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Abstract: In the last decades, conjugate gradient methods have gained important applications in
various scientific areas due to their low memory requirements and ability to solve problems of high
dimensions. When analyzing a conjugate gradient method, the descent property of the search
directions is always required, as it ensures that the search for the minimizer is in the correct direction.
In this paper, we proposed a conjugate gradient method that always generates descent search
directions under all line searches techniques. Moreover, we established the global convergence of the
proposed method when it is applied under Wolfe or strong Wolfe line search. At the same time, to
show the performance of the proposed method in practical computation, we compared it with other
well-known methods and then applied it to train two-layer neural network models. The numerical
results show that the proposed method is efficient.
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1. Introduction

The conjugate gradient (CG) methods have gained significant attention in recent years, due to
their wide applicability for solving linear and nonlinear unconstrained optimization problems.
Moreover, their favorable properties, such as global convergence and low memory requirements,
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have qualified them to solve problems in diverse areas of science, such as data estimation, image
restoration, signal processing, and neural network training.
In this paper, we consider unconstrained optimization problems,

min f(x), (1.1)

XERD

where f: R™ = R is a continuously differentiable function.
To solve problem (1.1), CG methods use the following iterative expression:

Xk+1 = Xk + O(kdk, k= 0,1,2, ey (12)

where oy is the step length in the search direction dy. The step length oy is computed using exact
or inexact methods called line searches. In the exact line search, oy is obtained in the direction dj
by the rule

f(Xk + O(kdk) = m1(r)1 f(Xk + O(dk). (13)
o=

Equation (1.3) simply means that the orthogonality condition
grdi_1 =0, (1.4)

is satisfied, where g, represents the gradient of the objective function f at the value xy.

Since it is difficult in practice to compute oy using formula (1.3), the inexact line search is
introduced to compute approximate values for ay. The Wolfe and strong Wolfe line searches are
examples of the inexact line search and are often used in practice. In Wolfe line search [1,2], oy
satisfies the following two conditions:

f(xi + ogedy) < f(x5) + Sagydyc, (1.5)
|lg(x + ardi) Tdy | = ogiedy. (1.6)
In strong Wolfe, ay is chosen to satisfy condition (1.5) and
|lg(x + ardi) Tdy | < olgkdyl, (1.7)
where 0 < § < o <1, and dy is the search direction, which is given by:

_(—8k ifk =0,
e = {—gk + Brd g, ifk > 1. (1.8)

The factor i determines how the CG methods differ. Some well-known formulas are attributed to

Fletcher-Reeves (FR) [3]. Other formulas are conjugate descent (CD) [4] and Dai-Yuan (DY) [5].
These formulas are given as follows:

FR _ _llekl® aep _ _ ekl BRY = llgxll?
k lge_alI2” FK di_gk-1 (gk—8k-1)Tdk—1"

Additionally, Hestenes-Stiefel (HS) [6], Polak-Ribiere-Polyak (PRP) [7,8], and Liu-Storey (LS) [9]
are well-known CG methods, which provide better practical results. For more formulas for the
coefficient f, see [10—-12].

In inexact line search, to guarantee that every search direction generated by a CG method is
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descent, the sufficient descent property
gidy < —Cllgkll?>, k=0and C > 0, (1.9)

is needed.

Due to the exceptional convergence properties of CG methods, several studies have been
carried out to propose new CG methods [13-15], to modify existing CG methods for better
performance [16—18], or to combine more than one CG method [19-21]. Additionally, the CG
methods can be integrated with other methods, such as reliability-based design optimization, in order
to enhance their efficiency [22]. The FR CG method is the earliest method derived to solve linear and
nonlinear unconstrained optimization problems. Hence, it received significant attention from many
authors. In 1970, Zoutendijk [23] proved that the FR method is always convergent for general
non-convex functions. However, in 1977, under the exact line search, Powell [24] obtained
remarkable results showing that the FR method could continuously produce small steps and hence
could cycle without reaching the solution point. In 1985, under the strong Wolfe line search,
Al-Baali [25] proved the sufficient descent property and the global convergence of the FR method
when o < 1/2. These results were extended to o = 1/2 by Liu et al. [26] in 1995. Although the
FR method is globally convergent, it has a slow convergence speed. To address this issue, many
methods have been proposed in the literature as modifications or enhancements of the FR method,
aiming to improve its efficiency and robustness in practical applications [27,28]. Besides the FR
method, classical methods, namely, CD, DY, HS, LS, and PRP, have received more attention for
better convergence results [29-31]. Furthermore, the PRP method’s self-restarting feature, which
helps prevent short steps and guarantees improved overall performance on non-convex problems,
makes it frequently used in practice.

For more references of studies that have described recent CG methods and analyzed convergence
properties, please refer to Hager and Zhang [32], Sun and Zhang [33], and Yousif et al. [34,35].

The classical FR, CD, DY, PRP, HS, and LS CG methods form a base for further developments
and hybridizations, aimed at improving the method’s theoretical convergence and numerical
performance. Due to the shortcoming in the FR, CD, and DY methods regarding the poor practical
results and the uncertain convergence of the PRP, HS, and LS when coupled with strong Wolfe line
search, in this study, we aim to introduce a CG method that mainly (1) possesses the sufficient
descent property that is independently of any line search; (2) is globally convergent when coupled
with strong Wolfe line search or with Wolfe line search; and (3) has better numerical results than the
FR, CD, DY, and PRP.

The remaining sections of this study are organized as follows: In Section 2, we propose a CG
coefficient, which has the same numerator as FR, CD, and DY coefficients, along with an algorithm.
In Section 3, we show that the new algorithm satisfies the sufficient descent property under all line
searches. At the same time, we prove its global convergence under Wolfe and strong Wolfe line
searches. To show the performance of the new method in practice, it was compared with other
well-known CG methods and it is then applied to train two-layer neural network models in Section 4.
Section 5 is devoted to the conclusion.

2. Proposed method and algorithm

It is well known that the FR, CD, and DY methods have good convergence results in theory, but
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their performance in practice is poor. This motivated us to make a little change in the denominator of
their formula to obtain a modified version with good convergence results and better numerical results.
We call the modified formula [31? FR which is given by:

OFR llgkll?
= Cu> 1. 2.1
k Wl s | +lge—slldgl” 2.1)

Clearly, under the exact line search condition (1.4), formula (2.1) becomes:

OFR _ ”gk”2
K llgk—1llldk_1ll
Also, it is clear from (2.1) that:
OFR  __llel®
K = gy Mldiey I 2.2)
and
OFR . _ llgkll®
T @3)

With this new formula for the coefficient By in (2.1), we have a new CG method, which we
call OFR method. Later, we show that the sufficient descent property and the global convergence of
the OFR essentially depend on inequalities (2.2) and (2.3).

Since the implementation of the CG methods under the inexact line searches is easier and less
expensive when compared with the exact line search, we chose to implement the OFR method under
the most well-known inexact line searches, which are the Wolfe and the strong Wolfe. This can be
described by the following algorithm.

Algorithm 2.1: OFR under Wolfe and strong Wolfe.
1. Initialization step: choose x, € R", u > 1, and a tolerance & > 0.

Compute the gradient of f at x, and setd, = —g,.

if ||goll < €, then stop.

Set k =0.

Compute oy using Wolfe conditions (1.5)-(1.6) or strong Wolfe conditions (1.5)—(1.7).

If |lgks1]l < €, then stop.

OFR

2

3

4

5

6. Set Xpyq = Xg + ody and gyyq = g Kiy1)-

7

8. Compute By,; using(2.1), and generate dy,; using (1.8).
9

Set k =k+1; go to Step 5.

End of Algorithm 2.1

One of the most interesting properties of Algorithm 2.1 is that whatever the search direction
used, it satisfies the sufficient descent property, besides its global convergence under Wolfe and
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strong Wolfe line searches. These will be proven in the next section.
3. The convergence analysis

In this section, based on some assumptions on the objective function, we prove the sufficient
descent property and the global convergence of the new CG method that is described by Algorithm 2.1.
First, we prove that, in each iteration, Algorithm 2.1 generates a descent direction when it is applied
under any line search method.

Theorem 3.1. Under all line searches, Algorithm 2.1 satisfies the sufficient descent property.
Proof. Replacing By in Eq (1.8) by 1? FRand then multiplying the resulting equation by gE, we get
grdi = —llgkll® + BR N grdi—1-

Applying Cauchy-Schwartz inequality, we get:
gkdic < —llgill* + [BR™||gk i1 -

2
Since PR < % as in (2.3),we get

grdy < —llgill? +
which means

1
ghdi < — (1-3) el
m
Hence,
grd < —Cligll,

where C=1 — l.
u

Therefore, the result comes true. 0
To prove the global convergence of Algorithm 2.1, we assume the following assumptions on the
objective function f.

Assumption 3.1.
(1) Define Ly = {x € R" : f(x) < f(x()} and assume that L is bounded for all initial points x,.
(2) In some neighborhood NV of L, f(x) is differentiable and its gradient g is Lipschitz continuous,
namely, there exists a constant L > 0 such that ||g(x) — g(y)|| < L|lIx —y|l Vx,y € V.
Based on Assumption 3.1, Zoutendijk [23] proved the following condition.

Lemma 3.1. Let Assumption 3.1 be satisfied. Then any CG method in the forms (1.2)—(1.8) where
dy satisfies:

grdy <0, forall k,
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and oy is computed by Wolfe or strong Wolfe line searches, then

Zoo_ (g']I;dk)Z < 0. (31)

k=0 q, 2

From the sufficient descent condition (1.9), we get

C?lgll* < (gFdy)’, forall k= 0,
which leads to

Z ”gk” o) (gEdk)z (3 2)
k=04, 1|2 = c2 k=0 gz :

Combining (3.1) and (3.2) together, we come to

llgill*
Zk Olld 12 < oo, (33)

Therefore, we deduce that under the sufficient descent property and the Wolfe or strong Wolfe line
search, the CG method in the form (1.2)—(1.8) satisfies (3.3).
The following lemma is useful for the proof of the global convergence.

Lemma 3.2. Suppose that {gy} and {dy} are generated by Algorithm 2.1. Then there exists a
positive constant w > 1 such that:

grdic = —ollgll%. (3.4)

Proof. Replacing [ in (1.8) by BOFR and then multiplying the resulting equation by gi, we get

grdi = —llgill? + B R grdy 1.

After applying the triangle inequality, we obtain:

lgrdi| < llgkll® + |BER|| gk dic—1]-

From the fact that is given in (2.3), which states that 0 < BOFR % we get
kYk-1
g < (1+) Il
which means
T 2 1
grdik = —ollgkll, w=1 +E-
Therefore, we come to the required result. 0

Theorem 3.3. Suppose that Assumption 3.1 holds. Then Algorithm 2.1 is globally convergent, that
18,

llim inf]|gy |l = 0. (3.5
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Proof. We will use the proof by contradiction technique, in which we assume that the opposite of (3.5)
is true. This means that there exists a real number y > 0 and an integer n such that:

llgkll =y, forallk> n,
hence

1 1
S —_
llgxllz = v?

, forallk = n. (3.6)

BOFR

Returning to (1.8), replacing By by and then squaring both sides, we get

2
ldill> = =llgill* = 2 giedie + (BR™™) Nl di—a 1. (3.7)
Using (3.4), we come to

2
ldill® < ~llgill® + 2wllgicll* + (BR™) k1117,

which straightforward leads to

2
ldil1? < Tllgill? + (BR™™) Ild—1 %, where T = 2w — 1.

From the fact that is given in (2.2), which states that 0 < BOFR < % we get
k-1 k-1

gz )’
ldill? < Tllgkll® + <— ldx—111%

llgk—1 1l dx—1]l
that 1s
llgxll*
ldkll® < tligkll® + 57—
lgk—-11I2

Dividing both sides of the above inequality by ||gi|*, we get

dilI? 1
[l dkll < =T _
llgkll* — llgkll?  llgk-1II2

(3.8)

Since e < Z,for allk = n (see (3.6)), then T < 7 forall k = n + 1, hence (3.8)
k—
ldll® _t+1 ks n+1
< , orallk >n )
llgkll* = v
This means
ligell* Y2
h = )
Tag? =& Wheret =T

Taking the sum from n+ 1 to m to both sides, we get
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m llgel*
28kl - —
Zk=n+1 dgllz = (m n)(
Since all terms of the above series are positive, it is clear that

o el _ s m llgselI* .
- == = [im _ == > ]lim (m —n){ = oo,
Lk=n+1 ldillz ~ mooo & k=041 q, |2 m—>oo( )G

Now because

o llgkll* 0 llgill*
Zk=0 > Zk=n+1 ”dkuz’

lldklI*
we have
oo lgkl*
20 g, 7 ~
This contradicts (3.3). Therefore, (3.5) is proved. d

4. Numerical experiment

In this section, we conduct two numerical experiments that show the ability of the new CG
method in practice.

4.1. Comparison with other CG methods

In this subsection, to show the efficiency and robustness of the method and to support the
theoretical proofs that are in Section 3, a numerical experiment based on comparing the new method
(OFR method) that is described by Algorithm 2.1 with FR, CD, DY, and PRP is carried out. Then, a
MATLAB-coded program is run for these methods when they are all implemented under strong Wolfe
line search with the parameters § = 107 and o = 107! and with stopping criteria ||gy|| < 107°.
The parameter p in Algorithm 2.1 was set to 2. Most of the test problems were chosen from [36], and
each was implemented with two different initial points. To show robustness, test problems were
implemented under low, medium, and high dimensions, namely 2, 4, 10, 50, 100, 500, 1000, 5000,
and 10000. The comparison was based on the number of iterations (NI), the time required to run each
test problem (CPU time), the number of function evaluations (NF), and the number of gradient
evaluations (NG). Table 1 shows the numerical computation results. In Table 1, the term “FAIL”
means that a method failed to solve a test problem or the number of iterations exceeded 5000.
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26852

Table 1. Numerical experiment results.

OFR FR CD DY PRP
No.  Tegt problem Dim. Initial point
NI/CPU/FN/GN NI/CPU/FN/GN NI/CPU/EN/GN NI/CPU/EN/GN NI/CPU/EN/GN
1 THREE-HUMP 2 (2,2) 12/0.02/217/71 11/0.02/190/91 13/0.02/267/112 16/0.03/398/115 13/0.02/362/86
(5,5) 11/0.02/180/75 FAIL FAIL 13/0.02/183/48 11/0.02/306/88
2 GENERALIZED 2 (0,0) 12/0.01/56/32 64/0.03/273/146 96/0.04/376/214 39/0.03/189/95 FAIL
‘WHITE & HOLST (10,10) 107/0.05/588/284 419/0.28/4170/1110 FAIL 291/0.24/3801/842 49/0.03/548/207
3 SIX-HUMP 2 (1,1) 8/0.01/26/17 9/0.01/29/18 9/0.01/29/18 6/0.01/20/12 9/0.02/22/14
(10,10) 18/0.02/83/41 139/0.04/477/295 152/0.05/518/320 86/0.03/299/184 15/0.02/53/24
4 TRECANNI 2 (1,1) 16/0.02/52/35 63/0.03/194/130 66/0.03/204/137 61/0.03/189/127 16/0.02/22/15
(10.10) 8/0.01/34/18 8/0.01/34/18 8/0.01/34/18 8/0.01/34/18 8/0.01/32/22
5 ZETTLE 2 (1,1) 13/0.02/44/31 28/ 0.03/108/70 29/0.03/108/70 24/0.03/94/61 14/0.03/40/30
(10,10) 11/0.02/46/30 27/0.03/92/66 24/0.03/85/59 23/0.03/83/56 11/0.02/48/33
6 BOOTH 2 (0,0) 2/0.01/6/4 2/0.01/6/4 2/0.01/6/4 2/0.01/6/4 2/0.01/6/4
(10,10) 2/0.01/6/4 2/0.01/6/4 2/0.01/6/4 2/0.01/6/4 2/0.01/6/4
7 LEON 2 (0,0) 12/0.01/56/32 63/0.04/269/143 96/0.05/376/214 39/0.03/189/95 FAIL
(10.10) 107/0.04/593/281 455/0.23/4279/1187 550/0.38/7386/1546  291/0.20/3801/842 49/0.03/548/207
8 CUBE 2 (-1.2,1) 44/0.02/230/112 141/0.05/555/309 FAIL 23/0.02/132/58 840/0.43/3167/1941
(0,0) 12/0.01/56/32 64/0.03/273/146 96/0.04/376/214 39/0.03/189/95 528/0.28/2049/1222
9 NONDIA 2 (-1,-1) 33/0.02/147/80 38/0.03/161/88 76/0.04/290/169 14/0.01/72/40 515/0.24/1783/1162
(10,10) 41/0.03/228/103 272/0.19/3009/682 FAIL 407/0.23/3512/946 984/0.49/3653/2226
10 LIARWHD 2 (4,4) 265/0.41/69951099 FAIL 112/0.14/2026/355 FAIL FAIL
(10,10) 256/0.44/7565/1167 FAIL 107/0.13/2011/380 FAIL 19/0.06/464/148
11 BIGGSB1 4 (0,0,...) 2/0.01/6/4 2/0.01/6/4 2/0.01/6/4 2/0.01/6/4 2/0.01/6/4
(10,10,...) 2/0.01/6/4 2/0.01/6/4 2/0.01/6/4 2/0.01/6/4 2/0.01/6/4
12 EXTENDED 4 (0,0,0,0) 145/0.05/508/308 3921/1.33/22563/8809 FAIL FAIL 106/0.04/428/243
WOOD (5,5,5,5) 260/0.08/1057/580 FAIL FAIL 2387/0.65/9716/5166 157/0.05/697/383
13 TRIDIA 4 (1,1,...) 41/0.02/123/82 4/0.01/12/9 4/0.01/12/9 4/0.01/12/9 4/0.01/12/9
(10,10,...) 57/0.03/171/114 4/0.01/12/9 4/0.01/12/9 4/0.01/12/9 4/0.01/12/9
14 GENERALIZED 4 (-1.2,1,...) 1758/0.40/5503/3600  81/0.05/373/182 142/0.06/553/306 197/0.08/795/441 840/0.20/4751/2191
ROCENBROCK (2,2,...) 1964/0.44/6080/4042  145/0.06/587/315 FAIL 194/0.07/734/411 854/0.29/4896/2241
15 DIXON3DQ 10 (-1,-1,...) 67/0.03/202/149 5/0.01/17/12 5/0.01/17/12 5/0.01/17/12 500/0.35/1508/1009
(10,10,...) 74/0.04/223/164 5/0.01/17/12 5/0.01/17/12 5/0.01/17/12 500/0.35/1508/1009
16 DIXON & PRICE 10 (1,1,...) 105/0.04/342/220 396/0.11/1373/852 FAIL 390/0.10/1351/838 110/0.05/40/26
(10,10,...) 91/0.04/365/208 1062/0.27/3675/2261 FAIL 1028/0.27/3613/2186 95/0.04/165/101
17 GENERALIZED 10 (1,1,...) 11/0.02/40/29 12/0.02/45/32 12/0.02/46/33 12/0.02/45/32 9/0.02/89/44
QUARTIC (10,10,...) 94/0.15/2279/2004 26/0.04/561/499 FAIL 30/0.05/560/417 19/0.09/387/190
18 EDENSCH 10 (0,0,...) 26/0.02/84/54 24/0.02/78/50 24/0.02/78/50 24/0.02/78/50 25/ 0.02/101/56
(-1,-1,...) 32/0.03/124/71 33/0.03/126/74 35/0.03/132/78 32/0.03/123/72 28/0.03/183/68
19 FLETCHER 10 (0,0,...) 86/0.03/333/183 1128/0.33/5399/2470 FAIL 1152/0.34/5512/2538 274/0.21/1319/664
(10,10,...) 145/0.06/678/321 1902/0.52/8766/4196 FAIL 2684/0.72/11998/5867  217/0.14/845/493
Continued on next page
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No. Initial point ~ OFR FR CD DY PRP
Test problem Dim.
NI/CPU/EN/GN NI/CPU/EN/GN NI/CPU/EN/GN NI/CPU/EN/GN NI/CPU/EN/GN
20 POWER 10 (1,1,...) 147/0.04/441/294 10/0.01/30/20 10/0.01/30/20 10/0.01/30/20 67/0.03/201/134
(10,10,...) 169/0.05/507/338 10/0.01/30/20 10/0.01/30/20 10/0.01/30/20 67/0.03/201/134
21 HAGER 50 (1,1,...) 21/0.02/64/43 21/0.02/61/41 21/0.02/61/41 21/0.02/61/41 57/0.05/191/125
(5,5,...) 35/0.03/119/81 203/0.09/721/423 FAIL FAIL 66/0.06/200/131
22 RAYDAN1 50 (1,1,...) 72/0.04/217/213 47/0.03/142/137 47/0.03/142/137 47/0.03/142/137 47/0.03/144/137
(-2,2,...) 84/0.04/254/243 91/0.04/274/185 102/0.05/307/205 93/0.05/280/188 93/0.06/325/286
23 GENERALIZED 50 (2,2,...) 24/0.02/75/50 27/0.02/85/56 29/0.02/91/60 27/0.02/85/57 23/0.02/76/50
TRIDIAGONAL 1 (10,10,...) 31/0.03/116/68 43/0.03/153/92 48/0.03/167/102 43/0.03/152/91 27/0.03/112/68
24 SUM SQUARE 50 (-1,-1,...) 91/0.04/273/182 39/0.02/117/78 39/0.02/117/78 39/0.02/117/78 10/0.01/30/20
(10.10,...) 103/0.04/309/206 41/0.03/123/82 41/0.03/123/82 41/0.03/123/82 10/0.01/30/20
25 SPHERE 50 (1,1,...) 1/0.01/3/2 1/0.01/3/2 1/0.01/3/2 1/0.01/3/2 1/0.01/3/2
(10,10,...) 1/0.01/3/2 1/0.01/3/2 1/0.01/3/2 1/0.01/3/2 1/0.01/3/2
26 ARWHEAD 100 (1,1,...) 11/0.02/44/24 FAIL 11/0.02/44/24 11/0.02/44/24 5/0.01/23/13
(10,10,...) 16/0.02/83/34 FAIL FAIL FAIL 9/0.02/61/25
27 RAYDAN1 100 (1,1,...) 103/0.06/313/217 68/0.04/206/137 68/0.04/206/137 68/0.04/206/137 68/0.04/206/137
(5,5,...) 425/0.17/1296/905 9237/5.20/45913/19066 FAIL FAIL 854/0.29/4896/2241
28 ENGVAL1 100 (2,2,...) 26/0.03/86/56 25/0.03/132/53 24/0.02/89/52 23/0.02/77/50 27/0.03/88/59
(-1,1,...) 26/0.03/85/54 27/0.03/88/56 26/0.03/85/54 FAIL 27/0.03/93/61
29 EXTENDED 100 (1.1,0.1,...) 40/0.04/202/107 2709/3.73/36332/6216 FAIL FAIL FAIL
MARATOS (1,1,...) 41/0.04/189/106 37/0.04/160/87 23/0.03/177/58 FAIL 15/0.03/104/48
30 EXTENDED 100 (-1,1,...) 13/0.02/51/29 16/0.03/61/36 16/0.03/59/34 16/0.03/59/34 26/0.04/175/81
PENALTY (1,11,...) 23/0.03/103/56 832/1.19/11334/1912 FAIL FAIL 24/0.03/112/66
31 GENERALIZED 500 (1,1,...) 38/0.06/130/80 FAIL 32/0.05/103/64 FAIL 14/0.03/47/36
TRIDIAGONAL 2 (10,10,...) 69/0.11/299/157 803/2.96/11227/1486 FAIL FAIL 48/0.08/191/136
32 QUARTC 500 (2,2,...) 3/0.02/31/26 3/0.02/31/26 3/0.02/31/26 3/0.02/31/26 9/0.03/89/44
(10,10,...) 4/0.03/27/19 5/0.03/47/36 5/0.03/47/36 5/0.03/46/36 19/0.09/387/19
33 QF2 500 (0.5,0.5,...) 625/0.63/2047/1314 383/0.41/1321/804 FAIL 379/0.40/1306/793 253/0.56/897/563
(10,10,...) 602/0.62/2049/1274 766/0.87/2977/1633 FAIL FAIL 227/0.60/880/511
34 HIMMELH 500 (0,0,...) 12/0.03/36/24 12/0.03/50/24 12/0.03/36/24 12/0.03/53/27 5/0.02/15/10
(0.5,0.5,...) 9/0.02/27/18 9/0.02/27/18 9/0.02/27/18 9/0.02/27/18 5/0.02/15/10
35 QF1 500 (1,1,...) 471/0.44/1413/942 131/0.14/393/262 131/0.14/393/262 131/0.14/393/262 131/0.27/393/262
(10,10,...) 551/0.51/1653/1102 140/0.17/420/280 140/0.17/420/280 140/0.17/420/280 140/0.30/420/280
36 QP1 1000 (1,1,...) 16/0.05/70/34 FAIL 21/0.08/139/46 FAIL 9/0.04/42/24
(3,3,--+) 20/0.06/99/45 FAIL FAIL 18/0.05/91/40 FAIL
37 PERTURBED 1000 (0.5,05,...) 863/1.32/2589/1726 187/0.30/561/374 187/0.30/561/374 187/0.30/561/374 187/0.61/561/374
QUADRATIC (10,10,...) 1083/1.66/3249/2166  203/0.32/609/406 203/0.32/609/406 203/0.32/609/406 203/0.67/609/406
38 QP2 1000 (1,1,...) 60/0.20/321/140 FAIL FAIL FAIL 40/0.18/481/142
(10,10,...) 50/0.21/357/126 FAIL FAIL FAIL 42/0.20/469/141
Continued on next page
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No. Initial point ~ OFR FR CD DY PRP
Test problem Dim.
NI/CPU/EN/GN NI/CPU/EN/GN NI/CPU/EN/GN NI/CPU/EN/GN NI/CPU/EN/GN
39 DQDRTIC 1000 (3,3,...) 76/0.12/228/152 16/0.04/48/32 16/0.04/48/32 16/0.04/48/32 18/0.06/54/36
(10,10,...) 84/0.13/252/168 16/0.04/48/32 16/0.04/48/32 16/0.04/48/32 23/0.07/69/46
40 EXTENDED 1000 (-1,-1,...) 63/0.58/1192/348 FAIL 98/0.95/1991/667 FAIL 16/0.32/335/149
DENSCHNF (10,10,...) 58/0.48/964/293 FAIL 110/0.99/2091/711 FAIL FAIL
41 FREUDENSTEIN 5000 (0.5,2,...) 18/0.17/72/42 28/0.25/99/60 28/0.25/99/61 28/0.25/99/61 FAIL
& ROTH (2,2,...) 13/0.13/56/29 9/0.10/41/20 30/0.26/108/63 20/0.18/75/43 15/0.16/62/35
42 EXTENDED 5000  (2,2,...) 25/0.41/125/102 566/6.45/1976/1713 596/6.63/2081/1801  565/6.33/1971/1708 14/0.36/72/58
TRIDIAGONAL1 (10,10,...) 39/0.58/171/139 1150/12.66/3964/3446 1149/12.65/3957/34  1149/12.86/3963/3443 13/ 0.33/73/62
43
43 DIAGONAL 4 5000  (1,1,...) 2/0.03/6/5 2/0.03/6/5 2/0.03/6/5 2/0.03/6/5 2/0.03/6/5
(10,10,...) 2/0.03/6/5 2/0.03/6/5 2/0.03/6/5 2/0.03/6/5 2/0.03/6/5
44 EXTENDED 5000 (1,1,...) 9/0.06/28/19 9/0.06/28/19 9/0.06/28/19 9/0.06/28/19 6/0.05/22/16
DENSCHNB (10,10,...) 11/0.10/41/23 85/0.62/278/181 154/1.00/489/322 11/0.09/41/23 8/0.08/34/21
45 EXTENDED 5000  (-1.2,1,...) 27/0.21/120/69 88/0.95/586/209 108/1.17/697/263 213/1.81/987/468 21/0.19/134/67
ROSENBROCK (10,10,...) 44/0.41/239/111 273/4.60/3012/684 FAIL 451/5.90/3643/1033 25/0.36/183/72
46 EXTENDED 10* (1,1,...) 13/0.19/47/29 15/0.21/53/33 15/0.21/53/33 15/0.21/53/33 15/0.25/52/39
HIMMELBLAU (10,10,...) 12/0.18/45/25 12/0.18/45/25 12/0.18/45/25 12/0.18/45/25 12/ 0.19/47/27
47 STRAIT 10* (0.0....) 27/0.35/105/63 39/0.50/140/86 39/0.50/140/86 34/0.47/125/76 18/0.23/90/51
(5,5,...) 37/0.61/173/100 88/1.25/341/209 66/0.91/276/164 64/0.88/264/159 20/0.53/126/59
48 SHALLOW 10* (0,0, ...) 13/0.19/46/34 12/0.16/41/30 11/0.14/38/28 14/0.20/47/35 17/0.23/47/31
(10,10,...) 30/0.38/106/73 360/4.33/1198/749 FAIL 77/1.08/318/177 34/0.37/116/79
49 EXTENDED 10* (1,08, ...) 30/0.86/106/73 95/2.50/297/196 67/1.73/212/139 80/2.15/251/165 14/0.77/70/43
BEALE (2,2, ...) 17/0.60/73/43 106/3.01/369/226 97/2.69/337/207 119/3.35/407/250 9/0.51/49/28
50 EXTENDED 10* (-1.2,1,...) 46/1.42/238/119 157/3.53/602/341 FAIL 31/0.91/156/74 15/1.00/98/47
‘WHITE & HOLST (10,10,...) 118/3.75/633/309 296/20.18/3780/842 544/37.28/7005/152 311/20.60/3861/881 FAIL
0

To show the method with the best performance, we used the technique introduced by Dolan and
Mor¢ [37]. Figures 1-4 display the method’s performance based on NI, CPU, NF, and NG,
respectively.
In Dolan and Moré¢'s performance profile, we plot P, (t) versus t, where:

P, (t) is the probability that a method m has a performance ratio t, where

£ min{tp,m: m € M}'

tom

t,m 1s the result (may be NI, CPU, NF, or NG in our experiment) when a method m is applied

to solve problem p.
Therefore, based on this performance profile, the left side shows the best performance (having
minimum NI, CPU time, NF, and NG), that is, the highest curve corresponds to the best method.
Additionally, the right side measures the percentage of the total number of test problems that are
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successfully solved by the corresponding method.
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Figure 2. The performance based on the CPU time.
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Figure 4. The performance based on the number of gradient evaluations (NG).

It is clear from the left sides of all figures that the PRP has the lowest number of NI, CPU time,
NF, and NG, but it does not solve all test problems. Also, the right sides of all figures show that the
percentage of the test problems that are successfully solved by the OFR method is higher than that of
the remaining methods, and this reflects the robustness of the OFR method. Additionally, it is clear
that the curve of the OFR method is above all other curves. Therefore, we conclude that the OFR
method that is described by Algorithm 2.1 performs better than FR, CD, DY, and PRP methods.

4.2. Training two-layer neural network models

Neural networks (NNs) are machine learning (ML) models that are inspired from the human
brain, mimicking the complex functions. They consist of interconnected units organized in input,
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hidden, and output layers. The units in each layer are connected to units in adjacent layers with
weights. The input layer receives the inputs, multiplies them by the respective weights, and then
sums each unit of the hidden layer. Each unit in the hidden layer performs a transformation on the
sum by applying an activation function. There may be one or multiple hidden layers in an NN model.
The final layer of an NN model produces the outputs of the model. The activation function plays a
crucial role in the model because it introduces non-linearity into the system, enabling the network to
learn more complex patterns. Popular activation functions include the sigmoid, hyperbolic tangent,
and rectified linear unit (ReLU). These functions are used because they have computable derivatives,
making it easier to compute partial derivatives of the error function with respect to individual
weights. The NN model first receives data, and passes it through the forward direction, starting from
the input layer through the hidden layers to the output layer. This process is known as forward
propagation. After forward propagation, the network evaluates its performance using a loss function,
which measures the difference between the actual output and the predicted output.

Neural network models can be applied to solve many problems, including pattern recognition,
classification, clustering, testing for the higher-order nonlinear singular differential model [38],
solving the nonlinear third-order multi-singular Emden—Fowler system of differential equations [39],
solving the bioinformatics problem for the corneal shape model of eye surgery [40], dimensionality
reduction, computer vision, natural language processing (NLP), regression, predictive analysis, etc.

Training NN models means evaluating the values of the weights by minimizing the loss
function. So, training the NN model is the most important task when developing one. Most training
methods adapt an iterative scheme to find the optimal values for the weights vector. Since the loss
function is continuous and differentiable with respect to the weights, then the conjugate gradient
methods can be used to find the optimal solutions. Unlike basic gradient descent methods, which
may oscillate or converge slowly, the conjugate gradient method leverages past gradient information
to determine search directions, leading to faster convergence [41,42]. In this section, we address the
problem of training the NN models with one hidden layer and two outputs, as illustrated in the
following figure (Figure 5):

Inputs-layer<’ Hidden layer<’ Outputs-layer«

Figure 5. Neural network with two layers and two outputs.

The outputs of this network are 0, and o0,, which are given as follows:
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0; = X% wyj hy, 0; = erile*z h;,
where W]-*1 and W]-*2 for j = 1,2, ...,m are the hidden layer weights and

hy = f(z),

where f is an activation function, which, in most cases, is selected to be:

1
1+e~7%

e Sigmoid function: o(z) =

e ReLU (Rectified Linear Unity): ReLU(z) = max(0, z).
eZ_g~Z
eZt+e~Z’

e Hyperbolic tangent: tanh(z) =

In the function h;, z; is defined as follows:
zj = Yis1 WijXi,

where x; is the input and wyj; the input layer weights.

In matrix form, if

X1 Wi Wyp xv"lm Wi, Wi,
X W1 Wy 2m Wi, W,
x=|%2| w= : R 21 22 |
Xn Wn1 Wn2 Wnm Wi Wi,
then
n n
z Wi1Xj f<z Wi1X1>
i=1 i=1
n n h1
Wi X; f Wi, Xi h
wh= | 2 | o gy = | £ 2, ) (< (1
i=1 i=1 H
: hp,
n n
E WimZXj f(Z WimX1>
i=1 i=1
Therefore,
m
E3
* * * * hl Z Wllh]
(01(WrW )) — w T (wTx) = (W11 Wyq v Wm1> hy | _ | i=t
* * * * . m
02(w, w") Wiz Wz v Wpp :
ho/ |\ D wiohy
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Training a neural network means computing the values of the weights. If we suppose that the
target outputs are y; and y,, then the task is to minimize the sum of squared of errors, which is
given by:

E = (0, —y1)?+ (0, —y2)%
which is a continuous function in the weights with partial derivatives with respect to the weights

given by:

JE  OE do; OE do,
aWi]' B 601 anl 602 anl

and

JE  0E do; OE do,
awj; "~ Doy Wi 00, Wi

Since the activation functions, sigmoid o(z), ReLU(z), and tanh (z) are all differentiable and
their derivatives are respectively given by:

1, ifz>0, 1
6(2)(1 — o(2)), {0’ e 2 0 e

then the conjugate gradient methods can be used to update the weights using the iterative formulas

oE . 9E
Wij < Wjj +naTij’ Wij < Wj; +T]W—;]_,

where 1 is the learning rate; hence, it can be computed using the line search methods.
Now, using the sigmoid activation function o, we can describe how our new method can be
used to compute the weights that are in the following algorithm.
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Algorithm 4.1: Training neural network using OFR CG method.

Step 1.

Step 2.

Step 3.
Step 4.
Step 5.
Step 6.

Step 7.
Step 8.

Step 9.

Step 10.
Step 11.

Step 12.
Step 13.

Inputs: x4, Xy, ..., Xy. Initial weights: Wi]-,wfi]-, wherei=1,2,..,n, j=1,2,...,m and
k = 1,2. Target outputs: y,,y,, and a tolerance € > 0.

n

Setz; = Z WijXj, h]- = G(Zj), where o is the sigmoid activation function.

i=1
m m
Seto, = Z wj; hjand o, = Z wj; h;.
j=1 =1

Set E = (0; —y1)? + (02 —y2)%

c . J0E q JE
ompute an -,
Wi awij

Define the gradient vector VE, = (a—E oF

aWi]' ! aw;“]

T
) at the initial weights.
Choose initial search direction dy = —VE; and set j = 0.

If ||VE]|| < g, then stop.

Compute the learning rate n; in the direction d; using the strong Wolfe line search.
Set new weights = old weights + n;d;.

Evaluate the update gradient vector VE;,, at the new weights.

Set dj+1 = _VEj+1 + B]OFRd]

Set j =j+ 1 and return to Step 8.

The end of Algorithm 4.1

To test the ability of Algorithm 4.1, it was coded using MATLAB and run on a PC computer
with an Intel R Core TM 15-2520 M CPU @ 2.50 GHz processor, 4 GB of RAM memory, and a
Windows 10 Professional operating system with a stopping criterion set to ||VE]|| < 1078, to train

two-layer neural network consisting of:

(1)

(ii)
(iii)
(iv)

Two inputs, one hidden layer of three units.
Three inputs, one hidden layer of three units.
Three inputs, one hidden layer of four units.
Four inputs, one hidden layer of five units.

The target outputs are 1 and 0.
The results of the training process, supported by figures, are as follows:
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0.524 0 1< 0,444

0.31<
— o

1<

0.73+
0.25¢ —

Figure 6. A model with 2 inputs and 12 weights. Figure 7. A model with 3 inputs and 15 weights.

1 2 3 7 8 1 2 3 10 11
Initial weights: w = (4 5 6)' w* = ( 9 10) Initial weights: w = (4- 5 6), w' = (12 13>
11 12 7 8 9 14 15

—3.3195 1.3089 2.7894)
—2.0639 4.0298 5.7044/’

2.8048  3.1525 2.5539  2.6836
w* =|-0.4828 -0.9851 w' =|-0.5216 —1.0242

1.3688  0.8429 1.2520 0.7217

—6.0009 0.7114 2.5134
Computed weights: w = —0.9324 4.0921 5.6572 ),

Computed weights: w = (
3.0222 7.2679 8.7235

wTf(wTx) ~ ((1)) wfwTx) = ((1))

Error = 1.6531e-15 Error = 2.3660e-15

Figure 8. A model with 3 inputs and 20 weights. Figure 9. A model with 4 inputs and 30 weights.
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01 1 011 01 1 01 1 01

Initial weights: w = <0-1 101 1>' Initial weights: w=( 1 01 1 01 1)
01 1 011 01 1 01 1 01
1 01 1 01 1

01 1 (0.1 1w

«+_ (101 1 01 1
v _<0.1 1) w =101 1
01 1 01 1

01 1

Computed weights: Computed weights:

—0.0303 0.9008 -—0.0303 0.9008

< 0.0367 0.9518 0.0367 0.9518)
w = k
—0.1122 0.8384 —0.1122 0.8384

0.9328 0.0207 0.9328  0.0207 0.9328
—0.0706 0.7987 -0.0706 0.7987 —0.0706
0.7751 -0.1653 0.7751 —0.1653 0.7751

<0.0871 0.9848 0.0871  0.9848 0.0871)

0.3512  0.2001 03076 —0.0348
._[04575 —0.1338
w* = 0.2870 0.0605
0.3512 0.20010 .
0.4575 —0.1338 w=103076 —0.0348
\0.2870 0.0605/
0.3076 —0.0348
«T 7.y (1 «T 7.8 (1
w* f(w x)~(0) w* f(w x)~(0)
Error =7.0351e-14 Error = 8.4695e-16

An observation on the results of training all models given by Figures 6-9 by using Algorithm 4.1
shows that w* T f(wTx) = (é) with less error. This shows the efficiency of Algorithm 4.1 for

training neural network models.
In addition to the above models, we test Algorithm 4.1 for larger data. The MATLAB command
rand was used to generate random inputs and initial weights. The results are in Table 2.

Table 2. Algorithm 4.1 with larger data.

No. Number of inputs Number of weights Error

1 5 28 3.6422e-15
2 10 60 1.7834e-16
3 15 170 2.6149¢-15
4 20 330 0.0088e-14
5 25 540 1.7801e-16
6 30 960 2.5621e-14
7 35 1520 2.1891e-16
8 40 2100 4.8116e-18
9 50 3640 4.6012e-14
10 100 10200 3.2312e-15

The results above show the success of Algorithm 4.1 to train the given network models with less
error. Therefore, it can be applied successfully in this area of study.

5. Conclusions
In this paper, we proposed a new conjugate gradient method for solving unconstrained
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optimization problems. Independently of any line search, the sufficient descent property was proved.
Moreover, the global convergence of the proposed method was established when it is applied under
the Wolfe or strong Wolfe line searches. To show the efficiency and robustness of the proposed
method in practice, it was compared with the FR, CD, DY, and PRP methods, showing better
performance. Furthermore, with remarkable success, the new method was applied to train some
two-layer neural network models, each with two outputs.

However, a limitation of this study remains: to define a selection strategy for the parameter .
To overcome this limitation, future research will explore the adaptive Barzilai-Borwein rule for p
and combine it with quasi-Newton, which would further enhance the performance of the proposed
method.
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