

AIMS Mathematics, 10(11): 26844–26866.

DOI: 10.3934/math.20251180

Received: 12 September 2025

Revised: 25 October 2025

Accepted: 06 November 2025

Published: 19 November 2025

https://www.aimspress.com/journal/Math

Research article

Decent directions generator conjugate gradient method with its

application to train a two-layer neural network model

Osman Omer Osman Yousif1, Mohammed A. Saleh2,* and Abdulgader Z. Almaymuni2

1 Department of Mathematics, Faculty of Mathematical and Computer Science, University of Gezira,

Wad Madani, Sudan
2 Department of Cybersecurity, College of Computer, Qassim University, Saudi Arabia

* Correspondence: Email: m.saleh@qu.edu.sa.

Abstract: In the last decades, conjugate gradient methods have gained important applications in

various scientific areas due to their low memory requirements and ability to solve problems of high

dimensions. When analyzing a conjugate gradient method, the descent property of the search

directions is always required, as it ensures that the search for the minimizer is in the correct direction.

In this paper, we proposed a conjugate gradient method that always generates descent search

directions under all line searches techniques. Moreover, we established the global convergence of the

proposed method when it is applied under Wolfe or strong Wolfe line search. At the same time, to

show the performance of the proposed method in practical computation, we compared it with other

well-known methods and then applied it to train two-layer neural network models. The numerical

results show that the proposed method is efficient.

Keywords: optimization method; conjugate gradient methods; sufficient descent property; strong

Wolfe line search; global convergence, neural networks

Mathematics Subject Classification: 65K05, 90C30, 90C56

1. Introduction

The conjugate gradient (CG) methods have gained significant attention in recent years, due to

their wide applicability for solving linear and nonlinear unconstrained optimization problems.

Moreover, their favorable properties, such as global convergence and low memory requirements,

26845

AIMS Mathematics Volume 10, Issue 11, 26844–26866.

have qualified them to solve problems in diverse areas of science, such as data estimation, image

restoration, signal processing, and neural network training.

In this paper, we consider unconstrained optimization problems,

min
x∈ℝn

f(x), (1.1)

where f: ℝn → ℝ is a continuously differentiable function.

To solve problem (1.1), CG methods use the following iterative expression:

xk+1 = xk + αkdk, 𝑘 = 0,1,2, …, (1.2)

where αk is the step length in the search direction dk. The step length αk is computed using exact

or inexact methods called line searches. In the exact line search, αk is obtained in the direction dk

by the rule

f(xk + αkdk) = min
α≥0

 f(xk + αdk). (1.3)

Equation (1.3) simply means that the orthogonality condition

gk
Tdk−1 = 0, (1.4)

is satisfied, where 𝗀k represents the gradient of the objective function f at the value xk.

Since it is difficult in practice to compute αk using formula (1.3), the inexact line search is

introduced to compute approximate values for αk. The Wolfe and strong Wolfe line searches are

examples of the inexact line search and are often used in practice. In Wolfe line search [1,2], αk

satisfies the following two conditions:

f(xk + αkdk) ≤ f(xk) + δαkgk
Tdk, (1.5)

|g(xk + αkdk)
Tdk| ≥ σgk

Tdk. (1.6)

In strong Wolfe, αk is chosen to satisfy condition (1.5) and

|g(xk + αkdk)
Tdk| ≤ σ|gk

Tdk|, (1.7)

where 0 < δ < σ < 1, and dk is the search direction, which is given by:

dk = {
−gk, if k = 0,

−gk + βkdk−1, if k ≥ 1.
 (1.8)

The factor βk determines how the CG methods differ. Some well-known formulas are attributed to

Fletcher-Reeves (FR) [3]. Other formulas are conjugate descent (CD) [4] and Dai-Yuan (DY) [5].

These formulas are given as follows:

βk
FR =

‖gk‖
2

‖gk−1‖
2, βk

CD = −
‖gk‖

2

dk−1
T gk−1

, βk
DY =

‖gk‖
2

(gk−gk−1)
Tdk−1

.

Additionally, Hestenes-Stiefel (HS) [6], Polak-Ribière-Polyak (PRP) [7,8], and Liu-Storey (LS) [9]

are well-known CG methods, which provide better practical results. For more formulas for the

coefficient βk, see [10–12].

In inexact line search, to guarantee that every search direction generated by a CG method is

26846

AIMS Mathematics Volume 10, Issue 11, 26844–26866.

descent, the sufficient descent property

gk
Tdk ≤ −C‖𝗀k‖

2, k ≥ 0 and C > 0, (1.9)

is needed.

Due to the exceptional convergence properties of CG methods, several studies have been

carried out to propose new CG methods [13–15], to modify existing CG methods for better

performance [16–18], or to combine more than one CG method [19–21]. Additionally, the CG

methods can be integrated with other methods, such as reliability-based design optimization, in order

to enhance their efficiency [22]. The FR CG method is the earliest method derived to solve linear and

nonlinear unconstrained optimization problems. Hence, it received significant attention from many

authors. In 1970, Zoutendijk [23] proved that the FR method is always convergent for general

non-convex functions. However, in 1977, under the exact line search, Powell [24] obtained

remarkable results showing that the FR method could continuously produce small steps and hence

could cycle without reaching the solution point. In 1985, under the strong Wolfe line search,

Al-Baali [25] proved the sufficient descent property and the global convergence of the FR method

when σ < 1 2⁄ . These results were extended to σ = 1 2⁄ by Liu et al. [26] in 1995. Although the

FR method is globally convergent, it has a slow convergence speed. To address this issue, many

methods have been proposed in the literature as modifications or enhancements of the FR method,

aiming to improve its efficiency and robustness in practical applications [27,28]. Besides the FR

method, classical methods, namely, CD, DY, HS, LS, and PRP, have received more attention for

better convergence results [29–31]. Furthermore, the PRP method’s self-restarting feature, which

helps prevent short steps and guarantees improved overall performance on non-convex problems,

makes it frequently used in practice.

For more references of studies that have described recent CG methods and analyzed convergence

properties, please refer to Hager and Zhang [32], Sun and Zhang [33], and Yousif et al. [34,35].

The classical FR, CD, DY, PRP, HS, and LS CG methods form a base for further developments

and hybridizations, aimed at improving the method’s theoretical convergence and numerical

performance. Due to the shortcoming in the FR, CD, and DY methods regarding the poor practical

results and the uncertain convergence of the PRP, HS, and LS when coupled with strong Wolfe line

search, in this study, we aim to introduce a CG method that mainly (1) possesses the sufficient

descent property that is independently of any line search; (2) is globally convergent when coupled

with strong Wolfe line search or with Wolfe line search; and (3) has better numerical results than the

FR, CD, DY, and PRP.

The remaining sections of this study are organized as follows: In Section 2, we propose a CG

coefficient, which has the same numerator as FR, CD, and DY coefficients, along with an algorithm.

In Section 3, we show that the new algorithm satisfies the sufficient descent property under all line

searches. At the same time, we prove its global convergence under Wolfe and strong Wolfe line

searches. To show the performance of the new method in practice, it was compared with other

well-known CG methods and it is then applied to train two-layer neural network models in Section 4.

Section 5 is devoted to the conclusion.

2. Proposed method and algorithm

It is well known that the FR, CD, and DY methods have good convergence results in theory, but

26847

AIMS Mathematics Volume 10, Issue 11, 26844–26866.

their performance in practice is poor. This motivated us to make a little change in the denominator of

their formula to obtain a modified version with good convergence results and better numerical results.

We call the modified formula βk
OFR, which is given by:

βk
OFR =

‖gk‖
2

μ|gk
Tdk−1|+‖gk−1‖‖dk−1‖

, μ > 1. (2.1)

Clearly, under the exact line search condition (1.4), formula (2.1) becomes:

βk
OFR =

‖gk‖
2

‖gk−1‖‖dk−1‖
.

Also, it is clear from (2.1) that:

βk
OFR ≤

‖gk‖
2

‖gk−1‖‖dk−1‖
, (2.2)

and

βk
OFR ≤

‖gk‖
2

μ|gk
Tdk−1|

. (2.3)

With this new formula for the coefficient βk in (2.1), we have a new CG method, which we

call OFR method. Later, we show that the sufficient descent property and the global convergence of

the OFR essentially depend on inequalities (2.2) and (2.3).

Since the implementation of the CG methods under the inexact line searches is easier and less

expensive when compared with the exact line search, we chose to implement the OFR method under

the most well-known inexact line searches, which are the Wolfe and the strong Wolfe. This can be

described by the following algorithm.

Algorithm 2.1: OFR under Wolfe and strong Wolfe.

1. Initialization step: choose x0 ∈ ℝ
n, μ > 1, and a tolerance ε > 0.

2. Compute the gradient of f at x0 and set d0 = −g0.

3. if ‖g0‖ ≤ ε, then stop.

4. Set k =0.

5. Compute αk using Wolfe conditions (1.5)-(1.6) or strong Wolfe conditions (1.5)–(1.7).

6. Set xk+1 = xk + αkdk and gk+1 = g (xk+1).

7. If ‖gk+1‖ ≤ ε, then stop.

8. Compute βk+1
OFR using (2.1), and generate dk+1 using (1.8).

9. Set k =k+1; go to Step 5.

End of Algorithm 2.1

One of the most interesting properties of Algorithm 2.1 is that whatever the search direction

used, it satisfies the sufficient descent property, besides its global convergence under Wolfe and

26848

AIMS Mathematics Volume 10, Issue 11, 26844–26866.

strong Wolfe line searches. These will be proven in the next section.

3. The convergence analysis

In this section, based on some assumptions on the objective function, we prove the sufficient

descent property and the global convergence of the new CG method that is described by Algorithm 2.1.

First, we prove that, in each iteration, Algorithm 2.1 generates a descent direction when it is applied

under any line search method.

Theorem 3.1. Under all line searches, Algorithm 2.1 satisfies the sufficient descent property.

Proof. Replacing βk in Eq (1.8) by βk
OFR and then multiplying the resulting equation by gk

T, we get

gk
Tdk = −‖gk‖

2 + βk
OFRgk

Tdk−1.

Applying Cauchy-Schwartz inequality, we get:

gk
Tdk ≤ −‖gk‖

2 + |βk
OFR||gk

Tdk−1|.

Since βk
OFR ≤

‖gk‖
2

μ|gk
Tdk−1|

 as in (2.3),we get

gk
Tdk ≤ −‖gk‖

2 +
‖gk‖

2

μ|gk
Tdk−1|

|gk
Tdk−1|,

which means

gk
Tdk ≤ −(1 −

1

μ
) ‖gk‖

2.

Hence,

gk
Tdk ≤ −C‖gk‖

2,

where C = 1 −
1

μ
.

Therefore, the result comes true. 

To prove the global convergence of Algorithm 2.1, we assume the following assumptions on the

objective function f.

Assumption 3.1.

(1) Define L0 = {x ∈ ℝ
n ∶ f(x) ≤ f(x0)} and assume that L0 is bounded for all initial points x0.

(2) In some neighborhood 𝒩 of L0, f(x) is differentiable and its gradient g is Lipschitz continuous,

namely, there exists a constant L > 0 such that ‖g(x) − g(y)‖ ≤ L‖x − y‖ ∀x, y ∈ 𝒩.

Based on Assumption 3.1, Zoutendijk [23] proved the following condition.

Lemma 3.1. Let Assumption 3.1 be satisfied. Then any CG method in the forms (1.2)–(1.8) where

 dk satisfies:

gk
Tdk < 0, for all k,

26849

AIMS Mathematics Volume 10, Issue 11, 26844–26866.

and αk is computed by Wolfe or strong Wolfe line searches, then

∑
(gk
Tdk)

2

‖dk‖
2

∞
k=0 < ∞. (3.1)

From the sufficient descent condition (1.9), we get

C2‖gk‖
4 ≤ (gk

Tdk)
2
, for all k≥ 0,

which leads to

∑
‖gk‖

4

‖dk‖
2

∞
k=0 ≤

1

C2
∑

(gk
Tdk)

2

‖dk‖
2

∞
k=0 . (3.2)

Combining (3.1) and (3.2) together, we come to

∑
‖gk‖

4

‖dk‖
2

∞
k=0 < ∞. (3.3)

Therefore, we deduce that under the sufficient descent property and the Wolfe or strong Wolfe line

search, the CG method in the form (1.2)–(1.8) satisfies (3.3).

The following lemma is useful for the proof of the global convergence.

Lemma 3.2. Suppose that {gk} and {dk} are generated by Algorithm 2.1. Then there exists a

positive constant ω > 1 such that:

gk
Tdk ≥ −ω‖gk‖

2. (3.4)

Proof. Replacing βk in (1.8) by βk
OFR and then multiplying the resulting equation by gk

T, we get

gk
Tdk = −‖gk‖

2 + βk
OFRgk

Tdk−1.

After applying the triangle inequality, we obtain:

|gk
Tdk| ≤ ‖gk‖

2 + |βk
OFR||gk

Tdk−1|.

From the fact that is given in (2.3), which states that 0 ≤ βk
OFR ≤

‖gk‖
2

μ|gk
Tdk−1|

, we get

|gk
Tdk| ≤ (1 +

1

μ
) ‖gk‖

2,

which means

gk
Tdk ≥ −ω‖gk‖

2, ω = 1 +
1

μ
.

Therefore, we come to the required result. 

Theorem 3.3. Suppose that Assumption 3.1 holds. Then Algorithm 2.1 is globally convergent, that

is,

lim
k→∞

inf‖gk‖ = 0. (3.5)

26850

AIMS Mathematics Volume 10, Issue 11, 26844–26866.

Proof. We will use the proof by contradiction technique, in which we assume that the opposite of (3.5)

is true. This means that there exists a real number γ > 0 and an integer n such that:

‖gk‖ ≥ γ, for all k≥ n,

hence

1

‖gk‖
2 ≤

1

γ2
, for all k ≥ n. (3.6)

Returning to (1.8), replacing βk by βk
OFR and then squaring both sides, we get

‖dk‖
2 = −‖gk‖

2 − 2 gk
Tdk + (βk

OFR)
2
‖dk−1‖

2. (3.7)

Using (3.4), we come to

‖dk‖
2 ≤ −‖gk‖

2 + 2ω‖gk‖
2 + (βk

OFR)
2
‖dk−1‖

2,

which straightforward leads to

‖dk‖
2 ≤ τ‖gk‖

2 + (βk
OFR)

2
‖dk−1‖

2, where τ = 2ω − 1.

From the fact that is given in (2.2), which states that 0 ≤ βk
OFR ≤

‖gk‖
2

‖gk−1‖‖dk−1‖
, we get

‖dk‖
2 ≤ τ‖gk‖

2 + (
‖gk‖

2

‖gk−1‖‖dk−1‖
)

2

‖dk−1‖
2,

that is

‖dk‖
2 ≤ τ‖gk‖

2 +
‖gk‖

4

‖gk−1‖2
.

Dividing both sides of the above inequality by ‖gk‖
4, we get

‖dk‖
2

‖gk‖
4
≤

τ

‖gk‖
2
+

1

‖gk−1‖
2
. (3.8)

Since
1

‖gk‖
2
≤

1

γ2
, for all k ≥ n (see (3.6)), then

1

‖gk−1‖
2
≤

1

γ2
, for all k ≥ n + 1, hence (3.8)

‖dk‖
2

‖gk‖4
≤
τ + 1

γ2
, for all k ≥ n + 1.

This means

‖gk‖
4

‖dk‖2
≥ ζ, where ζ =

γ2

τ + 1
.

Taking the sum from n + 1 to m to both sides, we get

26851

AIMS Mathematics Volume 10, Issue 11, 26844–26866.

∑
‖gk‖

4

‖dk‖
2 ≥ (m− n)ζ

m
k=n+1 .

Since all terms of the above series are positive, it is clear that

∑
‖gk‖

4

‖dk‖
2 =

∞
k=n+1 lim

m→∞
∑

‖gk‖
4

‖dk‖
2 ≥ lim

m→∞
(m − n)ζ = ∞m

 k=n+1 .

Now because

∑
‖gk‖

4

‖dk‖
2 > ∑

‖gk‖
4

‖dk‖
2

∞
k=n+1

∞
k=0 ,

we have

∑
‖gk‖

4

‖dk‖
2 > ∞

∞
k=0 .

This contradicts (3.3). Therefore, (3.5) is proved. 

4. Numerical experiment

In this section, we conduct two numerical experiments that show the ability of the new CG

method in practice.

4.1. Comparison with other CG methods

In this subsection, to show the efficiency and robustness of the method and to support the

theoretical proofs that are in Section 3, a numerical experiment based on comparing the new method

(OFR method) that is described by Algorithm 2.1 with FR, CD, DY, and PRP is carried out. Then, a

MATLAB-coded program is run for these methods when they are all implemented under strong Wolfe

line search with the parameters δ = 10−4 and σ = 10−1 and with stopping criteria ‖gk‖ ≤ 10
−6.

The parameter μ in Algorithm 2.1 was set to 2. Most of the test problems were chosen from [36], and

each was implemented with two different initial points. To show robustness, test problems were

implemented under low, medium, and high dimensions, namely 2, 4, 10, 50, 100, 500, 1000, 5000,

and 10000. The comparison was based on the number of iterations (NI), the time required to run each

test problem (CPU time), the number of function evaluations (NF), and the number of gradient

evaluations (NG). Table 1 shows the numerical computation results. In Table 1, the term “FAIL”

means that a method failed to solve a test problem or the number of iterations exceeded 5000.

26852

AIMS Mathematics Volume 10, Issue 11, 26844–26866.

Table 1. Numerical experiment results.

PRP DY CD FR OFR
Initial point Dim. Test problem No.

NI/CPU/FN/GN NI/CPU/FN/GN NI/CPU/FN/GN NI/CPU/FN/GN NI/CPU/FN/GN

13/0.02/362/86

11/0.02/306/88

16/0.03/398/115

13/0.02/183/48

13/0.02/267/112

FAIL

11/0.02/190/91

FAIL

12/0.02/217/71

11/0.02/180/75

(2,2)

(5,5)

2 THREE-HUMP 1

FAIL

49/0.03/548/207

39/0.03/189/95

291/0.24/3801/842

96/0.04/376/214

FAIL

64/0.03/273/146

419/0.28/4170/1110

12/0.01/56/32

107/0.05/588/284

(0,0)

(10,10)

2 GENERALIZED

WHITE & HOLST

2

9/0.02/22/14

15/0.02/53/24

6/0.01/20/12

86/0.03/299/184

9/0.01/29/18

152/0.05/518/320

9/0.01/29/18

139/0.04/477/295

8/0.01/26/17

18/0.02/83/41

(1,1)

(10,10)

2 SIX-HUMP 3

16/0.02/22/15

8/0.01/32/22

61/0.03/189/127

8/0.01/34/18

66/0.03/204/137

8/0.01/34/18

63/0.03/194/130

8/0.01/34/18

16/0.02/52/35

8/0.01/34/18

(1,1)

(10.10)

2 TRECANNI 4

14/0.03/40/30

11/0.02/48/33

24/0.03/94/61

23/0.03/83/56

29/0.03/108/70

24/0.03/85/59

28/ 0.03/108/70

27/0.03/92/66

13/0.02/44/31

11/0.02/46/30

(1,1)

(10,10)

2 ZETTLE 5

2/0.01/6/4

2/0.01/6/4

2/0.01/6/4

2/0.01/6/4

2/0.01/6/4

2/0.01/6/4

2/0.01/6/4

2/0.01/6/4

2/0.01/6/4

2/0.01/6/4

(0,0)

(10,10)

2 BOOTH

6

FAIL

49/0.03/548/207

39/0.03/189/95

291/0.20/3801/842

96/0.05/376/214

550/0.38/7386/1546

63/0.04/269/143

455/0.23/4279/1187

12/0.01/56/32

107/0.04/593/281

(0,0)

(10.10)

2 LEON 7

840/0.43/3167/1941

528/0.28/2049/1222

23/0.02/132/58

39/0.03/189/95

FAIL

96/0.04/376/214

141/0.05/555/309

64/0.03/273/146

44/0.02/230/112

12/0.01/56/32

(-1.2,1)

(0,0)

2 CUBE 8

515/0.24/1783/1162

984/0.49/3653/2226

14/0.01/72/40

407/0.23/3512/946

76/0.04/290/169

FAIL

38/0.03/161/88

272/0.19/3009/682

33/0.02/147/80

41/0.03/228/103

(-1,-1)

(10,10)

2 NONDIA 9

FAIL

19/0.06/464/148

FAIL

FAIL

112/0.14/2026/355

107/0.13/2011/380

FAIL

FAIL

265/0.41/69951099

256/0.44/7565/1167

(4,4)

(10,10)

2 LIARWHD 10

2/0.01/6/4

2/0.01/6/4

2/0.01/6/4

2/0.01/6/4

2/0.01/6/4

2/0.01/6/4

2/0.01/6/4

2/0.01/6/4

2/0.01/6/4

2/0.01/6/4

(0,0,...)

(10,10,...)

4 BIGGSB1

11

106/0.04/428/243

157/0.05/697/383

FAIL

2387/0.65/9716/5166

FAIL

FAIL

3921/1.33/22563/8809

FAIL

145/0.05/508/308

260/0.08/1057/580

(0,0,0,0)

(5,5,5,5)

4 EXTENDED

WOOD

12

4/0.01/12/9

4/0.01/12/9

4/0.01/12/9

4/0.01/12/9

4/0.01/12/9

4/0.01/12/9

4/0.01/12/9

4/0.01/12/9

41/0.02/123/82

57/0.03/171/114

(1,1,…)

(10,10,…)

4 TRIDIA 13

840/0.20/4751/2191

854/0.29/4896/2241

197/0.08/795/441

194/0.07/734/411

142/0.06/553/306

FAIL

81/0.05/373/182

145/0.06/587/315

1758/0.40/5503/3600

1964/0.44/6080/4042

(-1.2,1,…)

(2,2,…)

4 GENERALIZED

ROCENBROCK

14

500/0.35/1508/1009

500/0.35/1508/1009

5/0.01/17/12

5/0.01/17/12

5/0.01/17/12

5/0.01/17/12

5/0.01/17/12

5/0.01/17/12

67/0.03/202/149

74/0.04/223/164

(-1,-1,…)

(10,10,…)

10 DIXON3DQ

15

110/0.05/40/26

95/0.04/165/101

390/0.10/1351/838

1028/0.27/3613/2186

FAIL

FAIL

396/0.11/1373/852

1062/0.27/3675/2261

105/0.04/342/220

91/0.04/365/208

(1,1,…)

(10,10,…)

10 DIXON & PRICE 16

9/0.02/89/44

19/0.09/387/190

12/0.02/45/32

30/0.05/560/417

12/0.02/46/33

FAIL

12/0.02/45/32

26/0.04/561/499

11/0.02/40/29

94/0.15/2279/2004

(1,1,…)

(10,10,…)

10 GENERALIZED

QUARTIC

17

25/ 0.02/101/56

28/0.03/183/68

24/0.02/78/50

32/0.03/123/72

24/0.02/78/50

35/0.03/132/78

24/0.02/78/50

33/0.03/126/74

26/0.02/84/54

32/0.03/124/71

(0,0,…)

(-1,-1,…)

10 EDENSCH

18

274/0.21/1319/664

217/0.14/845/493

1152/0.34/5512/2538

2684/0.72/11998/5867

FAIL

FAIL

1128/0.33/5399/2470

1902/0.52/8766/4196

86/0.03/333/183

145/0.06/678/321

(0,0,…)

(10,10,…)

10 FLETCHER 19

Continued on next page

26853

AIMS Mathematics Volume 10, Issue 11, 26844–26866.

PRP DY CD FR OFR Initial point
Dim. Test problem

No.

NI/CPU/FN/GN NI/CPU/FN/GN NI/CPU/FN/GN NI/CPU/FN/GN NI/CPU/FN/GN

67/0.03/201/134

67/0.03/201/134

10/0.01/30/20

10/0.01/30/20

10/0.01/30/20

10/0.01/30/20

10/0.01/30/20

10/0.01/30/20

147/0.04/441/294

169/0.05/507/338

(1,1,…)

(10,10,…)

10

POWER 20

57/0.05/191/125

66/0.06/200/131

21/0.02/61/41

FAIL

21/0.02/61/41

FAIL

21/0.02/61/41

203/0.09/721/423

21/0.02/64/43

35/0.03/119/81

(1,1,…)

(5,5,…)

50 HAGER 21

47/0.03/144/137

93/0.06/325/286

47/0.03/142/137

93/0.05/280/188

47/0.03/142/137

102/0.05/307/205

47/0.03/142/137

91/0.04/274/185

72/0.04/217/213

84/0.04/254/243

(1,1,…)

(-2,-2,…)

50 RAYDAN1 22

23/0.02/76/50

27/0.03/112/68

27/0.02/85/57

43/0.03/152/91

29/0.02/91/60

48/0.03/167/102

27/0.02/85/56

43/0.03/153/92

24/0.02/75/50

31/0.03/116/68

(2,2,…)

(10,10,…)

50 GENERALIZED

TRIDIAGONAL 1

23

10/0.01/30/20

10/0.01/30/20

39/0.02/117/78

41/0.03/123/82

39/0.02/117/78

41/0.03/123/82

39/0.02/117/78

41/0.03/123/82

91/0.04/273/182

103/0.04/309/206

(-1,-1,…)

(10.10,…)

50 SUM SQUARE 24

1/0.01/3/2

1/0.01/3/2

1/0.01/3/2

1/0.01/3/2

1/0.01/3/2

1/0.01/3/2

1/0.01/3/2

1/0.01/3/2

1/0.01/3/2

1/0.01/3/2

(1,1,…)

(10,10,…)

50 SPHERE 25

5/0.01/23/13

9/0.02/61/25

11/0.02/44/24

FAIL

11/0.02/44/24

FAIL

FAIL

FAIL

11/0.02/44/24

16/0.02/83/34

(1,1,…)

(10,10,…)

100

ARWHEAD 26

68/0.04/206/137

854/0.29/4896/2241

68/0.04/206/137

FAIL

68/0.04/206/137

FAIL

68/0.04/206/137

9237/5.20/45913/19066

103/0.06/313/217

425/0.17/1296/905

(1,1,…)

(5,5,…)

100 RAYDAN1 27

27/0.03/88/59

27/0.03/93/61

23/0.02/77/50

FAIL

24/0.02/89/52

26/0.03/85/54

25/0.03/132/53

27/0.03/88/56

26/0.03/86/56

26/0.03/85/54

(2,2,…)

(-1,-1,…)

100 ENGVAL1

28

FAIL

15/0.03/104/48

FAIL

FAIL

FAIL

23/0.03/177/58

2709/3.73/36332/6216

37/0.04/160/87

40/0.04/202/107

41/0.04/189/106

(1.1,0.1,…)

(1,1,…)

100 EXTENDED

MARATOS

29

26/0.04/175/81

24/0.03/112/66

16/0.03/59/34

FAIL

16/0.03/59/34

FAIL

16/0.03/61/36

832/1.19/11334/1912

13/0.02/51/29

23/0.03/103/56

(-1,-1,…)

(1,11,…)

100 EXTENDED

PENALTY

30

14/0.03/47/36

48/0.08/191/136

FAIL

FAIL

32/0.05/103/64

FAIL

FAIL

803/2.96/11227/1486

38/0.06/130/80

69/0.11/299/157

(1,1,...)

(10,10,...)

500 GENERALIZED

TRIDIAGONAL 2

31

9/0.03/89/44

19/0.09/387/19

3/0.02/31/26

5/0.03/46/36

3/0.02/31/26

5/0.03/47/36

3/0.02/31/26

5/0.03/47/36

3/0.02/31/26

4/0.03/27/19

(2,2,…)

(10,10,…)

500 QUARTC 32

253/0.56/897/563

227/0.60/880/511

379/0.40/1306/793

FAIL

FAIL

FAIL

383/0.41/1321/804

766/0.87/2977/1633

625/0.63/2047/1314

602/0.62/2049/1274

(0.5,0.5,…)

(10,10,…)

500 QF2 33

5/0.02/15/10

5/0.02/15/10

12/0.03/53/27

9/0.02/27/18

12/0.03/36/24

9/0.02/27/18

12/0.03/50/24

9/0.02/27/18

12/0.03/36/24

9/0.02/27/18

(0,0,…)

(0.5,0.5,…)

500 HIMMELH

34

131/0.27/393/262

140/0.30/420/280

131/0.14/393/262

140/0.17/420/280

131/0.14/393/262

140/0.17/420/280

131/0.14/393/262

140/0.17/420/280

471/0.44/1413/942

551/0.51/1653/1102

(1,1,…)

(10,10,…)

500 QF1 35

9/0.04/42/24

FAIL

FAIL

18/0.05/91/40

21/0.08/139/46

FAIL

FAIL

FAIL

16/0.05/70/34

20/0.06/99/45

(1,1,…)

(3,3,…)

1000 QP1 36

187/0.61/561/374

203/0.67/609/406

187/0.30/561/374

203/0.32/609/406

187/0.30/561/374

203/0.32/609/406

187/0.30/561/374

203/0.32/609/406

863/1.32/2589/1726

1083/1.66/3249/2166

(0.5,0.5,…)

(10,10,…)

1000 PERTURBED

QUADRATIC

37

40/0.18/481/142

42/0.20/469/141

FAIL

FAIL

FAIL

FAIL

FAIL

FAIL

60/0.20/321/140

50/0.21/357/126

(1,1,...)

(10,10,…)

1000 QP2 38

Continued on next page

26854

AIMS Mathematics Volume 10, Issue 11, 26844–26866.

PRP DY CD FR OFR Initial point
Dim. Test problem

No.

NI/CPU/FN/GN NI/CPU/FN/GN NI/CPU/FN/GN NI/CPU/FN/GN NI/CPU/FN/GN

18/0.06/54/36

23/0.07/69/46

16/0.04/48/32

16/0.04/48/32

16/0.04/48/32

16/0.04/48/32

16/0.04/48/32

16/0.04/48/32

76/0.12/228/152

84/0.13/252/168

(3,3,…)

(10,10,…)

1000 DQDRTIC

39

16/0.32/335/149

FAIL

FAIL

FAIL

98/0.95/1991/667

110/0.99/2091/711

FAIL

FAIL

63/0.58/1192/348

58/0.48/964/293

(-1,-1,…)

(10,10,…)

1000 EXTENDED

DENSCHNF

40

FAIL

15/0.16/62/35

28/0.25/99/61

20/0.18/75/43

28/0.25/99/61

30/0.26/108/63

28/0.25/99/60

9/0.10/41/20

18/0.17/72/42

13/0.13/56/29

(0.5,-2,…)

(2,2,…)

5000 FREUDENSTEIN

& ROTH

41

14/0.36/72/58

13/ 0.33/73/62

565/6.33/1971/1708

1149/12.86/3963/3443

596/6.63/2081/1801

1149/12.65/3957/34

43

566/6.45/1976/1713

1150/12.66/3964/3446

25/0.41/125/102

39/0.58/171/139

(2,2,…)

(10,10,…)

5000

EXTENDED

TRIDIAGONAL1

42

2/0.03/6/5

2/0.03/6/5

2/0.03/6/5

2/0.03/6/5

2/0.03/6/5

2/0.03/6/5

2/0.03/6/5

2/0.03/6/5

2/0.03/6/5

2/0.03/6/5

(1,1,…)

(10,10,…)

5000

DIAGONAL 4 43

6/0.05/22/16

8/0.08/34/21

9/0.06/28/19

11/0.09/41/23

9/0.06/28/19

154/1.00/489/322

9/0.06/28/19

85/0.62/278/181

9/0.06/28/19

11/0.10/41/23

(1,1,…)

(10,10,…)

5000

EXTENDED

DENSCHNB

44

21/0.19/134/67

25/0.36/183/72

213/1.81/987/468

451/5.90/3643/1033

108/1.17/697/263

FAIL

88/0.95/586/209

273/4.60/3012/684

27/0.21/120/69

44/0.41/239/111

(-1.2,1,…)

(10,10,…)

5000 EXTENDED

ROSENBROCK

45

15/0.25/52/39

12/ 0.19/47/27

15/0.21/53/33

12/0.18/45/25

15/0.21/53/33

12/0.18/45/25

15/0.21/53/33

12/0.18/45/25

13/0.19/47/29

12/0.18/45/25

(1,1,…)

(10,10,…)

104

EXTENDED

HIMMELBLAU

46

18/0.23/90/51

20/0.53/126/59

34/0.47/125/76

64/0.88/264/159

39/0.50/140/86

66/0.91/276/164

39/0.50/140/86

88/1.25/341/209

27/0.35/105/63

37/0.61/173/100

(0.0….)

(5,5,…)

104

STRAIT 47

17/0.23/47/31

34/0.37/116/79

14/0.20/47/35

77/1.08/318/177

11/0.14/38/28

FAIL

12/0.16/41/30

360/4.33/1198/749

13/0.19/46/34

30/0.38/106/73

(0,0, …)

(10,10,…)

104

SHALLOW 48

14/0.77/70/43

9/0.51/49/28

80/2.15/251/165

119/3.35/407/250

67/1.73/212/139

97/2.69/337/207

95/2.50/297/196

106/3.01/369/226

30/0.86/106/73

17/0.60/73/43

(1,0.8, …)

(2,2, …)

104

EXTENDED

BEALE

49

15/1.00/98/47

FAIL

31/0.91/156/74

311/20.60/3861/881

FAIL

544/37.28/7005/152

0

157/3.53/602/341

296/20.18/3780/842

46/1.42/238/119

118/3.75/633/309

(-1.2,1,…)

(10,10,…)

104

EXTENDED

WHITE & HOLST

50

To show the method with the best performance, we used the technique introduced by Dolan and

Moré [37]. Figures 1–4 display the method’s performance based on NI, CPU, NF, and NG,

respectively.

In Dolan and Moré's performance profile, we plot Pm(t) versus t, where:

Pm(t) is the probability that a method m has a performance ratio t, where

t =
tp,m

min{tp,m:m ∈ M}
.

tp,m is the result (may be NI, CPU, NF, or NG in our experiment) when a method m is applied

to solve problem p.
Therefore, based on this performance profile, the left side shows the best performance (having

minimum NI, CPU time, NF, and NG), that is, the highest curve corresponds to the best method.

Additionally, the right side measures the percentage of the total number of test problems that are

26855

AIMS Mathematics Volume 10, Issue 11, 26844–26866.

successfully solved by the corresponding method.

Figure 1. The performance based on the number of iterations (NI).

Figure 2. The performance based on the CPU time.

0

0.2

0.4

0.6

0.8

1

1 21 41

Pm(t)

t

DY

CD

FR

OFR

PRP

0

0.2

0.4

0.6

0.8

1

1 11 21 31

Pm(t)

t

CD

DY

FR

OF
R

26856

AIMS Mathematics Volume 10, Issue 11, 26844–26866.

Figure 3. The performance based on the number of function evaluations (NF).

Figure 4. The performance based on the number of gradient evaluations (NG).

It is clear from the left sides of all figures that the PRP has the lowest number of NI, CPU time,

NF, and NG, but it does not solve all test problems. Also, the right sides of all figures show that the

percentage of the test problems that are successfully solved by the OFR method is higher than that of

the remaining methods, and this reflects the robustness of the OFR method. Additionally, it is clear

that the curve of the OFR method is above all other curves. Therefore, we conclude that the OFR

method that is described by Algorithm 2.1 performs better than FR, CD, DY, and PRP methods.

4.2. Training two-layer neural network models

Neural networks (NNs) are machine learning (ML) models that are inspired from the human

brain, mimicking the complex functions. They consist of interconnected units organized in input,

0

0.2

0.4

0.6

0.8

1

1 11 21 31

Pm(t)

t

DY

CD

FR

OFR

PRP

0

0.2

0.4

0.6

0.8

1

1 11 21 31

Pm(t)

t

DY

CD

FR

OFR

PRP

26857

AIMS Mathematics Volume 10, Issue 11, 26844–26866.

hidden, and output layers. The units in each layer are connected to units in adjacent layers with

weights. The input layer receives the inputs, multiplies them by the respective weights, and then

sums each unit of the hidden layer. Each unit in the hidden layer performs a transformation on the

sum by applying an activation function. There may be one or multiple hidden layers in an NN model.

The final layer of an NN model produces the outputs of the model. The activation function plays a

crucial role in the model because it introduces non-linearity into the system, enabling the network to

learn more complex patterns. Popular activation functions include the sigmoid, hyperbolic tangent,

and rectified linear unit (ReLU). These functions are used because they have computable derivatives,

making it easier to compute partial derivatives of the error function with respect to individual

weights. The NN model first receives data, and passes it through the forward direction, starting from

the input layer through the hidden layers to the output layer. This process is known as forward

propagation. After forward propagation, the network evaluates its performance using a loss function,

which measures the difference between the actual output and the predicted output.

Neural network models can be applied to solve many problems, including pattern recognition,

classification, clustering, testing for the higher-order nonlinear singular differential model [38],

solving the nonlinear third-order multi-singular Emden–Fowler system of differential equations [39],

solving the bioinformatics problem for the corneal shape model of eye surgery [40], dimensionality

reduction, computer vision, natural language processing (NLP), regression, predictive analysis, etc.

Training NN models means evaluating the values of the weights by minimizing the loss

function. So, training the NN model is the most important task when developing one. Most training

methods adapt an iterative scheme to find the optimal values for the weights vector. Since the loss

function is continuous and differentiable with respect to the weights, then the conjugate gradient

methods can be used to find the optimal solutions. Unlike basic gradient descent methods, which

may oscillate or converge slowly, the conjugate gradient method leverages past gradient information

to determine search directions, leading to faster convergence [41,42]. In this section, we address the

problem of training the NN models with one hidden layer and two outputs, as illustrated in the

following figure (Figure 5):

Figure 5. Neural network with two layers and two outputs.

The outputs of this network are o1 and o2, which are given as follows:

https://www.sciencedirect.com/topics/physics-and-astronomy/operators-mathematics

26858

AIMS Mathematics Volume 10, Issue 11, 26844–26866.

o1 = ∑ wj1
∗m

j=1 hj, o2 = ∑ wj2
∗m

j=1 hj,

where wj1
∗ and wj2

∗ for j = 1,2, … ,m are the hidden layer weights and

hj = f(zj),

where f is an activation function, which, in most cases, is selected to be:

• Sigmoid function: σ(z) =
1

1+e−z
.

• ReLU (Rectified Linear Unity): ReLU(z) = max(0, z).

• Hyperbolic tangent: tanh(z) =
ez−e−z

ez+e−z
.

In the function hj, zj is defined as follows:

zj = ∑ wijxi
n
i=1 ,

where xi is the input and wij the input layer weights.

In matrix form, if

x = (

x1
x2
⋮
xn

), w = (

w11 w12 ⋯
w21 w22 ⋯
⋮ ⋮ ⋮
wn1 wn2 ⋯

w1m
w2m
⋮

wnm

), w∗ = (

w11
∗ w12

∗

w21
∗ w22

∗

⋮ ⋮
wm1
∗ wm2

∗

),

then

wTx =

(

∑wi1xi

n

i=1

∑wi2xi

n

i=1

⋮

∑wimxi

n

i=1)

 ⇒ f(wTx) =

(

f(∑wi1xi

n

i=1

)

f (∑wi2xi

n

i=1

)

⋮

f (∑wimxi

n

i=1

)
)

= (

h1
h2
⋮
hm

).

Therefore,

(
o1(w,w

∗)
o2(w,w

∗)
) = w∗Tf(wTx) = (

w11
∗ w21

∗ ⋯
w12
∗ w22

∗ ⋯

wm1
∗

wm2
∗)(

h1
h2
⋮
hm

) =

(

∑wj1

∗ hj

m

j=1

∑wj2
∗ hj

m

j=1)

.

26859

AIMS Mathematics Volume 10, Issue 11, 26844–26866.

Training a neural network means computing the values of the weights. If we suppose that the

target outputs are y1 and y2, then the task is to minimize the sum of squared of errors, which is

given by:

E = (o1 − y1)
2 + (o2 − y2)

2,

which is a continuous function in the weights with partial derivatives with respect to the weights

given by:

∂E

∂wij
=
∂E

∂o1

∂o1
∂wij

+
∂E

∂o2

∂o2
∂wij

and

∂E

∂wij
∗ =

∂E

∂o1

∂o1
wij
∗ +

∂E

∂o2

∂o2
wij
∗

Since the activation functions, sigmoid σ(z), ReLU(z), and tanh (z) are all differentiable and

their derivatives are respectively given by:

σ(z)(1 − σ(z)), {
1, if z > 0,
0, if z ≤ 0,

1

cosh2 z
,

then the conjugate gradient methods can be used to update the weights using the iterative formulas

wij ← wij + η
∂E

∂wij
, wij

∗ ← wij
∗ + η

∂E

wij
∗ ,

where η is the learning rate; hence, it can be computed using the line search methods.

Now, using the sigmoid activation function σ, we can describe how our new method can be

used to compute the weights that are in the following algorithm.

26860

AIMS Mathematics Volume 10, Issue 11, 26844–26866.

Algorithm 4.1: Training neural network using OFR CG method.

Step 1. Inputs: x1, x2, … , xn. Initial weights: wij, wkj
∗ , where i = 1,2, … , n, j = 1,2, … ,m and

k = 1,2. Target outputs: y1, y2, and a tolerance ε > 0.

Step 2. Set zj =∑wijxi,

n

i=1

 hj = σ(zj),where σ is the sigmoid activation function.

Step 3. Set o1 =∑wj1
∗

m

j=1

hj and o2 =∑wj2
∗

m

j=1

hj.

Step 4. Set E = (o1 − y1)
2 + (o2 − y2)

2.

Step 5. Compute
∂E

∂wij
 and

∂E

∂wij
∗ .

Step 6. Define the gradient vector ∇E0 = (
∂E

∂wij
,
∂E

∂wij
∗)
T

at the initial weights.

Step 7. Choose initial search direction d0 = −∇E0 and set j = 0.

Step 8. If ‖∇Ej‖ < ε, then stop.

Step 9. Compute the learning rate ηj in the direction dj using the strong Wolfe line search.

Step 10. Set new weights = old weights + ηjdj.

Step 11. Evaluate the update gradient vector ∇Ej+1 at the new weights.

Step 12. Set dj+1 = −∇Ej+1 + βj
OFRdj.

Step 13. Set j = j + 1 and return to Step 8.

The end of Algorithm 4.1

To test the ability of Algorithm 4.1, it was coded using MATLAB and run on a PC computer

with an Intel R Core TM i5-2520 M CPU @ 2.50 GHz processor, 4 GB of RAM memory, and a

Windows 10 Professional operating system with a stopping criterion set to ‖∇Ej‖ < 10
−6, to train

two-layer neural network consisting of:

(i) Two inputs, one hidden layer of three units.

(ii) Three inputs, one hidden layer of three units.

(iii) Three inputs, one hidden layer of four units.

(iv) Four inputs, one hidden layer of five units.

The target outputs are 1 and 0.

The results of the training process, supported by figures, are as follows:

26861

AIMS Mathematics Volume 10, Issue 11, 26844–26866.

Figure 6. A model with 2 inputs and 12 weights. Figure 7. A model with 3 inputs and 15 weights.

Initial weights: 𝑤 = (
1 2 3
4 5 6

), 𝑤∗ = (
7 8
9 10
11 12

) Initial weights: 𝑤 = (
1 2 3
4 5 6
7 8 9

), 𝑤∗ = (
10 11
12 13
14 15

)

Computed weights: 𝑤 = (
−3.3195 1.3089 2.7894
−2.0639 4.0298 5.7044

),

𝑤∗ = (
2.8048 3.1525
−0.4828 −0.9851
1.3688 0.8429

)

Computed weights: 𝑤 = (
−6.0009 0.7114 2.5134
−0.9324 4.0921 5.6572
3.0222 7.2679 8.7235

),

𝑤∗ = (
2.5539 2.6836
−0.5216 −1.0242
1.2520 0.7217

)

𝑤∗𝑇𝑓(𝑤𝑇𝑥) ≈ (
1
0
) 𝑤∗𝑇𝑓(𝑤𝑇𝑥) ≈ (

1
0
)

Error = 1.6531e-15 Error = 2.3660e-15

Figure 8. A model with 3 inputs and 20 weights. Figure 9. A model with 4 inputs and 30 weights.

26862

AIMS Mathematics Volume 10, Issue 11, 26844–26866.

Initial weights: 𝑤 = (
0.1 1 0.1
0.1 1 0.1
0.1 1 0.1

1
1
1
),

 𝑤∗ = (

0.1 1
0.1 1
0.1 1
0.1 1

)

Initial weights: 𝑤 = (

0.1 1 0.1
1 0.1 1
0.1 1 0.1
1 0.1 1

1
0.1
1
0.1

0.1
1
0.1
1

),

 𝑤∗ =

(

0.1 1
0.1 1
0.1 1
0.1 1
0.1 1)

Computed weights:

𝑤 = (
0.0367 0.9518 0.0367
−0.0303 0.9008 −0.0303
−0.1122 0.8384 −0.1122

0.9518
0.9008
0.8384

),

 𝑤∗ = (

0.3512 0.2001
0.4575 −0.1338
0.3512 0.20010
0.4575 −0.1338

)

Computed weights:

𝑤 = (

0.0871 0.9848 0.0871
0.9328 0.0207 0.9328
−0.0706 0.7987 −0.0706
0.7751 −0.1653 0.7751

0.9848
0.0207
0.7987
−0.1653

0.0871
0.9328
−0.0706
0.7751

) ,

𝑤∗ =

(

0.3076 −0.0348
0.2870 0.0605
0.3076 −0.0348
0.2870 0.0605
0.3076 −0.0348)

𝑤∗𝑇𝑓(𝑤𝑇𝑥) ≈ (
1
0
) 𝑤∗𝑇𝑓(𝑤𝑇𝑥) ≈ (

1
0
)

Error = 7.0351e-14 Error = 8.4695e-16

An observation on the results of training all models given by Figures 6–9 by using Algorithm 4.1

shows that w∗Tf(wTx) = (
1
0
) with less error. This shows the efficiency of Algorithm 4.1 for

training neural network models.

In addition to the above models, we test Algorithm 4.1 for larger data. The MATLAB command

rand was used to generate random inputs and initial weights. The results are in Table 2.

Table 2. Algorithm 4.1 with larger data.

No. Number of inputs Number of weights Error

1 5 28 3.6422e-15

2 10 60 1.7834e-16

3 15 170 2.6149e-15

4 20 330 0.0088e-14

5 25 540 1.7801e-16

6 30 960 2.5621e-14

7 35 1520 2.1891e-16

8 40 2100 4.8116e-18

9 50 3640 4.6012e-14

10 100 10200 3.2312e-15

The results above show the success of Algorithm 4.1 to train the given network models with less

error. Therefore, it can be applied successfully in this area of study.

5. Conclusions

In this paper, we proposed a new conjugate gradient method for solving unconstrained

26863

AIMS Mathematics Volume 10, Issue 11, 26844–26866.

optimization problems. Independently of any line search, the sufficient descent property was proved.

Moreover, the global convergence of the proposed method was established when it is applied under

the Wolfe or strong Wolfe line searches. To show the efficiency and robustness of the proposed

method in practice, it was compared with the FR, CD, DY, and PRP methods, showing better

performance. Furthermore, with remarkable success, the new method was applied to train some

two-layer neural network models, each with two outputs.

However, a limitation of this study remains: to define a selection strategy for the parameter μ.

To overcome this limitation, future research will explore the adaptive Barzilai-Borwein rule for μ

and combine it with quasi-Newton, which would further enhance the performance of the proposed

method.

Author contributions

Osman Omer Osman Yousif: conceptualization, methodology, formal analysis, writing-original

draft; Mohammed A. Saleh: investigation, resources, writing-review & editing, validation,

supervision, software, funding; Abdulgader Z. Almaymuni: project administration, visualization,

writing-review & editing, software. All authors have read and approved the final version of the

manuscript for publication.

Use of Generative-AI tools declaration

We declare that we have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The Researchers would like to thank the Deanship of Graduate Studies and Scientific Research

at Qassim University for financial support (QU-APC-2025).

Conflict of interest

The authors declare there are no conflicts of interest.

References

1. P. Wolfe, Convergence conditions for ascent methods, SIAM Rev., 11 (1969), 226–235.

https://doi.org/10.1137/1011036

2. P. Wolfe, Convergence conditions for ascent methods. II: Some corrections, SIAM Rev., 13

(1971), 185–188. https://doi.org/10.1137/1013035

3. R. Fletcher, C. M. Reeves, Function minimization by conjugate gradients, Compute. J., 7 (1964),

149–154. https://doi.org/10.1093/comjnl/7.2.149

4. R. Fletcher, Practical method of optimization, New York: Wiley Inter science Publication, 2000.

https://doi.org/10.1002/9781118723203

5. Y. H. Dai, Y. Yuan, A nonlinear conjugate gradient with strong global convergence properties,

SIAM J. Optim., 10 (1999), 177–182. https://doi.org/10.1137/S1052623497318992

https://doi.org/10.1137/1011036
https://doi.org/10.1137/1013035
https://doi.org/10.1093/comjnl/7.2.149
https://doi.org/10.1002/9781118723203
https://doi.org/10.1137/S1052623497318992

26864

AIMS Mathematics Volume 10, Issue 11, 26844–26866.

6. M. R. Hestenes, E. Steifel, Method of conjugate gradient for solving linear equations, J. Res.

Nat. Bur. Stand., 49 (1952), 409–436. https://doi.org/10.6028/jres.049.044

7. B. T. Polyak, The conjugate gradient method in extreme problems, USSR Comp. Math. Math.

Phys., 9 (1969), 94–112. https://doi.org/10.1016/0041-5553(69)90035-4

8. E. Polak, G. Ribiere, Note sur la convergence de directions conjugees, Revue française

d'informatique et de recherche opérationnelle. Série rouge, 3 (1969), 35–43.

9. Y. Liu, C. Storey, Efficient generalized conjugate gradient algorithms, part 1: theory, J. Comput.

Appl. Math., 69 (1991), 129–137. https://doi.org/10.1007/BF00940464

10. A. Abdelrahman, O. O. O. Yousif, M. Mogtaba, M. K. Elbahir, Global convergence of nonlinear

conjugate gradient coefficients with inexact line search, Sci. J. King Faisal Univ., 22 (2021),

86–91. https://doi.org/10.37575/b/sci/210058

11. A. Abdelrahman, M. Mohammed, O. O. O. Yousif, M. K. Elbahir, Nonlinear conjugate gradient

coefficients with exact and strong Wolfe line searches techniques, J. Math., 2022 (2022),

1383129. https://doi.org/10.1155/2022/1383129

12. O. Omer, M. Mamat, A. Abashar, M. Rivaie, The global convergence properties of a conjugate

gradient method, AIP Conf. Proc., 1602 (2014), 286–295. https://doi.org/10.1063/1.4882501

13. O. Omer, M. Rivaie, M. Mamat, Z. Amani, A new conjugate gradient method with sufficient

descent without any line search for unconstrained optimization, AIP Conf. Proc., 1643 (2015),

602–608. https://doi.org/10.1063/1.4907500

14. M. Rivaie, M. Mamat, L. W. June, I. Mohd, A new class of nonlinear conjugate gradient

coefficient with global convergence properties, Appl. Math. Comput., 218 (2012), 11323–11332.

https://doi.org/10.1016/j.amc.2012.05.030

15. O. Omer, M. Rivaie, M. Mamat, A. Abdalla, A new conjugate gradient method and its global

convergence under the exact line search, AIP Conf. Proc., 1635 (2014), 639–646.

https://doi.org/10.1063/1.4903649

16. Z. Dai, F. Wen, A modified CG-DESCENT method for unconstrained optimization, J. Comput.

Appl. Math., 235 (2011), 3332–3341. https://doi.org/10.1016/j.cam.2011.01.046

17. O. O. O. Yousif, R. Ziadi, M. A. Saleh, A. Z. Almaymuni, Another updated parameter for the

Hestenes-Stiefel conjugate gradient method, Int. J. Anal. Appl., 23 (2025), 10.

https://doi.org/10.28924/2291-8639-23-2025-10

18. O. O. O. Yousif, M. A. Saleh, Another modified version of RMIL conjugate gradient method,

Appl. Nume. Math., 202 (2024), 120–126. https://doi.org/10.1016/j.apnum.2024.04.014

19. D. Touati-Ahmed, C. Storey, Efficient hybrid conjugate gradient techniques, J. Optim. Theory

Appl., 64 (1990), 379–397. https://doi.org/10.1007/BF00939455

20. Y. H. Dai, Y. Yuan, An efficient hybrid conjugate gradient method for unconstrained

optimization, Ann. Oper. Res., 103 (2001), 33–47. https://doi.org/10.1023/A:1012930416777

21. N. Andrei, Another hybrid conjugate gradient algorithm for unconstrained optimization, Numer.

Algor., 47 (2008), 143–156. https://doi.org/10.1007/s11075-007-9152-9

22. Z. Meng, B. Keshtegar, Adaptive conjugate single-loop method for efficient reliability-based

design and topology optimization, Comput. Methods Appl. Mech. Eng., 344 (2019), 95–119.

https://doi.org/10.1016/j.cma.2018.10.009

23. G. Zoutendijk, Nonlinear programming computational methods, In: Integer and nonlinear

programming, North Hollad, Amsterdam, 1970, 37–86.

https://doi.org/10.6028/jres.049.044
https://doi.org/10.1016/0041-5553(69)90035-4
https://doi.org/10.1007/BF00940464
https://doi.org/10.37575/b/sci/210058
https://onlinelibrary.wiley.com/doi/abs/10.1155/2022/1383129
https://onlinelibrary.wiley.com/doi/abs/10.1155/2022/1383129
https://doi.org/10.1155/2022/1383129
https://doi.org/10.1063/1.4882501
https://doi.org/10.1063/1.4907500
https://doi.org/10.1016/j.amc.2012.05.030
https://doi.org/10.1063/1.4903649
https://doi.org/10.1016/j.cam.2011.01.046
https://doi.org/10.28924/2291-8639-23-2025-10
https://doi.org/10.1016/j.apnum.2024.04.014
https://doi.org/10.1007/BF00939455
https://doi.org/10.1023/A:1012930416777
https://doi.org/10.1007/s11075-007-9152-9
https://doi.org/10.1016/j.cma.2018.10.009

26865

AIMS Mathematics Volume 10, Issue 11, 26844–26866.

24. M. J. D. Powell, Convergence properties of algorithm for nonlinear optimization, SIAM Rev., 28

(1986), 487–500. https://doi.org/10.1137/1028154

25. M. Al-Baali, Descent property and global convergence of Fletcher-Reeves method with inexact

line search, IMA. J. Numer. Anal., 5 (1985), 121–124. https://doi.org/10.1093/imanum/5.1.121

26. G. Liu, J. Han, H. Yin, Global convergence of the fletcher-reeves algorithm with inexact line

search. Appl. Math., 10 (1995), 75–82. https://doi.org/10.1007/BF02663897

27. L. Zhang, W. Zhou, D. Li, Global convergence of a modified Fletcher–Reeves conjugate

gradient method with Armijo-type line search, Numer. Math., 104 (2006), 561–572.

https://doi.org/10.1007/s00211-006-0028-z

28. X. Li, W. Zhang, X. Dong, A class of modified FR conjugate gradient method and applications

to non-negative matrix factorization, Comput. Math. Appl., 73 (2017), 270–276.

https://doi.org/10.1016/j.camwa.2016.11.017

29. G. Yuan, X. Lu, A modified PRP conjugate gradient method, Ann. Oper. Res., 166 (2009), 73–90.

https://doi.org/10.1007/s10479-008-0420-4

30. J. C. Gilbert, J. Nocedal, Global convergence properties of conjugate gradient methods for

optimization, SIAM J. Optim., 2 (1992), 21–42. https://doi.org/10.1137/0802003

31. Z. Wei, G. Li, L. Qi, New nonlinear conjugate gradient formulas for large-scale unconstrained

optimization problems, Appl. Math. Comput., 179 (2006), 407–430.

https://doi.org/10.1016/j.amc.2005.11.150

32. W. W. Hager, H. Zhang, A new conjugate gradient method with guaranteed descent and an

efficient line search, SIAM J. Optim., 16 (2005), 170–192. https://doi.org/10.1137/030601880

33. J. Sun, J. Zhang, Global convergence of conjugate gradient methods without line search, Ann.

Oper. Res., 103 (2001), 161–173. https://doi.org/10.1023/A:1012903105391

34. O. O. O. Yousif, A. Abdelrahman, M. Mohammed, M. A. Saleh, A sufficient condition for the

global convergence of conjugate gradient methods for solving unconstrained optimisation

problems, Sci. J. King Faisal Univ., 23 (2022), 106–112. https://doi.org/10.37575/b/sci/220013

35. O. O. O. Yousif, M. A. Y. Mohammed, M. A. Saleh, M. K. Elbashir, A criterion for the global

convergence of conjugate gradient methods under strong Wolfe line search, J. King Saud

Univ.-Sci., 34 (2022), 1–7. https://doi.org/10.1016/j.jksus.2022.102281

36. N. Andrei, An unconstrained optimization test functions collection, Adv. Model. Optim., 10

(2008), 147–161.

37. E. D. Dolan, J. J. Moré, Benchmarking optimization software with performance profile, Math.

Prog., 91 (2002), 201–213. https://doi.org/10.1007/s101070100263

38. Z. Sabir, H. A. Wahab, S. Javeed, H. M. Baskonus, An efficient stochastic numerical computing

framework for the nonlinear higher order singular models, Fractal Fract., 5 (2021), 176.

https://doi.org/10.3390/fractalfract5040176

39. Z. Sabir, M. A. Z. Raja, C. M. Khalique, C. Unlu, Neuro-evolution computing for nonlinear

multi-singular system of third order Emden–Fowler equation, Math. Comput. Simul., 185 (2021),

799–812. https://doi.org/10.1016/j.matcom.2021.02.004

40. B. O. Wang, J. F. Gomez-Aguilar, Z. Sabir, M. A. Z. Raja, W. F. Xia, H. A. D. I. Jahansh, et al.,

Numerical computing to solve the nonlinear corneal system of eye surgery using the capability

of Morlet wavelet artificial neural networks, Fractals, 30 (2022), 2240147.

https://doi.org/10.1142/S0218348X22401478

https://doi.org/10.1137/1028154
https://doi.org/10.1093/imanum/5.1.121
https://doi.org/10.1007/BF02663897
https://doi.org/10.1007/s00211-006-0028-z
https://doi.org/10.1016/j.camwa.2016.11.017
https://doi.org/10.1007/s10479-008-0420-4
https://doi.org/10.1137/0802003
https://doi.org/10.1016/j.amc.2005.11.150
https://doi.org/10.1137/030601880
https://doi.org/10.1023/A:1012903105391
https://doi.org/10.37575/b/sci/220013
https://doi.org/10.1016/j.jksus.2022.102281
https://doi.org/10.1007/s101070100263
https://doi.org/10.3390/fractalfract5040176
https://doi.org/10.1016/j.matcom.2021.02.004
https://doi.org/10.1142/S0218348X22401478

26866

AIMS Mathematics Volume 10, Issue 11, 26844–26866.

41. I. A. T. Hashem, F. A. Alaba, M. H. Jumare, A. O. Ibrahim, A. W. Abulfaraj, Adaptive stochastic

conjugate gradient optimization for backpropagation neural networks, IEEE Access, 12 (2024),

33757–33768. https://doi.org/10.1109/ACCESS.2024.3370859

42. O. O. O. Yousif, R. Ziadi, A. Z. Almaymuni, M. A. Saleh, An improved version of

Polak-Ribière-Polyak conjugate gradient method with its applications in neural networks

training, Electron. Res. Arch., 33 (2025), 4799–4815. https://doi.org/10.3934/era.2025216

©2025 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (https://creativecommons.org/licenses/by/4.0)

https://doi.org/10.1109/ACCESS.2024.3370859
https://doi.org/10.3934/era.2025216

