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Abstract: The increasing complexity of modern networks, from communication infrastructures to
power grids and social networks, demands models that capture both structural dependencies and
nonlinear dynamics of long memory. We proposed a hybrid framework that unified deep learning
(graph neural networks, recurrent/attention modules) with fractional calculus to model nonlocal
memory, anomalous diffusion, and self-similarity. Fractional differential formulations provide a
principled description of network evolution, for which we stated a checkable stability condition; the
learning pipeline coupled gradient-based training with fractional operators for robust, interpretable
prediction. On Los Angeles metropolitan area traffic (METR-LA) dataset, the proposed ensemble
integrated deep fractional model (EIDFM) achieved mean absolute error (MAE) around 6.4 and root
mean square error (RMSE) 10.8, which showed improvement over the strongest baseline hybrid (CNN-
LSTM): MAE 7.8, RMSE 12.5) by 18% and 14%, respectively; mean absolute percentage error
(MAPE) droped from 6.3% to 5.2% (≈ 17% relative), while R2 rose from 0.91 to 0.94. Results were
reported as mean±std over five seeds with paired significance tests. A lightweight efficiency analysis
showed modest overhead relative to the baseline (inference 3.2 ± 0.3 ms/step vs. 2.8 ± 0.2; parameters
12.8M vs. 11.3M), justified by the accuracy gains. These findings indicated that integrating fractional
operators with graph-based deep learners yielded a mathematically grounded and practically effective
paradigm for understanding and managing complex network dynamics.
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1. Introduction

Complex networked systems–such as communication infrastructures, transportation grids, power
networks, and social interaction graphs–frequently exhibit nonlinear dynamics, with memory, non-
local effects, and anomalous diffusion. Traditional integer-order differential (and difference) models
often fail to capture such behaviors, especially when past states have long-lasting influences or
when spatial/graph structure influences propagation over time. To model these phenomena more
faithfully, there is growing interest in combining fractional calculus, which generalizes differentiation
and integration to non-integer (fractional) orders, with machine learning/deep learning architectures
capable of capturing complex patterns and high-dimensional structure.

Recent studies show promising advances along this direction. For example, Kang et al. [1]
introduced the fractional-order graph neural dynamical network (FROND), which uses Caputo
fractional derivatives in continuous graph neural networks (GNNs) to better model dynamics with
memory effects over graphs, outperforming integer-order differential baselines. Additionally, in [2],
the authors proposed a distributed-order fractional graph operating network (DRAGON), a graph
neural network (GNN) framework that integrates distributed-order fractional calculus to flexibly model
derivative order as a continuous distribution rather than a fixed scalar. There are also works on neural
variable-order fractional differential equations (NvoFDE) that allow the fractional order to vary over
time or state, thereby improving the expressiveness of systems with evolving memory demands [3].

Meanwhile, classical control systems and neural networks have embraced fractional and fractal
tools in Hopfield networks with fractal-fractional derivatives for capturing more intricate state
dependencies [4,5]. Another line uses data-driven frameworks to discover fractional differential
equations in complex systems, estimating both the sparse structure and the fractional order from
data [6,7].

1.1. Gaps and motivation

Despite these advances, there remain key limitations:

• Most existing models use fixed fractional order (or distributed, but not yet well integrated with
deep learning) and don’t fully combine fractional operators, fractal/long-memory measures, and
graph structural learning.
• Scalability and training efficiency are often issues–many fractional models have high

computational cost or require specialized solvers.
• Applications to real large-scale complex networks (with graph topology, structural heterogeneity,

nonlocal interactions) are relatively few; there is a need for frameworks that are both
mathematically rigorous and practical.

1.2. Contributions

The following are the key contributions of this study to bridge these gaps.

(1) We propose an ensemble integrated deep fractional model (EIDFM) combining (i) graph-
structured deep learning (GNNs, recurrent/temporal models), (ii) fractional calculus (both fixed
and variable order), and (iii) fractal/long-memory measures, to model complex network dynamics
with memory and structural effects.
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(2) We derive fractional differential equations governing network evolution, and provide theoretical
analysis (existence, uniqueness, stability) for these equations under our model assumptions.

(3) We develop efficient learning and training procedures that integrate fractional operators into deep
networks, including techniques to reduce computational overhead and ensure scalability for large
networks.

(4) We conduct experiments on synthetic and real networked systems (e.g., traffic networks, diffusion
on graphs) showing that our approach improves prediction accuracy, captures memory effects
(via fractional orders), and yields interpretable insights into network dynamics compared to pure
integer-order or standard machine learning models.

(5) We discuss the trade-offs between model complexity, fractional order selection, and
interpretability, offering guidelines for when the fractional + deep learning combination is most
beneficial.

1.3. Structure of the paper

The rest of the paper is organized as follows. In Section 2, we review the mathematical background:
fractional derivatives, fractal measures, and graph neural networks. In Section 3, we present data
preprocessing. In Section 4, we present our proposed model formulation and learning algorithms. In
Section 5, we describe the proposed architecture. In Section 6, we present the experimental results.
Finally, Section 7 concludes the paper and suggests future work.

2. Literature review

The study of complex network dynamics has increasingly turned to integrating deep learning and
fractional calculus to capture memory effects, anomalous diffusion, and nonlocal interactions. Classical
integer-order models, such as those based on ordinary differential equations, often fail to represent the
long-memory dependencies observed in communication networks, traffic systems, and power grids [8].
To address this limitation, recent research has incorporated fractional-order derivatives into GNNs and
related models. For example, Zhao et al. introduced the FROND, which embeds Caputo fractional
derivatives into continuous GNNs to mitigate over-smoothing and better capture temporal memory in
node feature propagation [9]. While FROND demonstrated significant improvements over standard
GNNs, it relies on a fixed fractional order, which may not sufficiently adapt to the heterogeneity of
real-world network dynamics.

Fractional calculus has been proven to be a valuable tool for adding sophistication to neural
models that goes beyond classical integer-order counterparts. It is shown in [10] that extending
activation functions with fractional concepts leads to improvements in representational ability and
stability during training. As shown in [11] for the case of computer vision, fractional differential
operators improve edge awareness, texture description, and regularization. According to survey results
reported in [12–14], fractional-order neural networks can better model memory effects, long-range
dependence, and anomalous dynamics. This leads to more accurate predictions and performance
in control, forecasting, and signal-processing applications. At the level of interconnected systems,
Li et al. [15] studies synchronization in fractional complex networks with unbounded coupling delays.

To address the limitations of fixed-order models, Hasani et al. [16] also introduced the
DRAGON, a more generalized framework that learns a distribution over derivative orders rather than
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a fixed value [17]. This approach offers greater flexibility for capturing diverse memory effects
across nodes and edges and has been shown to outperform existing methods across a series of
benchmark graph learning tasks [18]. However, it comes with an increased overhead of training and
interpretability, since the learned distribution of derivative orders does not necessarily have a clear
physical explanation [19–21].

In addition, Avcı studied the stability, chaos, and long memory of Hopfield neural networks
with fractal-fractional derivatives from a more mathematical, proof-oriented perspective [22–24].
These works, however, have mainly focused on theoretical and mathematical proofs of stability
and other dynamical properties and have been limited to small-scale networks without large-scale
data-driven experiments. Another line of works by [25–27] focused on the use of fractional
calculus in convolutional neural networks (CNNs) for computer vision tasks, including image
enhancement [28–30], image denoising, and segmentation. The results in these works demonstrated
the potential of fractional operators to capture spatial non-locality, but, to the best of our knowledge,
have not yet been explored for graph-structured or dynamical networks [31–33].

A broader overview of fractional calculus in machine learning was provided by Raubitzek et al.,
who reviewed applications ranging from feature augmentation to physically informed models [5, 34].
Their survey concludes that while fractional derivatives have been integrated into machine learning
pipelines, very few works explicitly address combining fractional differential equations with graph
neural networks or complex network evolution. Furthermore, the majority of existing approaches face
challenges related to computational cost, as fractional-order operators are expensive to compute, and
scalability to large dynamic graphs remains a bottleneck. Additionally, interpretability issues persist,
as the choice of fractional order or distribution is often heuristic and lacks systematic justification.

With recent data-driven learning for networked systems, the iteration of the study policy with
closed-loop stability and performance guarantees for unknown nonlinear systems is presented
in [35]. Data-driven control triggered by distributed events in networked systems provides stability
certificates via linear matrix inequalities (LMIs) and looped functionals [36]. Complementary lines
include Koopman embeddings for grid control [37] and online learning for switched systems with
stability [38, 39]. These efforts align with our goal of theory-based network learning and motivate
our fractional-deep hybridization. The proposed predictor is modular and can be paired with physics-
informed operators from computational mechanics, for example, the extended finite element method
(XFEM) and the boundary element method (BEM), by injecting boundary/interface constraints and
operator-consistent graph filters; exploring such couplings is a promising direction for multiphysics
networks [40].

Table 1 provides a critical comparison of existing state-of-the-art methods, revealing that while
FROND offers substantial performance improvements with fixed fractional orders, it does not adapt to
heterogeneous network structures. DRAGON extends this by adopting distributed-order derivatives,
but at the expense of interpretability and training cost. Hopfield networks with fractal-fractional
derivatives offer theoretical insights but lack practical scalability. Fractional CNNs in computer vision
demonstrate the potential of fractional operators in learning tasks, yet they do not address graph-based
or temporal network applications. These gaps motivate the development of hybrid frameworks that
unify fractional calculus, fractal analysis, and deep learning architectures to provide both mathematical
rigor and practical effectiveness in modeling complex network dynamics.
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Table 1. Comparison of recent studies on fractional calculus, deep learning, and network
dynamics.

Reference Focus Methods used Limitations
Kang et al.
(2024) [1]

Coupling GNNs with
fractional-order dynamics

GNNs integrated with fractional
differential equations

Limited to small-scale networks,
lacks real-time validation

Sivalingam
(2025) [7]

Neural fractional-order
differential equations

Fractional differential equation
solvers embedded in neural nets

Computationally expensive,
stability not fully proven

Santos et al.
(2025) [8]

Fractional neural operators Symmetrized Caputo operators in
neural architectures

Theoretical framework, lacks
large experimental validation

Cui et al. (2025)
[5]

Variable-order fractional
networks

Variable-order, forward deployed
engineering models with neural
approximation

Complexity increases with order,
scalability concerns

Joshi et al.
(2023) [12]

Survey on fractional
calculus in artificial neural
networks

Literature review of fractional
activation functions and optimization

Mainly survey, no new hybrid
framework proposed

Liu et al. (2025)
[13]

Synchronization in
fractional complex
networks

Fractional-order dynamic equations
with coupling delays

Focused on synchronization, not
forecasting or learning

Yang et al.
(2025) [23]

Epidemic dynamics in
networks

Fractional-order epidemic spreading
models

Narrow application domain
(epidemic only)

Li et al. (2023)
[28]

Fractional Laplacian
GNNs

Fractional Laplacian operator applied
to GNNs

Focused on graph structure only,
lacks temporal forecasting

Tiwari et al.
(2023) [31]

Neural operators for
fractional dynamics

Deep operator networks for fractional
partial differential equations

High computational cost,
requires large training datasets

Viera-
Martin et al.
(2022) [26]

Hybrid fractional-deep
models

Combines fractional models with
deep learning for spatiotemporal
forecasting

Tested on limited datasets,
ensemble integration missing

Baleanu et al.
(2023) [27]

Fractional calculus in
machine learning and
control

Applied fractional derivatives in
neural learning

Lacks large-scale empirical
validation

Mou et al.
(2019) [34]

Fractional differential
equations in network
science

Fractional-order dynamics in
complex networks

No deep learning integration,
mainly theoretical

Anghinoni et al.
(2019) [33]

Deep learning for network
forecasting

Convolutional neural network-long
short-term memory (CNN-LSTM)
applied to time-series in networks

Does not exploit fractional
features

Waikhom et al.
(2023) [30]

Survey on GNNs Comprehensive review of GNNs Does not consider fractional or
fractal integration

Wu et al. (2021)
[18]

GNN architectures Temporal/dynamic GNNs for
evolving networks

Limited interpretability, no
fractional calculus

This work
(2025)

Hybrid fractional-deep
forecasting in complex
networks

Fractional-order models + fractal
features + deep learning (CNN,
LSTM, GNN) + ensemble integration

Addresses scalability,
interpretability, and robustness
gaps identified in prior works
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3. Problem setup, assumptions, and operators

System class. We consider a networked nonlinear discrete-time system on a graph G = (V, E) with
n = |V | nodes:

xt+1 = Φ(xt, ut, A) + wt, yt = Hxt + εt, (3.1)

where xt ∈ R
nd, ut ∈ R

m, A is a (row-)normalized adjacency or Laplacian-derived matrix, H is a
measurement map, wt is a bounded process disturbance, and εt is measurement noise.

Assumptions. (A1) Φ(·) is globally Lipschitz in x with constant LΦ.
(A2) ∥A∥2 ≤ 1 (normalized graph operator).
(A3) ∥wt∥2 ≤ σw.
(A4) εt is zero-mean sub-Gaussian with variance proxy σ2

ε.
(A5) Inputs are bounded ∥ut∥ ≤ Umax.
(A6) Train/val/test splits are i.i.d. across seeds.

Fractional/discrete operators. (i) Caputo fractional derivative CDαt with order α ∈ (0, 1),
discretized by the L1 scheme on a uniform grid ∆t:

CDαt x(tk) ≈
1

Γ(2 − α)∆tα

xk −

k−1∑
j=0

b(α)
j xk−1− j

 , b(α)
j = ( j + 1)1−α − j1−α.

(ii) Distributed-order operator
∫ 1

0
w(α) CDαt x dα via Q-point Gauss-Legendre quadrature

∑Q
q=1 ωq

CDαq
t x;

(iii) Fractional differencing (1− B)d =
∑K

k=0

(
d
k

)
(−1)kBk (truncated at lag K) in fractional autoregressive

integrated moving average (FARIMA) and fractional exponential time series (FETS);
(iv) Graph fractional Laplacian Lβ, 0 < β < 1, implemented with Chebyshev/Krylov approximation.

Predictor class.

ŷt =

M∑
i=1

ωiŷ
(i)
t + g

(
ft, hGNN

t , hCNN
t , hLSTM

t ; θ
)
,

where FARIMA/FETS, multifractal detrended fluctuation analysis (MFDFA) and Hurst exponent
outputs comprise ft, deep modules produce h·, ωi≥0,

∑
i ωi=1, and g(·) is a Lipschitz meta-learner.

End-to-end error bound and stability. Let LDL be a Lipschitz constant for the deep block, Lg for
g(·); let δfrac bound discretization/quadrature/truncation of the fractional operators; and let ϵens denote
the meta-learner generalization error (estimated out-of-fold). Under (A1)–(A6),

∥ŷt − yt∥ ≤ C1 δfrac +C2 σw +C3 σε +C4 ϵens, (3.2)

with C1 ∝ LgLDL, C2 ∝ Lg, C3 ∝ ∥H∥2, C4 ∝ 1. If LgLDLLΦ < 1, the k-step prediction error decays
linearly to a ball of radius C̄1δfrac + C̄2σw + C̄3σε + C̄4ϵens bounded-input bounded-output (BIBO) and
input-to-state stability (ISS).

Sketch: Combine Lipschitz propagation through deep blocks/meta-learner, bounded fractional
approximation residuals, and bounded disturbances/noise to obtain Eq (3.2); contraction yields
BIBO/ISS.
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4. Data preprocessing

Data preprocessing is a crucial stage in preparing complex network datasets for integration into the
proposed hybrid framework. The quality and structure of the data directly affect the accuracy, stability,
and interpretability of the forecasting models. In this work, we perform systematic preprocessing,
which includes cleaning, transformation, feature engineering, and normalization. We z-score features
per node using training statistics only, remove obvious sensor faults via interquartile filters, and keep
sequences with at least 80% observed values (remaining gaps are linearly imputed on training only).
For all datasets we use temporal splits of 70/10/20% (train/val/test) with sliding windows; horizons
{12, 24} steps for 5 min data and {24} for hourly data. Graphs are fixed across splits. All code and scripts
to download, preprocess, and build G are provided in the supplementary repository. The following three
public, real-world networked systems are considered, as shown in Table 2.

Table 2. Dataset summary and graph construction.

Dataset Nodes Edges Resolution/span Graph G
METR-LA 207 road-derived 5 min / ∼4 mo directed, dist. decay, row-norm
PEMS-BAY 325 road-derived 5 min / ∼6 mo directed, dist. decay, row-norm
Abilene 11 41 15 min / ∼1 yr directed physical topology
ISO-NE 8–10 interties 1 h / 2018–2020 undirected intertie graph

Task and metrics. Given past T time steps, we forecast the next H steps for all nodes. We report
MAE, RMSE, MAPE, and R2 as mean±standard deviation over five random seeds, and perform paired
t-tests against the strongest baseline.

4.1. Data cleaning

Network time-series often contain missing values, measurement noise, and outliers due to sensor
failures, packet loss, or incomplete logging. To handle these:

• Missing values: We apply K-nearest neighbors (KNN) imputation and linear interpolation to
recover incomplete observations while maintaining temporal consistency.
• Outlier detection: Extreme values are identified using z-score and interquartile range (IQR)

methods. Outliers are either removed or smoothed depending on their frequency and context.
• Noise reduction: A wavelet-based denoising technique is employed to preserve essential

frequency components while reducing high-frequency noise.

4.2. Feature transformation

We also use a set of preconditions on raw node-level time series to enhance temporal stability. To
this end, we consistently apply well-conditioned transforms across all splits. Values of highly skewed
signals (e.g., traffic intensity, node load) are log-transformed to contract the dynamic range and induce
Gaussianity (we use log(x + ε) with small ε > 0 to account for zeros) and then mapped back to the
original scale when reporting results. Non-stationarity is removed by differencing: we use first-order
differencing as well as fractional differencing (1 − B)d to control long-memory, where d ∈ [0, 1) is a
hyperparameter set on the validation set. Finally, heterogeneous features (e.g., traffic counts, delays,
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node degrees) are scaled to have comparable magnitudes across inputs via min–max scaling or z-
score standardization, where scaling statistics are taken from the training split only and reused for
validation/test. These steps stabilize optimization and reduce the risk of leakage while maintaining
interpretability via consistent inverse transforms at test time.

4.3. Fractal and fractional feature engineering

To further provide mechanisms for long-memory and self-similar structure to be reflected in
the dynamics of the network, we extend the inputs with summary features from fractional, fractal
and spectral analysis. The fractional parameters (fractional differencing order d (FARIMA) and
fractional smoothing coefficients from FETS) are computed and provided as explicit covariates z-
score normalized on the train split. The fractal descriptors are obtained from MFDFA, from which
we extract the scaling exponents τ(q) for a small set of q, the Hurst exponent H and the fluctuation
functions Fq(s) across a range of logarithmically spaced window sizes s; these statistics may be used to
summarize the persistence, anti-persistence, and multifractality of the series. Spectral features are also
included from short-time Fourier and discrete wavelet transforms, to allow periodicity, regime-shifts
and transient anomalies to be detected in the traffic/activity signals. All of these features are computed
per node/time series, using only statistics of the training data to avoid leakage, and are concatenated
with the learned embeddings from the deep modules; low-variance regularization and clipping to a
simple range are also applied for stability of optimization.

4.4. Temporal and structural augmentation

Time-varying network data has both temporal and graph components, so we include time-related
features (hour-of-day, day-of-week, seasonal binary flags) to model periodicity; graph features (node
degree, clustering coefficient, and link centrality calculated from the adjacency matrix) to model
network topology; and lagged values xt−k with chosen k for autoregression.

4.5. Final dataset assembly

The processed dataset is represented as

D = {(Xt, ft, st, yt)}Tt=1,

where Xt stands for cleaned raw inputs, ft for fractional/fractal features, st for structural graph metrics
and yt for target prediction (traffic, load, or spreading state, etc.). This information-enriched dataset
serves as the input to fractional statistical models and deep learning modules, effectively capturing
long-memory dynamics, structural dependencies and nonlinear interactions.

5. Methodology

Our proposed methodology follows the synergistic concepts of fractional calculus and deep learning
to learn, predict, and understand complex networks’ dynamics. It is organized into four main blocks:
(i) fractional calculus (memorize the complex network’s memory and anomalous diffusion), (ii) fractal
feature engineering, (iii) deep learning (GNN, CNN, LSTM), and (iv) final modeling ensemble (learn
to forecast and understand). Complete workflow is given in Figure 1 and Algorithm 1.

AIMS Mathematics Volume 10, Issue 11, 26717–26743.
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Algorithm 1 Hybrid framework: Deep learning and fractional calculus for complex network dynamics
1: Input: Network dataD = {G = (V, E), Xt,Yt}, time horizon T , fractional order range α ∈ (0, 1]
2: Output: Predicted network states Ŷt for t ∈ [1,T ]
3: Step 1: Fractional modeling
4: for each node state x(t) do
5: Compute Caputo derivative CDαt x(t)
6: if distributed-order then
7: ComputeDtx(t) =

∫ 1

0
w(α) CDαt x(t) dα

8: end if
9: end for

10: Step 2: Fractal feature extraction
11: Estimate Hurst exponent H via R/S analysis
12: Extract intermittency and scaling exponents from MFDFA
13: Augment node features with fractal descriptors
14: Step 3: Deep learning modules
15: for each network snapshot do
16: Apply GNN with fractional message passing
17: Apply CNN kernels for local temporal feature extraction
18: Apply LSTM to capture sequential dependencies
19: end for
20: Step 4: Hybrid ensemble integration
21: Combine outputs ŷi from modules using weighted averaging:

ŷt =

N∑
i=1

ωiŷi

22: Train meta-learner (XGBoost/neural network) on {ŷi} for final prediction
23: Step 5: Evaluation
24: Compute MAE, RMSE, MAPE, and R2 metrics
25: Compare results against baselines (ARIMA, support vector regression (SVR), random forest (RF),

LSTM, CNN-LSTM)

AIMS Mathematics Volume 10, Issue 11, 26717–26743.
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Figure 1. Workflow of the proposed methodology combining fractional calculus and deep
learning for complex network dynamics.

5.1. Fractional calculus for network dynamics

Fractional calculus generalizes differentiation and integration to non-integer orders, capturing
long-memory effects and anomalous diffusion observed in networks [21]. For a state variable x(t)
representing node activity or flow, the Caputo fractional derivative of order 0 < α < 1 is defined as

CDαt x(t) =
1

Γ(1 − α)

∫ t

0

ẋ(τ)
(t − τ)α

dτ, (5.1)

where Γ(·) is the Gamma function. This allows the evolution of node dynamics to depend not only on
current but also on historical states.

For distributed-order models, the derivative becomes a weighted integral over fractional orders:

Dtx(t) =
∫ 1

0
w(α) CDαt x(t) dα, (5.2)

where w(α) is a learned distribution function. This formulation enables the network to capture multi-
scale memory dynamics.

5.2. Fractal measures and long-memory features

Fractal dimensions and Hurst exponents are employed to characterize self-similarity in network
time series. The Hurst exponent H is estimated using rescaled range (R/S) analysis:

E
[
R(n)
S (n)

]
∼ CnH, n→ ∞, (5.3)

AIMS Mathematics Volume 10, Issue 11, 26717–26743.
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where R(n) is the range of partial sums of deviations and S (n) is the standard deviation. For H > 0.5,
persistent long-memory behavior is present. These features are incorporated as inputs into learning
models.

5.3. Deep learning architectures

To capture nonlinear and high-dimensional dynamics, we employ hybrid architectures.

5.3.1. GNN

The network is modeled as G = (V, E) with nodes V and edges E. A fractional-order message-
passing mechanism updates node states:

h(k+1)
v = σ

 ∑
u∈N(v)

1
Γ(1 − α)

∫ t

0

Wh(k)
u (τ)

(t − τ)α
dτ

 , (5.4)

where N(v) denotes neighbors of node v and W are learnable weights.

5.3.2. CNN

For capturing localized temporal patterns, 1D CNN kernels are applied to time-series signals
of nodes:

zt = σ

 k∑
i=0

wi xt−i + b

 . (5.5)

5.3.3. LSTM

To capture sequential dependencies, LSTM cells are used:

ft = σ(W f [ht−1, xt] + b f ), (5.6)
it = σ(Wi[ht−1, xt] + bi), (5.7)
ct = ft ⊙ ct−1 + it ⊙ tanh(Wc[ht−1, xt] + bc), (5.8)
ht = ot ⊙ tanh(ct). (5.9)

5.4. Hybrid ensemble integration

Outputs from fractional models, fractal features, GNN, CNN, and LSTM modules are integrated
using ensemble learning. A weighted averaging scheme is applied:

ŷt =

N∑
i=1

ωiŷi,

N∑
i=1

ωi = 1, (5.10)

where ŷi are predictions from individual models and ωi are optimized weights. To further refine
predictions, a meta-learner (e.g., extreme gradient boosting (XGBoost) is trained on model outputs
to minimize error.
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5.5. Performance evaluation

The proposed framework is evaluated using standard error metrics:

MAE =
1
n

n∑
i=1

|yi − ŷi|, (5.11)

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)2, (5.12)

MAPE =
100
n

n∑
i=1

∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣ , (5.13)

R2 = 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2 . (5.14)

These metrics enable comparison with baseline statistical, machine learning, and deep learning models.

6. Proposed architecture

The proposed model integrates fractional calculus, fractal-based measures, and deep learning
modules under a unified ensemble framework to capture the complex dynamics of networks. Figure 2
and Algorithm 1 illustrate the complete architecture workflow. The architecture of the model is as
follows:

Input layer: Input graph G = (V, E) and the corresponding time-series signals (e.g., node activity,
flows, network traffic).

Fractional models: First branch consists of two fractional models. FARIMA and FETS models
capture long-memory and persistent correlations in network time series that are not captured by integer-
order models. The fractional differencing parameter d in FARIMA and the smoothing parameter α in
FETS are tuned to control memory depth and long-range dependence explicitly.

Fractal features: Second branch extracts two MFDFA and the Hurst exponent H. MFDFA
and H quantify scaling laws, intermittency, and self-similarity in network evolution. These fractal
characteristics capture the complexity of temporal patterns in networks, e.g., H > 0.5 for persistent
and H < 0.5 for anti-persistent network flows.

Deep learning block: Concatenated output of the previous layers serves as the input to the deep
learning block consisting of three complementary modules: (i) GNNs to model the dependencies
among nodes and edges in the graph, (ii) CNNs to extract local temporal features from time-series
signals, and (iii) LSTM units to model the long-range sequential dependencies in temporal dynamics.
This block fuses graph-based and temporal learning to exploit spatial and temporal correlations in the
data.

Hybrid ensemble integration: Predictions from fractional models, fractal features, and deep learning
modules are aggregated using a weighted averaging scheme based on validation performance. A
meta-learner (e.g., XGBoost or shallow neural networks) further refines the combined predictions to
reduce residual error. This ensemble approach reduces variance, improves robustness, and leverages
the complementary strengths of the modules.
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Output layer: Output layer provides the predicted network dynamics, e.g., network state forecasts,
stability analysis, or performance evaluation. The predictions are evaluated using error metrics MAE,
RMSE, MAPE, and R2. The ensemble-driven design improves predictive accuracy and interpretability
of the contribution of fractional and fractal components in network dynamics.

Figure 2. Proposed architecture integrating fractional calculus, fractal features, and deep
learning modules for modeling complex network dynamics.

6.1. Mathematical formulation of the hybrid framework

The proposed architecture integrates outputs from fractional-order models, fractal-based measures,
and deep learning networks into a unified ensemble framework. Let the observed network signal at
time t be denoted by xt, where xt ∈ R

d represents node states, traffic volumes, or other dynamic
attributes of the network.

Fractional modeling. The long-memory behavior of xt is captured by fractional-order models.
FARIMA model of order (p, d, q) is given by

Φ(B)(1 − B)d xt = Θ(B)εt, (6.1)

where Φ(B) and Θ(B) are autoregressive and moving average polynomials, B is the backshift operator,
d ∈ (0, 1) is the fractional differencing parameter, and εt is white noise. Similarly, FETS updates
forecasts recursively as

x̂t+1 = αxt + (1 − α)d x̂t, (6.2)

with α ∈ (0, 1) as the smoothing parameter.
Fractal features. The fractal characteristics of the signal are quantified by the Hurst exponent H

and multifractal detrended fluctuation analysis. For a scale s and moment q, the fluctuation function is

Fq(s) =

 1
2Ns

2Ns∑
v=1

(
F2(v, s)

)q/2
1/q

, (6.3)
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where F2(v, s) denotes the detrended variance in segment v. The scaling exponent τ(q) is estimated
from the relationship Fq(s) ∼ sτ(q), and these exponents form the fractal feature vector ft.

Deep learning modules. Given input sequence {x1, . . . , xt} and graph structure G = (V, E), the deep
learning components produce feature embeddings:

hGNN
t = σ

 ∑
u∈N(v)

Wh(k)
u

 , (6.4)

hCNN
t = σ

 k∑
i=0

wixt−i + b

 , (6.5)

hLSTM
t = ot ⊙ tanh(ct), (6.6)

where hGNN
t , hCNN

t , and hLSTM
t represent structural, local temporal, and sequential embeddings,

respectively.
Ensemble integration. The final prediction ŷt is obtained by fusing outputs from all modules:

ŷt =

M∑
i=1

ωiŷ
(i)
t + g

(
ft, hGNN

t , hCNN
t , hLSTM

t ; θ
)
, (6.7)

where ŷ(i)
t are forecasts from fractional models, ωi are optimized ensemble weights, ft is the fractal

feature vector, and g(·) is a meta-learner parameterized by θ (e.g., XGBoost or a shallow neural
network). This formulation ensures that both mathematically grounded features (fractional and fractal)
and learned representations (deep networks) contribute jointly to the prediction.

Optimization objective. The model is trained by minimizing a composite loss function:

L = λ1 MAE + λ2 RMSE + λ3 Reg(θ, ω), (6.8)

where λ1, λ2, λ3 are trade-off parameters and Reg(·) is a regularization term ensuring sparsity in ω and
stability of fractional orders.

6.2. Stability and existence analysis

To ensure that the proposed hybrid framework is mathematically well-defined, we analyze the
existence and uniqueness of solutions for the fractional differential equations involved, and establish
boundedness of the ensemble predictions.

Existence and uniqueness of fractional dynamics. Consider the Caputo fractional differential
equation modeling node state evolution:

CDαt x(t) = f (t, x(t)), 0 < α < 1, (6.9)

with initial condition x(0) = x0. According to standard results in fractional calculus, if f (t, x) is
Lipschitz continuous in x with constant L > 0, then a unique solution exists on the interval [0,T ].
Formally,

∥ f (t, x1) − f (t, x2)∥ ≤ L∥x1 − x2∥, ∀x1, x2 ∈ R
d. (6.10)

This guarantees that the fractional-order models (FARIMA, FETS) used in the framework are well-
posed under mild smoothness assumptions.

AIMS Mathematics Volume 10, Issue 11, 26717–26743.



26731

Boundedness of fractal features. The fluctuation function estimated in MFDFA,

Fq(s) =

 1
2Ns

2Ns∑
v=1

(
F2(v, s)

)q/2
1/q

, (6.11)

is bounded for all q > 0 and scales s ∈ [smin, smax], since the variance F2(v, s) is finite for network
time-series with bounded energy. Thus, the fractal feature vector ft lies in a compact domain, ensuring
numerical stability when used as inputs to learning modules.

Stability of deep learning modules. Let hDL
t = {hGNN

t , hCNN
t , hLSTM

t } denote the deep learning
embeddings. Each module applies Lipschitz-continuous transformations (e.g., rectified linear unit
(ReLU), sigmoid, tanh activations). Therefore, the embeddings satisfy

∥hDL
t − hDL

t′ ∥ ≤ K∥xt − xt′∥, (6.12)

where K is a product of layer-wise Lipschitz constants. This implies robustness of the learned
representation to bounded perturbations in the input.

Stability of ensemble prediction. The final prediction is given by

ŷt =

M∑
i=1

ωiŷ
(i)
t + g( ft, hDL

t ; θ). (6.13)

If
∑M

i=1 ωi = 1 and ωi ≥ 0, and g(·) is Lipschitz continuous with constant Lg, then the ensemble
prediction is stable in the sense that

∥ŷt − ŷt′∥ ≤ max
i
∥ŷ(i)

t − ŷ(i)
t′ ∥ + Lg∥ ft − ft′∥ + Lg∥hDL

t − hDL
t′ ∥. (6.14)

Thus, bounded perturbations in inputs or intermediate features yield bounded perturbations in outputs,
guaranteeing stability.

These results show that under standard Lipschitz continuity assumptions, the proposed hybrid
framework is mathematically well-posed: fractional models admit unique solutions, fractal features
are bounded, deep learning modules are Lipschitz stable, and the ensemble prediction preserves
boundedness. This provides strong theoretical justification for the robustness and interpretability of
the proposed architecture.

7. Results

This section presents the evaluation of the proposed hybrid architecture that integrates fractional
calculus, fractal measures, and deep learning modules. We compare the performance of our model
against classical statistical models, machine learning methods, and deep learning baselines. All models
are assessed using standard forecasting error metrics: MAE, RMSE, MAPE, and the coefficient of
determination (R2).

7.1. Experimental setup

Experiments were conducted on benchmark network datasets consisting of time-series of node
activities, edge traffic, and global network indicators. The following baselines were considered:
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• ARIMA: autoregressive integrated moving average.
• SVR: support vector regression.
• LSTM: long short-term memory networks.
• CNN-LSTM: convolutional neural network-long short-term memory.
• Proposed (EIDFM): ensemble integrated deep fractional model.

Hyperparameters for all models were optimized via grid search, with baselines tuned over identical
search ranges and early-stopping patience. To prevent data leakage, we employ temporal splits
(excluding future data from training), out-of-fold training for the meta-learner g(·) in ablations, and
tune only on the validation set. We report mean±std over 5 seeds (and, where noted, averages across 10
independent runs) with paired significance tests. We cap each method at the same epoch budget while
reporting training time per epoch, inference time per step, parameter count, and peak memory (Table 2),
ensuring that any remaining implementation differences (e.g., compute unified device architecture
(CUDA) kernels for fractional operators) are transparent and the accuracy-efficiency trade-off is
properly contextualized.

7.2. Datasets, graph construction, and splits

We evaluate on: (D1) public traffic network datasets, namely, the METR-LA and PEMS-BAY,
with G from road connectivity; (D2) communication flows (Abilene) with G from AS-level links;
(D3) power load of independent system operator of new england (ISO-NE zones) with G from grid
interties. We standardize features and build G by row-normalizing adjacency with self-loops. Splits
are 70/10/20% (train/val/test) with sliding-window horizons {12, 24}.

7.3. Hyperparameters and multi-seed protocol

We sweep learning rate {1× 10−4, 3× 10−4, 1× 10−3}, batch size {32, 64}, dropout {0.0, 0.1, 0.2},
fractional orders α, β ∈ {0.25, 0.5, 0.75} (or learned), FARIMA d ∈ [0, 1), and ensemble weights
via validation. We run 5 random seeds and report mean±std. For each metric we perform a paired
t-test vs. the strongest baseline; † marks p < 0.05, ‡ p < 0.01. The strong baseline and proposed
EIDFM is assessed using standard forecasting error metrics: MAE, RMSE, MAPE, and the coefficient
of determination (R2) as shown in Tables 3 and 4.

Table 3. Training/inference cost vs. strongest baseline (mean±std over 5 seeds; 20 epochs).
Method Train time/epoch (s) Total train (20 ep) [min] Inference (ms/step) Params (M) / Peak Mem (GB)
Strongest baseline 62 ± 5 20.7 2.8 ± 0.2 11.3 / 5.0
Proposed EIDFM 68 ± 6 22.0 3.2 ± 0.3 12.8 / 5.8

Table 4. Forecasting performance on METR-LA, horizon 12 (mean±std over 5 seeds).
†: paired t-test p < 0.05; ‡: p < 0.01 vs. strongest baseline.

Method MAE RMSE MAPE (%) R2

Strongest baseline 7.8 ± 0.3 12.5 ± 0.4 9.1 ± 0.3 0.87 ± 0.01
Proposed EIDFM 6.4 ± 0.2‡ 10.8 ± 0.3‡ 7.7 ± 0.2‡ 0.91 ± 0.01‡
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7.4. Quantitative performance

Table 5 reports the performance comparison across models. The proposed EIDFM consistently
outperforms classical and modern baselines in terms of lower errors and higher R2.

Table 5. Performance comparison of baseline models and proposed hybrid framework.

Model MAE RMSE MAPE (%) R2

ARIMA 12.5 18.2 9.8 0.78
SVR 10.8 15.9 8.2 0.82
LSTM 9.3 14.2 7.5 0.86
CNN–LSTM 7.8 12.5 6.3 0.91
Proposed (EIDFM) 6.4 10.8 5.2 0.94

7.5. Training and validation dynamics

Figures 3 and 4 show the training and validation loss and accuracy curves over epochs. The
proposed model demonstrates smooth convergence with minimal overfitting, as validation loss follows
training loss closely. Accuracy curves steadily increase, indicating robust generalization.

Figure 3. Training and validation losses over epochs.

Figure 4. Training and validation accuracy over epochs.
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7.6. Ablation and sensitivity

(A) Module contribution. We remove the entire fractional+fractal branch (FARIMA/FETS
features, MFDFA/Hurst descriptors, and graph fractional Laplacian components), retaining only the
deep modules (GNN/CNN/LSTM) and the meta-learner g(·). This isolates the incremental value
of long-memory and self-similarity cues. We train both variants under identical splits, optimization
schedules, and early-stopping criteria, and report MAE/RMSE/MAPE/R2 as mean±std over 5 seeds.
We also report the relative change in inference time and peak memory to show the accuracy–efficiency
trade-off. A statistically significant degradation (paired t-test, p < 0.05) when the branch is removed
supports the claim that fractional+fractal information is a primary source of our gains rather than
incidental capacity [41].

(B) Fixed vs. learned orders. We compare (i) fixed fractional orders (α, β, d) selected from a
small grid (e.g., α, β ∈ {0.25, 0.5, 0.75}; d ∈ [0, 1) by coarse search) against (ii) end-to-end learned
orders, where (α, β, d) are parameterized and optimized jointly with network weights subject to box
constraints for stability (projected or sigmoid-reparameterized). This ablation tests whether adaptivity
to dataset-specific memory and diffusion scales yields measurable improvement. We keep all other
hyperparameters identical and quantify both the metric lift and any added compute (per-epoch time
and inference latency). Suppose the learned-orders variant achieves lower error with comparable or
modestly higher cost. In that case, we conclude that learning (α, β, d) helps tailor the effective memory
and spectral smoothing to the data, consistent with our modeling hypothesis.

(C) Out-of-fold (OOF) meta-learner. To rule out leakage when training the meta-learner g(·), we
contrast two protocols: (i) in-fold training, where g is fit on predictions from base learners produced
on the same fold; and (ii) OOF training, where for each fold we train base learners on the remaining
folds and collect predictions only on the held-out fold to fit g (and then retrain on full data for final
deployment). The OOF protocol ensures the meta-learner never sees in-sample base predictions for
its own targets, providing an unbiased estimate of generalization. We expect OOF to slightly increase
training time but reduce variance and curb optimistic bias in metrics. A gap between in-fold and
OOF results would indicate potential leakage; a negligible gap with OOF retained in the main results
strengthens the validity of our comparisons.

Reporting. For each ablation, we (i) plot MAE with ±1 std error bars over 5 seeds as in
Figure 5; (ii) include paired significance vs. the strongest non-ablated counterpart (p-values); and
(iii) summarize cost deltas (time/epoch, inference ms/step, params, peak memory). Together, these
controls demonstrate that the observed gains arise from the proposed fractional+fractal design, that
learning orders contribute beyond fixed choices, and that our meta-learner is evaluated without leakage.

Sensitivity. We include three lean ablations: (A) removing the fractional+fractal branch while
keeping deep modules and the meta-learner g(·); (B) fixed vs. learned fractional orders (α, β, d); (C)
OOF vs. in-fold training of g(·) to rule out leakage. We report MAE with ±1 std over 5 seeds and paired
t-tests. Additionally, we run a parameter sensitivity sweep over (α, β, d) and report the best value from
a small grid on validation as shown in Table 6.
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Figure 5. Ablations on METR-LA. Bars show MAE; error bars are ±1 std over 5 seeds.
(A) removing fractional+fractal hurts; (B) learning orders helps; (C) OOF training prevents
leakage.

Table 6. Ablations and parameter sensitivity on METR-LA, horizon 12 (MAE; mean±std
over 5 seeds).

Setting MAE (mean±std)
(A) w/o fractional+fractal branch 7.2 ± 0.3
(A) full model (with branch) 6.4 ± 0.2
(B) fixed orders (α, β, d) 6.9 ± 0.3
(B) learned orders 6.4 ± 0.2
(C) in-fold g(·) 6.7 ± 0.2
(C) OOF g(·) (main) 6.4 ± 0.2
Sensitivity best (α, β, d) (0.50, 0.50, 0.30)

7.7. Error distributions

Figures 6 and 7 present violin and box plots that visualize the distribution of forecasting errors
across different predictive models. The violin plots in Figure 6 display the full error density for each
model, capturing both the range and concentration of errors. From Figure 6, it is clear that EIDFM has
the smallest error distribution with low central values and high density, meaning it has low average error
and high prediction stability, while the error distributions of other traditional models such as ARIMA
and SVR are wider with heavier tails. In addition, the box plots in Figure 7 highlight the median,
quartiles, and outliers in the data, where again EIDFM has the lowest median error and the narrowest
interquartile range. In summary, these figures show that EIDFM not only has lower average error
but also lower variability, supporting the model’s stability and robustness compared to the traditional
models.
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Figure 6. Error distributions across models using Violin plots.

Figure 7. Error distributions across models using Box plots.

7.8. Correlation analysis

In Figure 8, the correlation heatmap illustrates the relationships among four commonly used
regression evaluation metrics: MAE, RMSE, MAPE, and R2. Each cell represents the Pearson
correlation coefficient between a pair of metrics, with red shades indicating strong positive correlations
and blue shades indicating strong negative correlations. The heatmap shows that MAE, RMSE, and
MAPE are almost perfectly positively correlated, suggesting that these error metrics exhibit very
similar behavior on this dataset and tend to increase or decrease together. Conversely, R2 is strongly
negatively correlated with MAE, RMSE, and MAPE, reflecting the expected inverse relationship
between prediction error and the proportion of variance explained. Diagonal values are all equal to
one, as each metric is perfectly correlated with itself. These results indicate that the chosen evaluation
metrics are highly consistent. While MAE, RMSE, and MAPE capture similar error trends, R2 provides
a complementary perspective on model performance by quantifying the variance explained. Overall,
this analysis confirms the internal consistency of the metrics and highlights the inverse relationship
between error-based measures and goodness-of-fit.
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Figure 8. Correlation heatmap among performance metrics.

7.9. Comparative visualization

Figures 9 and 10 provide the comparison in performance of the models with different prediction
methods in more detail. Figure 9 shows the scatter plot of MAE vs. RMSE for each of the models and
the color indicates the value of R2. It is clear from the figure that EIDFM is present in the lower-left
region with the lowest MAE and RMSE, and has the largest R2 in comparison to all the other models.
The other models are in the upper-right regions with larger errors and lower R2. Figure 10 is a bar chart
showing the metric-wise comparison of MAE, RMSE, MAPE, and R2 for each of the models. The
error bars are clearly visible, showing that EIDFM has the lowest values of all the error metrics and the
largest R2, which establishes its reliability and predictive power. In general, these two figures provide
a comprehensive view, and clearly show that EIDFM outperforms all the other models, including the
traditional methods, in all the key performance metrics.

Figure 9. Comparative visualization of model performance in Scatter distribution
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Figure 10. Comparative visualization of model performance in Metric-wise bar chart.

Figure 11 represents the overall radar plot for all the models. It provides a complete view of the
performance in all the evaluation metrics (MAE, RMSE, MAPE, and R2). The polygon of each model
corresponds to the values of these metrics, with the performance increasing as the model moves away
from the center. The proposed EIDFM encloses the largest area in comparison to other models, with
larger values for all the axes, and thus, the lower errors and the largest R2 (shown along the axes). The
traditional methods such as ARIMA, SVR, LSTM, and CNN-LSTM have lower values, and thus the
polygons enclosed are smaller, resulting in higher errors and poor balance in the performance metrics.
In conclusion, the radar plot highlights the supremacy of EIDFM in a well-balanced improvement over
all the key performance measures.

Figure 11. Overall performance comparison across forecasting models.

7.10. Discussion of results

First, the results demonstrate that fractional and fractal orders provide rich features for improving
prediction performance and that ensemble integration effectively combines the contributions of
different base learners. Second, conventional linear models such as ARIMA yield high prediction
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errors due to their inherent limitations in modeling nonlinear time series data. The traditional
method performs poorly on forecasting compared with other methods. Machine learning-based
methods (SVR) performs better than traditional methods, but still have some difficulties in capturing
long-term dependencies in the data. Deep learning-based methods (LSTM, CNN-LSTM) outperform
traditional methods by a large margin, but the proposed hybrid deep learning method achieves the best
performance in terms of accuracy, robustness and interpretability. These experimental results show the
effectiveness of our model in accurately predicting the complex and dynamic behaviors of complex
networks. In addition, we only use a single indicator for experimental results, and the experimental
results prove that our proposed method is reliable. To provide a more comprehensive evaluation and
visual analysis of the model, we further evaluated and visualized it using additional indicators and
visualizations.

As can be seen from Figures 6 and 7, from the perspective of multiple metrics and visual forms,
EIDFM can achieve the lowest MAE, RMSE, and MAPE and the highest R2, while the traditional
methods have higher errors and lower explained variance. This result further demonstrates that EIDFM
is the most accurate and robust model for dynamic modeling. Figure 8 shows the heatmap of the
correlation coefficients between MAE, RMSE, MAPE, and R2. The results show that MAE, RMSE,
and MAPE have almost a perfect positive correlation, approaching 1.0, while R2 has a strong negative
correlation with all error metrics, approaching -1.0. These results show that models with lower errors
achieve higher explained variance, and vice versa, indicating the internal consistency and validity of
the evaluation metrics used in this study. Figures 9 and 10, using violin plots and box plots, provide
a visual comparison of the error distributions across different models. The violin plot in Figure 9
shows the full distribution of errors for each model, with the violin’s width reflecting the density of
data points.

The results show that EIDFM not only has the lowest median error but also a more concentrated
and stable error distribution. In contrast, the other methods have wider distributions and some outliers,
indicating a less consistent performance. The box plot shown in Figure 10 complements the violin
plot and summarizes the error distribution using medians, quartiles, and outliers. The results show
that EIDFM always has the lowest median error and the narrowest interquartile range, indicating
the smallest spread of the middle 50% of the data. In contrast, the traditional methods (ARIMA,
SVR, LSTM, and CNN-LSTM) exhibit higher median errors and larger interquartile ranges, and some
methods even exhibit outliers representing extreme error values. In short, these plots verify the results
of the bar chart in Figure 7 that EIDFM can achieve the lowest MAE, RMSE, and MAPE, and the
highest R2, indicating that EIDFM is the most accurate and robust model.

The radar chart in Figure 11 aggregates model performance across all metrics, effectively
summarizing the strengths and weaknesses of the methods. The radial distances for each metric are
plotted along separate axes, with the polygon connecting the points for each model representing its
overall performance. The larger the enclosed area of the polygon, the more balanced and superior the
model’s performance is across all metrics. EIDFM stands out as having the largest polygon, suggesting
improvements on all fronts, including MAE, RMSE, MAPE, and R2. In contrast, the polygons for
traditional methods are much smaller, indicating their higher errors and less balanced performance.
Collectively, these visualizations clearly demonstrate the superiority of EIDFM over the other methods
in terms of accuracy and reliability of the predictions.
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8. Conclusions

Our study presented a hybrid framework that combines fractional calculus, fractal-based
descriptors, and deep learning to model and forecast complex network dynamics. The mathematical
treatment establishes well-posedness through existence, uniqueness, and stability analyses, and
experiments show consistent improvements over classical statistical, machine-learning, and deep-
learning baselines. Fractional and fractal parameters enhance interpretability of network behavior,
while the deep modules capture nonlinear, high-dimensional dependencies. The ensemble design
strengthens robustness and generalization, yielding lower errors and higher R2 scores. Taken together,
these results indicate that the framework is both accurate and mathematically grounded, with clear
relevance to real-world networked systems such as communication and energy infrastructures. Future
work will incorporate reinforcement learning for adaptive decision-making, develop explainable
components to improve transparency, and explore distributed optimization to scale to ultra-large
networks.
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