
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(11): 26744–26766.
DOI: 10.3934/math.20251176
Received: 26 September 2025
Revised: 07 November 2025
Accepted: 12 November 2025
Published: 18 November 2025

Research article

Linear difference inequalities with constant coefficients with the sum equal
to zero

Stevo Stević1,2,3,*
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Abstract: Many difference equations of the form

xn+k = f (xn+k−1, . . . , xn), n ∈ N,

where k ∈ N, model some phenomena in nature and society. The most interesting cases usually occur
when the function f satisfies the condition f (x, . . . , x) = x on its domain of definition. Because of this
the difference inequalities xn+k ≤ f (xn+k−1, . . . , xn) and xn+k ≥ f (xn+k−1, . . . , xn) are of some interest.
If f is a smooth function, then it can be approximated by a linear function. Motivated by some concrete
examples, here we mostly consider the sequences that satisfy the linear difference inequality

k∑
j=1

a jxn+l− j ≥ 0, n ∈ N0,

where k ∈ N2, l ∈ N0, and the coefficients a j ∈ R, j = 2, k − 1, a1, ak ∈ R \ {0}, satisfy the condition∑k
j=1 a j = 0.
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1. Introduction

LetN = {1, 2, 3, . . .}, that is, the set of all positive whole numbers, Z be the set of all whole numbers,
and R be the set of real numbers. Let Nk = {n ∈ Z : n ≥ k}, where k ∈ Z is fixed. If p, q ∈ Z satisfy the
condition p ≤ q, then we use the notation i = p, q instead of writing the expression: p ≤ i ≤ q, i ∈ Z.
If k, l ∈ N, then gcd(k, l) denotes the greatest common divisor of the numbers k and l.

Difference equations have been studied systematically since the time of de Moivre and Daniel
Bernoulli, who started investigating their solvability and presented some methods for solving linear
difference equations [5, 9]. The study was continued by Lagrange, Laplace, and some other
mathematicians of the 18th century [16–18]. For some later presentations and studies on solvability,
see, for example, [11, 13, 19]. For some recent results in the direction, see, for example, [14, 23, 34]
and the papers quoted therein. The solvability theory of linear difference equations and systems
of difference equations with constant coefficients was essentially finished up to the end of the 18th
century and during the 19th century has been refined. In the recent papers [23, 34], solvability
of the linear difference equations and systems decides the solvability of the nonlinear difference
equations and systems considered therein. Linear and nonlinear difference equations and systems of
difference equations occur in many areas of mathematics and science, for example, in computational
mathematics [8], combinatorics [15, 20, 26], summations of series [1, 21, 22], theoretical biology and
ecology [24], economics, etc.

For example, the following model

xn+1 = axn +
bxn−1

1 + cxn−1 + dxn
, n ∈ N, (1.1)

where min{x0, x1} > 0, a ∈ (0, 1), b ∈ (0,+∞), and c, d ∈ [0,+∞), with c + d > 0, is the generalized
Beddington-Holt stock recruitment model, and

xn+3 = axn+2 + bxne−(cxn+2+dxn), n ∈ N0, (1.2)

where min{x0, x1, x2} > 0, a, b, c, d ≥ 0 , and c + d > 0, is the flour beetle population model (see,
e.g., [28]).

The most interesting case for the difference equations in (1.1) and (1.2) is when the sum of the main
coefficients of the equations is equal to one, that is, when a + b = 1 in the equations.

Since the initial values are positive and the parameters are nonnegative, in these cases, from (1.1),
we have

xn+1 ≤ axn + bxn−1, (1.3)

for n ∈ N, and from (1.2), we have

xn+3 ≤ axn+2 + bxn, n ∈ N0. (1.4)

Note that the inequalities (1.3) and (1.4) are linear difference inequalities with the property that the
sums of the coefficients on their right-hand sides are equal to one, or equivalently, with the property
that the sums of all the coefficients are equal to zero. Such a situation occurs frequently.
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Sometimes it is not possible to use only difference equations or systems for solving concrete
theoretical or applicable problems, because of which together with them, are used some related
difference inequalities, which are conveniently chosen to solve the problems. Such a situation can
be found even in quite old literature (for instance, in [25]). For some later results where difference
inequalities are used, see, e.g., [6, 7, 27] and the references therein. To show the global convergence
of solutions to the max-type difference equations in [33], a difference inequality has been used. The
difference equation

xn+1 ≤ axn + b, n ∈ N,

has been frequently used in the literature.
Difference inequalities are frequently useful in getting some comparison results in the theory of

difference equations and systems of difference equations (see, for example, [2, 3, 30]). In these papers
such inequalities are used to obtain some ‘frame’ sequences by which some properties of solutions
to the corresponding difference equations can be obtained. For example, in [30] was proved such
a result by which were found the second members in the asymptotics of some positive solutions to
some special cases of the generalized Beverton-Holt stock recruitment model [4], the flour beetle
population model [28], and some mosquito population models. A generalization of the inclusion
theorem in [30] was given in [31]. By using the inclusion theorem, the existence of a monotone
solution to a rational difference equation converging to the equilibrium exponentially was proved,
whereas in [32] the existence of nontrivial solutions of a class of difference equations of arbitrary order
was proved. These examples show that difference inequalities frequently appear in many situations
and play some important roles in studying solutions of difference equations and systems of difference
equations, as well as some other types of mathematical objects.

Motivated by the above-mentioned investigations in the theory of difference equations and systems,
models in theoretical biology and other branches of science, as well as some concrete linear and
nonlinear difference inequalities, including the ones in (1.3) and (1.4), here we consider the sequences
of real numbers that satisfy the following linear difference inequality:

k∑
j=1

a jxn+l− j ≥ 0, (1.5)

for every n ∈ N0, and some k ∈ N2, l ∈ N0, where the coefficients a j ∈ R, j = 2, k − 1, a1, ak ∈ R \ {0},
satisfy the condition

k∑
j=1

a j = 0.

Some of the results in the paper we obtained a long time ago, but have never been published or
presented so far. Some of the results in the paper could be a matter of folklore, but we have not
managed to find specific references for them, which, if they exist, could be scattered in the literature,
or could be some auxiliary results in dealing with some difference equations, iteration processes, and
related topics. We include them here for a better presentation and for the benefit of the reader, who can
get a better picture on the topic and its possible applications.
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2. Main results

In this section we state and prove the main results in this paper. Our first auxiliary result considers
a difference inequality that has nonconstant coefficients and is the only result dealing with such
coefficients. One of the reasons for this is based on our idea to simplify the settings and use solvability
of the linear difference equations with constant coefficients at some points.

Lemma 1. Assume that a sequence (xn)n∈Z of real numbers satisfies the difference inequality

xn ≤ a(−k)
n xn−k + · · · + a(−1)

n xn−1 + a(1)
n xn+1 + · · · + a(l)

n xn+l, (2.1)

for n ∈ Z, where k, l ∈ N, a( j)
n ≥ 0, j ∈ {−k + 1, . . . ,−2, 2, . . . , l − 1} \ {0}, min{a(−k)

n , a(−1)
n , a(1)

n , a(l)
n } > 0,

n ∈ Z, and

l∑
j=−k, j,0

a( j)
n ≤ 1, n ∈ Z. (2.2)

Then, the sequence is constant, or it cannot achieve the maximum.

Proof. Assume that (xn)n∈Z is a nonconstant sequence satisfying (2.1) that achieves the maximum M,
say, at xr. Then from (2.1) we have

M =xr ≤ a(−k)
r xr−k + · · · + a(−1)

r xr−1 + a(1)
r xr+1 + · · · + a(l)

r xr+l

≤M
l∑

j=−k, j,0

a( j)
r ≤ M.

From this and since min{a(−1)
r , a(1)

r } > 0, we have

xr−1 = xr+1 = M.

Using the same procedure to the terms xr−1 and xr+1 we get

xr−2 = xr+2 = M.

A simple inductive argument shows that

xr−m = xr+m = M,

for every m ∈ N, or equivalently xn = xr, for n ∈ Z, that is, xn is constant, which is a contradiction. �

2.1. Difference inequality (1.5) in the case k = 3

Here we consider the difference inequality (1.5) in the case k = 3. First, we consider the sequences
on a finite discrete interval. The following result, which is a matter of folklore, can be proved similar
to Lemma 1. We give a different proof for the benefit of the reader.
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Proposition 1. Assume that a sequence (xn)n=0,N , N ∈ N, of real numbers satisfies the
difference inequality

xn ≤ (1 − α)xn−1 + αxn+1, (2.3)

for n = 1,N − 1, and some α ∈ (0, 1), and

x0 = xN . (2.4)

Then

xn ≤ x0, n = 0,N. (2.5)

Proof. Assume that (2.5) is not true. Then, there is r ∈ {1, . . . ,N − 1} such that

xr > x0, (2.6)

xr > xr−1 and x0 ≥ x j, j = 0, r − 1. (2.7)

From (2.3) we have

xn+1 − xn ≥
1 − α
α

(xn − xn−1), (2.8)

for n = 1,N − 1.
If we apply (2.8) for n = r, k, where k ≤ N − 1, and (2.7), we easily get

xk+1 − xk ≥

(1 − α
α

)k−r+1

(xr − xr−1) > 0. (2.9)

This, together with (2.6) implies
xN > xN−1 > · · · > xr > x0,

from which, along with the assumption (2.4), we get a contradiction. �

Corollary 1. Assume that a sequence (xn)n=0,N , N ∈ N, of real numbers satisfies the difference
inequality in (2.3) for n = 1,N − 1, and some α ∈ (0, 1), that

xn ≥ m, for n = 0,N, (2.10)

for some m ∈ R, and

x0 = xN = m. (2.11)

Then

xn = m, n = 0,N. (2.12)
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Proof. From Proposition 1 we get

xn ≤ x0 = m, n = 0,N,

from which, together with the assumption in (2.10), we get (2.12). �

Remark 1. If a sequence (xn)n=0,N , N ∈ N, of real numbers satisfies the difference inequality

xn ≤ αxn+1 + (1 − α)xn+2, (2.13)

for n = 0,N − 2, as well as the conditions (2.10) and (2.11), then (2.12) need not hold. Indeed, the
following sequence satisfy all the conditions

xn =

{
m, n , N − 1,
m + c, n = N − 1.

for some c > 0, but is not constant.

Remark 2. If a sequence (xn)n=0,N , N ∈ N, of real numbers satisfies the difference inequality

xn+2 ≤ αxn+1 + (1 − α)xn, (2.14)

for n = 0,N − 2, as well as the conditions (2.10) and (2.11), then (2.12) need not hold. Indeed, the
following sequence satisfy all the conditions

xn =

{
m, n , 1,
m + c, n = 1.

for some c > 0, but is not constant.

Remark 3. The case α = 1/2 and m = 0 can be found in [36, p. 23].

Theorem 1. Assume that a sequence (xn)n=0,N+1, N ∈ N, of real numbers satisfies the difference
inequality (2.3) for n = 1,N, and some α ∈ (0, 1), and satisfies the conditions

x0 = xN and x1 = xN+1. (2.15)

Then

xn = x0, n = 0,N + 1. (2.16)

Proof. Summing up the inequalities

(1 − α)xn−1 + αxn+1 − xn ≥ 0,

for n = 1,N, and using the conditions in (2.15), we obtain

(1 − α)S N−1 + αS N−1 − S N−1 ≥ 0, (2.17)

where

S m =

m∑
n=0

xn.
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Since the left-hand side of inequality (2.17) is equal to zero, we have that all the summands are
equal to zero, that is,

(1 − α)xn−1 + αxn+1 − xn = 0, (2.18)

for n = 1,N. The roots of the characteristic polynomial

P2(λ) = αλ2 − λ + 1 − α = (λ − 1)(αλ − (1 − α))

associated to the linear difference equation in (2.18) are equal to

λ1 = 1 and λ2 =
1 − α
α

.

If α , 1/2, then we have that the general solution to the equation is given by

xn = c1 + c2

(
1 − α
α

)n

. (2.19)

Since it must be

c1 + c2 = x0 and c1 + c2

(
1 − α
α

)
= x1

by some calculation we obtain

c1 =
(1 − α)x0 − αx1

1 − 2α
and c2 =

(x1 − x0)α
1 − 2α

. (2.20)

Using (2.20) in (2.19), we get

xn =
(1 − α)x0 − αx1

1 − 2α
+

(x1 − x0)α
1 − 2α

(
1 − α
α

)n

. (2.21)

From (2.15) and (2.21), we get

x0 =
(1 − α)x0 − αx1

1 − 2α
+

(x1 − x0)α
1 − 2α

(
1 − α
α

)N

,

from which it follows that

x1 − x0 = (x1 − x0)
(
1 − α
α

)N

. (2.22)

Since α , 1/2 and N ≥ 1, we have
(

1−α
α

)N
, 1, from which, together with (2.22), it follows that

x0 = x1. (2.23)

Employing (2.23) in (2.18), we get x2 = x0. A simple inductive argument shows that (2.16) holds in
this case.
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If α = 1/2, then the general solution to equation (2.18) is given by

xn = c1 + c2n. (2.24)

Since it must be
c1 = x0 and c1 + c2 = x1,

we obtain

c1 = x0 and c2 = x1 − x0. (2.25)

Using (2.25) in (2.24), we get

xn = x0 + (x1 − x0)n. (2.26)

From (2.15) and (2.26) we get
x0 = x0 + (x1 − x0)N,

from which and since N ≥ 1, it follows that

x0 = x1. (2.27)

Employing (2.27) in (2.18), we get x2 = x0. A simple inductive argument shows that (2.16) also holds
in this case. �

Remark 4. For α = 1/4 and N = 101, Problem 258 in [29] with shifted indices forward by one
is obtained.

2.2. Difference inequality (1.5) in the case k = 4

Here we consider the difference inequality (1.5) in the case k = 4.

Theorem 2. Let

P3(λ) = λ3 + αλ2 + βλ + γ, (2.28)

where α, β ∈ R, γ ∈ R \ {0},

α + β + γ + 1 = 0, (2.29)

and none of the roots of P3(λ) satisfies the condition λk = 1 for some k ∈ N2.

Assume that a sequence (xn)n=0,N+3, N ∈ N, of real numbers satisfies the difference inequality

xn+3 + αxn+2 + βxn+1 + γxn ≥ 0, (2.30)

for n = 0,N − 1, with the conditions

x0 = xN , x1 = xN+1 and x2 = xN+2. (2.31)

Then

xn = x0, n = 0,N + 2. (2.32)
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Proof. Summing up the inequalities

xn+3 + αxn+2 + βxn+1 + γxn ≥ 0,

for n = 0,N − 1, and using the conditions in (2.31) we obtain

S N−1 + αS N−1 + βS N−1 + γS N−1 ≥ 0, (2.33)

where

S m =

m∑
n=0

xn.

Since the left-hand side of inequality (2.33) is equal zero, we have that all the summands are equal to
zero, that is,

xn+3 + αxn+2 + βxn+1 + γxn = 0, (2.34)

for n = 0,N − 1.
Now note that the polynomial (2.28) is the characteristic polynomial associated with the linear

difference equation in (2.34). The condition (2.29) implies that one of its roots is equal to one, say, λ1.

Bearing in mind this fact, there are five cases to be considered. Before considering the cases note
that since

0 , γ = −λ1λ2λ3,

we have that none of the roots is equal to zero.
Case λ2 = λ3 = 1. In this case the general solution to Eq (2.34) is given by

xn = c1 + c2n + c3n2. (2.35)

From this and the conditions in (2.31), we have

c1 =c1 + c2N + c3N2,

c1 + c2 + c3 =c1 + c2(N + 1) + c3(N + 1)2,

from which it follows that

0 =N(c2 + Nc3),
0 =N(c2 + (N + 2)c3).

Hence,
c2 + Nc3 = 0 and c2 + (N + 2)c3 = 0,

and consequently

c2 = c3 = 0. (2.36)

Using (2.36) in (2.35), and since it is obviously c1 = x0, we get (2.32).
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Case λ2 = 1, λ3 , 1. In this case the general solution to Eq (2.34) is given by

xn = c1 + c2n + c3λ
n
3. (2.37)

From this and the conditions in (2.31), we have

c1 + c3 =c1 + c2N + c3λ
N
3 ,

c1 + c2 + c3λ3 =c1 + c2(N + 1) + c3λ
N+1
3 ,

from which it follows that

0 =c2N + c3(λN
3 − 1),

0 =c2N + c3λ3(λN
3 − 1).

Hence
c3(λN

3 − 1)(λ3 − 1) = 0.

From this and since λN
3 , 1 for each N ∈ N, we get c3 = 0, and consequently c2 = 0. Using these facts

in (2.37), and since it obviously holds c1 = x0, we obtain (2.32) in this case.
Case λ2 , 1, λ3 = 1. This case is dual to the case λ2 = 1, λ3 , 1 (only the letters λ2 and λ3 should be
interchanged to get the previous case). Hence, it is omitted.
Case λ2 = λ3 , 1. In this case the general solution to equation (2.34) is given by

xn = c1 + c2λ
n
2 + c3nλn

2. (2.38)

From this and the conditions in (2.31), we have

c1 + c2 =c1 + c2λ
N
2 + c3NλN

2 ,

c1 + c2λ2 + c3λ2 =c1 + c2λ
N+1
2 + c3(N + 1)λN+1

2 ,

from which it follows that

0 =c2(λN
2 − 1) + c3NλN

2 ,

0 =λ2(c2(λN
2 − 1) + c3((N + 1)λN

2 − 1)).

Hence
c2(λN

2 − 1) + c3NλN
2 = 0 and c2(λN

2 − 1) + c3((N + 1)λN
2 − 1) = 0,

and consequently
c3(λN

2 − 1) = 0.

From this and since λN
2 , 1, we get c3 = 0, from which, along with the assumption λN

2 , 1, we have
that c2 = 0. Using these facts in (2.38), and since it is obviously c1 = x0, we get (2.32) in this case.
Case 1 , λ2 , λ3 , 1. In this case the general solution to Eq (2.34) is given by

xn = c1 + c2λ
n
2 + c3λ

n
3. (2.39)

AIMS Mathematics Volume 10, Issue 11, 26744–26766.



26754

From this and the conditions in (2.31), we have

c1 + c2 + c3 =c1 + c2λ
N
2 + c3λ

N
3 ,

c1 + c2λ2 + c3λ3 =c1 + c2λ
N+1
2 + c3λ

N+1
3 ,

from which it follows that

0 =c2(λN
2 − 1) + c3(λN

3 − 1),
0 =c2λ2(λN

2 − 1) + c3λ3(λN
3 − 1).

Hence
c3(λN

3 − 1)(λ3 − λ2) = 0.

From this and since λ2 , λ3 and λN
3 , 1, we get c3 = 0, from which, together with the assumption

λN
2 , 1, we get c2 = 0. Using these facts in (2.39), and since it is obviously c1 = x0, we get (2.32) in

this case. �

Remark 5. If the polynomial (2.28) has a root λ2 such that λN
2 = 1, then Theorem 2 need not hold.

Namely, assume that λ2 is such a root of the corresponding polynomial P3, then for N = 2, λ2 = −1,
the sequence

xn := (−1)n

will be a solution to the difference Eq (2.34) satisfying the conditions in (2.31) for N = 2, which is
obviously not constant.

If N ∈ N3, then if λN
2 = 1 and λ2 ∈ C \ R we have that λ3 = λ2 is also a root of the polynomial P3,

and the sequence
xn := cλn

2 + c̄λ
n
2,

where c ∈ C \ {0}, will be a real-valued solution to Eq (2.34) satisfying the conditions in (2.31) for
this N, which is obviously not constant.

Remark 6. Difference inequality (1.5) in the case k ≥ 5 can be considered similarly, but the
calculations are more complex and there are more cases that should be dealt with separately.

2.3. The difference equation corresponding to (2.3)

Here we consider the following difference equation

αyn+1 − yn + (1 − α)yn−1 = 0, (2.40)

where α ∈ (0, 1), which corresponds to the difference inequality in (2.3).
The roots of the characteristic polynomial p2(λ) = αλ2 − λ + 1 − α, associated to Eq (2.40), are

λ1 = 1 and λ2 = 1−α
α

, from which it follows that the solution with the initial values y0 and y1 is given by

yn =
(α − 1)y0 + αy1

2α − 1
+
α(y0 − y1)

2α − 1

(1 − α
α

)n

, (2.41)
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for n ∈ Z, when α , 1/2, whereas

yn = y0 + n(y1 − y0), (2.42)

for n ∈ Z, when α = 1/2.
If y0 = y1, then from (2.41) and (2.42) we obtain

yn = y0, n ∈ Z. (2.43)

Hence, from now on we assume that y0 , y1.

If we write (2.40) in the form

α(yn+1 − yn) = (1 − α)(yn − yn−1), n ∈ Z,

we see that

sign(yn+1 − yn) = sign(yn − yn−1), n ∈ Z. (2.44)

Assume that α ∈ (1/2, 1). Then 1−α
α
∈ (0, 1). Hence

lim
n→+∞

yn =
(α − 1)y0 + αy1

2α − 1
. (2.45)

If y1 > y0, then from (2.44) we see that the sequence yn increasingly converges to the limit
in (2.45) (moreover, the sequence is increasing on Z), whereas if y1 < y0, then the sequence yn

decreasingly converges to the limit (moreover, the sequence is decreasing on Z).
On the other hand, we have

lim
n→−∞

yn = −∞, (2.46)

if y1 > y0, whereas

lim
n→−∞

yn = +∞, (2.47)

if y1 < y0.
Assume that α ∈ (0, 1/2). Then 1−α

α
> 1. Hence

lim
n→−∞

yn =
(1 − α)y0 − αy1

1 − 2α
. (2.48)

If y1 > y0, then from (2.44) we see that the sequence yn decreasingly converges to the limit
in (2.48) (moreover, the sequence is decreasing on −Z), whereas if y1 < y0, then the sequence yn

increasingly converges to the limit (moreover, the sequence is increasing on −Z).
On the other hand, we have

lim
n→+∞

yn = +∞, (2.49)

if y1 > y0, whereas

lim
n→+∞

yn = −∞, (2.50)

if y1 < y0.
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2.4. On the case α = 1/2

Here we present some results on the sequences satisfying the inequality (2.3) for α = 1/2. The
following result should be a matter of folklore. We include it for completeness.

Theorem 3. Assume that a sequence (xn)n∈Z of real numbers satisfies the difference inequality

xn ≤
xn+1 + xn−1

2
, (2.51)

for n ∈ Z. If the sequence is non-constant, then it must be unbounded.

Proof. From (2.51), we have

xn+1 − xn ≥ xn − xn−1, n ∈ Z. (2.52)

If there is r ∈ Z, such that

xr > xr−1, (2.53)

then from (2.52) we get

xn − xn−1 ≥ xn−1 − xn−2 ≥ · · · ≥ xr+1 − xr ≥ xr − xr−1.

From this and since

xn − xr =

n∑
j=r+1

(x j − x j−1),

we have

xn ≥ xr + (n − r)(xr − xr−1), (2.54)

for n ≥ r.
Letting n→ +∞ in (2.54) and using (2.53), we have

lim
n→+∞

xn = +∞,

which means that the sequence xn is unbounded in this case.
Otherwise, it must be

xr ≤ xr−1, (2.55)

for every r ∈ Z.
If

xr = xr−1,

for every r ∈ Z, then the sequence (xn)n∈Z is constant.
If there is r ∈ Z, such that

xr < xr−1. (2.56)
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From (2.52) we get
xr − xr−1 ≥ xr−1 − xr−2 ≥ · · · ≥ xr−k+1 − xr−k.

From this and since

xr − xr−k =

r∑
j=r−k+1

(x j − x j−1),

we have

xr−k ≥ xr + k(xr−1 − xr), (2.57)

for k ∈ N.
Letting k → +∞ in (2.57) and using (2.56), we have

lim
k→+∞

xr−k = +∞,

which means that the sequence xn is unbounded in this case. �

Corollary 2. Assume that a bounded sequence (xn)n∈Z of real numbers satisfies inequality (2.51) for
n ∈ Z. Then, it is constant.

If α ∈ (0, 1) \ {1/2}, then the situation is different. Namely, the following result holds.

Theorem 4. Assume that α ∈ (0, 1) \ {1/2}. Then, there are sequences of real numbers satisfying
inequality (2.3) for every n ∈ Z, which are bounded.

Proof. Assume that α ∈ (0, 1/2). Then, the sequence defined in (2.41) satisfies (2.48) and if y0 > y1,
then the sequence yn increasingly converges to the limit therein as n→ −∞, that is, we have

lim
n→+∞

y−n =
(1 − α)y0 − αy1

1 − 2α
> · · · > y−n > y−n+1 > · · · > y−1 > y0 > y1. (2.58)

Note that since y0 > y1 and α ∈ (0, 1/2), we have

y0 >
α

1 − α
y1.

Since for the sequence the relation (2.50) holds, we should change the sequence on the set n ≥ 2.
Further, assume that y1 > 0. Since it must be

αy2 + (1 − α)y0 ≥ y1, (2.59)

we have to choose
y2 ∈

(
max

{
0, y1 −

1 − α
α

(y0 − y1)
}
, y1

)
,

so that holds (2.59) and y1 > y2 > 0.
Assume that yn was chosen such that y1 > y2 > · · · > yn > 0. Then, since it must be

αyn+1 + (1 − α)yn−1 ≥ yn, (2.60)
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we have to choose
yn+1 ∈

(
max

{
0, yn −

1 − α
α

(yn−1 − yn)
}
, yn

)
,

so that it holds (2.60) and yn > yn+1 > 0.
Assume that α ∈ (1/2, 1). Namely, we can take the sequence defined in (2.41) satisfying (2.45) and

if y0 < y1, then the sequence yn increasingly converges to the limit therein as n→ +∞, that is, we have

y0 < y1 < · · · < yn < yn+1 < · · · <
αy1 − (1 − α)y0

2α − 1
= lim

n→+∞
yn. (2.61)

Note that since y0 < y1 and α ∈ (1/2, 1), we have y0 <
α

1−αy1.

Since for the sequence the relation (2.46) holds, we should change the sequence on the set n ≤ −1.
Further, assume that y0 > 0. Since it must be

αy1 + (1 − α)y−1 ≥ y0, (2.62)

we have to choose
y−1 ∈

(
max

{
0, y0 −

α

1 − α
(y1 − y0)

}
, y0

)
,

so that holds (2.62) and 0 < y−1 < y0.
Assume that y−n was chosen such that y0 > y−1 > · · · > y−n > 0. Then, since it must be

αy−n+1 + (1 − α)y−n−1 ≥ y−n, (2.63)

we have to choose
y−n−1 ∈

(
max

{
0, y−n −

α

1 − α
(y−(n−1) − y−n)

}
, y−n

)
,

so that it holds (2.63) and y−n > y−n−1 > 0. �

Remark 7. Inequality (2.3) looks like a convexity relation, so a natural question is how it is possible
that (2.58) holds. The answer is that the sequence for n ≤ 0, is, in fact, concave. Indeed, since
α ∈ (0, 1/2), and (2.58) holds, we have

yn = αyn+1 + (1 − α)yn−1 >
yn+1 + yn−1

2
,

for n ≤ 0.

The following result could be a matter of folklore. We give a proof for the completeness and since
it has some interesting details.

Proposition 2. Let (xn)n∈Z be a sequence of real numbers such that

xn ≥
xn−1 + xn+1

2
, n ∈ Z. (2.64)

Then,

xn ≥
xn−2k + · · · + xn−1 + xn+1 + · · · + xn+2k

2k+1 , (2.65)

for every n ∈ Z and k ∈ N0.
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Proof. From (2.64) we see that (2.65) holds for k = 0. Further, from (2.64) we also have

xn+2 + xn ≤ 2xn+1 and xn + xn−2 ≤ 2xn−1,

for n ∈ Z, from which, along with (2.64), it follows that

xn+2 + 2xn + xn−2 ≤ 2(xn+1 + xn−1) ≤ 4xn,

for n ∈ Z, and consequently

xn+2 + xn−2 ≤ 2xn, (2.66)

for n ∈ Z.
From (2.64) and (2.66), we obtain

xn−2 + xn−1 + xn+1 + xn+2

4
≤ xn,

for n ∈ Z, which is inequality (2.65) for k = 1.
Assume that we have proved the inequality

xn ≥
xn−2k−1 + xn+2k−1

2
, (2.67)

and

xn ≥
xn−2k−1 + · · · + xn−1 + xn+1 + · · · + xn+2k−1

2k , (2.68)

for every n ∈ Z and a fixed k ∈ N.
From (2.67) we have

xn−2k + xn ≤ 2xn−2k−1 and xn + xn+2k ≤ 2xn+2k−1 ,

for every n ∈ Z, from which, along with (2.67), it follows that

xn−2k + 2xn + xn+2k ≤ 2(xn−2k−1 + xn+2k−1) ≤ 4xn,

for n ∈ Z, and consequently

xn−2k + xn+2k ≤ 2xn, (2.69)

for n ∈ Z. Hence, the inductive argument shows that (2.69) holds for every n ∈ Z and k ∈ N0.

From (2.68) we have

xn−2k + · · · + xn−2k−1−1 + xn−2k−1+1 + · · · + xn−1 + xn ≤ 2kxn−2k−1

and
xn+2k + · · · + xn+2k−1+1 + xn+2k−1−1 + · · · + xn+1 + xn ≤ 2kxn+2k−1 .
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Summing up these inequalities and using (2.67), we get

xn−2k + · · · + xn−2k−1−1 + xn−2k−1+1 + · · · + xn−1 + xn

+ xn+2k + · · · + xn+2k−1+1 + xn+2k−1−1 + · · · + xn+1 + xn

≤2k(xn−2k−1 + xn+2k−1) ≤ 2k+1xn,

for n ∈ Z, from which it follows that

xn−2k + · · · + xn−2k−1−1 + xn−2k−1+1 + · · · + xn−1

+ xn+2k + · · · + xn+2k−1+1 + xn+2k−1−1 + · · · + xn+1

≤(2k+1 − 2)xn,

for n ∈ Z, which is equivalent to

xn−2k + · · · + xn−2k−1−1 + xn−2k−1 + xn−2k−1+1 + · · · + xn−1

+ xn+2k + · · · + xn+2k−1+1 + xn+2k−1 + xn+2k−1−1 + · · · + xn+1

≤(2k+1 − 2)xn + xn−2k−1 + xn+2k−1 ,

for n ∈ Z, and consequently by using again inequality (2.67), we get

xn−2k + · · · + xn−1 + xn+1 + · · · + xn+2k

≤(2k+1 − 2)xn + xn−2k−1 + xn+2k−1 ≤ (2k+1 − 2)xn + 2xn = 2k+1xn,

for n ∈ Z, finishing the inductive proof of inequality (2.65). �

By using the change of variables

yn := −xn (2.70)

in Proposition 2 we obtain the following corollary.

Corollary 3. Let (xn)n∈Z be a sequence of real numbers such that

xn ≤
xn−1 + xn+1

2
, n ∈ Z.

Then,
xn ≤

xn−2k + · · · + xn−1 + xn+1 + · · · + xn+2k

2k+1 ,

for every n ∈ Z and k ∈ N0.

From the proof of Proposition 2 we see that the following results also hold.

Corollary 4. Let (xn)n∈N0 be a sequence of real numbers such that

xn ≥
xn−1 + xn+1

2
, n ∈ N,
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and k ∈ N2. Then,
xn ≥

xn−2k + · · · + xn−1 + xn+1 + · · · + xn+2k

2k+1 ,

for every n ≥ 2k.

Corollary 5. Let (xn)n∈Z\N be a sequence of real numbers such that

xn ≥
xn−1 + xn+1

2
, n ∈ Z \ N0,

and k ∈ N2. Then,
xn ≥

xn−2k + · · · + xn−1 + xn+1 + · · · + xn+2k

2k+1 ,

for every n ≤ −2k.

By using the change of variables (2.70), from Corollaries 4 and 5 we obtain the following
results, respectively.

Corollary 6. Let (xn)n∈N0 be a sequence of real numbers such that

xn ≤
xn−1 + xn+1

2
, n ∈ N,

and k ∈ N2. Then,
xn ≤

xn−2k + · · · + xn−1 + xn+1 + · · · + xn+2k

2k+1 ,

for every n ≥ 2k.

Corollary 7. Let (xn)n∈Z\N be a sequence of real numbers such that

xn ≤
xn−1 + xn+1

2
, n ∈ Z \ N0,

and k ∈ N2. Then,
xn ≤

xn−2k + · · · + xn−1 + xn+1 + · · · + xn+2k

2k+1 ,

for every n ≤ −2k.

2.5. A result related to Lemma 1 and a counterexample

The following result is a nontrivial improvement of Lemma 1 for a special case of inequality (2.1).
However, it also considers the case when the coefficients a(−1)

n and a(1)
n are equal to zero.

Theorem 5. Assume that a sequence (xn)n∈Z of real numbers satisfies the difference inequality

xn ≤ (1 − α)xn−l + αxn+k, (2.71)

for every n ∈ Z, some α ∈ (0, 1), k, l ∈ N such that

gcd(k, l) = 1. (2.72)

Then, the sequence is constant, or it cannot achieve the maximum.
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Proof. Assume that a nonconstant sequence (xn)n∈Z of real numbers satisfying difference
inequality (2.71) achieves the maximum. Let

xn0 = max
n∈Z

xn.

Since (2.72) holds, then there are p, q ∈ N such that

pk − ql = 1. (2.73)

Indeed, we know that there are m1,m2 ∈ Z, such that

m1k + m2l = 1

(see, e.g., [10]). Since k, l ∈ N, it is clear that m1 and m2 are two integers of the opposite sign. So,
we have m1k − (−m2)l = 1, where m1 and −m2 are two integers of the same sign. If m1,−m2 ∈ N, we
found such numbers. If m1 and −m2 are two negative integers, then note that they are a solution to the
Diophantine equation

xk − yl = 1. (2.74)

It is well known that all the solutions to equation (2.74) are given by

x = m1 + tl, y = −m2 + tk, (2.75)

where t ∈ Z (see, e.g., [12]). For sufficiently large t ∈ N, the solutions in (2.75) are positive, from
which the claim follows in this case.

Now note that
{n0 + m(pk − ql) : m ∈ Z} = Z.

From (2.71) and the definition of xn0 , we have

xn0 ≤ (1 − α)xn0−l + αxn0+k ≤ xn0 ,

from which it follows that
xn0 = xn0−l = xn0+k.

Using this procedure p times, among other equalities, we get

xn0 = xn0+pk,

and then using it q times to xn0+pk, among other equalities, we get

xn0 = xn0+pk = xn0+pk−ql,

that is, we obtain
xn0 = xn0+1.

A simple inductive argument shows that

xn0 = xn+1, (2.76)
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for every n ≥ n0.

From (2.71) and (2.76), since l ∈ N, and the definition of xn0 , we have

xn0 = xn0+l−1 ≤ (1 − α)xn0−1 + αxn0+l+k+1 ≤ xn0 ,

from which it follows that
xn0−1 = xn0 .

A simple inductive argument shows that

xn0 = xn−1, (2.77)

for every n ≤ n0.

Hence,
xn0 = xn, n ∈ Z,

that is, it is a constant sequence, which is a contradiction. �

Now we consider the case when the parameters k and l in Theorem 5 satisfy the condition
gcd(k, l) > 1. In this case Theorem 5 does not hold. Let

r := gcd(k, l),

then the inequality (2.71) can be written in the form

xn ≤ (1 − α)xn−l1r + αxn+k1r, (2.78)

for n ∈ Z, where

l1 =
l
r

and k1 =
k
r
.

Note that
gcd(k1, l1) = 1.

Since each n ∈ Z can be written in the form n = mr + q, where m ∈ Z and q ∈ {0, 1, . . . , r − 1},
inequality (2.78) can be written in the form

xmr+q ≤ (1 − α)x(m−l1)r+q + αx(m+k1)r+q, (2.79)

where m ∈ Z and q ∈ {0, 1, . . . , r − 1}.
From (2.79), we see that the following r sequences

y(q)
m := xmr+q, m ∈ Z, (2.80)

satisfy the difference inequality

ym ≤ (1 − α)ym−l1 + αym+k1 , (2.81)

for m ∈ Z.
By Theorem 5 each of these r sequences in (2.80) is constant, or it cannot achieve the maximum.
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Now note that the sets of indices S q = {mr + q : m ∈ Z} are such that

S q ∩ S p = ∅,

when q , p, and that
r−1⋃
j=0

S j = Z.

It is easy to see that the sequence

ym = c, m ∈ Z, (2.82)

satisfy inequality (2.81) for each c ∈ R.
So, if we choose the sequences in (2.80) to be constant, that is, equal to a constant cq, q = 0, r − 1,

respectively, and such that at least two of the constants are different, that is, if

y(q)
m = cq and y(p)

m = cp,

for every m ∈ Z and some q, p ∈ {0, 1, . . . , r − 1} such that q , p and cq , cp, then the corresponding
sequence (xm)m∈Z obtained by the r relations in (2.80) will satisfy inequality (2.78). However, the
sequence is not constant and

max
n∈Z

xn = max
j=0,r−1

c j,

that is, the sequence achieves the maximum.

Remark 8. If we use the terminology that refers to some difference equations in [35], for the difference
inequality (2.78) when r > 1, we can say that it is a difference inequality with interlacing indices.

3. Conclusions

Some classes of linear difference inequalities, mostly with constant coefficients, are considered
in this paper. Many results, ideas, tricks, and remarks are presented. The inequalities could be some
motivations for further investigations in this direction, as well as some motivations for their applications
in any of the areas that use difference equations or iteration processes. One of the natural directions for
further investigations is consideration of linear difference inequalities with nonconstant coefficients.
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