional process at each time point to
some extent and declines the systematic error before the estimated OU process returns back to the
stationary state. However, this approach also introduces new systematic errors. Specifically, the data
at the jump occurrence time is not quantitatively related to the final value of the simulated
backward-in-time SDE. But generally speaking, the degree of reduction in parameter estimation
errors by this method is obviously larger than the new systematic errors it pulls in, and we will do
experiments to verify it in the following.

2.5. The parameter estimation of the jump process with jump amplitude obeying the binomial
distribution

After completing the parameter estimation of the drift term and diffusion term of the OU process
to be estimated, the parameter estimation of the jump process with a jump amplitude obeying the
binomial distribution is performed. We use maximum likelihood estimation for the jump amplitudes
in different directions, and moment estimation for the probability of different jump directions and the
jump occurrence time of the Poisson process simulation, thereby obtaining the estimation results of all
parameters of the jump process.

The formula for parameter estimation of the jump process is as follows.

a) Poisson process intensity : λ̂ = N
T , where N is the number of jumps that occurred, T is the total

time of observation.

b) Estimation formula for jump direction probability: p̂ = Nup

N , where Nup is the number of upward
jumps and N is the total number of jumps. Correspondingly, it is easy to see that the probability of a
downward jump is 1 − p.

c) Binomial distribution parameters for jump sizes (estimated separately for upward and
downward): n̂up = max(S (i)

up), p̂up =
S̄ up

n̂up
, n̂down = max(S (i)

down), p̂down =
S̄ down
n̂down

, where S represents the
jump size.

In this way, we have completed the parameter estimation of the entire stochastic differential equation
with jumps step by step.
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3. Experiments

3.1. Validity verification experiment

3.1.1. Single validity verification experiment

We set the total experiment time as T = 10, that is to say [0,10] is the experimental time interval.
On this basis, we set 1001 time points uniformly distributed from t = 0 to t = 10.0, so the interval can
be divided into 1000 steps of equal scale, meaning each step’s size is dt = 0.01.

Then the true parameters: κ = 1.0, γ = 3.0, and σ = 1.0 are set to generate the OU process to be
estimated, the strength of the Poisson process is set as 2.0 while the upward and downward jump sizes
are set to follow the binomial distribution with parameters (2, 0.4) and (2, 0.6), respectively. The jump
direction is set to follow a Bernoulli distribution, where the probability of jumping upward is set to 0.7.
The regularization coefficient is set as 0.1 to run our program. The following is the algorithm pseudo
code of a single experiment:

Algorithm 1: OU Process with Jumps Parameter Estimation in Single Experiment
Require: OU process parameters: κ, γ, σ, dt, T , λpoisson

Require: Jump parameters: jump size param up, jump size param down, jump size prob up,
jump size prob down, jump direction up prob

Require: Simulation parameters: n steps per group, initial guess
Ensure: Estimated parameters with and without jumps, jump process parameters

1: Simulate OU process with jumps:
2: Initialize X[0]← 0
3: for t = 1 to nsteps do
4: if jump occurs at time t then
5: Sample jump direction and size from binomial distribution
6: Update X[t] based on OU dynamics and jump magnitude
7: else
8: Update X[t] using OU dynamics without jump
9: end if

10: end for
11: Return X, jump times, jump sizes, jump directions
12: Find stationary state’s start point:
13: Compute quadratic variation over groups of size n steps per group
14: Define stability threshold as median of quadratic variation
15: Detect first stable segment with 3 consecutive groups below threshold
16: Return stationary start
17: Estimate parameters with jumps:
18: for each method in {MLE, L1, L2, Elastic Net} do
19: Estimate OU parameters (κ, γ, σ) using log-likelihood
20: end for
21: Return results with jumps
22: Identify jump segments:
23: for each jump time after stationary start do
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24: Detect end of jump segment where variation returns to stationary
25: end for
26: Return jump segments
27: Adjust data to remove jumps:
28: for each jump segment in jump segments do
29: Estimate params before and after segment
30: Replace segment with simulated OU using average parameters
31: end for
32: Generate forward and backward adjusted data
33: Compute average as Xadjusted

34: Return Xadjusted

35: Estimate parameters after jump removal:
36: for each method in {MLE, L1, L2, Elastic Net} do
37: Estimate OU parameters from Xadjusted

38: end for
39: Return results no jumps
40: Estimate jump process parameters:
41: Calculate λest as jump rate
42: Estimate jump size/direction parameters via MLE
43: Return all estimated jump parameters
44: Output:
45: Print parameter estimation table, plot data with jump points, compute MSE
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The execution results of Algorithm 1 are as follows (Table 1):

Table 1. Parameter estimation results of the drift and diffusion terms of the OU process
before and after bridging substitution for the jump impact segment data in one single
experiment.

Method
With jumps Without jumps (after data adjustment)
κ γ σ κ γ σ

MLE 1.6044 3.3399 1.6265 1.3600 3.3550 1.3686
L1 1.5841 3.3324 1.6264 1.3454 3.3476 1.3685
L2 1.5771 3.3087 1.6263 1.3463 3.3234 1.3685
Elastic Net 1.5808 3.3205 1.6264 1.3461 3.3354 1.3685
MSE with jumps
Method MSE(κ) MSE(γ) MSE(σ) Total MSE
L2 0.333051 0.095310 0.392287 0.820647
Elastic Net 0.337313 0.102727 0.392331 0.832371
L1 0.341224 0.110459 0.392379 0.844062
MLE 0.365258 0.115565 0.392542 0.873365
MSE after data adjustment
Method MSE(κ) MSE(γ) MSE(σ) Total MSE
L2 0.119937 0.104595 0.135772 0.360304
Elastic Net 0.119760 0.112492 0.135782 0.368033
L1 0.119288 0.120838 0.135792 0.375918
MLE 0.129580 0.126028 0.135860 0.391468

True parameters:
OU process: kappa = 1.0000, gamma = 3.0000, sigma = 1.0000;
Jump process: lambda = 2.0000;
Upward jumps: jump size param = 2.0000, jump size prob = 0.4000;
Downward jumps: jump size param = 2.0000, jump size prob = 0.6000.
Jump direction: up prob = 0.7000, down prob = 0.3000

Estimated jump process parameters:
lambda = 1.6000;
Upward jumps: jump size param = 2.0000, jump size prob = 0.4583;
Downward jumps: jump size param = 1.0000, jump size prob = 0.5000;
Jump direction: up prob = 0.7500, down prob = 0.2500.
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The following Figure 1 is the stochastic process trajectory generated in our single experiment,
including the original trajectory before and after smoothing data replacement:

Figure 1. Images of stochastic process trajectories before and after bridging data substitution
in a single experiment.

It can be seen from the results of this single experiment that when estimating the parameters of the
drift and diffusion terms of the OU process, the accuracy of the result after data substitution smoothing
and L2 regularization is improved by about 56% compared to the result of L2 regularization directly
based on the original data (from 0.820647 to 0.360304). In addition, the parameter estimation of the
jump process has a higher accuracy based on the existing methods.

However, the results of a single experiment are somewhat random, so we adjusted the parameters
of the upward and downward jumps to (2, 0.4) and (1, 0.8), repeat the experiment 10 times, and take
the average value to further verify the effectiveness of this distribution parameter estimation method.
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3.1.2. Ten validity verification experiments and take average

The execution results of Algorithm 2 are as follows (Table 2):

Table 2. Parameter estimation results of the drift and diffusion terms of the OU process
before and after bridging substitution for the jump impact segment data of 10 experiments’
average.

Method
With jumps Without jumps (after data adjustment)
κ γ σ κ γ σ

MLE 1.3864 3.4693 1.7419 1.3803 3.4426 1.6453
L1 1.3695 3.4522 1.7418 1.3639 3.4260 1.6452
L2 1.3677 3.4011 1.7417 1.3614 3.3761 1.6451
Elastic Net 1.3691 3.4261 1.7417 1.3632 3.4003 1.6452
MSE with jumps
Method MSE(κ) MSE(γ) MSE(σ) Total MSE
L2 0.135204 0.160911 0.550053 0.846167
Elastic Net 0.136215 0.181531 0.550125 0.867871
L1 0.136507 0.204528 0.550200 0.891235
MLE 0.14930 0.220258 0.550422 0.919980
MSE after data adjustment
Method MSE(κ) MSE(γ) MSE(σ) Total MSE
L2 0.130645 0.141474 0.416196 0.688316
Elastic Net 0.131894 0.160234 0.416242 0.708370
L1 0.132434 0.181468 0.416293 0.730194
MLE 0.144631 0.195856 0.416468 0.756955

True parameters:
OU process: kappa = 1.0000, gamma = 3.0000, sigma = 1.0000;
Jump process: lambda = 2.0000;
Upward jumps: jump size param = 2.0000, jump size prob = 0.4000;
Downward jumps: jump size param = 1.0000, jump size prob = 0.8000;
Jump direction: up prob = 0.7000, down prob = 0.3000;

Average estimated jump process parameters:
lambda = 2.0500;
Upward jumps: jump size param = 2.0000, jump size prob = 0.3897;
Downward jumps: jump size param = 1.0000, jump size prob = 0.7180;
Jump direction: up prob = 0.7361, down prob = 0.2639.
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Algorithm 2: OU Process with Jumps Parameter Estimation in 10 Experiments and Take Average
Require: Number of experiments Nexp = 10, OU parameters: (κ, γ, σ), λpoisson

Require: Jump parameters: (nup, pup, ndown, pdown, pdir up), time step dt, total time T
Ensure: Averaged estimated OU and jump parameters

1: Initialize empty lists: all results with jumps, all results no jumps, all best methods,
all jump params

2: for i = 1 to Nexp do
3: Generate OU process with jumps X using input parameters
4: Compute quadratic variation, find stationary start point
5: Estimate parameters with jumps (MLE, L1, L2, Elastic Net)
6: Identify jump segments in X
7: Adjust X to remove jump effects with forward/backward method
8: Estimate parameters without jumps
9: Estimate jump process parameters

10: Store all results in respective lists
11: end for
12: Compute average results:
13: avg results with jumps← average of all results with jumps
14: avg results no jumps← average of all results no jumps
15: best method← most frequent in all best methods
16: avg jump params← average of all jump params
17: Compute MSE for each method in both results
18: return avg results with jumps, avg results no jumps, best method, avg jump params,

MSE values

Figure 2. First experiment images of stochastic process trajectories before and after bridging
data substitution in 10 experiments.
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Figure 2 is the stochastic process trajectory generated by the first experiment of our ten validation
experiments, including the original trajectory before and after the smoothing data replacement:

The experimental results show that the average result after 10 experiments, the accuracy of the
parameter estimation results for the drift term and the diffusion term after smoothing adjustment, has
increased by about 19% (from 0.846167 to 0.688316). And the parameter estimates are closer to the
true values.

3.2. Comparison with previously recognized best method

A review paper published in 2022 [37] mentioned that a modified Brownian bridge (from X(0) to
X(t)) sampler method of Durham and Gallant [38] is recognized as the best stochastic process data
augmentation method to date, which can effectively bridge incomplete stochastic process data for
parameter estimation. In addition, after referring to the images shown in the previous experiments, it
seems that under the parameter conditions of the experimental scenario we selected, selecting the
median of the quadratic variation of all time groups as the threshold, determining that the stochastic
process has entered a stationary state for the first time, may result in some earlier jumps not being
processed, resulting in insufficient parameter estimation accuracy. So we further narrow this
threshold: changing it to the 3/2 of the quadratic variation’s median of all time groups, and compared
it with the case where the threshold is selected as the median, comparing the parameter estimation
effect of our method with the best previous method of Durham and Gallant [38]. When encountering
jump interference after entering a stationary state for the first time, the threshold for judging the end
of the jump shock is the same, that is to say 3/2 of the median, rather than the median. It should be
emphasized that in the same set of experiments, the jump impact segments replaced by the two data
replacement methods are the same. On this basis, 100 sets of experiments are conducted and the
average value is taken to determine the accuracy of different methods. Similar to the previous
experiments, L2 regularization always has the highest accuracy, so here we only give the results under
L2 regularization in the Table 3 below.

Table 3. Comparison of the accuracy of the two experimental methods under different
threshold parameters.

Threshold
Our Method

Total MSE
Durham and Gallant (2002)

Total MSE
κ γ σ κ γ σ

3/2 1.3350 3.4448 1.6956 0.793847 1.4454 3.4364 1.7800 0.997166
1 (Median) 1.2656 3.5409 1.7345 0.902591 1.3402 3.4003 1.7445 0.830227

Comparing the total MSE of the above experiments, we can see that when the threshold is selected
as the median*3/2, the accuracy of our method is significantly higher than the best method of the
predecessors, while when the threshold is selected as the median, the parameter estimation accuracy
of our method is slightly lower (0.997166 - 0.793847 > 0.902591 - 0.830227). Overall, in the scenario
where the jump amplitude obeys a binomial distribution, the parameter estimation accuracy of our data
substitution method combined with the backward-in-time stochastic differential equation is higher than
the former best method of Durham and Gallant [38].

However, we would like to further remind you that after entering the stationary state for the first
time, if the threshold for judging the end of the jump shock state is set to 2/3 of the median, the accuracy
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of our method will be significantly distorted—in fact, in our related experiments, the total MSE in this
case is often greater than 1, even 2, and the estimation accuracy is so low that we no longer need to list
it separately. We will give the above error analysis in Appendix.

4. Conclusions and outlook

The method we proposed to smooth the jump segment data of the stationary stochastic differential
equation with jumps and then estimate the parameters of the drift and diffusion terms, and then estimate
the parameters of the jump process itself should be more effective than estimating parameters based
on the original data directly. We optimistically expect that this method will have broad application
prospects in fields such as financial mathematics and signal processing.
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Appendix

A.1. Proof of Eq (11)

The SDE to be estimated can be written into the following form of difference equation:

X(ti+1) = X(ti) + κ(γ − X(ti))(ti+1 − ti) + σ[W(ti+1) −W(ti)]. (13)

For convenience and without compromising correctness, ti+1 − ti is rewritten as dt, that is to say,
dt = ti+1 − ti. Then we can rewrite it into reverse form like following:

X(ti+1) = (1 − κ(ti+1 − ti))X(ti) + κγ(ti+1 − ti) + σ[W(ti+1) −W(ti)]
= (1 − κ · dt)X(ti) + κγ · dt + σ[W(ti+1) −W(ti)],

X(ti) =
1

1 − κdt
X(ti+1) −

κγ

1 − κdt
dt −

σ[W(ti+1) −W(ti)]
1 − κdt

=
1 − κdt
1 − κdt

X(ti+1) +
κdt

1 − κdt
X(ti+1) −

κγ

1 − κdt
dt −

σ[W(ti+1) −W(ti)]
1 − κdt

= X(ti+1) +
κ(X(ti+1) − γ)

1 − κdt
dt −

σ[W(ti+1) −W(ti)]
1 − κdt

.

(14)

Rewriting the formula above into a differential equation form, we can get:

−dX(t) =
κ(X(t + dt) − γ)

1 − κdt
dt −

σ

1 − κdt
dW(t). (15)

A.2. Analysis on algorithm errors

(1) It should be noted that if the threshold for determining the first entry into a stationary state is
selected too small (for example, ≤ the median of quadratic variation), the jump that occurred early may
not be handled yet, so it may cause large error interference to the data replacement as you have seen
in the previous comparative experiments. Therefore, it is foreseeable that how to select the quadratic
variation threshold that determines the initial entry into a stationary state is a direction worthy of further
in-depth research.

(2) After entering the stationary stage for the first time, if the threshold for judging the end of the
jump impact is set too small at this stage, the accuracy of parameter estimation will be significantly
reduced. Maximum likelihood estimation is the basis of our algorithm. For the OU equation without
any jump process interference, the discrete model can be obtained by discretizing it using the Euler-
Maruyama method (with a fixed time step ∆t):

Xn+1 = (1 − κ∆t)Xn + κγ∆t + σ
√
∆t εn, (16)
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in which εn ∼ N(0, 1) are independent and identically distributed. This model is equivalent to an AR(1)
process:

Xn+1 = aXn + b + ηn, (17)

in which a = 1 − κ∆t, b = κγ∆t, ηn ∼ N(0, σ2∆t).The parameters θ, µ, σ can be estimated from the
discrete observation data {Xn}

N
n=0 by maximum likelihood estimation (MLE). As κ∆t ∈ (0, 2), we can

guarantee |a| < 1, the AR(1) process is stationary, and its likelihood function satisfies the regularity
condition. At this time, the parameters a, b, and ηn can uniquely determine the original OU parameters:

κ =
1 − a
∆t
, γ =

b
κ∆t
, σ =

√
Var(ηn)
∆t

.

So, the model is identifiable.
The MLE estimator κ̂, γ̂, σ̂ is consistent under stationary conditions, that is, when the sample size

N → ∞ : κ̂
p
−→ κ, γ̂

p
−→ γ, σ̂

p
−→ σ.

That is, these estimators will converge to the true parameters.
The method of Durham and Gallant [38] generated new replacement data by generating new drift

and diffusion coefficients through local linearization. Their method does not depend on the amount of
data before and after the jump impact segment. However, our method generates the drift and diffusion
terms required for replacement data, which depend on the data estimation results before and after the
jump impact segment. Therefore, different judgment thresholds will lead to different available data
volumes N before and after the jump impact segment. According to the law of large numbers, the
closer N is to infinity, the higher the estimation accuracy is. If the threshold is too small, N here
may be small, thus reducing the final estimation accuracy. However, if the threshold is selected too
large, the interference caused by the jump process in which the jump amplitude obeys the binomial
distribution may not be eliminated completely, which may also lead to estimation errors. Therefore, if
we want to use our method to get the most accurate results possible, we should try to find the optimal
quadratic variation threshold, which may be a direction worthy of further research in the future. And
the upper limit of the random error of the algorithm accuracy should be O(dt1/2), which is error that the
maximum likelihood estimation (MLE) after discretization using the Euler-Maruyama method when
the jump process does not occur at all.

(3) Here we explain why we choose the median of the quadratic variation of each segment as the
basis for selecting the threshold. The conditional mean and variance formulas of the OU process are:

µ(t) = E[X(t) | X(0)] = γ + [X(0) − γ]e−κt, V(t) = Var[X(t) | X(0)] =
σ2

2κ
(1 − e−2κt). (18)

When t → ∞, the process reaches a stationary state, and its distribution is a normal distribution that
does not depend on the initial value X(0). That is:

X(∞) ∼ N
(
γ,
σ2

2κ

)
.

Considering that σ2 in Eq (10) is the integrated term, it is highly correlated with the stationary
variance of the OU process in the above formula. Equation (10) fluctuates as a measured value, and the
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stationary variance in the above formula has a factor of 1/2, so we consider the median of the quadratic
variance of each segment as the starting point for consideration. However, due to the sharp fluctuations
in the initial segment and the subsequent introduction of the interference of the jump term, the actual
fluctuation will be larger than the stationary variance of the OU process. Therefore, in the comparative
experiment in Section 3.2, we can see that when the median is enlarged to 3/2 of the original, the
accuracy of the parameter estimation will be further improved. Table 4 shows the average threshold
changes and parameter estimation accuracy changes after 100 experiments for readers’ reference. The
parameter settings of the OU process with jumps are the same as those in Sections 3.1.2–3.2. It can be
observed that when the scaling factor of the threshold is between 3/2 and 2, the decrease in total MSE
is not significant, while the MSE of the γ term will increase significantly. Therefore, we estimate that
the optimal scaling factor is approximately around this range.

Table 4. Changes in parameter estimation accuracy under different thresholds using forward-
backward smoothing and L2 regularization over 100 experiments.

Threshold (multiple of median) MSE(κ) MSE(γ) MSE(σ) Total MSE
1/2 0.313895 0.215794 3.90979 4.43948
2/3 0.238910 0.207184 2.81288 3.25897
1 0.070543 0.292573 0.539490 0.902591
3/2 0.112225 0.197847 0.483859 0.793847
2 0.028535 0.411214 0.286359 0.726108

(4) The discussion on the asymptotic consistency and error analysis of the jump amplitude parameter
is the same as that in (5) below.

(5) A common misconception is that readers might want the error caused by endpoint mismatch
to be as small as possible, perhaps roughly comparable to the error caused by the randomness of
Brownian motion (may be approximated as O(σ · dt1/2)). Our original intention was to overcome this
misconception and demonstrate that by freeing our minds, we can achieve even better results than the
modified Brownian bridge method proposed by previous researchers.

Based on the simulation results of Li et al. [39], using the same OU process experimental scenario,
but modifying the jump to be unidirectional and setting the jump amplitude to a fixed value of 1.5, the
parameter estimation results using only forward SDE data replacement has been slightly better than
those of Durham & Gallant [38]. The interference caused by this jump magnitude in the OU process
is significantly greater than the interference caused by the binomial jump amplitude used in this paper.
Building on Li et al. [39], we further introduced the backward-in-time SDE used in this paper and
replaced the jump interference period by taking the forward and backward averages. The 100 times
experimental results are as follows: after regularizing with L2 term, the accuracy (MSE) can be
improved by 21.86% on average from 0.725033 to 0.566508. In contrast, Li et al. [39] reported an
average accuracy improvement of 8.06% on average from 0.768505 to 0.706550 when using only
forward data for data substitution, which has been a bit better than the accuracy of Durham &
Gallant’s modified Brownian bridge [38]. Based on the comparative analysis of the above data results,
we believe that when the jump amplitude interferes with the original OU process more, the accuracy
of the forward and backward averaging method proposed in this paper will further increase compared
to the modified Brownian bridge method. This shows that endpoint mismatch has a positive impact on
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error analysis in this problem, while overly strict endpoint constraints in the modified Brownian
bridge method can have a more negative impact on parameter estimation.

A.3. Verification of the model’s practicality

(1) This paper uses simulated data from an OU process generated using the Euler-Maruyama method
to verify the effectiveness of the algorithm. However, since real-world stochastic processes do not
necessarily follow an OU process, it is crucial to validate the model assumptions when applying the
algorithm to empirical data. A recommended practice is to first fit the OU model to the observed
data and then perform diagnostic checks, such as testing the normality and independence of the model
residuals. Subsequently, cross-validation should be conducted by splitting the data into training and
test sets to evaluate the model’s predictive accuracy and generalization performance.

(2) For a unidirectional jump distribution, the chi-square distribution can be used to test whether it
follows a binomial distribution. For continuous-time stochastic processes, some researchers may think
that it is not reasonable to use this discrete model to simulate jumps. Here we give our explanation:
The binomial distribution is not only suitable for modeling symmetric or finite-support jumps, but can
also be used to approximate continuous skewed distributions through appropriate parameter tuning.
Continuous skewed distributions (such as the log-normal or gamma distribution) are often used in
financial markets to describe the asymmetric nature of asset price jumps. As a discrete distribution, the
binomial distribution can approximate these characteristics to a certain extent by increasing the number
of trials, n, and optimizing the probability of success, p. For example, when n is large and p is biased
to one side (e.g., p < 0.5 or p > 0.5), the probability mass function of the binomial distribution exhibits
skewness, similar to that of a mildly skewed continuous distribution. By discretizing the jump range
into a finite number of states and leveraging the central limit theorem, the standardized form of the
binomial distribution, (Yn − np)/[np(1− p)]1/2 (where Yn ∼ Binomial(n, p)), can be shown to converge
weakly to a normal distribution. By adjusting the combination of p and n, the cumulative distribution
function of skewed distributions can be further approximated. To quantify this approximation, the
error is typically related to the magnitude of n−1/2, indicating that the accuracy of the approximation
gradually improves as n increases. This property makes the binomial distribution useful for modeling
jump processes with mild skewness, especially under small sample conditions (such as the OU process
simulation in this study), thus providing a flexible tool for parameter estimation of jump magnitudes in
financial data. If readers have other concerns, they can refer to the studies of Li et al. [40] and Hu et
al. [41] to propose more reasonable improvement models[42–44].

(3) The SDE employed in this study uses the Itô form, which is consistent with the traditional
financial mathematics on which this study is based and is suitable for modeling jump processes.
However, the Stratonovich integral, commonly used in engineering, differs somewhat from the Itô
integral. Therefore, scholars in the engineering field should be aware of the potential errors that may
arise from this distinction when referring to this study [45].
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