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Abstract: In the last decades, conjugate gradient methods have gained important applications in 

various scientific areas due to their low memory requirements and ability to solve problems of high 

dimensions. When analyzing a conjugate gradient method, the descent property of the search 

directions is always required, as it ensures that the search for the minimizer is in the correct direction. 

In this paper, we proposed a conjugate gradient method that always generates descent search 

directions under all line searches techniques. Moreover, we established the global convergence of the 

proposed method when it is applied under Wolfe or strong Wolfe line search. At the same time, to 

show the performance of the proposed method in practical computation, we compared it with other 

well-known methods and then applied it to train two-layer neural network models. The numerical 

results show that the proposed method is efficient. 
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1. Introduction 

The conjugate gradient (CG) methods have gained significant attention in recent years, due to 

their wide applicability for solving linear and nonlinear unconstrained optimization problems. 

Moreover, their favorable properties, such as global convergence and low memory requirements, 
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have qualified them to solve problems in diverse areas of science, such as data estimation, image 

restoration, signal processing, and neural network training. 

In this paper, we consider unconstrained optimization problems, 

min
x∈ℝn

f(x),            (1.1) 

where f: ℝn → ℝ is a continuously differentiable function. 

To solve problem (1.1), CG methods use the following iterative expression: 

xk+1 = xk + αkdk,   𝑘 = 0,1,2, …,         (1.2) 

where αk is the step length in the search direction dk. The step length αk is computed using exact 

or inexact methods called line searches. In the exact line search, αk is obtained in the direction dk 

by the rule 

f(xk + αkdk) = min
α≥0

 f(xk + αdk).         (1.3) 

Equation (1.3) simply means that the orthogonality condition 

gk
Tdk−1 = 0,            (1.4) 

is satisfied, where 𝗀k represents the gradient of the objective function f at the value xk. 

Since it is difficult in practice to compute αk using formula (1.3), the inexact line search is 

introduced to compute approximate values for αk. The Wolfe and strong Wolfe line searches are 

examples of the inexact line search and are often used in practice. In Wolfe line search [1,2], αk 

satisfies the following two conditions: 

f(xk + αkdk) ≤ f(xk) + δαkgk
Tdk,         (1.5) 

|g(xk + αkdk)
Tdk| ≥ σgk

Tdk.          (1.6) 

In strong Wolfe, αk is chosen to satisfy condition (1.5) and 

|g(xk + αkdk)
Tdk| ≤ σ|gk

Tdk|,        (1.7) 

where 0 < δ < σ < 1, and dk is the search direction, which is given by: 

dk = {
−gk,                    if k = 0,

−gk + βkdk−1, if k ≥ 1.
         (1.8) 

The factor βk determines how the CG methods differ. Some well-known formulas are attributed to 

Fletcher-Reeves (FR) [3]. Other formulas are conjugate descent (CD) [4] and Dai-Yuan (DY) [5]. 

These formulas are given as follows: 

βk
FR =

‖gk‖
2

‖gk−1‖
2, βk

CD = −
‖gk‖

2

dk−1
T gk−1

, βk
DY =

‖gk‖
2

(gk−gk−1)
Tdk−1

. 

Additionally, Hestenes-Stiefel (HS) [6], Polak-Ribière-Polyak (PRP) [7,8], and Liu-Storey (LS) [9] 

are well-known CG methods, which provide better practical results. For more formulas for the 

coefficient βk, see [10–12]. 

In inexact line search, to guarantee that every search direction generated by a CG method is 



26846 

AIMS Mathematics  Volume 10, Issue 11, 26844–26866. 

descent, the sufficient descent property 

gk
Tdk ≤ −C‖𝗀k‖

2, k ≥ 0 and C > 0,        (1.9) 

is needed. 

Due to the exceptional convergence properties of CG methods, several studies have been 

carried out to propose new CG methods [13–15], to modify existing CG methods for better 

performance [16–18], or to combine more than one CG method [19–21]. Additionally, the CG 

methods can be integrated with other methods, such as reliability-based design optimization, in order 

to enhance their efficiency [22]. The FR CG method is the earliest method derived to solve linear and 

nonlinear unconstrained optimization problems. Hence, it received significant attention from many 

authors. In 1970, Zoutendijk [23] proved that the FR method is always convergent for general 

non-convex functions. However, in 1977, under the exact line search, Powell [24] obtained 

remarkable results showing that the FR method could continuously produce small steps and hence 

could cycle without reaching the solution point. In 1985, under the strong Wolfe line search, 

Al-Baali [25] proved the sufficient descent property and the global convergence of the FR method 

when σ < 1 2⁄ . These results were extended to σ = 1 2⁄  by Liu et al. [26] in 1995. Although the 

FR method is globally convergent, it has a slow convergence speed. To address this issue, many 

methods have been proposed in the literature as modifications or enhancements of the FR method, 

aiming to improve its efficiency and robustness in practical applications [27,28]. Besides the FR 

method, classical methods, namely, CD, DY, HS, LS, and PRP, have received more attention for 

better convergence results [29–31]. Furthermore, the PRP method’s self-restarting feature, which 

helps prevent short steps and guarantees improved overall performance on non-convex problems, 

makes it frequently used in practice. 

For more references of studies that have described recent CG methods and analyzed convergence 

properties, please refer to Hager and Zhang [32], Sun and Zhang [33], and Yousif et al. [34,35]. 

The classical FR, CD, DY, PRP, HS, and LS CG methods form a base for further developments 

and hybridizations, aimed at improving the method’s theoretical convergence and numerical 

performance. Due to the shortcoming in the FR, CD, and DY methods regarding the poor practical 

results and the uncertain convergence of the PRP, HS, and LS when coupled with strong Wolfe line 

search, in this study, we aim to introduce a CG method that mainly (1) possesses the sufficient 

descent property that is independently of any line search; (2) is globally convergent when coupled 

with strong Wolfe line search or with Wolfe line search; and (3) has better numerical results than the 

FR, CD, DY, and PRP. 

The remaining sections of this study are organized as follows: In Section 2, we propose a CG 

coefficient, which has the same numerator as FR, CD, and DY coefficients, along with an algorithm. 

In Section 3, we show that the new algorithm satisfies the sufficient descent property under all line 

searches. At the same time, we prove its global convergence under Wolfe and strong Wolfe line 

searches. To show the performance of the new method in practice, it was compared with other 

well-known CG methods and it is then applied to train two-layer neural network models in Section 4. 

Section 5 is devoted to the conclusion. 

2. Proposed method and algorithm 

It is well known that the FR, CD, and DY methods have good convergence results in theory, but 
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their performance in practice is poor. This motivated us to make a little change in the denominator of 

their formula to obtain a modified version with good convergence results and better numerical results. 

We call the modified formula βk
OFR, which is given by: 

βk
OFR =

‖gk‖
2

μ|gk
Tdk−1|+‖gk−1‖‖dk−1‖

, μ > 1.       (2.1) 

Clearly, under the exact line search condition (1.4), formula (2.1) becomes: 

βk
OFR =

‖gk‖
2

‖gk−1‖‖dk−1‖
. 

Also, it is clear from (2.1) that: 

βk
OFR ≤

‖gk‖
2

‖gk−1‖‖dk−1‖
,          (2.2) 

and 

βk
OFR ≤

‖gk‖
2

μ|gk
Tdk−1|

.           (2.3) 

With this new formula for the coefficient βk in (2.1), we have a new CG method, which we 

call OFR method. Later, we show that the sufficient descent property and the global convergence of 

the OFR essentially depend on inequalities (2.2) and (2.3). 

Since the implementation of the CG methods under the inexact line searches is easier and less 

expensive when compared with the exact line search, we chose to implement the OFR method under 

the most well-known inexact line searches, which are the Wolfe and the strong Wolfe. This can be 

described by the following algorithm. 

Algorithm 2.1: OFR under Wolfe and strong Wolfe. 

1. Initialization step: choose x0 ∈ ℝ
n, μ > 1, and a tolerance ε > 0. 

2. Compute the gradient of f at x0 and set d0 = −g0. 

3. if ‖g0‖ ≤ ε, then stop. 

4. Set k =0. 

5. Compute αk using Wolfe conditions (1.5)-(1.6) or strong Wolfe conditions (1.5)–(1.7). 

6. Set xk+1 = xk + αkdk and  gk+1 = g (xk+1). 

7. If ‖gk+1‖ ≤ ε, then stop. 

8. Compute βk+1
OFR using (2.1), and generate dk+1 using (1.8). 

9. Set k =k+1; go to Step 5. 

End of Algorithm 2.1 

One of the most interesting properties of Algorithm 2.1 is that whatever the search direction 

used, it satisfies the sufficient descent property, besides its global convergence under Wolfe and 
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strong Wolfe line searches. These will be proven in the next section. 

3. The convergence analysis 

In this section, based on some assumptions on the objective function, we prove the sufficient 

descent property and the global convergence of the new CG method that is described by Algorithm 2.1. 

First, we prove that, in each iteration, Algorithm 2.1 generates a descent direction when it is applied 

under any line search method. 

Theorem 3.1. Under all line searches, Algorithm 2.1 satisfies the sufficient descent property. 

Proof. Replacing βk in Eq (1.8) by βk
OFR and then multiplying the resulting equation by gk

T, we get 

gk
Tdk = −‖gk‖

2 + βk
OFRgk

Tdk−1. 

Applying Cauchy-Schwartz inequality, we get: 

gk
Tdk ≤ −‖gk‖

2 + |βk
OFR||gk

Tdk−1|. 

Since βk
OFR ≤

‖gk‖
2

μ|gk
Tdk−1|

 as in (2.3),we get 

gk
Tdk ≤ −‖gk‖

2 +
‖gk‖

2

μ|gk
Tdk−1|

|gk
Tdk−1|, 

which means 

gk
Tdk ≤ −(1 −

1

μ
) ‖gk‖

2. 

Hence, 

gk
Tdk ≤ −C‖gk‖

2, 

where C = 1 −
1

μ
. 

Therefore, the result comes true.                                                  

To prove the global convergence of Algorithm 2.1, we assume the following assumptions on the 

objective function f. 

Assumption 3.1. 

(1) Define L0 = {x ∈ ℝ
n ∶ f(x) ≤ f(x0)} and assume that L0 is bounded for all initial points x0. 

(2) In some neighborhood 𝒩 of L0, f(x) is differentiable and its gradient g is Lipschitz continuous, 

namely, there exists a constant L > 0 such that ‖g(x) − g(y)‖ ≤ L‖x − y‖ ∀x, y ∈ 𝒩. 

Based on Assumption 3.1, Zoutendijk [23] proved the following condition. 

Lemma 3.1. Let Assumption 3.1 be satisfied. Then any CG method in the forms (1.2)–(1.8) where 

 dk satisfies: 

gk
Tdk < 0, for all k, 
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and  αk is computed by Wolfe or strong Wolfe line searches, then 

∑
(gk
Tdk)

2

‖dk‖
2

∞
k=0 < ∞.         (3.1) 

From the sufficient descent condition (1.9), we get 

C2‖gk‖
4 ≤ (gk

Tdk)
2
, for all k≥ 0, 

which leads to 

∑
‖gk‖

4

‖dk‖
2

∞
k=0 ≤

1

C2
∑

(gk
Tdk)

2

‖dk‖
2

∞
k=0 .        (3.2) 

Combining (3.1) and (3.2) together, we come to 

∑
‖gk‖

4

‖dk‖
2

∞
k=0 < ∞.         (3.3) 

Therefore, we deduce that under the sufficient descent property and the Wolfe or strong Wolfe line 

search, the CG method in the form (1.2)–(1.8) satisfies (3.3). 

The following lemma is useful for the proof of the global convergence. 

Lemma 3.2. Suppose that {gk} and {dk} are generated by Algorithm 2.1. Then there exists a 

positive constant ω > 1 such that: 

gk
Tdk ≥ −ω‖gk‖

2.          (3.4) 

Proof. Replacing βk in (1.8) by βk
OFR and then multiplying the resulting equation by gk

T, we get 

gk
Tdk = −‖gk‖

2 + βk
OFRgk

Tdk−1. 

After applying the triangle inequality, we obtain: 

|gk
Tdk| ≤ ‖gk‖

2 + |βk
OFR||gk

Tdk−1|. 

From the fact that is given in (2.3), which states that 0 ≤ βk
OFR ≤

‖gk‖
2

μ|gk
Tdk−1|

, we get 

|gk
Tdk| ≤ (1 +

1

μ
) ‖gk‖

2, 

which means 

gk
Tdk ≥ −ω‖gk‖

2, ω = 1 +
1

μ
. 

Therefore, we come to the required result.                                              

Theorem 3.3. Suppose that Assumption 3.1 holds. Then Algorithm 2.1 is globally convergent, that 

is, 

lim
k→∞

inf‖gk‖ = 0.          (3.5) 
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Proof. We will use the proof by contradiction technique, in which we assume that the opposite of (3.5) 

is true. This means that there exists a real number γ > 0 and an integer n such that: 

‖gk‖ ≥ γ, for all k≥ n, 

hence 

1

‖gk‖
2 ≤

1

γ2
, for all k ≥ n.          (3.6) 

Returning to (1.8), replacing βk by βk
OFR and then squaring both sides, we get 

‖dk‖
2 = −‖gk‖

2 − 2 gk
Tdk + (βk

OFR)
2
‖dk−1‖

2.     (3.7) 

Using (3.4), we come to 

‖dk‖
2 ≤ −‖gk‖

2 + 2ω‖gk‖
2 + (βk

OFR)
2
‖dk−1‖

2, 

which straightforward leads to 

‖dk‖
2 ≤ τ‖gk‖

2 + (βk
OFR)

2
‖dk−1‖

2, where τ = 2ω − 1. 

From the fact that is given in (2.2), which states that 0 ≤ βk
OFR ≤

‖gk‖
2

‖gk−1‖‖dk−1‖
, we get 

‖dk‖
2 ≤ τ‖gk‖

2 + (
‖gk‖

2

‖gk−1‖‖dk−1‖
)

2

‖dk−1‖
2, 

that is 

‖dk‖
2 ≤ τ‖gk‖

2 +
‖gk‖

4

‖gk−1‖2
. 

Dividing both sides of the above inequality by ‖gk‖
4, we get 

‖dk‖
2

‖gk‖
4
≤

τ

‖gk‖
2
+

1

‖gk−1‖
2
.         (3.8) 

Since 
1

‖gk‖
2
≤

1

γ2
, for all k ≥ n (see (3.6)), then 

1

‖gk−1‖
2
≤

1

γ2
, for all k ≥ n + 1, hence (3.8) 

‖dk‖
2

‖gk‖4
≤
τ + 1

γ2
, for all k ≥ n + 1. 

This means 

‖gk‖
4

‖dk‖2
≥ ζ, where ζ =

γ2

τ + 1
. 

Taking the sum from n + 1 to m to both sides, we get 



26851 

AIMS Mathematics  Volume 10, Issue 11, 26844–26866. 

∑
‖gk‖

4

‖dk‖
2 ≥ (m− n)ζ

m
k=n+1 . 

Since all terms of the above series are positive, it is clear that 

∑
‖gk‖

4

‖dk‖
2 =

∞
k=n+1 lim

m→∞
∑

‖gk‖
4

‖dk‖
2 ≥ lim

m→∞
(m − n)ζ = ∞m

 k=n+1 . 

Now because 

∑  
‖gk‖

4

‖dk‖
2 > ∑

‖gk‖
4

‖dk‖
2

∞
k=n+1

∞
k=0 , 

we have 

∑
‖gk‖

4

‖dk‖
2 > ∞

∞
k=0 . 

This contradicts (3.3). Therefore, (3.5) is proved.                                         

4. Numerical experiment 

In this section, we conduct two numerical experiments that show the ability of the new CG 

method in practice. 

4.1. Comparison with other CG methods 

In this subsection, to show the efficiency and robustness of the method and to support the 

theoretical proofs that are in Section 3, a numerical experiment based on comparing the new method 

(OFR method) that is described by Algorithm 2.1 with FR, CD, DY, and PRP is carried out. Then, a 

MATLAB-coded program is run for these methods when they are all implemented under strong Wolfe 

line search with the parameters δ = 10−4 and σ = 10−1 and with stopping criteria ‖gk‖ ≤ 10
−6. 

The parameter μ in Algorithm 2.1 was set to 2. Most of the test problems were chosen from [36], and 

each was implemented with two different initial points. To show robustness, test problems were 

implemented under low, medium, and high dimensions, namely 2, 4, 10, 50, 100, 500, 1000, 5000, 

and 10000. The comparison was based on the number of iterations (NI), the time required to run each 

test problem (CPU time), the number of function evaluations (NF), and the number of gradient 

evaluations (NG). Table 1 shows the numerical computation results. In Table 1, the term “FAIL” 

means that a method failed to solve a test problem or the number of iterations exceeded 5000. 
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Table 1. Numerical experiment results. 

PRP DY CD FR OFR 
Initial point Dim. Test problem No. 

NI/CPU/FN/GN NI/CPU/FN/GN NI/CPU/FN/GN NI/CPU/FN/GN NI/CPU/FN/GN 

13/0.02/362/86 

11/0.02/306/88 

16/0.03/398/115 

13/0.02/183/48 

13/0.02/267/112 

FAIL 

11/0.02/190/91 

FAIL 

12/0.02/217/71 

11/0.02/180/75 

(2,2) 

(5,5) 

2 THREE-HUMP 1 

FAIL 

49/0.03/548/207 

39/0.03/189/95 

291/0.24/3801/842 

96/0.04/376/214 

FAIL 

64/0.03/273/146 

419/0.28/4170/1110 

12/0.01/56/32 

107/0.05/588/284 

(0,0) 

(10,10) 

2 GENERALIZED 

WHITE & HOLST 

2 

9/0.02/22/14 

15/0.02/53/24 

6/0.01/20/12 

86/0.03/299/184 

9/0.01/29/18 

152/0.05/518/320 

9/0.01/29/18 

139/0.04/477/295 

8/0.01/26/17 

18/0.02/83/41 

(1,1) 

(10,10) 

2 SIX-HUMP 3 

16/0.02/22/15 

8/0.01/32/22 

61/0.03/189/127 

8/0.01/34/18 

66/0.03/204/137 

8/0.01/34/18 

63/0.03/194/130 

8/0.01/34/18 

16/0.02/52/35 

8/0.01/34/18 

(1,1) 

(10.10) 

2 TRECANNI  4 

14/0.03/40/30 

11/0.02/48/33 

24/0.03/94/61 

23/0.03/83/56 

29/0.03/108/70 

24/0.03/85/59 

28/ 0.03/108/70 

27/0.03/92/66 

13/0.02/44/31 

11/0.02/46/30 

(1,1) 

(10,10) 

2 ZETTLE  5 

2/0.01/6/4 

2/0.01/6/4 

2/0.01/6/4 

2/0.01/6/4 

2/0.01/6/4 

2/0.01/6/4 

2/0.01/6/4 

2/0.01/6/4 

2/0.01/6/4 

2/0.01/6/4 

(0,0) 

(10,10) 

2 BOOTH 
 

6 

FAIL 

49/0.03/548/207 

39/0.03/189/95 

291/0.20/3801/842 

96/0.05/376/214 

550/0.38/7386/1546 

63/0.04/269/143 

455/0.23/4279/1187 

12/0.01/56/32 

107/0.04/593/281 

(0,0) 

(10.10) 

2 LEON  7 

840/0.43/3167/1941 

528/0.28/2049/1222 

23/0.02/132/58 

39/0.03/189/95 

FAIL 

96/0.04/376/214 

141/0.05/555/309 

64/0.03/273/146 

44/0.02/230/112 

12/0.01/56/32 

(-1.2,1) 

(0,0) 

2 CUBE 8 

515/0.24/1783/1162 

984/0.49/3653/2226 

14/0.01/72/40 

407/0.23/3512/946 

76/0.04/290/169 

FAIL 

38/0.03/161/88 

272/0.19/3009/682 

33/0.02/147/80 

41/0.03/228/103 

(-1,-1) 

(10,10) 

2 NONDIA 9 

FAIL 

19/0.06/464/148 

FAIL 

FAIL 

112/0.14/2026/355 

107/0.13/2011/380 

FAIL 

FAIL 

265/0.41/69951099 

256/0.44/7565/1167 

(4,4) 

(10,10) 

2 LIARWHD 10 

2/0.01/6/4 

2/0.01/6/4 

2/0.01/6/4 

2/0.01/6/4 

2/0.01/6/4 

2/0.01/6/4 

2/0.01/6/4 

2/0.01/6/4 

2/0.01/6/4 

2/0.01/6/4 

(0,0,...) 

(10,10,...) 

4 BIGGSB1 
 

11 

106/0.04/428/243 

157/0.05/697/383 

FAIL 

2387/0.65/9716/5166 

FAIL 

FAIL 

3921/1.33/22563/8809 

FAIL 

145/0.05/508/308 

260/0.08/1057/580 

(0,0,0,0) 

(5,5,5,5) 

4 EXTENDED 

WOOD 

12 

4/0.01/12/9 

4/0.01/12/9 

4/0.01/12/9 

4/0.01/12/9 

4/0.01/12/9 

4/0.01/12/9 

4/0.01/12/9 

4/0.01/12/9 

41/0.02/123/82 

57/0.03/171/114 

(1,1,…) 

(10,10,…) 

4 TRIDIA 13 

840/0.20/4751/2191 

854/0.29/4896/2241 

197/0.08/795/441 

194/0.07/734/411 

142/0.06/553/306 

FAIL 

81/0.05/373/182 

145/0.06/587/315 

1758/0.40/5503/3600 

1964/0.44/6080/4042 

(-1.2,1,…) 

(2,2,…) 

4 GENERALIZED 

ROCENBROCK 

14 

500/0.35/1508/1009 

500/0.35/1508/1009 

5/0.01/17/12 

5/0.01/17/12 

5/0.01/17/12 

5/0.01/17/12 

5/0.01/17/12 

5/0.01/17/12 

67/0.03/202/149 

74/0.04/223/164 

(-1,-1,…) 

(10,10,…) 

10 DIXON3DQ 
 

15 

110/0.05/40/26 

95/0.04/165/101 

390/0.10/1351/838 

1028/0.27/3613/2186 

FAIL 

FAIL 

396/0.11/1373/852 

1062/0.27/3675/2261 

105/0.04/342/220 

91/0.04/365/208 

(1,1,…) 

(10,10,…) 

10 DIXON & PRICE 16 

9/0.02/89/44 

19/0.09/387/190 

12/0.02/45/32 

30/0.05/560/417 

12/0.02/46/33 

FAIL 

12/0.02/45/32 

26/0.04/561/499 

11/0.02/40/29 

94/0.15/2279/2004 

(1,1,…) 

(10,10,…) 

10 GENERALIZED 

QUARTIC  

17 

25/ 0.02/101/56 

28/0.03/183/68 

24/0.02/78/50 

32/0.03/123/72 

24/0.02/78/50 

35/0.03/132/78 

24/0.02/78/50 

33/0.03/126/74 

26/0.02/84/54 

32/0.03/124/71 

(0,0,…) 

(-1,-1,…) 

10 EDENSCH 

 

18 

274/0.21/1319/664 

217/0.14/845/493 

1152/0.34/5512/2538 

2684/0.72/11998/5867 

FAIL 

FAIL 

1128/0.33/5399/2470 

1902/0.52/8766/4196 

86/0.03/333/183 

145/0.06/678/321 

(0,0,…) 

(10,10,…) 

10 FLETCHER 19 

Continued on next page 
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PRP DY CD FR OFR Initial point 
Dim. Test problem 

No. 

NI/CPU/FN/GN NI/CPU/FN/GN NI/CPU/FN/GN NI/CPU/FN/GN NI/CPU/FN/GN 

67/0.03/201/134 

67/0.03/201/134 

10/0.01/30/20 

10/0.01/30/20 

10/0.01/30/20 

10/0.01/30/20 

10/0.01/30/20 

10/0.01/30/20 

147/0.04/441/294 

169/0.05/507/338 

(1,1,…) 

(10,10,…) 

10 

 

POWER 20 

57/0.05/191/125 

66/0.06/200/131 

21/0.02/61/41 

FAIL 

21/0.02/61/41 

FAIL 

21/0.02/61/41 

203/0.09/721/423 

21/0.02/64/43 

35/0.03/119/81 

(1,1,…) 

(5,5,…) 

50 HAGER 21 

47/0.03/144/137 

93/0.06/325/286 

47/0.03/142/137 

93/0.05/280/188 

47/0.03/142/137 

102/0.05/307/205 

47/0.03/142/137 

91/0.04/274/185 

72/0.04/217/213 

84/0.04/254/243 

(1,1,…) 

(-2,-2,…) 

50 RAYDAN1 22 

23/0.02/76/50 

27/0.03/112/68 

27/0.02/85/57 

43/0.03/152/91 

29/0.02/91/60 

48/0.03/167/102 

27/0.02/85/56 

43/0.03/153/92 

24/0.02/75/50 

31/0.03/116/68 

(2,2,…) 

(10,10,…) 

50 GENERALIZED 

TRIDIAGONAL 1  

23 

10/0.01/30/20 

10/0.01/30/20 

39/0.02/117/78 

41/0.03/123/82 

39/0.02/117/78 

41/0.03/123/82 

39/0.02/117/78 

41/0.03/123/82 

91/0.04/273/182 

103/0.04/309/206 

(-1,-1,…) 

(10.10,…) 

50 SUM SQUARE  24 

1/0.01/3/2 

1/0.01/3/2 

1/0.01/3/2 

1/0.01/3/2 

1/0.01/3/2 

1/0.01/3/2 

1/0.01/3/2 

1/0.01/3/2 

1/0.01/3/2 

1/0.01/3/2 

(1,1,…) 

(10,10,…) 

50 SPHERE 25 

5/0.01/23/13 

9/0.02/61/25 

11/0.02/44/24 

FAIL 

11/0.02/44/24 

FAIL 

FAIL 

FAIL 

11/0.02/44/24 

16/0.02/83/34 

(1,1,…) 

(10,10,…) 

100 

 

ARWHEAD 26 

68/0.04/206/137 

854/0.29/4896/2241 

68/0.04/206/137 

FAIL 

68/0.04/206/137 

FAIL 

68/0.04/206/137 

9237/5.20/45913/19066 

103/0.06/313/217 

425/0.17/1296/905 

(1,1,…) 

(5,5,…) 

100 RAYDAN1 27 

27/0.03/88/59 

27/0.03/93/61 

23/0.02/77/50 

FAIL 

24/0.02/89/52 

26/0.03/85/54 

25/0.03/132/53 

27/0.03/88/56 

26/0.03/86/56 

26/0.03/85/54 

(2,2,…) 

(-1,-1,…) 

100 ENGVAL1 

 

28 

FAIL 

15/0.03/104/48 

FAIL 

FAIL 

FAIL 

23/0.03/177/58 

2709/3.73/36332/6216 

37/0.04/160/87 

40/0.04/202/107 

41/0.04/189/106 

(1.1,0.1,…) 

(1,1,…) 

100 EXTENDED 

MARATOS 

29 

26/0.04/175/81 

24/0.03/112/66 

16/0.03/59/34 

FAIL 

16/0.03/59/34 

FAIL 

16/0.03/61/36 

832/1.19/11334/1912 

13/0.02/51/29 

23/0.03/103/56 

(-1,-1,…) 

(1,11,…) 

100 EXTENDED 

PENALTY 

30 

14/0.03/47/36 

48/0.08/191/136 

FAIL 

FAIL 

32/0.05/103/64 

FAIL 

FAIL 

803/2.96/11227/1486 

38/0.06/130/80 

69/0.11/299/157 

(1,1,...) 

(10,10,...) 

500 GENERALIZED 

TRIDIAGONAL 2 

31 

9/0.03/89/44 

19/0.09/387/19 

3/0.02/31/26 

5/0.03/46/36 

3/0.02/31/26 

5/0.03/47/36 

3/0.02/31/26 

5/0.03/47/36 

3/0.02/31/26 

4/0.03/27/19 

(2,2,…) 

(10,10,…) 

500 QUARTC 32 

253/0.56/897/563 

227/0.60/880/511 

379/0.40/1306/793 

FAIL 

FAIL 

FAIL 

383/0.41/1321/804 

766/0.87/2977/1633 

625/0.63/2047/1314 

602/0.62/2049/1274 

(0.5,0.5,…) 

(10,10,…) 

500 QF2 33 

5/0.02/15/10 

5/0.02/15/10 

12/0.03/53/27 

9/0.02/27/18 

12/0.03/36/24 

9/0.02/27/18 

12/0.03/50/24 

9/0.02/27/18 

12/0.03/36/24 

9/0.02/27/18 

(0,0,…) 

(0.5,0.5,…) 

500 HIMMELH 
 

34 

131/0.27/393/262 

140/0.30/420/280 

131/0.14/393/262 

140/0.17/420/280 

131/0.14/393/262 

140/0.17/420/280 

131/0.14/393/262 

140/0.17/420/280 

471/0.44/1413/942 

551/0.51/1653/1102 

(1,1,…) 

(10,10,…) 

500 QF1 35 

9/0.04/42/24 

FAIL 

FAIL 

18/0.05/91/40 

21/0.08/139/46 

FAIL 

FAIL 

FAIL 

16/0.05/70/34 

20/0.06/99/45 

(1,1,…) 

(3,3,…) 

1000 QP1 36 

187/0.61/561/374 

203/0.67/609/406 

187/0.30/561/374 

203/0.32/609/406 

187/0.30/561/374 

203/0.32/609/406 

187/0.30/561/374 

203/0.32/609/406 

863/1.32/2589/1726 

1083/1.66/3249/2166 

(0.5,0.5,…) 

(10,10,…) 

1000 PERTURBED  

QUADRATIC 

37 

40/0.18/481/142 

42/0.20/469/141 

FAIL 

FAIL 

FAIL 

FAIL 

FAIL 

FAIL 

60/0.20/321/140 

50/0.21/357/126 

(1,1,...) 

(10,10,…) 

1000 QP2 38 

Continued on next page 
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PRP DY CD FR OFR Initial point 
Dim. Test problem 

No. 

NI/CPU/FN/GN NI/CPU/FN/GN NI/CPU/FN/GN NI/CPU/FN/GN NI/CPU/FN/GN 

18/0.06/54/36 

23/0.07/69/46 

16/0.04/48/32 

16/0.04/48/32 

16/0.04/48/32 

16/0.04/48/32 

16/0.04/48/32 

16/0.04/48/32 

76/0.12/228/152 

84/0.13/252/168 

(3,3,…) 

(10,10,…) 

1000 DQDRTIC 

 

39 

16/0.32/335/149 

FAIL 

FAIL 

FAIL 

98/0.95/1991/667 

110/0.99/2091/711 

FAIL 

FAIL 

63/0.58/1192/348 

58/0.48/964/293 

(-1,-1,…) 

(10,10,…) 

1000 EXTENDED 

DENSCHNF 

40 

FAIL 

15/0.16/62/35 

28/0.25/99/61 

20/0.18/75/43 

28/0.25/99/61 

30/0.26/108/63 

28/0.25/99/60 

9/0.10/41/20 

18/0.17/72/42 

13/0.13/56/29 

(0.5,-2,…) 

(2,2,…) 

5000 FREUDENSTEIN 

& ROTH 

41 

14/0.36/72/58 

13/ 0.33/73/62 

565/6.33/1971/1708 

1149/12.86/3963/3443 

596/6.63/2081/1801 

1149/12.65/3957/34

43 

566/6.45/1976/1713 

1150/12.66/3964/3446 

25/0.41/125/102 

39/0.58/171/139 

(2,2,…) 

(10,10,…) 

5000 

 

EXTENDED 

TRIDIAGONAL1 

42 

2/0.03/6/5 

2/0.03/6/5 

2/0.03/6/5 

2/0.03/6/5 

2/0.03/6/5 

2/0.03/6/5 

2/0.03/6/5 

2/0.03/6/5 

2/0.03/6/5 

2/0.03/6/5 

(1,1,…) 

(10,10,…) 

5000 

 

DIAGONAL 4  43 

6/0.05/22/16 

8/0.08/34/21 

9/0.06/28/19 

11/0.09/41/23 

9/0.06/28/19 

154/1.00/489/322 

9/0.06/28/19 

85/0.62/278/181 

9/0.06/28/19 

11/0.10/41/23 

(1,1,…) 

(10,10,…) 

5000 

 

EXTENDED 

DENSCHNB  

44 

21/0.19/134/67 

25/0.36/183/72 

213/1.81/987/468 

451/5.90/3643/1033 

108/1.17/697/263 

FAIL 

88/0.95/586/209 

273/4.60/3012/684 

27/0.21/120/69 

44/0.41/239/111 

(-1.2,1,…) 

(10,10,…) 

5000 EXTENDED 

ROSENBROCK  

45 

15/0.25/52/39 

12/ 0.19/47/27 

15/0.21/53/33 

12/0.18/45/25 

15/0.21/53/33 

12/0.18/45/25 

15/0.21/53/33 

12/0.18/45/25 

13/0.19/47/29 

12/0.18/45/25 

(1,1,…) 

(10,10,…) 

104 

 

EXTENDED 

HIMMELBLAU  

46 

18/0.23/90/51 

20/0.53/126/59 

34/0.47/125/76 

64/0.88/264/159 

39/0.50/140/86 

66/0.91/276/164 

39/0.50/140/86 

88/1.25/341/209 

27/0.35/105/63 

37/0.61/173/100 

(0.0….) 

(5,5,…) 

104 

 

STRAIT  47 

17/0.23/47/31 

34/0.37/116/79 

14/0.20/47/35 

77/1.08/318/177 

11/0.14/38/28 

FAIL 

12/0.16/41/30 

360/4.33/1198/749 

13/0.19/46/34 

30/0.38/106/73 

(0,0, …) 

(10,10,…) 

104 

 

SHALLOW  48 

14/0.77/70/43 

9/0.51/49/28 

80/2.15/251/165 

119/3.35/407/250 

67/1.73/212/139 

97/2.69/337/207 

95/2.50/297/196 

106/3.01/369/226 

30/0.86/106/73 

17/0.60/73/43 

(1,0.8, …) 

(2,2, …) 

104 

 

EXTENDED 

BEALE  

49 

15/1.00/98/47 

FAIL 

31/0.91/156/74 

311/20.60/3861/881 

FAIL 

544/37.28/7005/152

0 

157/3.53/602/341 

296/20.18/3780/842 

46/1.42/238/119 

118/3.75/633/309 

(-1.2,1,…) 

(10,10,…) 

104 

 

EXTENDED 

WHITE & HOLST 

50 

To show the method with the best performance, we used the technique introduced by Dolan and 

Moré [37]. Figures 1–4 display the method’s performance based on NI, CPU, NF, and NG, 

respectively. 

In Dolan and Moré's performance profile, we plot Pm(t) versus t, where: 

Pm(t) is the probability that a method m has a performance ratio t, where 

t =
tp,m

min{tp,m:m ∈ M}
. 

tp,m is the result (may be NI, CPU, NF, or NG in our experiment) when a method m is applied 

to solve problem p. 
Therefore, based on this performance profile, the left side shows the best performance (having 

minimum NI, CPU time, NF, and NG), that is, the highest curve corresponds to the best method. 

Additionally, the right side measures the percentage of the total number of test problems that are 
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successfully solved by the corresponding method. 

 

Figure 1. The performance based on the number of iterations (NI). 

 

Figure 2. The performance based on the CPU time. 
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Figure 3. The performance based on the number of function evaluations (NF). 

 

Figure 4. The performance based on the number of gradient evaluations (NG). 

It is clear from the left sides of all figures that the PRP has the lowest number of NI, CPU time, 

NF, and NG, but it does not solve all test problems. Also, the right sides of all figures show that the 

percentage of the test problems that are successfully solved by the OFR method is higher than that of 

the remaining methods, and this reflects the robustness of the OFR method. Additionally, it is clear 

that the curve of the OFR method is above all other curves. Therefore, we conclude that the OFR 

method that is described by Algorithm 2.1 performs better than FR, CD, DY, and PRP methods. 

4.2. Training two-layer neural network models 

Neural networks (NNs) are machine learning (ML) models that are inspired from the human 

brain, mimicking the complex functions. They consist of interconnected units organized in input, 
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hidden, and output layers. The units in each layer are connected to units in adjacent layers with 

weights. The input layer receives the inputs, multiplies them by the respective weights, and then 

sums each unit of the hidden layer. Each unit in the hidden layer performs a transformation on the 

sum by applying an activation function. There may be one or multiple hidden layers in an NN model. 

The final layer of an NN model produces the outputs of the model. The activation function plays a 

crucial role in the model because it introduces non-linearity into the system, enabling the network to 

learn more complex patterns. Popular activation functions include the sigmoid, hyperbolic tangent, 

and rectified linear unit (ReLU). These functions are used because they have computable derivatives, 

making it easier to compute partial derivatives of the error function with respect to individual 

weights. The NN model first receives data, and passes it through the forward direction, starting from 

the input layer through the hidden layers to the output layer. This process is known as forward 

propagation. After forward propagation, the network evaluates its performance using a loss function, 

which measures the difference between the actual output and the predicted output. 

Neural network models can be applied to solve many problems, including pattern recognition, 

classification, clustering, testing for the higher-order nonlinear singular differential model [38], 

solving the nonlinear third-order multi-singular Emden–Fowler system of differential equations [39], 

solving the bioinformatics problem for the corneal shape model of eye surgery [40], dimensionality 

reduction, computer vision, natural language processing (NLP), regression, predictive analysis, etc. 

Training NN models means evaluating the values of the weights by minimizing the loss 

function. So, training the NN model is the most important task when developing one. Most training 

methods adapt an iterative scheme to find the optimal values for the weights vector. Since the loss 

function is continuous and differentiable with respect to the weights, then the conjugate gradient 

methods can be used to find the optimal solutions. Unlike basic gradient descent methods, which 

may oscillate or converge slowly, the conjugate gradient method leverages past gradient information 

to determine search directions, leading to faster convergence [41,42]. In this section, we address the 

problem of training the NN models with one hidden layer and two outputs, as illustrated in the 

following figure (Figure 5): 

 

Figure 5. Neural network with two layers and two outputs. 

The outputs of this network are o1 and o2, which are given as follows: 

https://www.sciencedirect.com/topics/physics-and-astronomy/operators-mathematics
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o1 = ∑ wj1
∗m

j=1 hj, o2 = ∑ wj2
∗m

j=1 hj, 

where wj1
∗  and wj2

∗  for j = 1,2, … ,m are the hidden layer weights and 

hj = f(zj), 

where f is an activation function, which, in most cases, is selected to be: 

• Sigmoid function: σ(z) =
1

1+e−z
. 

• ReLU (Rectified Linear Unity): ReLU(z) = max(0, z). 

• Hyperbolic tangent: tanh(z) =
ez−e−z

ez+e−z
. 

In the function hj, zj is defined as follows: 

zj = ∑ wijxi
n
i=1 , 

where xi is the input and wij the input layer weights. 

In matrix form, if 

x = (

x1
x2
⋮
xn

), w = (

w11 w12 ⋯
w21 w22 ⋯
⋮ ⋮ ⋮
wn1 wn2 ⋯

   

w1m
w2m
⋮

wnm 

), w∗ = (

w11
∗ w12

∗

w21
∗ w22

∗

⋮ ⋮
wm1
∗ wm2

∗

), 

then 

wTx =

(

 
 
 
 
 
 
 
∑wi1xi

n

i=1

∑wi2xi

n

i=1

⋮

∑wimxi

n

i=1 )

 
 
 
 
 
 
 

 ⇒ f(wTx) =

(

 
 
 
 
 
 
 
f(∑wi1xi

n

i=1

)

f (∑wi2xi

n

i=1

)

⋮

f (∑wimxi

n

i=1

)
)

 
 
 
 
 
 
 

= (

h1
h2
⋮
hm

). 

Therefore, 

(
o1(w,w

∗)
o2(w,w

∗)
) = w∗Tf(wTx) = (

w11
∗ w21

∗ ⋯
w12
∗ w22

∗ ⋯
    
wm1
∗

wm2
∗ )(

h1
h2
⋮
hm

) =

(

 
 
 
∑wj1

∗ hj

m

j=1

∑wj2
∗ hj

m

j=1 )

 
 
 
. 
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Training a neural network means computing the values of the weights. If we suppose that the 

target outputs are y1 and y2, then the task is to minimize the sum of squared of errors, which is 

given by: 

E = (o1 − y1)
2 + (o2 − y2)

2, 

which is a continuous function in the weights with partial derivatives with respect to the weights 

given by: 

∂E

∂wij
=
∂E

∂o1

∂o1
∂wij

+
∂E

∂o2

∂o2
∂wij

 

and 

∂E

∂wij
∗ =

∂E

∂o1

∂o1
wij
∗ +

∂E

∂o2

∂o2
wij
∗  

Since the activation functions, sigmoid σ(z), ReLU(z), and tanh (z) are all differentiable and 

their derivatives are respectively given by: 

σ(z)(1 − σ(z)), {
1, if z > 0,
0, if z ≤ 0,

 
1

cosh2 z
, 

then the conjugate gradient methods can be used to update the weights using the iterative formulas 

wij ← wij + η
∂E

∂wij
, wij

∗ ← wij
∗ + η

∂E

wij
∗ , 

where η is the learning rate; hence, it can be computed using the line search methods. 

Now, using the sigmoid activation function σ, we can describe how our new method can be 

used to compute the weights that are in the following algorithm. 
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Algorithm 4.1: Training neural network using OFR CG method. 

Step 1. Inputs: x1, x2, … , xn. Initial weights: wij, wkj
∗ , where i = 1,2, … , n, j = 1,2, … ,m and 

k = 1,2. Target outputs: y1, y2, and a tolerance ε > 0. 

Step 2. Set zj =∑wijxi,

n

i=1

 hj = σ(zj),where σ is the sigmoid activation function. 

Step 3. Set o1 =∑wj1
∗

m

j=1

hj and o2 =∑wj2
∗

m

j=1

hj. 

Step 4. Set E = (o1 − y1)
2 + (o2 − y2)

2. 

Step 5. Compute 
∂E

∂wij
 and 

∂E

∂wij
∗ . 

Step 6. Define the gradient vector ∇E0 = (
∂E

∂wij
,
∂E

∂wij
∗ )
T

at the initial weights. 

Step 7. Choose initial search direction d0 = −∇E0 and set j = 0. 

Step 8. If ‖∇Ej‖ < ε, then stop. 

Step 9. Compute the learning rate ηj in the direction dj using the strong Wolfe line search. 

Step 10. Set new weights = old weights + ηjdj. 

Step 11. Evaluate the update gradient vector ∇Ej+1 at the new weights. 

Step 12. Set dj+1 = −∇Ej+1 + βj
OFRdj. 

Step 13. Set j = j + 1 and return to Step 8. 

The end of Algorithm 4.1 

To test the ability of Algorithm 4.1, it was coded using MATLAB and run on a PC computer 

with an Intel R Core TM i5-2520 M CPU @ 2.50 GHz processor, 4 GB of RAM memory, and a 

Windows 10 Professional operating system with a stopping criterion set to ‖∇Ej‖ < 10
−6, to train 

two-layer neural network consisting of: 

(i) Two inputs, one hidden layer of three units. 

(ii) Three inputs, one hidden layer of three units. 

(iii) Three inputs, one hidden layer of four units. 

(iv) Four inputs, one hidden layer of five units. 

The target outputs are 1 and 0. 

The results of the training process, supported by figures, are as follows: 
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Figure 6. A model with 2 inputs and 12 weights. Figure 7. A model with 3 inputs and 15 weights. 

 

Initial weights: 𝑤 = (
1 2 3
4 5 6

), 𝑤∗ = (
7 8
9 10
11 12

) Initial weights: 𝑤 = (
1 2 3
4 5 6
7 8 9

), 𝑤∗ = (
10 11
12 13
14 15

) 

Computed weights: 𝑤 = (
−3.3195 1.3089 2.7894
−2.0639 4.0298 5.7044

),  

𝑤∗ = (
2.8048 3.1525
−0.4828 −0.9851
1.3688 0.8429

) 

Computed weights: 𝑤 = (
−6.0009 0.7114 2.5134
−0.9324 4.0921 5.6572
3.0222 7.2679 8.7235

), 

𝑤∗ = (
2.5539 2.6836
−0.5216 −1.0242
1.2520 0.7217

) 

𝑤∗𝑇𝑓(𝑤𝑇𝑥) ≈ (
1
0
) 𝑤∗𝑇𝑓(𝑤𝑇𝑥) ≈ (

1
0
) 

Error = 1.6531e-15 Error = 2.3660e-15 

 

Figure 8. A model with 3 inputs and 20 weights. Figure 9. A model with 4 inputs and 30 weights. 
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Initial weights: 𝑤 = (
0.1 1 0.1
0.1 1 0.1
0.1 1 0.1

   
1
1
1
), 

 𝑤∗ = (

0.1 1
0.1 1
0.1 1
0.1 1

) 

Initial weights: 𝑤 = (

0.1 1 0.1
1 0.1 1
0.1 1 0.1
1 0.1 1

    

1
0.1
1
0.1

    

0.1
1
0.1
1

), 

 𝑤∗ =

(

 
 

0.1 1
0.1 1
0.1 1
0.1 1
0.1 1)

 
 

 

Computed weights: 

𝑤 = (
0.0367 0.9518 0.0367
−0.0303 0.9008 −0.0303
−0.1122 0.8384 −0.1122

   
0.9518
0.9008
0.8384

),  

 𝑤∗ = (

0.3512 0.2001
0.4575 −0.1338
0.3512 0.20010
0.4575 −0.1338

) 

Computed weights: 

𝑤 = (

0.0871 0.9848 0.0871
0.9328 0.0207 0.9328
−0.0706 0.7987 −0.0706
0.7751 −0.1653 0.7751

    

0.9848
0.0207
0.7987
−0.1653

    

0.0871
0.9328
−0.0706
0.7751

) , 

𝑤∗ =

(

 
 

0.3076 −0.0348
0.2870 0.0605
0.3076 −0.0348
0.2870 0.0605
0.3076 −0.0348)

 
 

 

𝑤∗𝑇𝑓(𝑤𝑇𝑥) ≈ (
1
0
) 𝑤∗𝑇𝑓(𝑤𝑇𝑥) ≈ (

1
0
) 

Error = 7.0351e-14 Error = 8.4695e-16 

An observation on the results of training all models given by Figures 6–9 by using Algorithm 4.1 

shows that w∗Tf(wTx) = (
1
0
) with less error. This shows the efficiency of Algorithm 4.1 for 

training neural network models. 

In addition to the above models, we test Algorithm 4.1 for larger data. The MATLAB command 

rand was used to generate random inputs and initial weights. The results are in Table 2. 

Table 2. Algorithm 4.1 with larger data. 

No. Number of inputs Number of weights Error 

1 5 28 3.6422e-15 

2 10 60 1.7834e-16 

3 15 170 2.6149e-15 

4 20 330 0.0088e-14 

5 25 540 1.7801e-16 

6 30 960 2.5621e-14 

7 35 1520 2.1891e-16 

8 40 2100 4.8116e-18 

9 50 3640 4.6012e-14 

10 100 10200 3.2312e-15 

The results above show the success of Algorithm 4.1 to train the given network models with less 

error. Therefore, it can be applied successfully in this area of study. 

5. Conclusions 

In this paper, we proposed a new conjugate gradient method for solving unconstrained 
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optimization problems. Independently of any line search, the sufficient descent property was proved. 

Moreover, the global convergence of the proposed method was established when it is applied under 

the Wolfe or strong Wolfe line searches. To show the efficiency and robustness of the proposed 

method in practice, it was compared with the FR, CD, DY, and PRP methods, showing better 

performance. Furthermore, with remarkable success, the new method was applied to train some 

two-layer neural network models, each with two outputs. 

However, a limitation of this study remains: to define a selection strategy for the parameter μ. 

To overcome this limitation, future research will explore the adaptive Barzilai-Borwein rule for μ 

and combine it with quasi-Newton, which would further enhance the performance of the proposed 

method. 
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