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Abstract: Many difference equations of the form

xn+k = f(xn+k—l’ .. ’-xn)a ne Na

where k£ € N, model some phenomena in nature and society. The most interesting cases usually occur
when the function f satisfies the condition f(x,...,x) = x on its domain of definition. Because of this
the difference inequalities x,x < f(Xp4k-1s--->X,) and X, > f(Xp4k-1,--.,X,) are of some interest.
If f is a smooth function, then it can be approximated by a linear function. Motivated by some concrete
examples, here we mostly consider the sequences that satisfy the linear difference inequality

k
Z ajXptl-j >0, neN,,

=

where k € N,, [ € Ny, and the coefficients a; € R, j = 2,k -1, a;,ar € R\ {0}, satisfy the condition
YK a;=0.
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1. Introduction

LetN = {1,2,3,...}, that is, the set of all positive whole numbers, Z be the set of all whole numbers,
and R be the set of real numbers. Let N, = {n € Z : n > k}, where k € Z is fixed. If p, q € Z satisfy the
condition p < g, then we use the notation i = p,¢q instead of writing the expression: p <i < ¢q, i € Z.
If k, 1 € N, then gcd(k, [) denotes the greatest common divisor of the numbers k and /.

Difference equations have been studied systematically since the time of de Moivre and Daniel
Bernoulli, who started investigating their solvability and presented some methods for solving linear
difference equations [5, 9]. The study was continued by Lagrange, Laplace, and some other
mathematicians of the 18th century [16—18]. For some later presentations and studies on solvability,
see, for example, [11, 13, 19]. For some recent results in the direction, see, for example, [14,23, 34]
and the papers quoted therein. The solvability theory of linear difference equations and systems
of difference equations with constant coefficients was essentially finished up to the end of the 18th
century and during the 19th century has been refined. In the recent papers [23, 34], solvability
of the linear difference equations and systems decides the solvability of the nonlinear difference
equations and systems considered therein. Linear and nonlinear difference equations and systems of
difference equations occur in many areas of mathematics and science, for example, in computational
mathematics [8], combinatorics [15, 20, 26], summations of series [1,21,22], theoretical biology and
ecology [24], economics, etc.

For example, the following model

+ bxn—l
1 +cx,_y +dx,

Xpel = AXp neN, (L.1)

where min{xy, x;} > 0, a € (0,1), b € (0,+00), and ¢,d € [0, +00), with ¢ + d > 0, is the generalized
Beddington-Holt stock recruitment model, and

Xps3 = AXpao + bx,e 2t -y e N, (1.2)

where min{x, x;, x2} > 0, a,b,c,d > 0, and ¢ +d > 0, is the flour beetle population model (see,
e.g., [28]).

The most interesting case for the difference equations in (1.1) and (1.2) is when the sum of the main
coeflicients of the equations is equal to one, that is, when a + b = 1 in the equations.

Since the initial values are positive and the parameters are nonnegative, in these cases, from (1.1),
we have

Xpe1 < ax, + bx,_y, (1.3)
for n € N, and from (1.2), we have
Xpi3 < AXpeo + bx,, n € Ny. (1.4)

Note that the inequalities (1.3) and (1.4) are linear difference inequalities with the property that the
sums of the coeflicients on their right-hand sides are equal to one, or equivalently, with the property
that the sums of all the coefficients are equal to zero. Such a situation occurs frequently.
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Sometimes it is not possible to use only difference equations or systems for solving concrete
theoretical or applicable problems, because of which together with them, are used some related
difference inequalities, which are conveniently chosen to solve the problems. Such a situation can
be found even in quite old literature (for instance, in [25]). For some later results where difference
inequalities are used, see, e.g., [6,7,27] and the references therein. To show the global convergence
of solutions to the max-type difference equations in [33], a difference inequality has been used. The
difference equation

Xpe1 < ax, +b, neN,

has been frequently used in the literature.

Difference inequalities are frequently useful in getting some comparison results in the theory of
difference equations and systems of difference equations (see, for example, [2, 3,30]). In these papers
such inequalities are used to obtain some ‘frame’ sequences by which some properties of solutions
to the corresponding difference equations can be obtained. For example, in [30] was proved such
a result by which were found the second members in the asymptotics of some positive solutions to
some special cases of the generalized Beverton-Holt stock recruitment model [4], the flour beetle
population model [28], and some mosquito population models. A generalization of the inclusion
theorem in [30] was given in [31]. By using the inclusion theorem, the existence of a monotone
solution to a rational difference equation converging to the equilibrium exponentially was proved,
whereas in [32] the existence of nontrivial solutions of a class of difference equations of arbitrary order
was proved. These examples show that difference inequalities frequently appear in many situations
and play some important roles in studying solutions of difference equations and systems of difference
equations, as well as some other types of mathematical objects.

Motivated by the above-mentioned investigations in the theory of difference equations and systems,
models in theoretical biology and other branches of science, as well as some concrete linear and
nonlinear difference inequalities, including the ones in (1.3) and (1.4), here we consider the sequences
of real numbers that satisfy the following linear difference inequality:

k
Zajx,,+l_j > 0, (15)

J=1

for every n € Ny, and some k € N,, [ € Ny, where the coeflicients a; € R, j =2,k -1, a;,a, € R\ {0},
satisfy the condition
k
Z aj =0.

=1

Some of the results in the paper we obtained a long time ago, but have never been published or
presented so far. Some of the results in the paper could be a matter of folklore, but we have not
managed to find specific references for them, which, if they exist, could be scattered in the literature,
or could be some auxiliary results in dealing with some difference equations, iteration processes, and
related topics. We include them here for a better presentation and for the benefit of the reader, who can
get a better picture on the topic and its possible applications.
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2. Main results

In this section we state and prove the main results in this paper. Our first auxiliary result considers
a difference inequality that has nonconstant coefficients and is the only result dealing with such
coeflicients. One of the reasons for this is based on our idea to simplify the settings and use solvability
of the linear difference equations with constant coefficients at some points.

Lemma 1. Assume that a sequence (x,,),ez of real numbers satisfies the difference inequality

X, < a;_k)xn_k + .-+ a,([l)xn_l + afll)xnﬂ + .-+ a,(f)xnﬂ, 2.1)
forn€Z wherek,leN,a >0, je{-k+1,...,-2,2,...,1— 1}\ {0}, min{a’™, a5, a", a} > 0,
n ez, and
[
> al<1, nel (2.2)

J=—k,j%0
Then, the sequence is constant, or it cannot achieve the maximum.

Proof. Assume that (x,),cz 1S a nonconstant sequence satisfying (2.1) that achieves the maximum M,
say, at x,. Then from (2.1) we have
M =x, < ag_k)x,_k +0 4 ag_l)xr_l +aWx, o+ + ag)xm

r

)
<M > dP <M.
Jj=—k,j#0

From this and since min{aﬂ_l), afl)} > 0, we have

Xpo = Xpp1 = M.
Using the same procedure to the terms x,_; and x,,; we get

Xr2 = X2 = M.
A simple inductive argument shows that

Xrom = Xpem = M,

for every m € N, or equivalently x, = x,, for n € Z, that is, x, is constant, which is a contradiction. O

2.1. Difference inequality (1.5) in the case k = 3

Here we consider the difference inequality (1.5) in the case k = 3. First, we consider the sequences
on a finite discrete interval. The following result, which is a matter of folklore, can be proved similar
to Lemma 1. We give a different proof for the benefit of the reader.
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Proposition 1. Assume that a sequence (x,),.g% N € N, of real numbers satisfies the
difference inequality

Xp < (1 - a)xn—l + Xy, (23)
forn=1,N — 1, and some a € (0, 1), and
X0 = XN. (24)

Then

X, <x9, n=0,N. (2.5

Proof. Assume that (2.5) is not true. Then, there is r € {1,..., N — 1} such that

X > X, (2.6)
X, >x—1 and xo2>x; j=0,r-1 2.7)
From (2.3) we have
1-
Xn+l — Xn > a/(xn - xn—]), (28)

forn=1,N-1. L
If we apply (2.8) for n = r, k, where k < N — 1, and (2.7), we easily get

-«

k—r+1
X1 — X 2 ( ) (x = x,-1) > 0. (2.9)

This, together with (2.6) implies
XN > XN=1 > = > X > Xp,

from which, along with the assumption (2.4), we get a contradiction. m|

Corollary 1. Assume that a sequence (x,),_55 N € N, of real numbers satisfies the difference

inequality in (2.3) forn = 1, N — 1, and some a € (0, 1), that

X, >m, for n=0,N, (2.10)
for some m € R, and
Xo = Xy = m. 2.11)
Then
X, =m, n=0,N. (2.12)
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Proof. From Proposition 1 we get

X, <xg=m, n=0,N,

from which, together with the assumption in (2.10), we get (2.12). O

Remark 1. If a sequence (x,),_g, N € N, of real numbers satisfies the difference inequality
Xn S WXy + (1 = @) X4, (2.13)

forn = 0, N — 2, as well as the conditions (2.10) and (2.11), then (2.12) need not hold. Indeed, the
following sequence satisfy all the conditions

| om, n+xN-1,
n = m+c, n=N-1.

for some ¢ > 0, but is not constant.
Remark 2. If a sequence (Xn) g N €N, of real numbers satisfies the difference inequality
Xpy2 < @Xpyp + (1 = @)x,, (2.14)

forn = 0, N — 2, as well as the conditions (2.10) and (2.11), then (2.12) need not hold. Indeed, the
following sequence satisfy all the conditions

‘= m, n+l,
"""\ m+c, n=1.

for some ¢ > 0, but is not constant.
Remark 3. The case @ = 1/2 and m = 0 can be found in [36, p. 23].

Theorem 1. Assume that a sequence (x,),_gx71» N € N, of real numbers satisfies the difference
inequality (2.3) for n = 1, N, and some « € (0, 1), and satisfies the conditions

Xo=Xxy and X; = Xyi1. (2.15)

Then

X, =Xx9, n=0,N+1. (2.16)

Proof. Summing up the inequalities
(1 - a’)xn—l + Xy — Xy 2 0,

forn = I,_N, and using the conditions in (2.15), we obtain

(I-a)Sy_1+aSy_1 =Sy 2 0, (217)
where .
S, = an.
n=0
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Since the left-hand side of inequality (2.17) is equal to zero, we have that all the summands are

equal to zero, that is,
(I = @)xp-1 + @xpy1 — x, = 0,

for n = 1, N. The roots of the characteristic polynomial

P(D)=al?-A+1-a=1-Dal-(1-a)

associated to the linear difference equation in (2.18) are equal to

1 -
/11:1 and /12:_0’.
04

If @ # 1/2, then we have that the general solution to the equation is given by

1-a\"
X, =C1+C .
a

Since it must be

l-a
c1+cr =X and ¢+ = X
(04

by some calculation we obtain

(1-a)xy—ax
Cc = and Cy =

1-2a 1 -2«

Using (2.20) in (2.19), we get

_ (I'-a)xo —ax;  (x; — xp)a

N 11—«
T T g 1-2a \ a |-

From (2.15) and (2.21), we get

=TT T, 1-2a

o
from which it follows that

1-a\"
xp — Xxo = (x —Xo)(—) :
«

Since @ # 1/2 and N > 1, we have (lea)N # 1, from which, together with (2.22), it follows that

X0 = Xq.

(= x)

_(—a)xg—ax;  (x; - xpa (1 — a)N

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

Employing (2.23) in (2.18), we get x, = xy. A simple inductive argument shows that (2.16) holds in

this case.

AIMS Mathematics
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If @ = 1/2, then the general solution to equation (2.18) is given by
X, = C] + con. (2.24)

Since it must be
C1 = Xy and C1+ C = Xy,

we obtain
ci=x9p and ¢, = x1 — Xxp. (2.25)
Using (2.25) in (2.24), we get
X, = X + (x; — xp)n. (2.26)

From (2.15) and (2.26) we get
Xo = Xxo + (x1 — xo)N,

from which and since N > 1, it follows that
X0 = Xq. (227)

Employing (2.27) in (2.18), we get x, = xy. A simple inductive argument shows that (2.16) also holds
in this case. o

Remark 4. For @« = 1/4 and N = 101, Problem 258 in [29] with shifted indices forward by one
is obtained.

2.2. Difference inequality (1.5) in the case k = 4
Here we consider the difference inequality (1.5) in the case k = 4.
Theorem 2. Let
Py() = 2 +al® + A+, (2.28)
where a,f € R,y € R\ {0},
a+B+y+1=0, (2.29)

and none of the roots of P3(A) satisfies the condition A* = 1 for some k € N,.
Assume that a sequence (x,),_yw3 N € N, of real numbers satisfies the difference inequality

Xne3 + @Xpy2 + BXyyy +yx, 20, (2.30)
forn =0,N — 1, with the conditions

Xo = Xy, X1 =Xny1  and Xy = Xyio. (2.31)

Then

X, =Xx9, n=0,N+2. (2.32)
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Proof. Summing up the inequalities

Xn+3 + XXy +ﬁxn+1 + 7YX, = Oa

for n = 0, N — 1, and using the conditions in (2.31) we obtain
SN_1 +C¥SN_1 +ﬁSN_1 +’}/SN_1 >0, (233)

where

Sn= Zm:xn.

n=0
Since the left-hand side of inequality (2.33) is equal zero, we have that all the summands are equal to
zero, that is,

Xn+3 T AXpy2 +:8xn+l +YXp = 0, (234)

forn=0,N — 1.

Now note that the polynomial (2.28) is the characteristic polynomial associated with the linear
difference equation in (2.34). The condition (2.29) implies that one of its roots is equal to one, say, A;.
Bearing in mind this fact, there are five cases to be considered. Before considering the cases note
that since

0+ Y= —).1/12/13,

we have that none of the roots is equal to zero.
Case 1, = A3 = 1. In this case the general solution to Eq (2.34) is given by

X, = C1 + Con + c3n°. (2.35)
From this and the conditions in (2.31), we have

c; =c1 + N+ C3N2,
ci+cr+cz=ci+caN+1D+c(N+ 1)

from which it follows that

0 =N(cy + Nc3),
0=N(c; + (N +2)c3).

Hence,
¢+ Nc3 =0 and Cz+(N+2)C3:O,

and consequently
Cy =0C3 = 0. (236)
Using (2.36) in (2.35), and since it is obviously ¢; = x(, we get (2.32).
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Case 1, = 1, A3 # 1. In this case the general solution to Eq (2.34) is given by
Xy = ¢+ cn + 3. (2.37)
From this and the conditions in (2.31), we have

cy +c3 =cy+ C2N+C3/ll3v,

Cc1+cy+c3dy =c; + Cz(N + 1) + C3/l]3v+l,
from which it follows that

0 =N + ¢34 = 1),
0 =N + c343(A5 = 1).

Hence
c3(y = D3 - 1) =0.

From this and since A} # 1 for each N € N, we get ¢3 = 0, and consequently ¢, = 0. Using these facts
in (2.37), and since it obviously holds ¢; = x(, we obtain (2.32) in this case.

Case A, # 1, 43 = 1. This case is dual to the case 1, = 1, A3 # 1 (only the letters A, and A3 should be
interchanged to get the previous case). Hence, it is omitted.

Case 1, = A3 # 1. In this case the general solution to equation (2.34) is given by

Xy = €1 + A5 + c3nd. (2.38)
From this and the conditions in (2.31), we have

C1+C=C+ Cz/llzv + C3N/1N,

1+ Ay + c3dy =cy + 02/112\”1 + C3(N + 1)/1]2V+1,
from which it follows that

0 =c,(A) = 1) + 3N,
0 =A(c2(A) = 1) + c3((N + 1)AY = 1)).

Hence
A =1 +esNA =0 and (A — 1) + c3(N + DAY — 1) = 0,

and consequently
(A -1)=0.

From this and since ) # 1, we get ¢3 = 0, from which, along with the assumption 23 # 1, we have
that ¢, = 0. Using these facts in (2.38), and since it is obviously ¢; = xy, we get (2.32) in this case.
Case 1 # A, # A3 # 1. In this case the general solution to Eq (2.34) is given by

Xy = ¢ + Ay + 3. (2.39)
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From this and the conditions in (2.31), we have

c1+cy+c3=c+ 02/112\’ + 3%,

c1 + codyr + ¢33 =c1 + C2/112V+1 + C3/lév+1,
from which it follows that

0 =c2() — 1) +c3(25 - 1),
0 =c2(A) = 1) + 3435 = 1).

Hence
c3(A) = D(A3 — 2,) = 0.

From this and since A, # Az and /113\’ # 1, we get c3 = 0, from which, together with the assumption
A # 1, we get ¢, = 0. Using these facts in (2.39), and since it is obviously ¢; = xo, we get (2.32) in
this case. |

Remark 5. If the polynomial (2.28) has a root A, such that 2" = 1, then Theorem 2 need not hold.
Namely, assume that A, is such a root of the corresponding polynomial P3, then for N = 2, 1, = —1,
the sequence

X, ;= (=1)"

will be a solution to the difference Eq (2.34) satisfying the conditions in (2.31) for N = 2, which is
obviously not constant.
If N € N3, then if /lg’ =1 and A, € C\ R we have that A3 = A, is also a root of the polynomial Pj,
and the sequence
Xy 1= cAy + 6713,

where ¢ € C\ {0}, will be a real-valued solution to Eq (2.34) satisfying the conditions in (2.31) for
this NV, which is obviously not constant.

calculations are more complex and there are more cases that should be dealt with separately.

Remark 6. Difference inequality (1.5) in the case k > 5 can be considered similarly, but the

2.3. The difference equation corresponding to (2.3)

Here we consider the following difference equation
®Ypi1 —Yn t (1 - 0/))’n—1 = 07 (240)

where a € (0, 1), which corresponds to the difference inequality in (2.3).
The roots of the characteristic polynomial p,(1) = ad?> — A + 1 — a, associated to Eq (2.40), are
Ay =1land A, = le“, from which it follows that the solution with the initial values y, and y; is given by

(2.41)

n

_ (@ = Dyo + ay N a(yo—yl)(l —a)”
2a -1 2a -1 a |’

AIMS Mathematics Volume 10, Issue 11, 26744-26766.
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for n € Z, when a # 1/2, whereas

Yn = Yo +n(y1 = o), (2.42)

forn € Z, when a = 1/2.
If yo = y1, then from (2.41) and (2.42) we obtain

Yo = Yo, N E€ELZ. (2.43)

Hence, from now on we assume that y, # y;.
If we write (2.40) in the form

(Y1 = Yn) = (L = a@)(n — Y1), nE€Z,
we see that
SIgN(Yns1 = Yn) = SIEN(Yp = Yn-1), 1 € Z. (2.44)
Assume that « € (1/2,1). Then % € (0,1). Hence

~1
lim y, = &= o ram (2.45)

n—-+oo 2& -1

If yy > yp, then from (2.44) we see that the sequence y, increasingly converges to the limit
in (2.45) (moreover, the sequence is increasing on Z), whereas if y; < yo, then the sequence y,
decreasingly converges to the limit (moreover, the sequence is decreasing on Z).

On the other hand, we have

lim y, = —oco, (2.46)
if y; > yo, whereas
lim y, = +oo, (2.47)
if y1 < yo.
Assume that « € (0,1/2). Then I‘T" > 1. Hence
1 - _
lim y, = Lo - oM (2.48)
n——oo 1-2a

If y; > yo, then from (2.44) we see that the sequence y, decreasingly converges to the limit
in (2.48) (moreover, the sequence is decreasing on —Z), whereas if y; < yy, then the sequence y,
increasingly converges to the limit (moreover, the sequence is increasing on —Z).

On the other hand, we have

lim y, = +oo, (2.49)
n—+0o

if y; > yo, whereas
lim y, = —oo, (2.50)
n—+00

if y1 < yo.
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2.4. Onthe case a =1/2

Here we present some results on the sequences satisfying the inequality (2.3) for @ = 1/2. The
following result should be a matter of folklore. We include it for completeness.

Theorem 3. Assume that a sequence (x,),cz of real numbers satisfies the difference inequality

Xp+1 + Xp-1

nS T 2.51
X 3 (2.51)
for n € Z. If the sequence is non-constant, then it must be unbounded.
Proof. From (2.51), we have
Xpel — Xn = X — X1, N EZ. (2.52)
If there is r € Z, such that
X > X1, (2.53)
then from (2.52) we get
Xp = Xp-1 2 X1 = Xp2 2" 2 Xl — Xp 2 Xp — Xp 1
From this and since .
Xy — X, = Z (xj = Xj-1),
j=r+l1
we have
Xp 2 Xr + (n - I")(Xr - xr—l)’ (254)
forn >r.
Letting n — +oc0 in (2.54) and using (2.53), we have
lim x, = +oo,
n—+oo
which means that the sequence x,, is unbounded in this case.
Otherwise, it must be
Xr < X1, (255)
for every r € Z.
If
Xr = Xr=1,
for every r € Z, then the sequence (x;,),cz 1S constant.
If there is r € Z, such that
Xp < Xp-1. (256)
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From (2.52) we get
Xp = Xpo] 2 Xpo] = Xp—2 2 °0 0 2 Xpgs] — Xp—ge

From this and since
.

Xy = Xp—k = Z (Xj - Xj—l),

Jj=r—k+1

we have
Xrok 2 X + k(X2 — X,), (2.57)

for k € N.
Letting k — +o0 in (2.57) and using (2.56), we have

lim x,_; = +o0,
k—+00

which means that the sequence x, is unbounded in this case. O

Corollary 2. Assume that a bounded sequence (x,),cz of real numbers satisfies inequality (2.51) for
n € Z. Then, it is constant.

If @ € (0,1)\ {1/2}, then the situation is different. Namely, the following result holds.

Theorem 4. Assume that « € (0,1) \ {1/2}. Then, there are sequences of real numbers satisfying
inequality (2.3) for every n € Z, which are bounded.

Proof. Assume that @ € (0, 1/2). Then, the sequence defined in (2.41) satisfies (2.48) and if yy > yy,
then the sequence y, increasingly converges to the limit therein as n — —oo, that is, we have
_ (I =a)yo — ay

lim y_, = S>> Y > Yo > >y > Yo > Y- (2.58)
n—+oo 1 -2«

Note that since yy > y; and @ € (0, 1/2), we have

@

1 -

Yo > Y1
1%

Since for the sequence the relation (2.50) holds, we should change the sequence on the set n > 2.
Further, assume that y; > 0. Since it must be

ay, + (I —a)yo = yi, (2.59)

we have to choose

o a(YO - yl)}’)ﬁ),

v, € (max{O,yl -

so that holds (2.59) and y; > y, > 0.
Assume that y, was chosen such that y; > y, > --- >y, > 0. Then, since it must be

@Y1 + (1 = @)yn-1 2 yps (2.60)
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we have to choose )
Va1 € (max {0, y, - %Y(yn_l =y} ¥n)-

so that it holds (2.60) and y,, > y,,1 > 0.
Assume that @ € (1/2,1). Namely, we can take the sequence defined in (2.41) satisfying (2.45) and
if yo < y1, then the sequence y, increasingly converges to the limit therein as n — +oo, that is, we have

—(1 -
oy -~ _ 2.61)

Yo <Y1 < <Yp <Yny1 < - <
2(1—1 n—+oo

Note that since yo < y; and @ € (1/2, 1), we have yo < t%-y1.
Since for the sequence the relation (2.46) holds, we should change the sequence on the set n < —1.
Further, assume that y, > 0. Since it must be

ay, + (I —a)y-1 = yo, (2.62)
we have to choose o
y-1 € (max {0,y0 = —— 1 = y0)}. o),
o

1 —
so that holds (2.62) and 0 < y_; < yp.
Assume that y_, was chosen such that yo > y_; > --- > y_, > 0. Then, since it must be

ay_p+1 + (1 - a)y—n—l 2 Y-n» (263)
we have to choose o
Y-n-1 € (max {0, N e G Vi y_n)},y-n),
so that it holds (2.63) and y_, > y_,_; > 0. O

Remark 7. Inequality (2.3) looks like a convexity relation, so a natural question is how it is possible
that (2.58) holds. The answer is that the sequence for n < 0, is, in fact, concave. Indeed, since
a € (0,1/2), and (2.58) holds, we have

el T Yoo
Yn = @Yps1 + (1 = @)y,—g > Ynet T Jnct 2y L
forn < 0.

The following result could be a matter of folklore. We give a proof for the completeness and since
it has some interesting details.

Proposition 2. Let (x,,),cz be a sequence of real numbers such that

Xn—1 t Xn+1

= > , NnE€EZ. (2.64)

Xn

Then,

Xyok + o+ Xy + Xpy1 + 00+ Xpp0k
Dk+1 ’

(2.65)

X, >

foreveryn € Z and k € N.
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Proof. From (2.64) we see that (2.65) holds for k = 0. Further, from (2.64) we also have
Xpio + X, < 2x,41 and X, + X0 < 2X,-1,
for n € Z, from which, along with (2.64), it follows that
Xns2 + 2X + Xpo < 2(Xn41 + Xm1) < 4y,
for n € Z, and consequently
Xns2 + Xn-2 < 2%,

forn € Z.
From (2.64) and (2.66), we obtain

Xp—2 t Xp—1 + Xpt1 + Xpi2
1 < X,

for n € Z, which is inequality (2.65) for k = 1.
Assume that we have proved the inequality

Xp_ok-1 + X 0k-1

Xn

= 2 2
and
Xpok=1 + oo+ Xy + Xy + 000+ X0k
X, 2 )
Pk
for every n € Z and a fixed k € N.
From (2.67) we have
Xyook + Xy < 2X,_ 01 and X, + X0k < 2X,,0k1,

for every n € Z, from which, along with (2.67), it follows that
Xyook + 2X, + Xppok < 2(X_ok-1 + Xyp0i-1) < 4y,
for n € Z, and consequently

Xyook + Xppor < 2X,,

for n € Z. Hence, the inductive argument shows that (2.69) holds for every n € Z and k € Nj,.

From (2.68) we have
Xpook + o+ 4 Xyooket_g + Xyooketpg + o+ Xt + Xy < 282, o

and
Xpaok + oo+ Xpyok-14] + Xyt + o+ Xpy1 + X, < kan+2k-1.

(2.66)

(2.67)

(2.68)

(2.69)
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Summing up these inequalities and using (2.67), we get

Xpok + oo+ Xy ok-1_1 + Xy o141 + -+ X1 + X,
+ Xk + o+ X0kt + X0kt e+ X T X,

<K (Xpntct + Xpypie) < 281y,
for n € Z, from which it follows that

Xpok + oo+ Xy ok-1_1 + Xp_ok-141 + * -+ X
+ Xppok + 0 Xpyok-tgp + okl 00+ X
S(2k+1 - 2)xn,

for n € Z, which is equivalent to

Xpok + oo+ Xy ok-1_1 + Xp_ok-1 + Xy ok-14,7 + + -+ + X1
+ Xk + 0 X0kt + X0kt + Xpok-1_0 + 0+ Xy

§(2k+1 — )X, + Xy_ok-1 + Xppok-1,
for n € Z, and consequently by using again inequality (2.67), we get

Xpook o0+ Xpog + Xpg1 + 00+ Xy

<21 = D)y + Xyt + Xpoit < (2K = 2)x, + 2x, = 25 x,,

for n € Z, finishing the inductive proof of inequality (2.65).
By using the change of variables
Yn 1= =X
in Proposition 2 we obtain the following corollary.

Corollary 3. Let (x,),cz be a sequence of real numbers such that

Xp—1 + Xpt1

n > —, e Z.
X ) n

Then
' Xpook o Xpol + Xyl + 000+ Kok

2k+1 ’

X, <

for everyn € Z and k € Ny.
From the proof of Proposition 2 we see that the following results also hold.

Corollary 4. Let (x,),en, be a sequence of real numbers such that

Xn—1 + Xp+1

> , neN,

Xp =

(2.70)
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and k € N,. Then,
Xyook + o+ Xyt + Xyl + 000 F Xk

Dk+1 ’

Xp =
for every n > 2.

Corollary S. Let (x,),ez\nv be a sequence of real numbers such that

Xp—1 t Xp+1
X2 = n € Z\ Ny,

and k € N,. Then,
Xpook oo g+ Xppp + 000+ Xk

n = 2k+1 ’

for every n < =2k,

By using the change of variables (2.70), from Corollaries 4 and 5 we obtain the following
results, respectively.

Corollary 6. Let (x,),en, be a sequence of real numbers such that

Xn—1 t Xn+1

< > , neN,

Xn

and k € N,. Then,
Xpok + oo+ X1 + X1 + 000+ Xppq0k
X, <

- 2k+1 ’

for every n > 2,

Corollary 7. Let (x,),ez\vv be a sequence of real numbers such that

Xp—1 + Xn+1
XnSnTM, I’ZEZ\N(),

and k € N,. Then,
Xyook + oo+ Xyt + Xl + 00 F X0k

Dk+1 ’

X, <

for every n < =2*,

2.5. A result related to Lemma 1 and a counterexample

The following result is a nontrivial improvement of Lemma 1 for a special case of inequality (2.1).

However, it also considers the case when the coeflicients aﬁ,‘l) and afll) are equal to zero.

Theorem 5. Assume that a sequence (x,),cz of real numbers satisfies the difference inequality
X, < (1 —a@)x,-; + ax,ix, 2.71)
foreveryn € Z, some a € (0, 1), k,l € N such that
gcd(k, ) = 1. (2.72)

Then, the sequence is constant, or it cannot achieve the maximum.
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Proof. Assume that a nonconstant sequence (x,),z of real numbers satisfying difference
inequality (2.71) achieves the maximum. Let

Xpy = Max xp.
nez

Since (2.72) holds, then there are p, g € N such that
pk—ql=1. (2.73)
Indeed, we know that there are m;, m, € Z, such that
mik +myl =1

(see, e.g., [10]). Since k,[ € N, it is clear that m; and m, are two integers of the opposite sign. So,
we have mk — (—=my)l = 1, where m; and —m, are two integers of the same sign. If m;, —m, € N, we
found such numbers. If m; and —m, are two negative integers, then note that they are a solution to the
Diophantine equation

xk —yl=1. (2.74)
It is well known that all the solutions to equation (2.74) are given by
x=m+tl, y=-m+tk, (2.75)

where t € Z (see, e.g., [12]). For sufficiently large ¢ € N, the solutions in (2.75) are positive, from
which the claim follows in this case.
Now note that
{ng + m(pk —ql) : meZ} = Z.

From (2.71) and the definition of x,,,, we have
Xy S (1 = @)Xt + @Xpgike < Xy,

from which it follows that
xn() = an,l = xn()+k'
Using this procedure p times, among other equalities, we get

Xng = Xng+pk»

and then using it g times to x,,+,«, among other equalities, we get

Xny = Xng+pk = Xng+pk—ql>

that is, we obtain

xno = xn0+l-

A simple inductive argument shows that

Xng = Xn+1, (276)
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for every n > ny.
From (2.71) and (2.76), since [ € N, and the definition of x,,, we have

xl’l() = -xn0+l—l < (1 - a)xl’l()—] + a-xn0+l+k+l < xn()’

from which it follows that

Xng—1 = Xng-
A simple inductive argument shows that
Xng = Xn-1, (2.77)
for every n < ny.
Hence,
Xpy = X, N EZ,
that is, it is a constant sequence, which is a contradiction. O

Now we consider the case when the parameters & and / in Theorem 5 satisfy the condition
gcd(k,l) > 1. In this case Theorem 5 does not hold. Let

r:= gcd(k, 1),

then the inequality (2.71) can be written in the form

Xp < (1 - a’)xn—llr + AXpvkyrs (278)
for n € Z, where
l k
l] = - and k] = —.
r r
Note that
ng(kl’ll) = 1.
Since each n € Z can be written in the form n = mr + g, where m € Z and g € {0,1,...,r — 1},

inequality (2.78) can be written in the form

Xmr+q < (1 - a’)x(m—l])r+q + AX(m+ky))r+q» (279)

where m e Zand g € {O,1,...,r —1}.
From (2.79), we see that the following r sequences

YW= Xpyeyy MEZ, (2.80)
satisfy the difference inequality

Ym < =@y + OYpiiy» (2.81)

form € Z.
By Theorem 5 each of these r sequences in (2.80) is constant, or it cannot achieve the maximum.
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Now note that the sets of indices S, = {mr + g : m € Z} are such that

S,NS, =0,
when g # p, and that
r—1
Sj =7
j=0
It is easy to see that the sequence

satisfy inequality (2.81) for each ¢ € R.
So, if we choose the sequences in (2.80) to be constant, that is, equal to a constant ¢,, ¢ = 0,7 — 1,
respectively, and such that at least two of the constants are different, that is, if

YW =c, and P =c,

for every m € Z and some ¢, p € {0,1,...,r — 1} such that ¢ # p and ¢, # ¢, then the corresponding
sequence (x,,)ncz obtained by the r relations in (2.80) will satisfy inequality (2.78). However, the
sequence is not constant and

max x, = max c;j,
nezZ j=0r—1

that is, the sequence achieves the maximum.

Remark 8. If we use the terminology that refers to some difference equations in [35], for the difference
inequality (2.78) when r > 1, we can say that it is a difference inequality with interlacing indices.

3. Conclusions

Some classes of linear difference inequalities, mostly with constant coefficients, are considered
in this paper. Many results, ideas, tricks, and remarks are presented. The inequalities could be some
motivations for further investigations in this direction, as well as some motivations for their applications
in any of the areas that use difference equations or iteration processes. One of the natural directions for
further investigations is consideration of linear difference inequalities with nonconstant coefficients.
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