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Abstract: Automatic fitting techniques are required in many industrial applications, for example
instrument calibration, data analysis, geometric modeling, and reverse engineering. In this paper,
we present a surface construction algorithm for a cubic spline over planar hierarchical quadrilateral
meshes. The surface was piecewisely constructed by interpolating the cubic spline surface of the 12
parameters at four vertices on each quadrilateral cell of the hierarchical quadrilateral mesh. For a given
hierarchical quadrilateral mesh and geometric information (function values and two first-order partial
derivatives) at the corresponding basis vertices of the hierarchical quadrilateral mesh, the surface can
be constructed simply. Moreover, we give an adaptively refined surface algorithm for fitting scattered
data points based on cubic spline surface construction. The numerical results show that the proposed
adaptive algorithm is efficient in fitting scattered data points within a polygonal domain.
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quadrangulation; surface reconstruction
Mathematics Subject Classification: 65D07, 65D17

1. Introduction

In geometric modeling, the representation of surfaces is one of the most important and interesting
research topics. The non-uniform rational B-spline (NURBS) is commonly used in computer-aided
design (CAD), computer aided engineering (CAE), and computer-aided manufacturing (CAM) [1].
However, NURBS has the weakness that the control points must lie topologically on a rectangular
grid, since NURBS is based on a tensor product structure. Moreover, NURBS models contain a large
number of superfluous control points, which are big burdens to modeling systems.

Locally refinable splines are introduced in geometric design and isogeometric analysis to overcome
the weakness of B-splines or NURBS in tensor-product form. By allowing T-junctions in the control
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meshes, T-splines were introduced to remove the redundant control points in geometric modeling [2,3].
The potential of T-splines in isogeometric analysis was reported in [4,5]. To fix the linear dependency
problem of T-splines, AST-splines and AS++ T-splines were introduced in [6, 7]. As an extension of
tensor-product representations, truncated hierarchical B-splines (THB-splines), which form a convex
partition of unity, were introduced by Giannelli et al. in [8,9]. Recently, Pan et al. [10–12] showed how
to generate hierarchical T-meshes with associated locally refined B-splines, which possess the property
of local linear independence, form a non-negative partition of unity, and span the resulting spaces of C s

smooth polynomial splines of degree p = 2s + 1. They are called RMB-splines, which are also a type
of locally refined spline. Pan [13] also proposed surface reconstruction based on implicit hierarchical
B-splines.

Polynomial splines over hierarchical T-meshes (PHT-splines) were first introduced by Deng et
al. [14] in 2008. Theoretic study on the dimension of spline spaces over T-meshes can be found in
[15–19]. The basis functions of PHT-splines posses many nice properties like B-spline basis functions,
such as linear independency, partition of unity, compact support, non-negativity, etc. Most of all, they
have a perfect local refinement property, which makes PHT-splines very useful in adaptive surface
modeling. They have been applied in solving partial differential equations, iso-geometric analysis,
surface stitching, and implicit surface reconstructions [20–23].

Compared with globally subdivided meshes, hierarchical meshes can decrease the number of
unknown quantities of the calculation model while maintaining the accuracy, therefore reducing
the demands on the computer system and enhancing the calculation efficiency. Consequently, the
hierarchical mesh structure has strong practicality and the PHT-spline could be a useful tool in many
areas such as surface modeling [24].

However, computing the basis functions of PHT-splines becomes increasingly complex as the level
increases, and they are precomputed and stored in Bézier forms beforehand [14]. Since an evaluation
algorithm is fundamental for PHT-spline applications, the memory consumption is very large for
models with refined details. Wang et al. [25] proposed a de Boor-like algorithm to evaluate a PHT-
spline surface at a given parametric point. This evaluation algorithm basically requires computing the
control points of a local tensor-product bicubic B-spline surface at each level, and its computational
cost increases with the level. Besides, during the refinement on a T-mesh, a single rectangular cell may
be influenced by more than 16 PHT-spline basis functions.

Notice that not all surfaces are suitable to be represented by rectangular surface patches, e.g., for a
star model or a V-notched crack model. In this paper, we focus on arbitrary quadrilateral meshes whose
valences of the internal vertices can be any value. Compared with original rectangular meshes whose
valences of internal vertices are 4, quadrilateral meshes with arbitrary valence are more flexible. This
flexibility allows the surface modeling with relatively complicated geometries.

Splines with small polynomial degree could be of interest in many applications. In this paper,
we present a new surface construction algorithm for cubic spline surfaces with C1 smoothness over
planar hierarchical quadrilateral meshes. Similar to the finite element method, rather than constructing
the basis functions globally, we first construct the basis functions on each cell of the hierarchical
meshes and then we find a way to achieve the smoothness between all adjacent cells of the hierarchical
meshes. This way of constructing splines over hierarchical meshes can efficiently avoid the storage and
calculation problems caused by the complexity of PHT-splines’ basis functions during subdivision.

Specifically, we establish Hermite interpolation basis functions of each quadrilateral cell of the
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planar hierarchical quadrilateral mesh. Through the geometric information transition matrix M, the
global smoothness between cells is established. Transferring the geometric information via “points”
is the key for constructing splines over planar hierarchical meshes, and the implementation of this
algorithm is just a calculation, which is simple and efficient. By this way of transferring the geometric
information, new results of splines over planar hierarchical meshes are obtained, which hold theoretical
significance in multivariate splines and will also facilitate the integration of engineering CAD design
and finite element analysis technology.

Moreover, we give an adaptively fitting algorithm for scattered data points based on the cubic
spline surfaces’ construction. In this algorithm, the quadrilateral mesh can achieve local refinement
adaptively. Furthermore, examples in Section 5 show that our surface fitting algorithm has high
precision, low mesh distortion sensitivity, and is suitable for data processing and engineering
applications.

The remainder of this paper is organized as follows. We introduce some preliminary knowledge on
planar hierarchical quadrilateral mesh in Section 2. In Section 3, we construct a cubic spline surface
over planar hierarchical quadrilateral mesh. In Section 4, an adaptive surface reconstruction method
for scattered data points by the cubic spline surfaces over hierarchical quadrilateral meshes is given. In
Section 5, several numerical experiments unveil that the proposed algorithm can produce high-quality
approximation surfaces. Finally, conclusions are drawn in the last section.

2. Planar hierarchical quadrilateral mesh

A planar hierarchical quadrilateral mesh is a quadrilateral grid that allows T-junctions on a 2D plane.
It is a special type of quadrilateral grid that has a natural level structure and it is defined recursively.
Figure 1 illustrates the process of generating a hierarchical quadrilateral mesh. Generally, we start
from an original quadrilateral mesh Q0, in which the valences of interior vertices can be different. For
example, the valences of interior vertices occur as 3, 4, and 5 in Figure 1(a). The elements (including
vertices, edges, and cells) of quadrilateral mesh are called the level 0 elements. From level k to level
k + 1, some cells at level k are subdivided into 2 × 2 uniform subcells, where the new vertices, the new
edges, and the new cells are of level k + 1, and the resulting quadrilateral mesh is called the level k + 1
quadrilateral mesh, denoted as Qk+1.

(a) Level 0 (b) Level 1 (c) Level 2

Figure 1. A hierarchical quadrilateral mesh’s generation (the black squares are basis vertices
and the red stars are non-basis vertices).
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Similar to hierarchical T-mesh as in [14], the vertices of hierarchical quadrilateral mesh are divided
into two kinds: the basis vertex and non-basis vertex. For each vertex of hierarchical quadrilateral
mesh, if it is a corner point of all adjacent quadrilateral cells containing it, then it is called a basis
vertex; Otherwise, it is a non-basis vertex. Specially, boundary vertices are basis vertices.

If there is a cell at level k+ 1, it must have its father cell at level k. Since a hierarchical quadrilateral
mesh is defined recursively, we can find a series of father cells. This property is the same with
hierarchical T-mesh.

3. Cubic spline surfaces over hierarchical quadrilateral meshes

The Fraeijs de Veubeke-Sanders (FVS or reduced FVS) element is a classical C1 (continuously
differentiable) finite element employed in the finite element method. The FVS (or reduced FVS)
element and its related properties are introduced in [26–28]. In [29], we represented the 12-parameter
quadrilateral spline bases by employing the B-net method, which are more convenient for application
and calculation. Actually, they are the same as the FVS and the reduced FVS elements.

In this section, we first review on the 12-parameter quadrilateral spline bases presented by the B-
net method in [29]. Subsequently, based on the 12-parameter quadrilateral spline bases by the B-net
method, we propose a new surface construction algorithm for cubic spline surfaces over hierarchical
quadrilateral meshes.

3.1. The B-net method

The B-net method is an important tool for studying the bivariate splines defined on triangulations
[30,31]. It is originated from the Bernstein polynomials, and is based on the triangular area coordinates.
The computation on derivatives, integrals, and products of the spline functions can be simplified greatly
by using their Bézier coefficients on each triangle cell.

There are (n + 2)(n + 1)/2 domain points ξi, j,k equally located in the triangle △P1P2P3 with the area
coordinates (i/n, j/n, k/n) (as shown in Figure 2 when n = 3). The Bernstein polynomials of degree n
over the triangle △P1P2P3 are defined by

Bn
i, j,k(λ1, λ2, λ3) =

n!
i! j!k!

λi
1λ

j
2λ

k
3, i + j + k = n, λ1, λ2, λ3 ≥ 0, λ1 + λ2 + λ3 = 1, (3.1)

where λ1, λ2, λ3 are the area coordinates. It is easy to know that all the Bernstein polynomials of degree
n are linearly independent and they form a basis of Pn. In addition, they satisfy a partition of unity, i.e.,∑

i+ j+k=n

Bn
i, j,k(λ1, λ2, λ3) = (λ1 + λ2 + λ3)n = 1. (3.2)

Hence, a polynomial of degree n can be expressed in the B-net form as

p(x, y) = f (λ1, λ2, λ3) =
∑

i+ j+k=n

bi, j,kBn
i, j,k(λ1, λ2, λ3), (3.3)

where bi, j,k are the corresponding Bézier coefficients.
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Figure 2. The B-net domain points of degree 3 in a triangle.

For a convex quadrangle, as shown in Figure 3(a), denote the corner nodes by P1, P2, P3, P4,
denote the two diagonals of the quadrilateral by P1P3, P2P4, and denote the intersection of two
diagonals P1P3 and P2P4 by P0. The quadrangle is divided into four subtriangles D1, . . . ,D4. This
triangulated quadrangulation is called FVS triangulation since it was used by Fraeijs de Veubeke and
Sander to construct a 16-parameter plate element [26, 27].

2P1P

3P

4P

0P

1D

2D

3D

4D

(a)

1 2

3

4

5 6

7

8

9
10

11

12
13

14

15

16

17

18

19

20

21
2223

24
25

(b)

Figure 3. A convex triangulated quadrangle and its 25 domian points of degree 3.

Denote ∆ by the above triangulation of region Di(i = 1, 2, 3, 4), and then a spline space on ∆ is
defined by

S r
d(∆) = {s ∈ Cr(∆) : s |Di∈ Pd, i = 1, 2, 3, 4}. (3.4)

This means that a spline function in S r
d(∆) is a piecewise polynomial of degree d, and is

Cr continuous on the two diagonals P1P3 and P2P4.

3.2. The 16-parameter quadrilateral spline bases

In the triangulated quadrilateral partition of Figure 3(b), the B-net points of the four triangles
are reassigned with a unified numbering b1, b2, . . . , b25, replacing the previous bi, j,k indices. That
is, there are 25 domain points in the triangulated quadrangle, whose indexes are shown in Figure
3(b). The corresponding Bézier coefficients are simply denoted by b1, b2, . . . , b25. For the cubic spline
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space S 1
3(∆), the C1 continuity conditions on the two diagonals are given in (3.5).

b17 = a · b5 + c · b12,

b18 = a · b13 + c · b16,

b19 = b · b6 + d · b7,

b20 = b · b13 + d · b14,

b21 = a · b8 + c · b9,

b22 = a · b14 + c · b15,

b23 = b · b11 + d · b10,

b24 = b · b16 + d · b15,

b25 = b · b18 + d · b22,

b25 = a · b20 + c · b24,

(3.5)

where a = |P4P0 |

|P4P2 |
, b = |P3P0 |

|P3P1 |
, c = 1 − a, d = 1 − b.

It is obvious that the dimension of the solution space is 16. For i = 1, . . . , 16, let

(b1, b2, · · · , b16) = ei = (0, · · · , 0, 1, 0, · · · , 0), (3.6)

where ei are unit vectors with dimension of 16, e.g., e1 = (1, 0, · · · , 0). To solve the linear system
of (3.5) for the 25 unknown b1, b2, . . . , b25, we can obtain a set of linear independent solution vectors
denoted by b(i)(i = 1, . . . , 16). Here, b(i) are written by row vectors and b(i) = {b(i)

j }
25
j=1 (i = 1, . . . , 16),

which are given by the following 16 × 25 matrix.


b(1)

b(2)

...

b(16)

 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 d 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 b 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 c 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 a 0 b 0 0 0 0 ab
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 d 0 a 0 0 ad
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 c 0 d cd
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 c 0 0 0 0 0 b bc



. (3.7)

Denote by S 1(x, y), S 2(x, y), . . . , S 16(x, y) the 16 cubic spline bases, whose Bézier coefficients are
b(1), b(2), . . . , b(16). These bases posses many nice properties such as linear independency, partition of
unity, compact support, nonnegativity, etc.

3.3. The 12-parameter quadrilateral spline bases

By the 16-parameter quadrilateral spline bases presented in (3.7), we introduce a set of Hermite
interpolation bases as follows, which interpolates the 12 parameters (function values, two first-order
partial derivatives at four vertices) of the quadrilateral cell.
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For a convex quadrangle P1P2P3P4, denote the corner nodes by Pi = (xi, yi), i = 1, . . . , 4, and the
intersection of two diagonals P1P3 and P2P4 by P0, as shown in Figure 4. The quadrangle is divided
into four subtriangles D1, . . . ,D4.
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Figure 4. The geometric parameters of a quadrilateral.

Denote the four midpoints on each edge by P5, P6, P7, P8, and ni and si(i = 5, . . . , 8) are the
unit normal vector and tangent vector, respectively. Let T5,T6,T7,T8 be the feet of the perpendicular
segment from P0 to each segment, and hi is the length of perpendicular segment P0Ti,

hi = |P0Ti|, i = 5, 6, 7, 8. (3.8)

Denote ∆x5 = x2− x1, ∆x6 = x3− x2, ∆x7 = x4− x3, ∆x8 = x1− x4, ∆y5 = y2− y1, ∆y6 = y3− y2, ∆y7 =

y4 − y3, ∆y8 = y1 − y4, li =

√
∆xi

2 + ∆yi
2, i = 5, 6, 7, 8.

For each triangle Di(i = 1, . . . , 4), the area coordinate of P0 is (1, 0, 0). Thus, for each triangle
Di−4(i = 5, . . . , 8), the area coordinates of the foot of the perpendicular Ti is (0, αi, βi), where βi =

((x0 − xi−4)∆xi + (y0 − yi−4)∆yi)/l2
i , αi = 1 − βi. Therefore, the unit normal vector of each segment can

be written by the area coordinates:

ni = ((0, αi, βi) − (1, 0, 0))/hi = (−1, αi, βi)/hi, i = 5, 6, 7, 8. (3.9)

According to the constraint that the normal derivative is a linear function and the cubic spline basis
functions S 1(x, y), S 2(x, y), . . . , S 16(x, y) are defined by (3.7), we construct the following 12 spline
basis functions, which have linear independency, partition of unity, and compact support.

S̃ 1 = S 1 −
β8
2 S 16 −

α5
2 S 13,

S̃ 2 = S 2 −
β5
2 S 13 −

α6
2 S 14,

S̃ 3 = S 3 −
β6
2 S 14 −

α7
2 S 15,

S̃ 4 = S 4 −
β7
2 S 15 −

α8
2 S 16,

S̃ 5 = S 5 +
a
2S 16 +

a+2α5−β5
2 S 13,

S̃ 6 = S 6 +
b
2S 14 +

b−α5+2β5
2 S 13,

S̃ 7 = S 7 +
d
2 S 13 +

d+2α6−β6
2 S 14,

S̃ 8 = S 8 +
a
2S 15 +

a−α6+2β6
2 S 14,

S̃ 9 = S 9 +
c
2S 14 +

c+2α7−β7
2 S 15,

S̃ 10 = S 10 +
d
2 S 16 +

d−α7+2β7
2 S 15,

S̃ 11 = S 11 +
b
2S 15 +

b+2α8−β8
2 S 16,

S̃ 12 = S 12 +
c
2S 13 +

c−α8+2β8
2 S 16.

(3.10)
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Furthermore, based on the geometric parameters of a quadrilateral, the spline basis functions
presented in (3.10) can be transformed into the following Hermite interpolation basis functions, which
interpolate the 12 parameters at four vertices of each quadrilateral cell.

n1 = S̃ 1 + S̃ 12 + S̃ 5,

n2 = S̃ 2 + S̃ 6 + S̃ 7,

n3 = S̃ 3 + S̃ 8 + S̃ 9,

n4 = S̃ 4 + S̃ 10 + S̃ 11,

nx
1 = −

∆x8
3 S̃ 12 +

∆x5
3 S̃ 5,

nx
2 = −

∆x5
3 S̃ 6 +

∆x6
3 S̃ 7,

nx
3 = −

∆x6
3 S̃ 8 +

∆x7
3 S̃ 9,

nx
4 = −

∆x7
3 S̃ 10 +

∆x8
3 S̃ 11,

ny
1 = −

∆y8
3 S̃ 12 +

∆y5
3 S̃ 5,

ny
2 = −

∆y5
3 S̃ 6 +

∆y6
3 S̃ 7,

ny
3 = −

∆y6
3 S̃ 8 +

∆y7
3 S̃ 9,

ny
4 = −

∆y7
3 S̃ 10 +

∆y8
3 S̃ 11.

(3.11)

In [29], the 12-parameter quadrilateral spline bases presented in (3.11) are used for constructing
plate elements of the quadrangle in the FEM method, which are denoted by QS12. The bases of QS12
are linear independent and possess the compact support property. Furthermore, Theorem 3.1 shows
that QS12 possesses completeness of order 2.

Theorem 3.1 ( [29]). Let D be an arbitrary convex quadrilateral domain P1P2P3P4. ni(x, y), nx
i (x, y),

ny
i (x, y) (i = 1, 2, 3, 4) are the spline bases given by (3.11). We define the following linear interpolants:

(N f )(x, y) :=
4∑

i=1

( f (Pi)ni(x, y) + fx(Pi)nx
i (x, y) + fy(Pi)n

y
i (x, y)), (3.12)

where fx(Pi), fy(Pi) are the partial derivatives at Pi in regard to x and y, respectively. Then for all
f (x, y) ∈ P2, (N f )(x, y) ≡ f (x, y), (x, y) ∈ D.

For an arbitrary hierarchical quadrilateral mesh, suppose θk1 is a cell of the quadrilateral mesh at
level k, its four vertices are {Vk

i }
4
i=1, where Vk

1 = (a, b), Vk
2 = (c, d), Vk

3 = (e, f ), Vk
4 = (g, h). As shown

in Figure 5, the 12-parameter cubic spline surface on cell θk1 can be written as follows.

p(x, y) =
4∑

i=1

(p(Vk
i ) ni(x, y) + px(Vk

i ) nx
i (x, y) + py(Vk

i ) ny
i (x, y))

=

4∑
i=1

3∑
j=1

hk
i, jn

k
i, j(x, y), (3.13)

where the geometric information at the four vertices is denoted by

(hk
1,1, h

k
1,2, h

k
1,3) = (p(Vk

1), px(Vk
1), py(Vk

1)),

(hk
2,1, h

k
2,2, h

k
2,3) = (p(Vk

2), px(Vk
2), py(Vk

2)),
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(hk
3,1, h

k
3,2, h

k
3,3) = (p(Vk

3), px(Vk
3), py(Vk

3)),

(hk
4,1, h

k
4,2, h

k
4,3) = (p(Vk

4), px(Vk
4), py(Vk

4)), (3.14)

and the corresponding 12-parameter cubic Hermite interpolation bases are denoted by

(n1,1, n1,2, n1,3) = (n1, nx
1, n

y
1),

(n2,1, n2,2, n2,3) = (n2, nx
2, n

y
2),

(n3,1, n3,2, n3,3) = (n3, nx
3, n

y
3),

(n4,1, n4,2, n4,3) = (n4, nx
4, n

y
4). (3.15)

Figure 5. The quadrilateral cell θk1.

In fact, the 12-parameter cubic spline surface over quadrilateral mesh is based on triangulated
quadrangulation. Figure 6 shows a quadrangulation and its corresponding triangulated
quadrangulation. Since a hierarchical quadrilateral mesh is constructed level by level, suppose there is
a cell θk−1

1 at level k−1 in a hierarchical quadrilateral mesh as shown in Figure 7(a). Its four vertices are
{Vk−1

i }(i = 1, . . . , 4) and Vk−1
1 = (a, b), Vk−1

2 = (c, d), Vk−1
3 = (e, f ), Vk−1

4 = (g, h). If θk−1
1 is subdivided

into 2 × 2 uniform subcells {θki }(i = 1, . . . , 4) at level k and Vk
6 ,V

k
7 ,V

k
8 ,V

k
9 are the middle points of

Vk−1
1 Vk−1

2 ,V
k−1
2 Vk−1

3 ,V
k−1
3 Vk−1

4 ,V
k−1
4 Vk−1

1 , respectively. For the 12-parameter cubic spline surface over
hierarchical quadrilateral meshes, in order to achieve C1 (continuously differentiable) at non-basis
vertices (i.e., T-junction points) of hierarchical quadrilateral meshes, it is easy to obtain that the
function values and the two first-order partial derivatives at Vk

6 ,V
k
7 ,V

k
8 ,V

k
9 (denoted by hk

6,1, hk
6,2, hk

6,3
at Vk

6) have the following relation with those at Vk−1
1 , Vk−1

2 , Vk−1
3 , and Vk−1

4 , respectively.

(a) (b)

Figure 6. A quadrangulation and the corresponding triangulated quadrangulation.
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(
hk

6,1,h
k
6,2,h

k
6,3

)T
=
(
M1(a, b, c, d),M2(a, b, c, d)

)
·
(
hk−1

1,1 ,h
k−1
1,2 ,h

k−1
1,3 ,h

k−1
2,1 ,h

k−1
2,2 ,h

k−1
2,3

)T
, (3.16)

(
hk

7,1,h
k
7,2,h

k
7,3

)T
=
(
M3(c, d, e, f ),M4(c, d, e, f )

)
·
(
hk−1

2,1 ,h
k−1
2,2 ,h

k−1
2,3 ,h

k−1
3,1 ,h

k−1
3,2 ,h

k−1
3,3

)T
, (3.17)(

hk
8,1,h

k
8,2,h

k
8,3

)T
=
(
M5(e, f , g, h),M6(e, f , g, h)

)
·
(
hk−1

3,1 ,h
k−1
3,2 ,h

k−1
3,3 ,h

k−1
4,1 ,h

k−1
4,2 ,h

k−1
4,3

)T
, (3.18)(

hk
9,1,h

k
9,2,h

k
9,3

)T
=
(
M7(g, h, a, b),M8(g, h, a, b)

)
·
(
hk−1

4,1 ,h
k−1
4,2 ,h

k−1
4,3 ,h

k−1
1,1 ,h

k−1
1,2 ,h

k−1
1,3

)T
, (3.19)

where M1(a, b, c, d), M2(a, b, c, d), M3(c, d, e, f ), M4(c, d, e, f ), M5(e, f , g, h), M6(e, f , g, h),
M7(g, h, a, b), and M8(g, h, a, b) are the following matrices:

M1(ā, b̄, c̄, d̄) =


1
2

(c̄−ā)
8

(d̄−b̄)
8

−
3(c̄−ā)

2[(c̄−ā)2+(d̄−b̄)2]
2(d̄−b̄)2

−(c̄−ā)2

4[(c̄−ā)2+(d̄−b̄)2]
−

3(c̄−ā)(d̄−b̄)
4[(c̄−ā)2+(d̄−b̄)2]

−
3(d̄−b̄)

2[(c̄−ā)2+(d̄−b̄)2]
−

3(c̄−ā)(d̄−b̄)
4[(c̄−ā)2+(d̄−b̄)2]

2(c̄−ā)2−(d̄−b̄)2

4[(c̄−ā)2+(d̄−b̄)2]

 , (3.20)

M2(ā, b̄, c̄, d̄) =


1
2 −

(c̄−ā)
8 −

(d̄−b̄)
8

3(c̄−ā)
2[(c̄−ā)2+(d̄−b̄)2]

2(d̄−b̄)2
−(c̄−ā)2

4[(c̄−ā)2+(d̄−b̄)2]
−

3(c̄−ā)(d̄−b̄)
4[(c̄−ā)2+(d̄−b̄)2]

3(d̄−b̄)
2[(c̄−ā)2+(d̄−b̄)2]

−
3(c̄−ā)(d̄−b̄)

4[(c̄−ā)2+(d̄−b̄)2]
2(c̄−ā)2−(d̄−b̄)2

4[(c̄−ā)2+(d̄−b̄)2]

 , (3.21)

M3(c̄, d̄, e, f ) =


1
2

(e−c)
8

( f−d)
8

−
3(e−c)

2[(e−c)2+( f−d)
2
]

2( f−d)
2
−(e−c)2

4[(e−c)2+( f−d)
2
]
−

3(e−c)( f−d)

4[(e−c)2+( f−d)
2
]

−
3( f−d)

2[(e−c)2+( f−d)
2
]
−

3(e−c)( f−d)

4[(e−c)2+( f−d)
2
]

2(e−c)2
−( f−d)

2

4[(e−c)2+( f−d)
2
]

 , (3.22)

M4(c̄, d̄, e, f ) =


1
2 −

(e−c)
8 −

( f−d)
8

3(e−c)

2[(e−c)2+( f−d)
2
]

2( f−d)
2
−(e−c)2

4[(e−c)2+( f−d)
2
]
−

3(e−c)( f−d)

4[(e−c)2+( f−d)
2
]

3( f−d)

2[(e−c)2+( f−d)
2
]
−

3(e−c)( f−d)

4[(e−c)2+( f−d)
2
]

2(e−c)2
−( f−d)

2

4[(e−c)2+( f−d)
2
]

 , (3.23)

M5(e, f , g, h) =


1
2

(g−e)
8

(h− f )
8

−
3(g−e)

2[(g−e)2+(h− f )
2
]

2(h− f )
2
−(g−e)2

4[(g−e)2+(h− f )
2
]
−

3(g−e)(h− f )

4[(g−e)2+(h− f )
2
]

−
3(h− f )

2[(g−e)2+(h− f )
2
]
−

3(g−e)(h− f )

4[(g−e)2+(h− f )
2
]

2(g−e)2
−(h− f )

2

4[(g−e)2+(h− f )
2
]

 , (3.24)

M6(e, f , g, h) =


1
2 −

(g−e)
8 −

(h− f )
8

3(g−e)

2[(g−e)2+(h− f )
2
]

2(h− f )
2
−(g−e)2

4[(g−e)2+(h− f )
2
]
−

3(g−e)(h− f )

4[(g−e)2+(h− f )
2
]

3(h− f )

2[(g−e)2+(h− f )
2
]
−

3(g−e)(h− f )

4[(g−e)2+(h− f )
2
]

2(g−e)2
−(h− f )

2

4[(g−e)2+(h− f )
2
]

 , (3.25)
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M7(g, h, a, b) =


1
2

(a−g)
8

(b−h)
8

−
3(a−g)

2[(a−g)2+(b−h)
2
]

2(b−h)
2
−(a−g)2

4[(a−g)2+(b−h)
2
]
−

3(a−g)(b−h)

4[(a−g)2+(b−h)
2
]

−
3(b−h)

2[(a−g)2+(b−h)
2
]
−

3(a−g)(b−h)

4[(a−g)2+(b−h)
2
]

2(a−g)2
−(b−h)

2

4[(a−g)2+(b−h)
2
]

 , (3.26)

M8(g, h, a, b) =


1
2 −

(a−g)
8 −

(b−h)
8

3(a−g)

2[(a−g)2+(b−h)
2
]

2(b−h)
2
−(a−g)2

4[(a−g)2+(b−h)
2
]
−

3(a−g)(b−h)

4[(a−g)2+(b−h)
2
]

3(b−h)

2[(a−g)2+(b−h)
2
]
−

3(a−g)(b−h)

4[(a−g)2+(b−h)
2
]

2(a−g)2
−(b−h)

2

4[(a−g)2+(b−h)
2
]

 . (3.27)

3.4. Cubic spline surfaces over hierarchical quadrilateral meshes and the evaluation algorithm

If we are provided the geometric information at all basis vertices of hierarchical quadrilateral mesh,
the corresponding cubic spline surface can be defined by:

P(x, y) =
σ∑

i=1

3∑
j=1

h̃i, j̃ni, j(x, y), (x, y) ∈ Ω, (3.28)

where h̃i, j, i = 1, . . . , σ, j = 1, . . . , 3, is geometric information at the basis vertices of the hierarchical
quadrilateral meshes, ñi, j(x, y), i = 1, . . . , σ, j = 1, . . . , 3, are basis functions associated with the basis
vertices, and σ is the number of basis vertices.

However, in applications and computations, we need the explicit formulas in regard to the basis
functions. In this subsection, we propose a new representation of the cubic spline surface over arbitrary
hierarchical quadrilateral mesh, which is based on the geometric information at all basis vertices of
quadrilateral mesh. Denote all the cells in the quadrilateral mesh by {θl}Fl=1 and all the vertices by
{Vi}

ω
i=1. For each cell θl, its four vertices are denoted by V1(θl), V2(θl), V3(θl), V4(θl). If Vi′(θl) = i, it

means the vertex Vi is the i′-th vertex in the cell θl for i′ ∈ {1, 2, 3, 4}. The cubic spline surface over
arbitrary hierarchical quadrilateral mesh is defined by

P(x, y) =
ω∑

i=1

3∑
j=1

hi, jni, j(x, y), (x, y) ∈ Ω, (3.29)

where

ni, j(s, t)|θl =
{

ni′, j(s, t), i f Vi′(θl) = i,
0, otherwise,

l = 1, . . . , F,

and ω is the number of all vertices of hierarchical quadrilateral mesh. hi, j, i = 1, . . . , ω, j = 1, . . . , 3, is
geometric information of all vertices of hierarchical quadrilateral mesh and ni′, j(s, t), i′ = 1, . . . , 4, j =
1, . . . , 3, are 12-parameter cubic Hermite interpolation bases in regard to the vertices of θl (see (3.15)
for details).

With the help of the property that the cubic spline surface interpolates geometric information at
four vertices of a quadrilateral element, we discuss the cubic spline surface over arbitrary hierarchical
quadrilateral mesh. For each quadrilateral element of quadrilateral mesh, for the basis vertex, the
surface must interpolate its geometric information; for the non-basis vertex, in order to ensure that the
spline function along each quadrilateral segment satisfies the property of C1, we establish the relation
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between the geometric information at each non-basis vertex and those of the related vertices of its
father element (see (3.16)–(3.19) for details). By searching for all of the father elements, the geometric
information at each non-basis vertex can be finally represented by those of the corresponding basis
vertices. Thus, we give the evaluation algorithm for a cubic spline surface over arbitrary hierarchical
quadrilateral mesh as Algorithm 1.

Algorithm 1 The evaluation algorithm for a cubic spline surface over arbitrary hierarchical
quadrilateral mesh.
Input: A cubic spline surface P(s, t) over a given hierarchical quadrilateral mesh with geometric
information at the basis vertices and a pair of parametric values (s0, t0) inside Q.
Output: The value of the cubic spline surface over the hierarchical quadrilateral mesh P(s0, t0).
Step 1. Determine the cell θ0 containing (s0, t0) at level 0. A cubic spline surface over the hierarchical
quadrilateral mesh P0(s, t) is defined as:

P0(s, t) :=
4∑

i=1

3∑
j=1

h0
i, jn

0
i, j(s, t), (3.30)

where h0
i, j is the geometric information of P(s, t) at the four corners {V0

i }
4
i=1 of θ0 and n0

i, j are the 12-
parameter cubic Hermite interpolation bases defined over θ0.
Step 2. For k = 1 to K, repeat Step 3. Here K is the maximum level of hierarchy associated with the
cell which contains (s0, t0).
Step 3. Determine the cell θk containing (s0, t0) at level k. A cubic spline surface over the hierarchical
quadrilateral mesh Pk(s, t) is computed:

Pk(s, t) :=
4∑

i=1

3∑
j=1

hk
i, jn

k
i, j(s, t), (3.31)

where nk
i, j are the 12-parameter cubic Hermite interpolation bases defined over θk as in (3.15), and hk

i, j

is geometric information at the four corners {Vk
i }

4
i=1 of θk which can be computed by the following

rules: if Vk
i is a new basis vertex at level k, then set the corresponding geometric information

hk
i, j to be the geometric information of P(s, t) associated with Vk

i ; otherwise, just set hk
i, j = ĥk

ĩ, j
,

ĩ ∈ {6, 7, 8, 9}, j = 1, 2, 3, where ĥk
ĩ, j

can be computed by one of the formulas of (3.16)–(3.19) according
to the different position of the father element θk−1 where the non-basis vertex is located (i.e., the position
of Vk

6 , Vk
7 , Vk

8 , Vk
9 relative to the father element θk−1

1 in Figure 7(b)).
Step 4. Evaluate PK(s0, t0). Output the value.

3.5. The transition matrix M for the geometric information of hierarchical quadrilateral mesh

In this subsection, we provide an algorithm of transition matrix M for the geometric information
of hierarchical quadrilateral mesh in Algorithm 2, which can transfer the geometric information at the
basis vertices into all vertices of quadrilateral mesh. If the geometric information at the basis vertices
of quadrilateral mesh is given, the geometric information at all of the vertices of the quadrilateral mesh
can be obtained by the matrix M. Then the cubic spline surface over arbitrary hierarchical quadrilateral
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mesh can be easily constructed.

Algorithm 2 The algorithm of the transition matrix M for the geometric information of hierarchical
quadrilateral mesh.
Input: A hierarchical quadrilateral mesh.
Output: Transition matrix M for the geometric information of the hierarchical quadrilateral mesh.
Step 1. Denote the sets of quadrilateral cells, vertices, and basis vertices by F , D1, and D2, and denote
the numbers of elements of these sets by F, λ1, and λ2, respectively. Set the transition matrix M for
the geometric information of the hierarchical quadrilateral mesh as a block matrix with λ1 rows and λ2

columns, and each block is a 3 × 3 sub-matrix.
Step 2. Set p = 1. For each quadrilateral cell {θl}Fl=1, set the transition sub-matrix Ml for the geometric
information of the quadrilateral element as I(12, 12). We refer to its four vertices as an original vertex
set E0

l . Set E1
l = E0

l and E2
l = ∅. A new vertex set E2

l is constructed by repeating the following Steps
2.1 and 2.2 for searching each level of the father element, and the process stops when all elements of
E2

l are basis vertices.
Step 2.1. For each vertex of E1

l , we judge:
Case a. If it is a non-basis vertex and it is located in the midpoint of the bottom edge of its father

element (as Vk
6 in Figure 7(b)), then we add the two related endpoints into E2

l (as Vk−1
1 and Vk−1

2 in
Figure 7(b)). The geometric information at this non-basis vertex and two related endpoints have the
relation of (3.16).

Case b. If it is a non-basis vertex and it is located in the midpoint of the right edge of its father
element (as Vk

7 in Figure 7(b)), then we add the two related endpoints into E2
l (as Vk−1

2 and Vk−1
3 in

Figure 7(b)). The geometric information at this non-basis vertex and two related endpoints have the
relation of (3.17).

Case c. If it is a non-basis vertex and it is located in the midpoint of the top edge of its father element
(as Vk

8 in Figure 7(b)), then we add two related endpoints into E2
l (as Vk−1

3 and Vk−1
4 in Figure 7(b)). The

geometric information at this non-basis vertex and two related endpoints have the relation of (3.18).
Case d. If it is a non-basis vertex and it is located in the midpoint of the left edge of its father element
(as Vk

9 in Figure 7(b)), then we add two related endpoints into E2
l (as Vk−1

4 and Vk−1
1 in Figure 7(b)). The

geometric information at this non-basis vertex and two related endpoints have the relation of (3.19).
Case e. If none of the above is true, then we add the vertex itself into E2

l . The relation of geometric
information between a vertex and itself is a unit matrix I(3, 3).
The geometric information’s relation between E1

l and E2
l can be written by a matrix Tp. Set Ml :=

Ml · Tp.
Step 2.2. If there is a non-basis vertex in E2

l , set p := p + 1, E1
l := E2

l and go to Step 2.1; otherwise,
go to Step 3.
Step 3. Similar to the finite element method, we assemble the all-element matrix Ml into the global
matrix M. Notice that during the assembling of element matrix Ml, we just replace the entries in the
right places.
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(a) θk−1
1 (b) Its 2 × 2 subdivision

Figure 7. The cell θk−1
1 and its 2 × 2 subdivision.

In the following example, we give the transition matrix M for the geometric information of the
special hierarchical quadrilateral mesh in Figure 8.

Figure 8. A special hierarchical quadrilateral mesh Q with 3 levels.

Example 3.1. Figure 8 is a special hierarchical quadrilateral mesh Q defined over [0, 1] × [0, 1].
Suppose that each cell of the hierarchical quadrilateral mesh is rectangular and each refinement
is uniform. The basis vertices and non-basis vertices are drawn by black squares and red stars,
respectively. There are in total 8 rectangular cells, 16 vertices, and 13 basis vertices. That is,
F = {∆1, . . . ,∆8}, D1 = {V1, . . . ,V16}, D2 = {V1, . . . ,V10,V11,V14,V16} and F = 8, λ1 = 16, λ2 = 13.
DenoteHi by the geometric information at vertex Vi: Hi = (hi,1, hi,2, hi,3)T , i = 1, . . . , 16.

We just give the transition matrix for the geometric information of the quadrilateral cell △4, i.e.,
l = 4. E0

4 = {V14,V10,V15,V16}, and we set E1
4 = E0

4, E2
4 = ∅.

(1) For △4 at level 3, its father element at level 2 is the cell with vertices V14, V10, V13, V9 and it has
the domain of [ 3

4 , 1]× [ 1
2 ,

3
4 ]. V15 is the midpoint of the left edge of the father element and V14, V10, V16

are basis vertices. By Step 2, the current E1
4 = {V14,V10,V15,V16} and E2

4 = {V14,V10,V13,V16}. By
(3.19), it can be obtained that


H14

H10

H15

H16

=


I 0 0 0
0 I 0 0
0 M7( 3

4 ,
3
4 ,

3
4 ,

1
2 ) M8( 3

4 ,
3
4 ,

3
4 ,

1
2 ) 0

0 0 0 I



H14

H10

H13

H16

=T1


H14

H10

H13

H16

 . (3.32)

(2) Notice that V13 is a non-basis vertex in Q, and then we continue seeking the element in the
previous generation. Then the father element at level 1 is the cell with vertices V1, V6, V5, V9 and
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it has the domain of [1
2 , 1] × [1

2 , 1]. V13 is the midpoint of the bottom edge of the father element and
V14, V10, V16 are basis vertices. The current E1

4 = {V14,V10,V13,V16} and E2
4 = {V14,V10,V5,V9,V16}.

Thus, it follows that


H14

H10

H13

H16

=

I 0 0 0 0
0 I 0 0 0
0 0 M1( 1

2 ,
1
2 , 1,

1
2 ) M2( 1

2 ,
1
2 , 1,
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(3) Since all of the vertices in E2
4 are basis vertices in Q, by substituting (3.33) into (3.32), the

transition matrix for the geometric information of △4 can be derived by M4 = T1T2, i.e.,
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Notice that for the geometric information at each non-basis vertex, we can get the same result by
the transition matrices for different quadrilateral elements sharing the vertex. For example,H15 is the
same by the transition matrices for △4 or △5. By assembling the transition matrices of all elements, the
global transition matrix for the geometric information of quadrilateral mesh can be obtained.
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. (3.35)

For an arbitrary hierarchical quadrilateral mesh, denote by h and d the vectors of geometric
information of all vertices and basis vertices, respectively. According to Algorithm 2, there exists
a transition matrix M satisfying

h = Md. (3.36)
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It is clear that the matrix M has a full rank of columns. Through the geometric information
transition matrix M, the global smoothness between cells is established. Transferring the geometric
information via “points” is the key for constructing cubic splines over planar hierarchical meshes,
and the implementation of this algorithm is just a calculation, which is simple and efficient. It is
easy to represent the cubic spline surface by the geometric information vector h. Since the geometric
information at non-basis vertices is determined by relevant basis vertices, the geometric information in
vector d is the true degrees of freedom for cubic spline surface construction.

We now consider the memory requirements for PHT-splines and QS12-splines. Since one
basis vertex corresponds to four PHT-spline basis functions, each basis function requires 16 Bézier
coefficients for storage. During the refinement, there may be more than 16 non-zero PHT-spline basis
functions supported on a single cell. Wang et al. [25] pointed out that if a hierarchical T-mesh contains
F cells {θi}Fi=1, and for each cell θi, if there are mi basis vertices corresponding to non-zero basis
functions on it, then the memory required for the Bézier coefficients of the PHT-basis functions is
F∑

i=1
64mi. It is commonly observed that mi ≥ 4 holds for most cells in adaptively refined hierarchical

T-meshes. For QS12-splines, each basis function requires 25 Bézier coefficients, and each cell has
exactly 12 basis functions, yielding a memory cost of 300F for QS12-splines. Consequently, for
models requiring high-level subdivision or containing a large number of subcells, the QS12-spline
method exhibits a comparatively lower storage requirement.

Like PHT-splines, QS12-splines also possess a local modification property. Altering the geometric
information at the control vertex affects only the four adjacent patches, demonstrating an identical
locality of influence. In the next section, we show how to reconstruct the geometric information vector
d from scattered data.

4. Reconstruction of cubic spline surfaces over hierarchical quadrilateral meshes

4.1. Cubic spline surface fitting by the least squares method

Since the hierarchical quadrilateral meshes allow T-junctions, cubic spline surfaces defined over
these meshes provide a highly flexible representation. In this section, a method for reconstructing
cubic spline surfaces over hierarchical quadrilateral meshes is explained.

For an arbitrary hierarchical quadrilateral mesh Q with all vertices {V j}
ω
j=1, the cubic spline surface

f (x, y) defined as P(s, t) in (3.29) can be viewed as the inner product of two vectors f = nT h, where
h is a 3ω-dimensional vector that stores the geometric information at all vertices, with its (3j-2)-th to
(3j)-th components {h3 j−2, h3 j−1, h3 j} = {h j,1, h j,2, h j,3}( j = 1, 2, . . . , ω) and n is the vector of 3ω cubic
Hermite interpolation bases of 12 parameters with its (3j-2)-th to (3j)-th components {n3 j−2, n3 j−1, n3 j} =

{n j,1, n j,2, n j,3}( j = 1, 2, . . . , ω). For a given set of discrete points P = {pi}
n
i=1, we have

f (pi) = n(pi)T h, i = 1, 2, . . . , n. (4.1)

By the definition in (3.29), for each vector n(pi), there are only 12 non-zero entries at the indices of
four vertices of the cell containing pi in the hierarchical quadrilateral mesh. For other indices, the
entries of n(pi) are zeros.

Assume that b is a vector composed of some given function values on P. A good fitting function f
is supposed to minimize the errors of the given data. Therefore, the algebraic distance can be defined
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as a quadratic term:
E(h) = ∥Nh − b∥22, (4.2)

where the matrix N is constructed of the vectors n(pi) in a row-by-row manner.
Minimization of this quadratic term is widely known as the least squares method. The least squares

solution can be computed quite fast by solving a system of linear equations. If the system is well-
conditioned, as demonstrated in Examples 5.1–5.3, the least squares solution is a good solution.
Unfortunately, it is usually unstable in an adaptive fitting process because its condition number is
usually very large for higher refined hierarchical quadrilateral mesh. This is not a coincidence. In
the literature of [32, 33], it has been mentioned that the basis functions of PHT-splines reveal a decay
phenomenon for refinement of T-meshes, meaning that the finer basis functions approach zero rapidly
as the level increases, which leads to the matrices assembled by these PHT-splines’ basis functions
likely being ill-conditioned. To achieve good fitting solutions in adaptive refinement processes, we use
the Tikhonov’s regularization as follows:

Ê(h) = ∥Nh − b∥22 + µh
T h, (4.3)

where µ is the regularization parameter.
According to the analysis of Section 3.5, since f ∈ S 1

3(Q), the geometric information at non-basis
vertices is determined by those at basis vertices (denoted by d) and there exists a transition matrix M
such that h = Md. Then (4.3) is equivalent to minimizing the following quadratic function of d,

Ê(d) = ∥NMd − b∥22 + µd
T MT Md. (4.4)

Using matrix calculus, the regularization solution can be obtained by

d = (MT NT NM + µMT M)−1MT NT b. (4.5)

The Tikhonov’s regularization ensures that the system remains non-singular for quadrilateral meshes
with high refinement levels, which must be solved in the adaptive fitting procedure. In engineering
applications, appropriate regularization terms could be selected based on data characteristics such as
surface smoothness or sparsity. For instance, the thin-plate energy regularization term is adopted to
smooth the surface (see [34]). It is not explored in depth herein and readers could select regularization
terms according to their specific needs. In this paper, we present a generalized model for solving
surface optimization problems, which mitigates ill-conditioning and enhances numerical stability. A
more extensive discussion of alternative methods for reducing the condition number can be found in
references [35–37].

In our implementation, we use the generalized cross-validation (GCV) method to compute the
regularization parameter µ in our regularized model. For details, see [38]. Since the selection of
parameter µ is essential for achieving accurate results and minimizing the number of required iterations,
the core principle of GCV lies in selecting an optimal µ to balance model accuracy (goodness-of-fit)
and complexity, thereby avoiding overfitting and underfitting. Specifically, the goal of GCV is to
identify the µ value that minimizes the generalized cross-validation error (GCV error). That is

µopt = arg min
µ

GCV(µ), (4.6)
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GCV(µ) =
∥NMd − b∥2

[trace(I − NM(MT NT NM + µMT M)−1MT NT )]
2 . (4.7)

We utilize the gcv function in Hansen’s regularization tools [39], which has become the de facto
standard for solving ill-posed problems in MATLAB, to compute the optimal regularization parameter.

4.2. An adaptive cubic spline surface approximation algorithm over hierarchical quadrilateral mesh

In this section, we use adaptive techniques for the refinement selection of quadrilateral meshes.
For the given sampled points P = {pi}

n
i=1 and the corresponding function values {g(pi)}ni=1 of the

target function g(x, y), the adaptive algorithm for cubic spline surface approximation is driven by
constructing a series of hierarchical quadrilateral meshes from an initial quadrilateral mesh Q0, as
detailed in Algorithm 3.

Notice that if the number of sample points within a cell is fewer than 12 in Algorithm 3, the cell will
not be subdivided. To achieve local refinement, we select an appropriate threshold ε for regions which
have significant variations in the function values of scattered data points during numerical experiments.
In fact, a smaller threshold ε results in denser refinements.

Algorithm 3 Adaptive cubic spline surface approximation algorithm over hierarchical quadrilateral
mesh.
Input: Sample points P = {pi}

n
i=1, the function values {g(pi)}ni=1, and threshold ε.

Output: A series of hierarchical quadrilateral meshes generated by the adaptive cubic spline surface
approximation algorithm and corresponding approximation surfaces.
Step 1. Set k = 0. Construct an initial quadrilateral mesh Q0 according to the sample points. Calculate
the geometric information at all the basis vertices by (4.5), and an initial cubic spline surface f0(x, y) is
determined. Denote the cells in Q0 by {θ01, . . . , θ

0
F0
}. For each cell θ0l (l = 1, . . . , F0), if

max
pi∈θ

0
l

| f0(pi) − g(pi)| ≥ ε, (4.8)

then the cell must be labeled and refined in the next step.
Step 2. Subdivide all the labeled cells into 2×2 subcells, add the new sub-cells, and form a hierarchical
quadrilateral mesh Qk+1 at level k + 1.
Step 3. Find out all new basis vertices and non-basis vertices in Qk+1. Calculate the vertex transition
matrix M for Qk+1 and the geometric information at each basis vertex of Qk+1 according to (4.5). Using
the relation h = Md, the geometric information at all vertices can be derived. Subsequently, the cubic
spline surface at level k + 1 is constructed by (3.29), denoted as fk+1(x, y). Denote the cells in Qk+1 by
{θk+1

1 , . . . , θ
k+1
Fk+1
}. For each cell θk+1

l (l = 1, . . . , Fk+1), if maxpi∈θ
k+1
l
| fk+1(pi) − g(pi)| ≥ ε, then the cell θk+1

l
must be labeled and refined.
Step 4. Set k := k + 1 and go to Step 2. The procedure repeats Steps 2, 3, and 4 until no cell requires
subdivision or the degree of freedom reaches a preset value.
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5. Numerical experiments

5.1. Numerical experiments without noise

Example 5.1. Figure 9(a) shows a hierarchical quadrilateral mesh of rectangular domain, which
generated from the initial mesh presented in Figure 9(b). We consider an example of cubic spline
surface approximation for 400 scattered data points {(xi, yi, g j(xi, yi))}400

i=1 , j = 1, 2, which are chosen
randomly from the quadratic and cubic polynomials in (5.1) and (5.2). Specially, we choose the
regularization parameter µ = 0.

g1(x, y) =
1
2

(x2 + xy + y2), (5.1)

g2(x, y) =
1
2

(x3 + xy2 + y3). (5.2)

Figures 10 and 11 show the corresponding cubic spline approximation surfaces and errors.
This example shows that the cubic spline surface over hierarchical quadrilateral mesh possesses
completeness of order 2.

(a) (b)

Figure 9. (a) A hierarchical quadrilateral mesh partition of rectangular domain; (b) its initial
quadrilateral grid Q0 with coordinates.

(a) (b)

Figure 10. The cubic spline surface approximations to data points from g1 and g2.
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(a) (b)

Figure 11. The corresponding errors of the surfaces in Figure 10 compared by g1 and g2.

Example 5.2. Figure 12(a) shows a hierarchical quadrilateral mesh of irregular domain containing a
V-notched crack, whose initial quadrilateral grid Q0 with coordinates is illustrated in Figure 12(b). We
consider an example of the cubic spline surface for 597 scattered data points {(xi, yi, g j(xi, yi))}597

i=1 , j =
1, 2, which are chosen randomly from the quadratic and cubic polynomials in (5.1) and (5.2). Specially,
we choose the regularization parameter µ = 0.

Figures 13 and 14 show the corresponding cubic spline approximation surfaces and errors. This
example also shows that the cubic spline surface over hierarchical quadrilateral mesh possesses
completeness of order 2. Compared with PHT-spline surface fitting, quadrilateral meshes with
arbitrary vertex valence provide greater topological flexibility for geometric modeling within polygonal
domains.

(a) (b)

Figure 12. (a) A hierarchical quadrilateral mesh partition of irregular domain; (b) the initial
quadrilateral grid Q0 with coordinates.
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(a) (b)

Figure 13. The cubic spline surface approximations to data points from g1 and g2.

(a) (b)

Figure 14. The corresponding errors of the surfaces in Figure 13 compared by g1 and g2.

Example 5.3. We consider the effects of mesh distortion on cubic spline surface approximation. Figure
15 illustrates a series of distorted hierarchical quadrilateral meshes within a rectangular domain,
where the center points are (0.5, 0.5) + (∆k,∆k), k = 1, . . . , 7, ∆k = −0.25,−0.2,−0.1, 0, 0.1, 0.2, 0.25,
respectively. We give an example of cubic spline surface approximation for 400 scattered data points
{(xi, yi, g j(xi, yi))}400

i=1 , j = 1, 2, which are randomly selected from the quadratic and cubic polynomials
in (5.1) and (5.2). Specially, we choose the regularization parameter µ = 0.

For fitting scattered data points, which are randomly selected from the quadratic and cubic
polynomials in (5.1) and (5.2), with ∆k(k = 1, . . . , 7) varied, Figure 16(a)–(b) present the variations in
the fitting errors of cubic spline surfaces over the distorted hierarchical quadrilateral meshes shown
in Figure 15. This indicates that mesh distortion has little effect on surface fitting results. That is, our
surface fitting algorithm has a low sensitivity to mesh distortion and is suitable for data processing
and engineering applications.
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Figure 15. Distorted hierarchical quadrilateral meshes.
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Figure 16. The corresponding errors of cubic spline surfaces over hierarchical quadrilateral
meshes in Figure 15 compared by g1 and g2.

Example 5.4. We consider an adaptive cubic spline surface approximation for 10,000 scattered data
points {(xi, yi, g3(xi, yi))}10000

i=1 , which are selected randomly from the function in (5.3). Q0 is generated
by applying a perturbation to a 4 × 4 uniform tensor product grid, whose coordinates are illustrated in
Figure 17. The threshold ε is 4.5 × 10−2. The error in Table 1 denotes the maximal error with respect
to the given function values, i.e., Error = max |g3(xi, yi) − f (xi, yi)|.

g3(x, y) = tanh(
0.25 −

√
(x − 0.5)2 + (y − 0.5)2

0.03
) + 1, (x, y) ∈ [0, 1] × [0, 1]. (5.3)

Figure 18 illustrates a series of hierarchical quadrilateral meshes generated by Algorithm 3.
Figures 19 and 20 show the corresponding cubic spline approximation surfaces and errors for five
levels. Table 1 presents the degrees of freedom, the regularization parameters µ obtained by the GCV
method, the maximal errors, and the condition numbers.
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Table 1. Results by Algorithm 3 to fitting the data points from g3(x, y) for each level in
Figure 18.

Level DOF Parameter µ Error Condition number
0 75 0.9650e-01 0.6044 5.3524e+03
1 243 2.0100e-02 0.4870 5.5841e+03
2 711 2.4000e-03 0.2493 4.5049e+04
3 1632 1.2548e-04 0.0991 8.8918e+05
4 3054 4.0149e-05 0.0180 4.4682e+06

Figure 17. The initial quadrilateral grid Q0 with coordinates.
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Figure 18. The hierarchical quadrilateral meshes adaptively generated by Algorithm 3 for
scattered data points from g3(x, y) for all levels.
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(a) (b) (c)

(d) (e)

Figure 19. Cubic spline surface approximation to data points from g3(x, y) for all levels.

(a) (b) (c)

(d) (e)

Figure 20. The corresponding errors of the surfaces in Figure 19 compared by g3(x, y) for all
levels.

Example 5.5. We employ an adaptive cubic spline surface to approximate 10,000 scattered data points,
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{(xi, yi, g4(xi, yi))}10000
i=1 , which are uniformly sampled from the function given in (5.4). Q0 is a 4 × 4

uniform tensor product grid. The threshold ε is 0.001. The error in Table 2 denotes the maximal error
with respect to the given function values, i.e., Error = max |g4(xi, yi) − f (xi, yi)|.

g4(x, y) = − tanh(
x2 + y2 − 0.002

0.002
) − tanh(

(x − 1)2 + (y − 1)2 − 0.002
0.002

), (x, y) ∈ [0, 1] × [0, 1]. (5.4)

Figure 21 illustrates a series of hierarchical quadrilateral meshes generated by Algorithm 3 for 4
levels. Figure 22 show the corresponding cubic spline approximation surfaces for 4 levels. Tables
2 and 3 give the the comparison with revised PHT-spline results [24] including degrees of freedom
(DOF), the maximal errors, and condition numbers, respectively. Figure 23 shows the computation
time per refinement step scaling with degrees of freedom (DOF).

(a) (b) (c) (d)

Figure 21. The hierarchical quadrilateral meshes adaptively generated by Algorithm 3 for
scattered data points from g4(x, y) for 4 levels.

(a) (b)

(c) (d)

Figure 22. Cubic spline surface approximation to data points from g4(x, y) for 4 levels.
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Table 2. Comparison of Algorithm 3 and PHT-splines in fitting uniformly sampled data
points from g4(x, y).

Model Revised PHT-spline Our method
Level DOF Error DOF Error

0 100 0.6857 75 0.6535
1 260 0.3466 183 0.4899
2 500 0.1281 417 0.2044
3 740 0.0045 633 0.0079

Table 3. Comparison of condition numbers for PHT-spline and QS12-spline bases.

Level PHT-spline bases QS12-spline bases
0 861.7466 4.6443e+03
1 1.9800e+03 6.7220e+03
2 6.7416e+03 4.3536e+04
3 2.7613e+04 9.1301e+05

Figure 23. Computation time per refinement step scaling with DOF.

Example 5.6. We consider an adaptive cubic spline surface approximation for 6426 scattered
data points {(xi, yi, g3(xi, yi))}6426

i=1 , which are chosen randomly from (5.3). The initial quadrilateral
mesh Q0 is an arbitrary quadrilateral grid whose coordinates are the same as Figure 12(b). The
threshold ε = 4.5 × 10−2. The error for the approximation function f (x, y) is the maximal error to the
given function values, i.e., Error = max |g3(xi, yi) − f (xi, yi)|.

Figure 24 illustrates a series of hierarchical quadrilateral meshes generated by Algorithm 3 for 5
levels. Figures 25 and 26 show the corresponding cubic spline approximation surfaces and errors for
all levels. Table 4 gives the degrees of freedom, the regularization parameter µ obtained by the GCV
method, the maximal errors, and the condition numbers, respectively.
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Figure 24. The hierarchical quadrilateral meshes adaptively generated by Algorithm 3 for
scattered data points from g3(x, y) for all levels.

(a) (b) (c)

(d) (e)

Figure 25. Cubic spline surface approximation to data points from g3(x, y) for all levels.
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(a) (b) (c)

(d) (e)

Figure 26. The corresponding errors of the surfaces in Figure 25 compared by g3(x, y) for all
levels.

Table 4. Results by Algorithm 3 to fitting the data points from g3(x, y) for each level in
Figure 24.

Level DOF Parameter µ Error Condition number
0 45 4.2500e-02 0.6162 1.7858e+04
1 135 2.0300e-02 0.5425 1.3574e+04
2 444 4.7000e-03 0.3044 2.2663e+04
3 1206 1.4176e-04 0.0977 6.1372e+05
4 1614 6.7381e-06 0.0351 1.3696e+07

5.2. Numerical experiments with noise

To demonstrate the effectiveness of the adaptive cubic spline surface approximation in Algorithm
3, we perform experiments with the following four functions: Franke’s function g5, a smooth function
g6, and two non-smooth functions g7 and g8.

g5(x, y) = 0.75 exp[−
(9x − 2)2 + (9y − 2)2

4
] + 0.75 exp[−

(9x + 1)2

49
−

(9y + 1)
10

] +

0.5 exp[−
(9x − 7)2 + (9y − 3)2

4
] − 0.2 exp[−(9x − 4)2 − (9y − 7)2], (5.5)
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g6(x, y) =
1.25 + cos(5.4y)
6 + 6(3x − 1)2 , (5.6)

g7(x, y) =


xy√
x2+y2
, x2 + y2 ≤ 1,

xy, x2 + y2 > 1,
(5.7)

g8(x, y) = 3 − 3 |x − y| . (5.8)

Data points are randomly sampled from each test function g j(x, y) ( j = 5 . . . 8) in Ω = [0, 1]× [0, 1].
Besides, we add noise to the sample data points, i.e., {xi, yi, g j(xi, yi) + δi}, i = 1, . . . , 10, 000. The
noise δi is generated from pseudo-random values drawn from the standard uniform distribution in
the open interval of δ ∗ (maxi |g(xi, yi)| − mini |g(xi, yi)|) ∗ (−1, 1), where δ is the noise intensity and
δ = 0.1% in our experiments. In the following four experiments, the thresholds ε are selected to be
9.0 × 10−2, 3.0 × 10−3, 7.0 × 10−3, and 5.0 × 10−2. We apply Algorithm 3 to obtain the approximation
function f for each test function g. The error is also measured by computing the maximal error between
f and g at all sampled data points.

Figures 27–30 present four sets of hierarchical quadrilateral meshes adaptively generated by
Algorithm 3 for noisy data points derived from functions g j(x, y), j = 5, . . . , 8, respectively. Figures
31 and 32 show the corresponding final cubic spline surfaces and their error distributions. Tables 5–8
show the corresponding results by Algorithm 3 for each refinement level.

For scattered data with sharp features, e.g., the scattered data points in g8(x, y), we can also obtain
a good approximation surface by Algorithm 3. In the figures of quadrilateral meshes, we can see the
refined cells are consistent with the positions where the sample function values change greatly.
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Figure 27. The hierarchical quadrilateral meshes adaptively generated by Algorithm 3 for
noisy data points from g5(x, y) for 4 levels.
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Figure 28. The hierarchical quadrilateral meshes adaptively generated by Algorithm 3 for
noisy data points from g6(x, y) for 4 levels.
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Figure 29. The hierarchical quadrilateral meshes adaptively generated by Algorithm 3 for
noisy data points from g7(x, y) for 4 levels.
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Figure 30. The hierarchical quadrilateral meshes adaptively generated by Algorithm 3 for
noisy data points from g8(x, y) for 4 levels.

Figure 31. The final adaptive approximations of cubic spline surfaces to fitting the noisy
data points from g j(x, y), j = 5, . . . , 8.
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Figure 32. The corresponding errors of the surfaces in Figure 31 compared by g j(x, y), j =
5, . . . , 8.

Table 5. Results by Algorithm 3 to fitting the noisy data points from g5(x, y) for each level
in Figure 27.

Level DOF Parameter µ Error Condition number
0 75 1.9970e-01 0.0316 9.3245e+03
1 243 4.5300e-02 0.0279 1.3268e+04
2 867 1.0200e-02 0.0242 1.7211e+04
3 3048 1.0536e-04 0.0078 1.4800e+06

Table 6. Results by Algorithm 3 to fitting the noisy data points from g6(x, y) for each level
in Figure 28.

Level DOF Parameter µ Error Condition number
0 75 2.2700e-01 0.0121 8.2050e+03
1 216 9.4000e-03 0.0035 1.1786e+05
2 615 7.4323e-04 0.0025 1.4284e+06
3 798 5.8134e-05 0.0017 2.0010e+07
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Table 7. Results by Algorithm 3 to fitting the noisy data points from g7(x, y) for each level
in Figure 29.

Level DOF Parameter µ Error Condition number
0 75 1.2750e-01 0.0176 5.5502e+03
1 243 3.1800e-02 0.0147 7.4433e+03
2 837 6.4197e-04 0.0060 1.9209e+05
3 1854 3.6793e-05 0.0026 3.5264e+06

Table 8. Results by Algorithm 3 to fitting the noisy data points from g8(x, y) for each level
in Figure 30.

Level DOF Parameter µ Error Condition number
0 75 1.046e-01 0.2591 5.1753e+03
1 243 2.3600e-02 0.1391 7.4325e+03
2 837 4.8819e-04 0.0565 1.6808e+05
3 1272 1.5955e-05 0.0277 5.3248e+06

6. Conclusions

In this paper, we present a novel surface construction algorithm based on cubic spline interpolation
of geometric information, i.e., function values and two first-order partial derivatives at basis vertices
within a hierarchical quadrilateral mesh. First, we introduce an algorithm to compute the transition
matrix M, which transfers geometric information from the basis vertices to all mesh vertices. This is the
key for constructing cubic splines over planar hierarchical meshes and its algorithmic implementation
is just a calculation. Second, we develop an adaptive cubic spline surface refinement algorithm for
fitting scattered data points. Numerical experiments demonstrate that the cubic spline surface over
hierarchical quadrilateral meshes possesses a completeness of order 2 and exhibits low sensitivity to
mesh distortion. In addition, the proposed adaptive algorithm can effectively solve problems of fitting
scattered data within polygonal domains.
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