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Abstract: In this paper, we propose a method for solving initial-boundary value problems (IBVPs)
for hyperbolic integro-differential systems (HIDSs) with functional terms. The equations under
consideration involve derivatives with respect to a spatial variable with a generalized piecewise
constant argument (GPCA), as well as integral operators acting on the time variable. For a qualitative
analysis of such problems, we construct auxiliary problems for first-order integro-differential systems
with distributed parameters and additional integral constraints. Using the parameterization of the
Dzhumabaev method, the auxiliary problem is reduced to a family of parameterized integral problems.
Under explicit invertibility conditions for certain matrices, we establish theorems on the existence and
uniqueness of solutions for this family of problems. Furthermore, we develop a constructive iterative
algorithm to obtain solutions to the auxiliary problem and prove its convergence. The results extend
the theory of HIDEs and open up prospects for applications in models with discontinuities, impulse
effects, and integral memory terms.
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1. Introduction

Functional-partial differential equations (FPDEs) remain an actively developing area of research,
largely due to their important role in modeling phenomena with aftereffects [1, 2],
discontinuities [3, 4], and memory [5, 6]. Hyperbolic FPDEs (HFPDEs) with mixed derivatives attract
particular attention because of their ability to describe wave dynamics in non-classical settings.
Distinctive features of such systems include the presence of GPCA [2, 6, 7], retarded terms [8, 9], and
nonlocal integral terms [10–12]. The appearance of these structures complicates the analysis and
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necessitates developing new mathematical methods.
Previous studies have mainly focused on problems in which systems with generalized arguments or

integral terms are considered separately [11, 13].
The motivation for studying the initial-boundary value problem for a hyperbolic

integro-differential system arises, first, from the numerous applications of such systems with various
nonlocal conditions [6,11,12], and second, from the lack of effective constructive methods for solving
these problems.

Hyperbolic integro-differential systems with a functional terms and integral conditions describe the
propagation of waves and signals in media with delay [2,4], memory, and nonlocal interactions, where
the classical local Huygens-type equations are inadequate [5–7].

The novelty of the present work lies in the fact that, for the first time, an initial-integral problem
for HIDSs is examined that simultaneously includes both a term with a generalized argument and an
integral term. This formulation gives rise to new questions regarding the solvability of the problem,
since standard approaches to HFPDEs cannot be applied directly.

Our approach is based on the parametrization method of Dzhumabaev, originally proposed in [14],
which makes it possible to reduce the problem for an HIDS to an auxiliary problem for a system of
first-order FPDEs with distributed parameters and additional integral constraints. The main goal of
this paper is to establish rigorous solvability criteria for the auxiliary problem and, through their
equivalence, for the initial–integral problem for HIDSs. This approach not only provides explicit,
verifiable conditions for the existence and uniqueness of solutions, but also yields a constructive
iterative algorithm whose convergence is rigorously justified.

The obtained results broaden the existing theory by integrating methods for solving HIDSs,
FPDEs, and related nonlocal problems. The developed framework provides a solid foundation for
further research on nonlinear problems, discontinuous systems, and models with impulse effects,
thereby extending the applicability of HIDSs to the mathematical modeling of real processes in the
natural sciences.

The structure of the paper is as follows. Section 1 provides an overview of the work and highlights
the relevance and novelty of the obtained results. Section 2 presents the problem statement and the
necessary preliminary material. Section 3 describes the reduction of the original problem to an
equivalent auxiliary one involving parameterized integral problems for a system of first-order IDEs
with integral constraints and distributed parameters. Section 4 examines these parameterized integral
problems and establishes conditions for their unique solvability in terms of the coefficients and
boundary matrices. Section 5 develops a constructive solution method and formulates criteria
ensuring the unique solvability of the parameterized integral problems for the system of first-order
IDEs with integral constraints and distributed parameters. Finally, based on the established
equivalence between the auxiliary and original problems, we derive conditions guaranteeing the
existence and uniqueness of a solution to the initial - integral problem in terms of the system matrices
and the integral condition.

2. Statement of problem

Let us introduce a domain Λ = [0,Y] × [0,Z] and a function β(y) which is a piecewise-constant
generalized argument defined by β(y) = γi−1 for y ∈ [yi−1, yi) with nodes 0 = y0 < y1 < ... < yL−1 <
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yL = Y , and constants γi ∈ (yi−1, yi).
Consider the initial-integral problem for a HIDS of the following type:

∂2w
∂z∂y

= A(y, z)
∂w(y, z)
∂z

+ B(y, z)
∂w(y, z)
∂y

+C(y, z)w(y, z) + g(y, z)

+ D(y, z)
∂w(β(y), z)

∂z
+ K(y, z)

Y∫
0

M(ξ, z)
∂w(ξ, z)
∂z

dξ, (y, z) ∈ Λ,
(2.1)

subject to the integral condition

P(z)
∂w(0, z)
∂z

+ S (z)

Y∫
0

M(ξ, z)
∂w(ξ, z)
∂z

dξ = φ(z), z ∈ [0,Z], (2.2)

and the initial condition
w(y, 0) = ψ(y), y ∈ [0,Y]. (2.3)

Here, w(y, z) = (w1(y, z), ...,wn(y, z))′ is the unknown vector function. The coefficient matrices A(y, z),
B(y, z), C(y, z), D(y, z), K(y, z), M(y, z) and the vector function g(y, z) are assumed continuous on Λ,
∂w(β(y),z)

∂z denotes the partial derivative with respect to z of the desired function w(t, z) that involves a
piecewise constant generalized argument with respect to the time variable.

Furthermore, P(z) and S (z) are continuous m×m matrices, while φ(z) is a continuous vector function
on [0,Z]. The initial data ψ(y) is assumed continuously differentiable on [0,Y].

A function w(y, z) ∈ C(Λ,Rn) is called a solution to problems (2.1)–(2.3) if the following conditions
are satisfied:

(1) The partial derivatives ∂w(y,z)
∂z and ∂w(y,z)

∂y exist and are continuous on Λ.

(2) The mixed derivative ∂2w(y,z)
∂z∂y exists on Λ, except possibly at the discontinuity points (yi−1, z),

where one-sided derivatives exist.
(3) Equation (2.1) holds on each subdomain [yi−1, yi)×[0,Z], and at the points (yi−1, z) the right-hand

mixed derivatives satisfy the equation.
(4) The integral condition (2.2) and the condition on characteristic (2.3) are satisfied.
The piecewise-constant generalized argument w(β(y), z) in system (2.1) reflects mirror delays or

the “memory” effect in the system. For example, wave propagation in media with memory, such as
viscoelastic materials, plasma, or biological tissue; or thermoelasticity with delay, where the
deformation at time t depends on the temperature corresponding to a previous moment in time [6, 12];
or controlled systems with periodic or piecewise-constant changes in parameters (e.g., switched or
modulated media) [13, 15, 16].

Integral condition (2.2) reflects the direct influence of the entire domain, or part of it, on the
behavior of the solution. Such conditions arise in the following contexts: wave equations with integral
constraints, which model processes where energy or mass is distributed and controlled globally;
elasticity and acoustics, where deformation or pressure are related through integral relations over the
domain—for example, when modeling thin plates or membranes with distributed constraints [17–19].

Together, these structures capture complex physical phenomena involving delay, memory, and
nonlocal interactions, extending the applicability of hyperbolic integro-differential systems beyond
classical local models.
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This formulation gives rise to a new class of initial-integral problems for HIDSs that warrant
detailed investigation. One effective approach to solving such problems is to reduce them to simpler
parameterized integral problems for first-order IDSs systems.

The next section is devoted to solving the initial-integral problem for HIDSs (2.1)–(2.3), based on
its reduction to a parameterized problem for first-order FIDEs.

3. Equivalent parametrized integral-problems for system IDEs with distributed functions

For a qualitative analysis of the problems (2.1)–(2.3), we apply the effective approach proposed
in [20] and introduce the following new functions:

u(y, z) =
∂w(y, z)
∂z

, v(y, z) =
∂w(y, z)
∂y

, (y, z) ∈ Λ.

The introduction of these functions makes it possible to rewrite the problem under consideration as
a system of first-order IDEs with distributed functions:

∂u(y, z)
∂y

= A(y, z)u(y, z) + D(y, z)u(β(y), z) + K(y, z)

Y∫
0

M(ξ, z)u(ξ, z)dξ

+ g(y, z) + B(y, z)v(y, z) +C(y, z)w(y, z), (y, z) ∈ Λ,

(3.1)

together with the integral condition

P(z)u(0, z) + S (z)

Y∫
0

M(ξ, z)u(ξ, z)dξ = φ(z), z ∈ [0,Z], (3.2)

and the integral constraints

w(y, z) = ψ(y) +

z∫
0

u(y, η)dη, v(y, z) = ψ̇(y) +

z∫
0

∂u(y, η)
∂y

dη, (y, z) ∈ Λ. (3.3)

Here, ψ̇(y) is the derivative of function ψ(y).
The variable z is treated as a parameter that varies continuously over the interval [0,Z] for the

parameterized integral problems. Relations (3.3) serve as integral constraints for the functions w(y, z)
and v(y, z), involving the function u(y, z) and its partial derivative with respect to y.

A triple {u(y, z),w(y, z), v(y, z)} is called a solution of the parameterized integral problems (3.1)–(3.3)
if the following hold:
⋄ u(y, z) ∈ C(Λ,Rn) and is continuous in both variables.
⋄ The partial derivative ∂u(y,z)

∂y exists for all (y, z) ∈ Λ, except possibly at points (yi−1, z), where
one-sided limits exist.
⋄ The system (3.1) is satisfied in every subdomain [yi−1, yi) × [0,Z], with right-hand derivatives at

y = yi−1.
⋄ The integral condition (3.2) holds for all y ∈ [0,Y].
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⋄ The relations (3.3) are fulfilled, thereby coupling u(y, z) with the corresponding functions w(y, z)
and v(y, z).

In [20], using the properties of solutions to parameterized integral problems for systems of
differential equations of the first order with integral constraints, conditions for the unique and
well-posed solvability of a nonlocal problem for a system of hyperbolic equations of the second order
with an integral condition were established. An effective method for solving the nonlocal problem for
hyperbolic systems second order, based on approximate solutions to parameterized integral problems
for first-order differential systems, was also proposed.

Parameterized integral problems for a system of first-order IDEs with distributed functions and
constraints (3.1)–(3.3) represent a new type of problem. This problem requires a separate investigation
and an analysis of its solvability conditions.

We now focus our attention on a special type of auxiliary problem:

∂u(y, z)
∂y

= A(y, z)u(y, z) + D(y, z)u(β(y), z) + K(y, z)

Y∫
0

M(ξ, z)u(ξ, z)dξ +G(y, z), (y, z) ∈ Λ, (3.4)

with the accompanying condition

P(z)u(0, z) + S (z)

Y∫
0

M(ξ, z)u(ξ, z)dξ = φ(z), z ∈ [0,Z], (3.5)

where G(y, z) ∈ C(Λ,Rn) is a given function.
If we take G(y, z) = g(y, z) + B(y, z)v(y, z) + C(y, z)w(y, z), we obtain system (3.1) with integral

condition (3.2). By studying system (3.4) with condition (3.5), we can describe the properties of the
parameterized integral problems (3.1), (3.2) for fixed v and w.

A function u(y, z) ∈ C(Λ,Rn) is said to be a solution of problem (3.4), (3.5) if the following
conditions are satisfied:
⋄

∂u(y,z)
∂y exists for all (y, z) ∈ Λ, except possibly at the discontinuity points (yi−1, z), i = 1, L, for all

z ∈ [0,Z], where one-sided derivatives exist.
⋄ system of IDEs (3.4) is satisfied in each sub-domain [yi−1, yi) × [0,Z].
⋄ The integral condition (3.5) holds for all z ∈ [0,Z].
The problem statement (3.4), (3.5) defines a new class of parameterized integral problems for

systems of first-order IDEs. This class requires careful and independent qualitative analysis, since the
combination of the parameter y, integral operators, and GPCA gives rise to challenging analytical
questions. Moreover, such problems naturally arise in applications ranging from control theory to the
mathematical modeling of neural networks [7].

4. Solvability conditions for the parameterized integral-problems

Conditions are identified that ensure the existence and uniqueness of the solution of parameterized
integral problems (3.4) and (3.5). The approach is based on a modification of the parametrization
Dzhumabaev method [14] and solving problems in each subdomain Λi = [yi−1, yi) × [0,Z], in
combination with continuity conditions on the boundary lines of the intervals [yi−1, yi), i = 1, 2, ..., L.
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Now, we consider the parameterized integral-problems for the system of first-order IDEs (3.4)
and (3.5).

Divide the region Λ along the lines y = yi: Λi = [yi−1, yi) × [0,Z], i = 1, 2, ..., L.
Let ui(y, z) denote the restriction of the desired function to the subdomain

Λi : u(y, z) = ui(y, z), (y, z) ∈ Λi, i = 1, 2, ..., L.

The set of functions {ui(y, z)}, i = 1, 2, ..., L, satisfies the system IDEs

∂ui(y, z)
∂y

= A(y, z)ui(y, z) + D(y, z)ui(γi−1, z) + K(y, z)
L∑

i=1

yi∫
yi−1

M(ξ, z)ui(ξ, z)dξ +G(y, z),

(y, z) ∈ Λi, i = 1, 2, ..., L,

(4.1)

a continuity conditions

lim
y→yr−0

ur(y, z) = ur+1(yr, z), r = 1, L − 1, z ∈ [0,Z], (4.2)

an integral relations

P(z)u1(0, z) + S (z)
L∑

i=1

yi∫
yi−1

M(ξ, z)ui(ξ, z)dξ = φ(z), z ∈ [0,Z]. (4.3)

In system (4.1), it is assumed that β(y) = γi−1 if y ∈ [yi−1, yi), i = 1, ..., L.
The following functional parameters are introduced:

θ(z) = u1(0, z), λ(z) =
L∑

i=1

yi∫
yi−1

M(ξ, z)ui(ξ, z)dξ, z ∈ [0,Z].

We also introduce new unknown functions ũi(y, z) on the subdomains Λi = [yi−1, yi) × [0,Z],
i = 1, 2, ..., L. Assume that the functions ũi(y, z) are continuous on Λi, and have continuous partial
derivatives with respect to z z for all (y, z) ∈ Λi, i = 1, 2, ..., L.

In the parameterized multipoint integral problems (4.1)–(4.3), the functions ui(y, z) are expressed in
the following form:

ui(y, z) = ũi(y, z) + θ(z) +
y − yi−1

yi − yi−1
λ(z), (y, z) ∈ Λi, i = 1, 2, ..., L.

For the system (4.1), taking into account

λ(z) =
L∑

i=1

yi∫
yi−1

M(ξ, z)ui(ξ, z)dξ,

we have

∂ũi(y, z)
∂y

= A(y, z)
[̃
ui(y, z) + θ(z) +

y − yi−1

yi − yi−1
λ(z)

]
+ D(y, z)

[̃
ui(γi−1, z) + θ(z) +

γi−1 − yi−1

yi − yi−1
λ(z)

]
+G(y, z) + K(y, z)λ(z), (y, z) ∈ Λi, i = 1, 2, ..., L.
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Then, we obtain a parameterized initial problems for a system of first-order IDEs

∂ũi(y, z)
∂y

= A(y, z)̃ui(y, z) + D(y, z)̃ui(γi−1, z) +G(y, z) + [A(y, z) + D(y, z)]θ(z)

+
[
A(y, z)

y − yi−1

yi − yi−1
+ D(y, z)

γi−1 − yi−1

yi − yi−1
+ K(y, z)

]
λ(z), (y, z) ∈ Λi, i = 1, 2, ..., L,

(4.4)

with initial conditions
ũ1(0, z) = 0, z ∈ [0,Z], (4.5)

ũr+1(yr, z) = lim
y→yr−0

ũr(y, z) + λ(z), r = 1, 2, ..., L − 1, z ∈ [0,Z], (4.6)

and relations[
I −

L∑
i=1

yi∫
yi−1

M(ξ, z)
ξ − yi−1

yi − yi−1
dξ

]
λ(z) −

L∑
i=1

yi∫
yi−1

M(ξ, z)dξθ(z) =
L∑

i=1

yi∫
yi−1

M(ξ, z)̃ui(ξ, z)dξ, (4.7)

P(z)θ(z) + S (z)λ(z) = φ(z), z ∈ [0,Z], (4.8)

here I is an identity matrix of dimension n.
One of the advantages of the obtained problem is the presence of the initial condition (4.5) for the

unknown function ũ1(y, z) at y = 0.
Relation (4.7) follows from

λ(z) =
L∑

i=1

yi∫
yi−1

M(ξ, z)ui(ξ, z)dξ =
L∑

i=1

yi∫
yi−1

M(ξ, z)
[̃
ui(ξ, z) + θ(z) +

ξ − yi−1

yi − yi−1
λ(z)

]
dξ.

By the solution of the parameterized initial problems for the first-order system of IDEs (4.4)–(4.8),
we mean a family of functions ({̃ui(y, z)}, θ(z), λ(z)), with elements ũi(y, z) ∈ C(Λi,R

n), θ(z), λ(z) ∈
C([0,Z],Rn), provided that:
⋄ the partial derivatives with respect to the first variable ∂ũi(y,z)

∂y exist at every point (y, z) ∈ Λi except
at the points (yi−1, z), i = 1, 2, ..., L, for all z ∈ [0,Z], where one-sided partial derivatives exist;
⋄ the first order system IDEs (4.4) holds for ũi(y, z) in each subdomain [yi−1, yi) × [0,Z], i =

1, 2, ..., L, and right-hand partial derivatives with respect to y of ũi(y, z) exist at the points (yi−1, z),
i = 1, 2, ..., L, z ∈ [0,Z];
⋄ the initial conditions (4.5), (4.6) are satisfied by ũi(y, z) for all z ∈ [0,Z], i = 1, 2, ..., L;
⋄ the integral relation (4.7) and the functional relation (4.8) hold for ũi(y, z), θ(z), and λ(z) for all

z ∈ [0,Z].
Let Wi(y, z) be the fundamental matrix of solutions to the differential system

∂ui(y, z)
∂y

= A(y, z)ui(y, z), (y, z) ∈ Λi, i = 1, 2, ..., L.

We also introduce the following notation:

Ui(L̃, y, z) = Wi(y, z)

y∫
yi−1

W−1
i (ξ, z)L̃(ξ, z)dξ, z ∈ [0,Z], i = 1, 2, ..., L. (4.9)
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Here L̃ is a square matrix of dimension n. Sometimes L̃ will denote a vector of dimension n. Let

Ki(y, z) = A(y, z)
y − yi−1

yi − yi−1
+ D(y, z)

γi−1 − yi−1

yi − yi−1
+ K(y, z), (y, z) ∈ Λi, i = 1, 2, ..., L.

Assume that the matrices Vi(z) = I − Ui(D, γi−1, z) are nonsingular for all z ∈ [0,Z], i = 1, 2, ..., L.
Let

A1(y, z) = U1(D, y, z)[V1(z)]−1U1(A + D, γ0, z) + U1(A + D, y, z), (y, z) ∈ Λ1,

B1(y, z) = U1(D, y, z)[V1(z)]−1U1(K1, γ0, z) + U1(K1, y, z), (y, z) ∈ Λ1,

G1(y, z) = U1(D, y, z)[V1(z)]−1U1(G, γ0, z) + U1(G, y, z), (y, z) ∈ Λ1,

Ai(y, z) = Wi(y, z)W−1
i (yi−1, z)Ai−1(yi−1, z) + Ui(A + D, y, z)+

+Ui(D, y, z)[Vi(z)]−1[Wi(γi−1, z)W−1
i (yi−1, z)Ai−1(yi−1, z) + Ui(A + D, γi−1, z)],

Bi(y, z) = Wi(y, z)W−1
i (yi−1, z){Bi−1(yi−1, z) + I} + Ui(Ki, y, z)+

+Ui(D, y, z)[Vi(z)]−1[Wi(γp−1, z)W−1
i (yi−1, z){Bi−1(yi−1, z) + I} + Ui(Ki, γi−1, z)],

Gi(y, z) = Wi(y, z)W−1
i (yi−1, z)Gi−1(yi−1, z) + Ui(G, y, z)+

+Ui(D, y, z)[Vi(z)]−1[Wi(γi−1, z)W−1
i (yi−1, z)Gi−1(yi−1, z) + Ui(G, γi−1, z)],

(y, z) ∈ Λi, i = 2, 3, ..., L.

We construct a 2n × 2n matrix Q∗(z):

Q∗(z) =


−

L∑
i=1

yi∫
yi−1

M(ξ, z)[I + Ai(ξ, z)]dξ, I −
L∑

i=1

yi∫
yi−1

M(ξ, z)
{
ξ − yi−1

yi − yi−1
− Bi(ξ, z)

}
dξ

P(z) S (z)

 . (4.10)

Theorem 1. Assume that
a) the n × n matrices Vi(z) = I − Ui(D, γi−1, z) are nonsingular for all z ∈ [0,Z], where

Ui(D, γi−1, z) = Wi(γi−1, z)

γi−1∫
yi−1

W−1
i (ξ, z)D(ξ, z)dξ, z ∈ [0,Z],

and Wi(y, z) is the fundamental matrix of solutions to the system of differential equations

∂ui(y, z)
∂y

= A(y, z)ui(y, z), (y, z) ∈ Λi, i = 1, 2, ..., L;

b) the 2n × 2n matrix Q∗(z), given by (4.10), is nonsingular for all z ∈ [0,Z].
Then, the parameterized initial value problem for the IDE systems (4.4)–(4.8) has a unique solution

({̃u∗i (y, z)}, θ∗(z), λ∗(z)), where the functions ũ∗i (y, z) admit the representations

ũ∗i (y, z) = Ai(y, z)θ(z) + Bi(y, z)λ(z) +Gi(y, z), (y, z) ∈ Λi, i = 1, 2, ..., L; (4.11)

and the functional parameters θ∗(z) and λ∗(z) are the solution to system

Q∗(z)
(
θ(z)
λ(z)

)
=


L∑

i=1

yi∫
yi−1

M(ξ, z)Gi(ξ, z)dξ

φ(z)

 , z ∈ [0,Z]. (4.12)
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Proof. For fixed values of the parameters θ(z), λ(z) ∈ C([0,Z],Rn), we construct solutions to the
parameterized initial value problems for the system IDEs (4.4)–(4.6).

We begin by constructing a solution in the subdomain Λ1. Using the representation (4.9), the
solutions to the parameterized initial problems for the system IDEs (4.4), and (4.5) can be written as

ũ1(y, z) = U1(D, y, z)̃u1(γ0, z) + U1(A + D, y, z)θ(z) + U1(K1, y, z)λ(z) + U1(G, y, z), (4.13)

where (y, z) ∈ Λ1.
At y = γ0, from (4.13) we obtain:

ũ1(γ0, z) = U1(D, γ0, z)̃u1(γ0, z) + U1(A + D, γ0, z)θ(z) + U1(K1, γ0, z)λ(z) + U1(G, γ0, z).

From this, it follows that[
I − U1(D, γ0, z)

]̃
u1(γ0, z) = U1(A + D, γ0, z)θ(z) + U1(K1, γ0, z)λ(z) + U1(G, γ0, z), z ∈ [0,Z]. (4.14)

According to condition a) of the Theorem, the matrix V1(z) = I − U1(D, γ0, z) is nonsingular for all
z ∈ [0,Z].

Then the system (4.14) admits a unique solution, which can be written as:

ũ1(γ0, z) = [V1(z)]−1U1(A + D, γ0, z)θ(z) + [V1(z)]−1U1(K1, γ0, z)λ(z) + [V1(z)]−1U1(G, γ0, z), (4.15)

for all z ∈ [0,Z].
Substituting the representation (4.15) for ũ1(γ0, z) into (4.13), we obtain an explicit form of the

solution to problems (4.4) and (4.5):

ũ1(y, z) = A1(y, z)θ(z) + B1(y, z)λ(z) +G1(y, z), (y, z) ∈ Λ1, (4.16)

where A1(y, z), B1(y, z), and G1(y, z) are given above.
Next, we examine system (4.4) within the subdomain Λ2:

∂ũ2(y, z)
∂y

= A(y, z)̃u2(y, z) + D(y, z)̃u2(γ1, z) + [A(y, z) + D(y, z)]θ(z)

+K2(y, z)λ(z) +G(y, z), (y, z) ∈ Λ2.

(4.17)

From the representation (4.16) we find the limit value at y→ y1 − 0 for ũ1(y, z):

lim
y→y1−0

ũ1(y, z) = A1(y1, z)θ(z) + B1(y1, z)λ(z) +G1(y1, z), z ∈ [0,Z]. (4.18)

Using the initial conditions (4.6) at r = 1, and taking into account the limit value (4.18), we can
determine the initial condition along the line y = y1:

ũ2(y1, z) = A1(y1, z)θ(z) + {B1(y1, z) + I}λ(z) +G1(y1, z), z ∈ [0,Z]. (4.19)

Then the solutions to the parameterized initial problems for the system IDEs (4.17), and (4.19) can
be written as:

ũ2(y, z) = W2(y, z)W−1
2 (y1, z)[A1(y1, z)θ(z) + {B1(y1, z) + I}λ(z) +G1(y1, z)]

+ U2(D, y, z)̃u2(γ1, z) + U2(A + D, y, z)θ(z) + U2(K2, y, z)λ(z) + U2(G, y, z), (y, z) ∈ Λ2.
(4.20)

AIMS Mathematics Volume 10, Issue 11, 26803–26822.



26812

At y = γ1, representation (4.20) yields

[I − U2(D, γ1, z)]̃u2(γ1, z) = [W2(γ1, z)W−1
2 (y1, z)A1(y1, z) + U2(A + D, γ1, z)]θ(z)

+ [W2(γ1, z)W−1
2 (y1, z){B1(y1, z) + I} +U2(K2, γ1, z)]λ(z)

+W2(γ1, z)W−1
2 (y1, z)G1(y1, z) + U2(G, γ1, z),

(4.21)

for z ∈ [0,Z].
According to condition a) of the Theorem, the matrix V2(z) = I − U2(D, γ1, z) is nonsingular for all

z ∈ [0,Z].
Then the system (4.21) admits a unique solution, represented as:

ũ2(γ1, z) = [V2(z)]−1[W2(γ1, z)W−1
2 (y1, z)A1(y1, z) + U2(A + D, γ1, z)]θ(z)

+ [V2(z)]−1[W2(γ1, z)W−1
2 (y1, z){B1(y1, z) + I} + U2(K2, γ1, z)]λ(z)

+ [V2(z)]−1[W2(γ1, z)W−1
2 (y1, z)G1(y1, z) + U2(G, γ1, z)], z ∈ [0,Z].

(4.22)

Substituting expression (4.22) for ũ2(γ1, z) into representation (4.20), we obtain an explicit formula
for the solution to problems (4.17) and (4.19):

ũ2(y, z) = A2(y, z)θ(z) + B2(y, z)λ(z) +G2(y, z), (y, z) ∈ Λ2, (4.23)

where A2(y, z), B2(y, z), and G2(y, z) are given above.
Continuing in this way, we consider system (4.4) on the subdomain Λp:

∂ũp(y, z)
∂y

= A(y, z)̃up(y, z) + D(y, z)̃u2(γp−1, z) + [A(y, z) + D(y, z)]θ(z)

+ Kp(y, z)λ(z) +G(y, z), (y, z) ∈ Λp,

(4.24)

and the initial condition is given by:

ũp(yp−1, z) = Ap−1(yp−1, z)θ(z) + {Bp−1(yp−1, z) + I}λ(z) +Gp−1(yp−1, z), z ∈ [0,Z], (4.25)

where p denotes an arbitrary integer in the range 2 ≤ p ≤ L.
The solutions to the parameterized initial problems for the system IDEs (4.24) and (4.25) can be

written as:

ũp(y, z) = Wp(y, z)W−1
p (yp−1, z)[Ap−1(yp−1, z)θ(z) + {Bp−1(yp−1, z) + I}λ(z) +Gp−1(yp−1, z)]

+ Up(D, y, z)̃up(γp−1, z) + Up(A + D, y, z)θ(z) + Up(Kp, y, z)λ(z) + Up(G, y, z), (y, z) ∈ Λp.
(4.26)

At y = γp−1, representation (4.26) yields

[I − Up(D, γp−1, z)]̃up(γp−1, z) = [Wp(γp−1, z)W−1
p (yp−1, z)Ap−1(yp−1, z) + Up(A + D, γp−1, z)]θ(z)

+ [Wp(γp−1, z)W−1
p (yp−1, z){Bp−1(yp−1, z) + I} + Up(Kp, γp−1, z)]λ(z)

+Wp(γp−1, z)W−1
p (yp−1, z)Gp−1(yp−1, z) + Up(G, γp−1, z), z ∈ [0,Z].

(4.27)
Assume that the matrix Vp(z) = I − Up(D, γp−1, z) is nonsingular for all z ∈ [0,Z].

AIMS Mathematics Volume 10, Issue 11, 26803–26822.



26813

Then the system (4.27) admits a unique solution, represented as:

ũp(γp−1, z) = [Vp(z)]−1[Wp(γp−1, z)W−1
p (yp−1, z)Ap−1(yp−1, z) + Up(A + D, γp−1, z)]θ(z)

+ [Vp(z)]−1[Wp(γp−1, z)W−1
p (yp−1, z){Bp−1(yp−1, z) + I} + Up(Kp, γp−1, z)]λ(z)

+ [Vp(z)]−1Wp(γp−1, z)W−1
p (yp−1, z)Gp−1(yp−1, z) + Up(G, γp−1, z).

(4.28)

Substituting expression (4.28) for ũp(γp−1, z) into (4.26), we obtain an explicit representation of the
solution to problems (4.24) and (4.25):

ũp(y, z) = Ap(y, z)θ(z) + Bp(y, z)λ(z) +Gp(y, z), (y, z) ∈ Λp, (4.29)

where Ap(y, z), Bp(y, z), and Gp(y, z) are given above.
Thus, we have obtained an explicit solution to the parameterized initial problems for the system

IDEs (4.4)–(4.6), given by formula (4.13) for i = 1 and by the recurrence relations (4.29) for i = p,
where p = 2, 3, ..., L.

According to condition a) of the Theorem, the matrices Vp(z) = I − Up(D, γp−1, z) of dimension n
are nonsingular for all z ∈ [0,Z] and for p = 1, 2, ..., L.

Let us note that there also exists a finite left-hand limit lim
y→Y−0

ũL(y, z) for all z ∈ [0,Z].

Now, in relation (4.7), instead of ũi(ξ, z) in the integral sum, we substitute formulas (4.16) and (4.29)
at y = ξ. As a result, this yields

−

L∑
i=1

yi∫
yi−1

M(ξ, z)[I + Ai(ξ, z)]dξθ(z) +
[
I −

L∑
i=1

yi∫
yi−1

M(ξ, z)
{
ξ − yi−1

yi − yi−1
− Bi(ξ, z)

}
dξ

]
λ(z)

=

L∑
i=1

yi∫
yi−1

M(ξ, z)Gi(ξ, z)dξ,

(4.30)

P(z)θ(z) + S (z)λ(z) = φ(z), z ∈ [0,Z], (4.31)

From the coefficients of the left-hand sides of systems (4.30) and (4.31), we construct a 2n × 2n
matrix Q∗(z) in the form (4.10).

Then equations (4.30) and (4.31) can be written in the form (4.12).
According to condition b) of the Theorem, the matrix Q∗(z) of size 2n × 2n, is nonsingular for all

z ∈ [0,Z]. This means that its determinant is nonzero:∣∣∣∣∣− L∑
i=1

yi∫
yi−1

M(ξ, z)[I + Ai(ξ, z)]dξS (z) − P(z)
[
I −

L∑
i=1

yi∫
yi−1

M(ξ, z)
{
ξ − yi−1

yi − yi−1
− Bi(ξ, z)

}
dξ

]∣∣∣∣∣ , 0

for all z ∈ [0,Z].

It follows that system (4.12) has a unique solution
(
θ∗(z)
λ∗(z)

)
in the form:

(
θ∗(z)
λ∗(z)

)
= [Q∗(z)]−1


L∑

i=1

yi∫
yi−1

M(ξ, z)Gi(ξ, z)dξ

φ(z)

 .
Hence, Theorem 1 is proved. □
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From the equivalence of problems (3.4), (3.5), and (4.4)–(4.8), the following statement follows:

Theorem 2. Let conditions a) and b) of Theorem 1 be satisfied.
Then the parameterized integral-problems for the system IDEs (3.4), and (3.5) have a unique

solution u∗(y, z), determined by the equalities:

u∗(y, z) = ũ∗i (y, z) + θ∗(z) +
y − yi−1

yi − yi−1
λ∗(z), (y, z) ∈ Λi, i = 1, 2, ..., L, (4.32)

u∗(Y, z) = lim
y→Y−0

ũ∗L(y, z) + θ∗(z) +
Y − yL−1

Y − yL−1
λ∗(z), z ∈ [0,Z], (4.33)

where the functions ũ∗i (y, z) admit the representations (4.11), and the functional parameters θ∗(z) and
λ∗(z) are the solution to system (4.12).

Recent studies have explored several related directions in the theory of integro-differential and
integrable systems. For instance, advanced collocation-based numerical methods have been developed
for highly oscillatory algebraic singular Volterra integral equations [21], and multi-component
integrable equations with infinitely many symmetries and conservation laws have been investigated
within the framework of Hamiltonian systems [22]. The parametrization method proposed in this
paper could, in principle, be extended to such classes of problems, particularly to nonlinear systems
with oscillatory kernels, memory effects, or Hamiltonian structures. These perspectives open new
possibilities for applying the developed approach to a wider range of models describing nonlinear
wave propagation and related phenomena.

5. Constructive method for solving the equivalent problem and convergence of the algorithm

Let us now return to the study of the parameterized integral-problems for the first-order system
IDEs with distributed functions (3.1)–(3.3).

We define the triple system {u∗(y, z),w∗(y, z), v∗(y, z)} as the limit of the sequence of triple systems
{u(k)(y, z),w(k)(y, z), v(k)(y, z)}, k = 0, 1, 2, . . ..

An iterative approach for constructing solutions to the parameterized integral problems for first-
order system IDEs with distributed functions (3.1)–(3.3) is proposed.

The approximate solutions will be obtained using the following algorithm:

Stage 0.
(1) Let w(y, z) = ψ(y), v(y, z) = ψ̇(y) in the right-hand side of system (3.1). The initial approximation

u(0)(y, z) is obtained as the solution of the parameterized integral-problems for the first-order system
IDEs

∂u(y, z)
∂y

= A(y, z)u(y, z) + D(y, z)u(β(y), z) + K(y, z)

Y∫
0

M(ξ, z)u(ξ, z)dξ

+ g(y, z) + B(y, z)ψ̇(y) +C(y, z)ψ(y), (y, z) ∈ Λ,

(5.1)

P(z)u(0, z) + S (z)

Y∫
0

M(ξ, z)u(ξ, z)dξ = φ(z), z ∈ [0,Z]. (5.2)
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(2) Substituting the obtained function u(0)(y, z) and its partial derivative ∂u(0)(y,z)
∂y into the integral

constraints (3.3), we determine the initial approximations w(0)(y, z) and v(0)(y, z):

w(0)(y, z) = ψ(y) +

z∫
0

u(0)(y, η)dη, v(0)(y, z) = ψ̇(y) +

z∫
0

∂u(0)(y, η)
∂y

dη, (y, z) ∈ Λ. (5.3)

Continuing in this way, at the k-th stage we construct a sequence of triple systems
{u(k)(y, z),w(k)(y, z), v(k)(y, z)}

Stage (k + 1).
(1) Let w(y, z) = w(k)(y, z), v(y, z) = v(k)(y, z) in the right-hand side of system (3.1). The (k + 1)-

st approximation u(k+1)(y, z) is obtained as the solution of the parameterized integral-problems for the
system of first-order IDEs

∂u(y, z)
∂y

= A(y, z)u(y, z) + D(y, z)u(β(y), z) + K(y, z)

Y∫
0

M(ξ, z)u(ξ, z)dξ

+ g(y, z) + B(y, z)v(k)(y, z) +C(y, z)w(k)(y, z), (y, z) ∈ Λ,

(5.4)

P(z)u(0, z) + S (z)

Y∫
0

M(ξ, z)u(ξ, z)dξ = φ(z), z ∈ [0,Z]. (5.5)

(2) By substituting the obtained function u(k+1)(y, z) and its partial derivative ∂u(k+1)(y,z)
∂y into the integral

constraints (3.3), we determine the (k + 1)-st approximations w(k+1)(y, z) and v(k+1)(y, z):

w(k+1)(y, z) = ψ(y) +

z∫
0

u(k+1)(y, η)dη, v(k+1)(y, z) = ψ̇(y) +

z∫
0

∂u(k+1)(y, η)
∂y

dη, (5.6)

(y, z) ∈ Λ, k = 0, 1, 2, ....
The procedure for obtaining the solution to the parameterized integral problems (3.1)–(3.3) for

first-order system IDEs with distributed functions consists of two phases. At the first phase, the
parameterized integral problems are solved for the first-order system IDEs with fixed distributed
functions w(y, z) and v(y, z). At the second phase, the distributed functions are determined from the
integral constraints.

The conditions for the applicability and implementation of the proposed method for solving the
parameterized integral problems for first-order systems IDEs with distributed functions (3.1)–(3.3) are
given in the following statement.

Theorem 3. Suppose that the conditions a) and b) of Theorem 1 hold.
Then the parameterized integral-problems for the first-order system IDEs with distributed

functions and integral constraints (3.1)–(3.3) admits a unique solution {u∗(y, z),w∗(y, z), v∗(y, z)},
where the function u∗(y, z) is the solution of the parameterized integral-problems for the first-order
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system IDEs (3.4) and (3.5) with the function G(y, z) = g(y, z) + B(y, z)v∗(y, z) + C(y, z)w∗(y, z), while
the distributed functions w∗(y, z) and v∗(y, z) satisfy the integral constraints

w∗(y, z) = ψ(y) +

z∫
0

u∗(y, η)dη, v∗(y, z) = ψ̇(y) +

z∫
0

∂u∗(y, η)
∂y

dη

for all (y, z) ∈ Λ.

Proof. By condition, the assumptions of Theorem 1 are fulfilled. This implies that the parameterized
integral-problems for the first-order system IDEs (3.4), and (3.5) are uniquely solvable for G(y, z) ∈
C(Λ,Rn) è φ(z) ∈ C([0,Z],Rn).

Let
α(z) = max

y∈[0,Y]
||A(y, z)||, δ(z) = max

y∈[0,Y]
||D(y, z)||, β(z) = max

y∈[0,Y]
||B(y, z)||,

σ(z) = max
y∈[0,Y]

||C(y, z)||, κ(z) = max
y∈[0,Y]

||K(y, z)||, ζ(z) = max
y∈[0,Y]

||M(y, z)||.

According to Stage 0, we solve the parameterized integral problems (5.1) and (5.2) and obtain a
unique solution u(0)(y, z), together with its partial derivative ∂u(0)(y,z)

∂y , for which the following estimates
hold:

max
y∈[0,Y]

||u(0)(y, z)|| ≤ C1(z) max
(

max
y∈[0,Y]

||ψ(y)||, max
y∈[0,Y]

||ψ̇(y)||, max
y∈[0,Y]

||g(y, z)||, ||φ(z)||
)
, (5.7)

max
y∈[0,Y]

∣∣∣∣∣∣∣∣∂u(0)(y, z)
∂y

∣∣∣∣∣∣∣∣ ≤ {[
α(z) + δ(z) + κ(z)Yζ(z)

]
C1(z) + 1 + β(z) + σ(z)

}
×max

(
max
y∈[0,Y]

||ψ(y)||, max
y∈[0,Y]

||ψ̇(y)||, max
y∈[0,Y]

||g(y, z)||, ||φ(z)||
)
.

(5.8)

Here, the function C1(z) is determined by the given data of the problem using the
representations (4.32) and (4.33) and does not depend on g(y, z) and φ(z).

From the integral relations (5.1) we obtain an inequality for the functions w(0)(y, z) and v(0)(y, z):

max
(

max
y∈[0,Y]

||w(0)(y, z)||, max
y∈[0,Y]

||v(0)(y, z)||
)

≤ max
(

max
y∈[0,Y]

||ψ(y)||, max
y∈[0,Y]

||ψ̇(y)||
)
+

z∫
0

max
(

max
y∈[0,Y]

||u(0)(y, η)||, max
y∈[0,Y]

∣∣∣∣∣∣∣∣∂u(0)(y, η)
∂y

∣∣∣∣∣∣∣∣)dη. (5.9)

Continuing the process, at the (k + 1)-st stage, from (5.2)–(5.4) we establish the next estimates:

max
y∈[0,Y]

||u(k+1)(y, z)|| ≤ C1(z) max
(

max
y∈[0,Y]

||w(k)(y, z)||, max
y∈[0,Y]

||v(k)(y, z)||, max
y∈[0,Y]

||g(y, z)||, ||φ(z)||
)
, (5.10)

max
y∈[0,Y]

∣∣∣∣∣∣∣∣∂u(k+1)(y, z)
∂y

∣∣∣∣∣∣∣∣ ≤ C2(z) max
(

max
y∈[0,Y]

||w(k)(y, z)||, max
y∈[0,Y]

||v(k)(y, z)||, max
y∈[0,Y]

||g(y, z)||, ||φ(z)||
)
, (5.11)

max
(

max
y∈[0,Y]

||w(k+1)(y, z)||, max
y∈[0,Y]

||v(k+1)(y, z)||
)
≤ max

(
max
y∈[0,Y]

||ψ(y)||, max
y∈[0,Y]

||ψ̇(y)||
)

+

z∫
0

max
(

max
y∈[0,Y]

||u(k+1)(y, η)||, max
y∈[0,Y]

∣∣∣∣∣∣∣∣∂u(k+1)(y, η)
∂y

∣∣∣∣∣∣∣∣)dη. (5.12)
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where C2(z) =
[
α(z) + δ(z) + κ(z)Yζ(z)

]
C1(z) + 1 + β(z) + σ(z), k = 0, 1, 2, ... .

Now, let us form the differences

∆u(k+1)(y, z) = u(k+1)(y, z) − u(k)(y, z), ∆
∂u(k+1)(y, z)

∂y
=
∂u(k+1)(y, z)

∂y
−
∂u(k)(y, z)

∂y
,

∆w(k+1)(y, z) = w(k+1)(y, z) − w(k)(y, z), ∆v(k+1)(y, z) = v(k+1)(y, z) − v(k)(y, z), k = 0, 1, 2, ....

Then, similarly to estimates (5.7)–(5.12), the following inequalities are established:

max
(

max
y∈[0,Y]

||∆u(k+1)(y, z)||, max
y∈[0,Y]

∣∣∣∣∣∣∣∣∆∂u(k+1)(y, z)
∂y

∣∣∣∣∣∣∣∣)
≤ max{C1(z),C2(z)}max

(
max
y∈[0,Y]

||∆w(k)(y, z)||, max
y∈[0,Y]

||∆v(k)(y, z)||
)
,

(5.13)

max
(

max
y∈[0,Y]

||∆w(k+1)(y, z)||, max
y∈[0,Y]

||∆v(k+1)(y, z)||
)

≤

z∫
0

max
(

max
y∈[0,Y]

||∆u(k+1)(y, η)||, max
y∈[0,Y]

∣∣∣∣∣∣∣∣∆∂u(k+1)(y, η)
∂y

∣∣∣∣∣∣∣∣)dη. (5.14)

In view of estimate (5.13), the relation (5.14) yields the fundamental inequality

max
(

max
y∈[0,Y]

||∆w(k+1)(y, z)||, max
y∈[0,Y]

||∆v(k+1)(y, z)||
)

≤

z∫
0

max{C1(η),C2(η)}max
(

max
y∈[0,Y]

||∆w(k)(y, η)||, max
y∈[0,Y]

||∆v(k)(y, η)||
)
dη,

(5.15)

k = 0, 1, 2, ....
From the assumptions on the coefficients of system (2.1), it follows that the functions C1(z) and

C2(z) are continuous on [0,Z].
Define for z ∈ [0,Z]

Dk(z) = max
(

max
y∈[0,Y]

||∆w(k)(y, z)||, max
y∈[0,Y]

||∆v(k)(y, z)||
)
,

and ω(z) = max{C1(η),C2(η)}, so inequality ( 5.15 ) becomes

Dk+1(z) ≤

z∫
0

ω(η)Dk(η)dη, k = 0, 1, 2, ... (5.16)

For D0(z), taking into account the estimates (5.7)–(5.9), we obtain

D0(z) ≤
(
1 +

Z∫
0

ω(η)dη
)

max
(

max
y∈[0,Y]

||ψ(y)||, max
y∈[0,Y]

||ψ̇(y)||, max
(y,z)∈Λ

||g(y, z)||, max
z∈[0,Z]

||φ(z)||
)
= D̄0.

Then

Dk+1(z) ≤ D̄0
1

(k + 1)!

( z∫
0

ω(η)dη
)k+1

, k = 0, 1, 2, ... (5.17)
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For each fixed z ∈ [0,Z],

Dk(z) ≤ D̄0
1
k!

( z∫
0

ω(η)dη
)k

≤ D̄0
1
k!

( Z∫
0

ω(η)dη
)k

−→ 0, k → ∞, (5.18)

since k! grows faster than any power. Then, the convergence is uniform in z, and Dk bounds maxima
over y uniformly on the whole domain Λ = [0,Y] × [0,Z].

Therefore, from inequality (5.17), it follows that the sequences {w(k)(y, z)} and {v(k)(y, z)} in the
domain Λ converge uniformly, as k → ∞, to the functions w∗(y, z) and v∗(y, z), respectively.

From inequality (5.13) we have

max
(

max
y∈[0,Y]

||∆u(k+1)(y, z)||, max
y∈[0,Y]

∣∣∣∣∣∣∣∣∆∂u(k+1)(y, z)
∂y

∣∣∣∣∣∣∣∣)
≤ max{C1(z),C2(z)}max

(
max
y∈[0,Y]

||∆w(k)(y, z)||, max
y∈[0,Y]

||∆v(k)(y, z)||
)
≤ D̄0

1
(k + 1)!

( z∫
0

ω(η)dη
)k+1

,

(5.19)

From (5.19) it follows that the sequences {u(k)(y, z)} and
{∂u(k)(y,z)

∂y

}
in the domain Λ converge

uniformly to the functions u∗(y, z) and ∂u∗(y,z)
∂y , respectively. The functions u∗(y, z) and ∂u∗(y,z)

∂y satisfy the
inequalities

max
y∈[0,Y]

||u∗(y, z)||

≤ C1(z)
(
D̄0 exp

{ Z∫
0

ω(η)dη
}
+max

(
max
y∈[0,Y]

||ψ(y)||, max
y∈[0,Y]

||ψ̇(y)||, max
(y,z)∈Λ

||g(y, z)||, ||φ(z)||
))
.

(5.20)

max
y∈[0,Y]

∣∣∣∣∣∣∣∣∂u∗(y, z)
∂y

∣∣∣∣∣∣∣∣
≤ C2(z)

(
D̄0 exp

{ Z∫
0

ω(η)dη
}
+max

(
max
y∈[0,Y]

||ψ(y)||, max
y∈[0,Y]

||ψ̇(y)||, max
(y,z)∈Λ

||g(y, z)||, ||φ(z)||
))
.

(5.21)

Thus, the triple system {u∗(y, z),w∗(y, z), v∗(y, z)} is a solution to the parameterized integral problems
for the first-order system IDEs with distributed functions (3.1)–(3.3).

The uniqueness of the solution is proved by contradiction, using inequalities (5.13)–(5.15). Hence,
Theorem 3 is proved. □

The equivalence between the original initial-integral problems (2.1)–(2.3) and the parameterized
integral problems for the first-order system IDEs with distributed functions (3.1)–(3.3) implies the
validity of the statement.

Based on the equivalence of the initial-integral problems (2.1)–(2.3) and the parameterized integral-
problems for the system of first-order IDEs with distributed functions (3.1)–(3.3), the validity of the
statement follows.
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Theorem 4. Suppose that the conditions a) and b) of Theorem 1 hold.
Then the initial-integral problem for the HIDS (2.1)–(2.3) admits a unique solution w∗(y, z), where

the function w∗(y, z), together with its partial derivatives

∂w∗(y, z)
∂z

= u∗(y, z),
∂w∗(y, z)

∂y
= v∗(y, z),

constitutes a solution of the parameterized integral-problems for the first-order system IDEs with
distributed functions (3.1)–(3.3) for all (y, z) ∈ Λ.

6. Conclusions

In this paper, we propose a new approach to solving the initial-integral problem for
HIDS (2.1)–(2.3). Solvability criteria are derived in terms of matrix conditions that are explicitly
constructed from the coefficients of the system together with the integral constraints. In addition, we
develop a constructive scheme for computing approximate solutions and prove that these
approximations converge to the exact solution of the corresponding parameterized integral problems
for the first-order system IDEs with distributed functions (3.1)–(3.3). Within the framework of this
approach, one component of the triple of solutions to problems (3.1)–(3.3) coincides with the solution
of the initial–integral problem for HIDS (2.1)–(2.3), thereby establishing the equivalence of the two
formulations and paving the way for numerical implementation.

Moreover, the developed approach can be naturally extended to a wider range of problems [3, 7],
including initial-integral problems for HIDS with discontinuities [23, 24] and impulse effects [25–27],
HIDS with delays [8,12,15] and parameters [9,28], nonlinear HIDS [16,29], as well as applications to
mathematical models in the biomedical sciences and engineering informatics [30].
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