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Abstract: This paper develops an extended model of cooperative fuzzy games with coalition
structures, where fuzzy coalitions are characterized by real-valued functions. Moving beyond existing
studies on crisp coalition structures, our framework integrates fuzzy set principles with coalitional
cooperation to model partial participation in structured games. Our contributions are fourfold: (1) a
formal core definition for such games, extending the Aubin core; (2) construction of the superadditive
cover and establishment of core non-emptiness conditions; (3) an axiomatic characterization showing
the core is the unique solution that satisfies non-emptiness, individual rationality, weak reduced game
property, and superadditivity; and (4) a domination-core concept proven equivalent to the conventional
core under specific conditions. A concise numerical example validates these theoretical findings,
illustrating core allocation, non-emptiness, and the core-cover equivalence in scenarios of partial
cooperation. These results unify fuzzy games with structured coalitions, offering new insights into
the stability and allocation in games with graded participation and advancing the theory of cooperative
decision-making under uncertainty.
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1. Introduction

Cooperative game theory offers a principled framework for analyzing settings where players can
form coalitions to improve collective outcomes. A well-known solution concept in this field is the
core—a set of payoff distributions that are stable against coalitional deviations. Foundational studies
by Peleg [1], Tadenuma [2], Serrano [3], and Hwang [4] established core properties in classical
transferable utility (TU) games with crisp coalitions, where participation is all-or-nothing.
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Many real-world collaborations, however, involve partial or graded participation. To capture such
settings, Aubin (1974) introduced cooperative fuzzy games, in which each coalition is represented
by a membership vector in [0, 1]V, and defined the Aubin core, in which payoffs are proportional to
participation levels [5,6]. Subsequent research has expanded this line of research along several themes.
In the direction of core characterization and non-emptiness, Tsurumi et al. [7] studied core functions
and dominance cores in fuzzy games, while Yu et al. [8] derived explicit non-emptiness conditions
for the fuzzy core by exploring balancedness conditions in fuzzy settings. In the axiomatic domain,
Hwang [9] developed two types of reduced games for fuzzy coalitions and used them to provide
a full axiomatic characterization of the fuzzy core, establishing uniqueness under a set of natural
properties. Muto et al. [10] further generalized core concepts by introducing stable sets for fuzzy
games and examining their relationship with core allocations under various convexity assumptions.
Recent research shows that in Aubin’s fuzzy extension of almost positive cooperative games, the core
is a singleton containing only the Shapley value [11].

Further extensions of fuzzy cooperative games have been proposed to address more complex
scenarios. For instance, fuzzy configuration structure games allow not only fuzzy participation but also
intersections of fuzzy a priori coalitions, with the fuzzy value expressed through linear combinations
of classical cooperative game values, providing a generalized allocation rule [12]. In applied contexts,
fuzzy cooperative games have been utilized for specialist role determination in emergency assessments,
incorporating solutions such as the C-core, Neumann-Morgenstern solution, and nucleolus [13].

In parallel, another significant branch of research has incorporated coalition structures—partitions
of players into disjoint groups—reflecting organizational or institutional constraints. Aumann and
Dreze [14] systematically extended solution concepts such as the core, kernel, and nucleolus to games
with coalition structures, establishing fundamental conditions for stability under predefined partitions.
Owen [15, 16] introduced the Owen value, a coalition-structured extension of the Shapley value
that accounts for a priori unions. Recent work has continued to enrich this domain through several
innovative extensions. Under uncertainty settings, Yu et al. [17] studied interval-valued coalition
structure games to handle payoff uncertainty using Hukuhara difference and interval arithmetic. In
environments with limited cooperation, Sun et al. [18] introduced a probabilistic Owen value for games
on matroids, while Yu [19] extended the Owen value to settings with limited feasible coalitions by
proposing two distinct allocation approaches. Most relevant to our work, Meng et al. [20] combined
fuzzy coalition structures with interval payoffs and studied the corresponding Owen value, marking an
initial step toward integrating fuzzy participation with coalitional constraints.

Despite these advances, the literature remains bifurcated. Fuzzy game research focuses on graded
participation but seldom incorporates coalitional constraints, while coalition structure studies assume
crisp membership. This leaves a gap, as real-world scenarios (e.g., cross-organizational projects, multi-
agent systems) often involve graded participation within pre-existing groups. The integration of these
lines, particularly concerning core stability and dominance, remains underexplored. Although [20]
made initial progress, their focus on the Owen value with interval payoffs leaves open fundamental
questions about core stability and non-emptiness.

This paper bridges this gap by developing a unified framework for cooperative fuzzy games with
coalition structures. Our specific contributions are fourfold. First, we formally define the core for
such games, extending the Aubin core. Second, we construct the superadditive cover and establish
equivalence conditions for non-emptiness of the core, generalizing classical results by [14]. Third,
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we provide an axiomatic characterization, proving the core is the unique solution satisfying non-
emptiness, individual rationality, weak reduced game property, and superadditivity. Finally, we propose
a domination-core (D-core) concept and demonstrate its equivalence to the conventional core under
specific value-bound conditions.

Our work differs from [20] by addressing core stability with real-valued payoffs, not value allocation
with intervals. Unlike fuzzy core studies [7-10], we explicitly incorporate coalition constraints via a
structured partition system, offering a more realistic model for cooperative decision-making under
fuzziness and coalitional constraints.

The paper is organized as follows: Section 2 reviews basic concepts of crisp and fuzzy games with
coalition structures. Section 3 introduces the superadditive cover and presents core non-emptiness
results. Section 4 provides the axiomatic characterization of the core. Section 5 defines the D-core and
establishes its equivalence to the core. Section 6 concludes and suggests future research directions.

2. Preliminaries

In this section, some important definitions of crisp cooperative games with coalition structures and
their generalized forms of fuzzy cooperative games with coalition structures are given.

2.1. Concepts on crisp games with coalition structures

In crisp cooperative game theory, a coalition structure represents a partition of players into mutually
exclusive groups. This organizational framework reflects situations where players belong to different
organizations, departments, or teams before engaging in cooperation.

Let U be a universe of players. A crisp coalition refers to any nonempty subset of U. For a specific

crisp coalition N = {1,2,...,n}, a coalition structure is defined as a partition R = {R|,R»,...,R,,}
satisfying
URk =N, 2.1)
k=1
RNR;j=0 Vi,jef{l,2,...,m}, i # ] 2.2)

This means that every player in N must belong to exactly one coalition in the partition R, ensuring a
complete and non-overlapping grouping of all players.

Given these definitions, we can now formally define a cooperative game in this context. This leads
us to the concept of a payoff vector that is considered attainable under the given coalition structure R.

Definition 2.1. Let (N, v) be a cooperative game and R be a coalition structure for N, then the triple
(N,v,R) is called a crisp game with coalition structure. The set of feasible payoff vectors for this game
is defined as:

X*(N,v,R) = {x e RV Z x; < W(R), VR € R} . 2.3)

i€R
This definition establishes that a payoff vector x is feasible if, within each formed coalition R € R,
the total distribution to its members does not exceed the worth that coalition R can generate on its own.

AIMS Mathematics Volume 10, Issue 11, 26697-26716.



26700

This can be interpreted as a form of budget constraint or collective rationality within each pre-existing
group.

While the set X*(N, v, R) defines which payoff vectors are feasible under the coalition structure, it
does not guarantee that these distributions are stable. A feasible vector could, for instance, unfairly
disadvantage a subset of players, giving them an incentive to break away and form their own coalition.
To address this issue of stability, we now introduce the core of a game with a coalition structure, a
solution concept developed by Aumann [14] and Peleg [1,22].

Definition 2.2. Let (N, v, R) be a game with coalition structure. The core C(N, v, R) of (N,v,R) is the
set

C(N,v,R) = {x € X*(N,v,R) Z x; 2 v(S) for each S C N}. 2.4)

ieS

Clearly, C(N,v) = C(N, v, {N}).

2.2. Concepts on the cooperative fuzzy games with coalition structures

In classical cooperative game theory, coalitions are crisp—a player is either fully in or fully out
of a coalition. Fuzzy cooperative games extend this framework by allowing for partial participation,
a concept known as a fuzzy coalition. A fuzzy coalition § is defined as a fuzzy subset on the player
set N, mathematically represented as a participation vector § = (§;,8,,---,5,) with 0 < §; < 1,
where each component of S € [0, 11" quantifies the membership level of player i in the fuzzy coalition
S. The set of all fuzzy coalitions on N, denoted by ¥, constitutes an infinite space. A canonical
correspondence exists between crisp coalitions (crisp subsets of N) and their fuzzy counterparts:
For any crisp coalition T C N, its associated fuzzy coalition e’ = (67(1),67(2), ...,57(n)) € F~, where

5,0 1, ifieT; (2.5)
1) = .
! 0, otherwise.

Within this framework, the grand coalition ¢¥ = (1,1,...,1) represents full participation from all
players, while the empty coalition @ = (0,0, ..., 0) indicates null participation. Single-player coalitions
S = {i} are denoted by e'. For any fuzzy coalition S € FV, two key concepts help us understand its
composition: the support of S and its cardinality. The support of S, denoted SuppS ={ie N |S; > 0},
is the set of players who have a non-zero participation level. It represents the set of players who are,
to some extent, actively involved in the coalition. The cardinality is simply the size of its support,
|SuppS |, which counts the number of players with positive participation.
Operations on fuzzy coalitions are defined componentwise. For any S, T € #V:

S VvT);, =max{S;, T:},(S ANT); =min{S;, T;} forall i € N.

These operations intuitively correspond to combining the maximum or minimum participation levels
of each player across the two coalitions. It follows logically that Supp(S Vv T') = SuppS U Supp7 and
Supp(S A T) = SuppS N SuppT.

Having defined fuzzy coalitions, we can now introduce a cooperative fuzzy game.

Definition 2.3. A cooperative fuzzy game is a function v : F" — R satisfying v(0) = 0.
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The value v(S') represents the total payoff that coalition S can achieve given its specific membership
levels. The central problem is to distribute the value v(e") of the grand coalition among the players in
a fair and stable way. This leads to the concept of imputation.

Definition 2.4. The imputation set of a cooperative fuzzy game v is defined as the set of efficient and
individually rational payoff vectors

Kw:{xeRN

Z x; = w(e), and x; > v(e') Vi € N} . (2.6)

i=1

Efficiency ensures the entire value of the grand coalition is distributed, while individual rationality
guarantees each player receives at least what they could get alone.

Definition 2.5. The Core of a cooperative fuzzy game v consists of all imputations satisfying coalitional
rationality

cw):{xenw 23 SﬂﬁzWSLVSETW}. 2.7)

ieSuppS

Note that the sum >, S;x; represents the total payoff received by coalition S, weighted by each
ieSuppS

player’s participation rate. This condition ensures that for every possible fuzzy coalition S, its weighted
payofl is at least as large as the value v(S) it can generate on its own.

The theory is further extended by introducing fuzzy coalition structures, which partition a fuzzy
universe of players into groups.

Definition 2.6. Let U € ¥V, T = {T,T»,--- ,T,} is said to be a fuzzy coalition structure on U, if T
satisfies

() TyVTyV VT, =Us;
Q) TAT; =0 Vi,je{l,2,---,m}) st i#j

We denote a fuzzy coalition structure 7 on U by the pair (U, 7). The set of all feasible coalitions
within this structure is denoted by L(U, 7).

Definition 2.7. A cooperative fuzzy game with coalition structure on U is a triple (U,v,T), where
U € FN, T is a fuzzy coalition structure on U, v : L(U,T") — R is a function assigning a value to each
feasible coalition in the structure, satisfying v(0) = 0.

This model provides a general framework for analyzing cooperation in environments with complex,
graded membership structures across multiple overlapping groups.

Example 2.1. Consider three enterprises N = {1, 2,3} forming a fuzzy coalition structure based on
their resource participation levels (e.g., manpower, capital, equipment), represented by values in [0, 1].
Let U = (0.6,0.8,1.0) be a fuzzy coalition on F~, T = {T,T>} be a fuzzy coalition structure on
U, where T, = (0.6,0.8,0) represents a technical collaboration between enterprises 1 and 2; T, =
(0,0, 1.0) represents independent financial support from enterprise 3. The characteristic function v :
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L(U,7T) — R is defined as follows:

0.5, ifS =Ty,
04, ifS =T,,
v(§)=140.2, ifS =(0.6,0,0)0r(0,0.8,0), (2.8)
0.7, ifS =10,
0, otherwise.

Then, v constitutes a cooperative fuzzy game with coalition structure on U.
Similar to the definition of core for the crisp case [1, 14,22], we give the definition of core with
fuzzy coalition structure as follows:

Definition 2.8. Let U € FV, (U,v,T) be a cooperative fuzzy game with coalition structure on U. The
set I'(U, v, T") of feasible payoff vectors for (U,v,T") is defined by

I'(Uv,7) = {x e RY| Z T:x; <v(T)foreach T € 7}. (2.9)

ieSuppT

Definition 2.9. Let U € FV, (U,v,T) be a cooperative fuzzy game with coalition structure on U. The
Core C(U,v,T) of (U,v,T) is defined by

CUV,T)={xeI'(Uv,T) Z S;x; = v(S)foreach S € L(U,7)}. (2.10)

ieSuppS

Example 2.2. For Example 2.1, the set I'(U,v,T") of feasible payoff vectors is given by:

FUVT) = 1x e B 0.6x; + 0.8x, 0.5,
o 1.0x; <04 ’

For a payoff vector x = (xi, x, x3), the core C(U,v,7) consists of all x € I"(U,v,7T") satisfying
coalitional rationality:

0.6x; >0.2, 0.8x;>0.2, 1.0x3>04,
0.6X1 + 0.8)62 + 1.0X3 > 0.7,
0.6x; + 0.8x, > 0.5.

Therefore, the core is

0.6x; + 0.8x; < 0.5,
1.0x; <04,
CUv,T)={xeR*[06x;>02, 0.8x;>02, 1.0x3>04,5}.
0.6x; + 0.8x;, + 1.0x3 > 0.7,
0.6x; +0.8x, > 0.5
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This simplifies to
0.6x; + 0.8x, = 0.5,

X3 = 04,
x> 1/3,
Xy > 0.25

C(Uv,T)=4{xeR’?

Geometrically, the core is represented by a line segment in three-dimensional space, where the
payofls to enterprises 1 and 2 lie on the line 0.6x; + 0.8x, = 0.5 with individual rationality constraints,
while enterprise 3 receives a fixed payoff of 0.4. The specific geometric representation is shown in
Figure 1.

[N
x

0.62yi+ 08z, =05

Figure 1. Core solution set projection on the x;-x, plane with constraint 0.6x; + 0.8x, = 0.5.

3. The superadditive cover and core non-emptiness

This section presents a fundamental construction in the theory of cooperative fuzzy games with
coalition structures: the superadditive cover. This transformation converts a game into a superadditive
set function, enabling us to establish equivalence conditions for the existence of stable allocations.
Specifically, we investigate when the core of such games is non-empty, extending the classical work of
Aumann and Dreze [14] to the fuzzy setting.

In many cooperative scenarios, players can generate greater value through coordinated cooperation
than through separate efforts. The superadditive cover formally captures this potential by considering
all possible ways to partition a coalition optimally.

Definition 3.1. Let U € ¥V and (U,v,T) be a cooperative fuzzy game with coalition structure on U.
The superadditive cover V of v is defined as:

H(T) = max {Z V(R)

ReR

R is a partition of T} (3.1

forall # T € L(U, 7)), with $(0) = 0.
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Intuitively, #(7") represents the maximum total value achievable by optimally partitioning 7" into
subcoalitions within the structure 7. This construction effectively “completes” the game to satisfy
superadditivity, a property crucial for many solution concepts.

Example 3.1. Consider the cooperative fuzzy game from Example 2.1. For coalition T, = (0.6,0.8, 0),

the possible partitions are Partition R, = {T,} with Y, v(R) = w(T;) = 0.5, and Partition R, =
RER]

{(0.6,0,0),(0,0.8,0)} with ), v(R) =0.2+ 0.2 =0.4. Thus, %(T;) = max{0.5,0.4} = 0.5.

RERZ
For T, = (0,0, 1.0), the only partition is R = {75}, giving ¥(T») = v(T,) = 0.4.
For the grand coalition U = (0.6,0.8, 1.0), we consider five possible partitions: R; = {U} with
> v(R) = vU) = 07, R, = {T,T,} with > v(R) = v(T}) +v(T) = 05+04 = 09; R; =

ReR, ReR
{(0.6,0,0),(0,0.8,0),(0,0,1.0)} with >’ v(R) = ()2.2 +0.2+04 =0.8; Ry = {(0.6,0,0),(0,0.8,1.0)}
ReR;
with Y v(R) = 0.2+ 0 = 0.2; and Rs = {(0,0.8,0),(0.6,0,1.0)} with >’ v(R) = 0.2 +0 = 0.2. The
RE'R4 RG'R5

maximum value is 7(U) = max{0.7,0.9,0.8,0.2,0.2} = 0.9.
For coalition T = (0.6,0,1.0), the partitions yield: R, = {T} with W(T) = 0 and R, =
{(0.6,0,0),(0,0,1.0)} with Y. v(R) = 0.2 + 0.4 = 0.6. Thus, ¥(T) = max{0, 0.6} = 0.6.

R ERQ

Similarly, for T = (0,0.8,1.0): R, = {T} with v(T) = 0; and R, = {(0,0.8,0), (0,0, 1.0)} with

>, v(R)=0.2+0.4 =0.6, giving ¥(T) = max{0, 0.6} = 0.6.
ReR,
The superadditive cover ¥ of the cooperative fuzzy game (U, v, 7") is therefore:

09, ifT =10,
0.5, ifT =T,
04, ifT =T,,

W(T) = .
0.6, if T =(0.6,0,1.0)or (0,0.8,1.0),

0.2, if T =(0.6,0,0)0r (0,0.8,0),

0, otherwise.

The superadditive cover indeed possesses the desired mathematical property, as established in the
following proposition.

Proposition 3.1. Let U € F and (U, v,T") be a cooperative fuzzy game with coalition structure on U,
then the superadditive cover V of (U,v,T") is superadditive, i.e.,

VWS VT)=9(S)+9(T), (3.2)
forall S,T € L(U,7) withS AT = 0.

Proof. For S,T € L(U,7) with § AT = 0, let Rs and Ry be optimal partitions achieving ¥(S) and
v(T), respectively. Since S and T have disjoint supports, their union Ry U Ry forms a valid partition of
S v T. Consequently,

WS VvT)> Z V(R) =9(S) + (T),

ReRg URT

establishing the superadditivity property. O
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Building on the foundational work of Aumann and Dreze [14], we now present the central theorem
characterizing non-empty cores in fuzzy games with coalition structures.

Theorem 3.1. Let (U,v,T") be a cooperative fuzzy game with coalition structure. Then,
(1) C(U,v,T) # 0if and only if C() # @ and ¥(U) = 3, w(T);
TeT
2) fCWU,v,T) # 0, then C(U,v,T) = C(D).

Proof. (1) Letx € C(U,v,7),0 # S € L(U,T ), and let R be a fuzzy coalition structure of S, from the
definition of the core of fuzzy game with coalition structure, we have ), T;x; > w(T) foreach T €

i€eSuppT
7. Therefore, > Sx;> 2 Y Rx;i> Z V(R), it follows that >, S;x; > ¥(S). In particular,
ieSuppS ReR ieSuppR ieSuppS _
X)) = > > Tix= > Tix; = Y Uyx; > 9U)and x; > 9(e'). By Definition 3.1,
TeT TeT ieSuppT ieTkeJTSuppT ieSuppU
we have D(U) > 3 wW(T). Hence, Y Upx; = d(U) = 3 w(T). Specially, Y, x; = #(e"). By the
TeT ieSuppU TeT ieN
definition of 2.5, we get x € C(9). Conversely, assume that x € C(¥) and W(U) = >, w(T). From
TeT
the definition of C(¥), we can get » Sx; = ¥(S) > w(S) foreach ® # § € L(U,7). Since
ieSuppS
> Uxi= 2 Y Tixi= Y v(land  Tix;>v(T),wecanget », T;x;=v(T)foreach
ieSuppU TeT ieSuppT TeT ieSuppT ieSuppT

T € 7. Therefore, x € C(U,v,T).

(2) Assume that C(U,v,7) # 0, by (1), we can get C(¥) # 0 and #(U) = ), w(T), By the proof of
TeT
(1), we know C(U,v,T) = C(¥). O

Example 3.2. Obviously, the superadditive cover V in Example 3.1 satisfies superadditivity. For a
payoff vector x = (x1, X2, X3), the core of fuzzy cooperative game v satisfy the following inequalities:

0.6x; +0.8x, + x3 = 0.9,
0.6x; + 0.8x, > 0.5,

x3 > 04,

0.6x; + x3 > 0.6,

0.8x, + x3 = 0.6,

0.6x; > 0.2,

0.8x, > 0.2.

This simplifies to
0.6x; + 0.8x, = 0.5,

X3 = 04,
x> 1/3,
Xy > 0.25

Hence, the equality C(U, v, 7") = C(V) is confirmed, in agreement with Theorem 3.1.
We conclude by examining how symmetry between players manifests in core allocations through
the substitution property.

CH) =4xeR>
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Definition 3.2. Let v be a cooperative fuzzy game on F~. Players i, j € N are substitutes if for any
S € FVN with i, j ¢ SuppS and any a € (0, 1],

v(S V ae') = v(S V ae’). (3.3)

This definition captures situations where players contribute equally to any coalition they join,
making them interchangeable from a strategic perspective.

Theorem 3.2. Let (U,v,T) be a cooperative fuzzy game with coalition structure where players i and
J are substitutes. If i ¢ SuppT, j & SuppR, and R; = T; # 0 for some R,T € T, then for any
X € C(U9 v, T))

Xi = Xj.

Proof. Assume without loss of generality that R; = T; # 0, R; = 0, and T; = 0. For x € C(U,v,7),

consider the deviation where player i’ participation in R is replaced by player j at the same level.
Coalitional rationality yields

0> V(R — Rie') V Rie’) — Z (R - Ri¢) V Rie’)ixy.
ke(S uppR\{IHU{j}

Using the substitution property and simplifying, we obtain 0 > R;x; — R;x;, implying x; > x;. The
reverse inequality follows symmetrically, thus x; = x;. O

This result shows that the core respects symmetric contributions between substitute players, even
when they belong to different coalitions within the structure, provided their participation levels are
equal.

4. Axiomatic characterization of the core of fuzzy games with coalition structures

In this section, we formally define the reduced game for a cooperative fuzzy game with a coalition
structure and analyze key properties of the core in such games. We focus on several important
properties: non-emptiness (NE), individual rationality (IR), the weak reduced game property (WRGP),
superadditivity (SUPA), and the converse reduced game property (CRGP). These properties help
characterize the behavior and rationality of solution concepts under coalitional constraints and fuzzy
preferences.

Let U € ¥V, and let 7 be a coalition structure on U. For any non-empty fuzzy coalition S € F#V
such that Supp S € Supp U, we denote by 7 s the restriction of the coalition structure to S, defined as:
Tis ={TANS|TeT andT AS # 0}.

Definition 4.1. Let (U,v,T") be a cooperative fuzzy game with coalition structure, ) # S C U, and let
x € I"(U,v,T). The reduced game (S, VsT,x’ Ts) with respect to S and x is defined as:

0, if R=0,
w(T) — D T:x;, if0#R=S AT forsomeT €T,
i€SuppT\SuppR

max VRVO) - > 0Qix), ifRcSAT.
SuppQCSuppU\SuppS ieSuppQ

vi (R) =

AIMS Mathematics Volume 10, Issue 11, 26697-26716.
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The reduced game models how a sub-coalition S would evaluate its worth after the original game
is resolved by payoff vector x. The first case handles the empty coalition. The second case applies
when R corresponds to the intersection of S with some original coalition T; here, the value adjusts
for the payoffs allocated to players outside R. The third case, for proper sub-coalitions of S A T,
reflects the maximum surplus that R can achieve by collaborating with any external coalition Q, after
compensating Q according to x.

If the members of SuppT \ SuppR receive the payoff > T';x;, then the remaining members
ieSuppT\SuppR
in SuppT N SuppS may receive v(T') — > T;x;. Moreover, for every non-empty subset of
i€SuppT\SuppR
SuppT NSuppS, the reduced game value represents the maximal payoff that the coalition R can expect
to secure.
Note that if 7~ = {U}, the game reduces to a standard cooperative fuzzy game. For@ # S ¢ U € ¥V

and x € I(v), the reduced game with respect to S and x is the fuzzy game vg ,, defined by

0, if T =0,
VU)— U,‘X,‘, i 0¢T:S,
vs(T) = ( iESuppg\SuppT /
max w(T Vv Q) — x;), ifTCS.
SuppQCSuppU\S uppS( ( Q) ieS%sz Qi) f

Example 4.1. In Example 2.1, suppose firm 3 exits, consider the reduced game with respect to S =
T, = (0.6,0.8,0) and payoff vector x = (0.5,0.25,0.4). The reduced game V?’x is defined as follows:

ForR=T;:

ViR =vT)- Y Tx=05-0=05

ieSuppT1\SuppR

For R = (0.6, 0, 0):

,
ve (R) = max v(RV Q) — x| = v(R) =0.2.
52(R) SuppQCSuppU\SuppS RV 0) ieSuprQQ &)

Similarly, for R = (0, 0.8, 0):
vy (R) =0.2.

Definition 4.2. Let Ay be a set of cooperative fuzzy games with coalition structures. A solution o on
Ay is a function that maps each fuzzy game with coalition structure (U, v,T) to a subset o(U,v,T") of
the feasible payoff set I'(U,v,T"), i.e.,

o(Uv,T)cI*(Uv,T).

For (U,v,T) €ay, x € o(U,v,T),and S € L(U,7), we denote by x° € R" the restriction of x to S,
where x; = 0 fori € Supp U \ Supp S.

Definition 4.3. A solution o on Ay satisfies the reduced game property (RGP) if for all (U,v,7") €Ay,
all non-empty S C U, and all x € o(U,v,T"), we have:

(S.viTis)€ay  and x° € o(S,v§ ., Ts).
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RGP ensures that if a payoff vector x is considered a solution in the original game, then its restriction
to any subgame S should also be a solution in the corresponding reduced game. This property embodies
consistency across different levels of coalitional granularity.

Lemma 4.1. The core on Ag: {(U,v,T) eay |IC(U,v,T) # 0} satisfies RGP,
Proof. Assume that (U,v,7) €A, x € C(U,v,T7), T € T,0# S CU,andR C T A S satisfying R # 0.

IfR=T AS, then,
VST,X(R) - Z Rix; = w(T) - Z Tix; — Z Rix;

ieSuppR ieSuppT\SuppR ieSuppR

> W(T) — Z (T V R)x; = W(T) — Z Tx; = 0.

ieSuppT ieSuppT
Therefore, v (R) = X Rix;.
ieSuppR
IfRcTAS, then
VB = Y Rw= o max o ((RVQ)- Y Qx)- ) Rix
ieSuppR uppQ<S uppU\Supp i€SuppQ i€eSuppR
= omax o RVQ)-( ), Qi+ ) Rux)l
uppQESuppU\Supp ieSuppQ ieSuppR
= max VRV Q) — Z (RV Q)ix;] < 0.
SuppQCSuppU\SuppS 1S uppROS upp0
Therefore, v?,x(R) < 'ESZ RR,-x,-. By the definition of core, we can get x° € C(S, vST,x, Tis)- O
ieSupp

In example 4.1, the restricted payoff vector x¥ = (0.5,0.25,0) is in the core of the reduced game,
illustrating the reduced game property (RGP).

For (U,v,7") €Ay, two distinct players i, j € N are partners in 7 if there exists T € 7 such that
T;-T;#0.

We denote

PT) ={S eR"™!i # j, i and j are partners in 7, S; = T,S;=Tj}.
IU,v,T) = {xeR| Y Tix;=wT)foreach T € T},

i€eSuppT

Definition 4.4. A solution o on Ay is said to has the converse reduced game property (CRGP) if
the following condition holds: Let (U,v,T) €Ay, P(T) # 0,x € I(Uv,T), if (S,vsy) €Ay, and
x5 € o(S,vs.,) for each S € P(T), then x € o(U,v,T).

CRGP ensures that if a payoff vector x is locally consistent (i.e., it is a solution in every two-player
partner reduced game), then it must also be globally consistent. This prevents situations where a payoff
is justified in every bilateral relation but leads to contradictions in the full game.

Lemma 4.2. The core on A satisfies CRGP.
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Proof. Let (U,v,T) €A$,,P(T) # 0,y € I(U,v,T) satisfy y* € C(S, vs,) for every S € P(7). In order

to show y € C(U,v,7), we only prove >, R;y; > v(R) foreach R € L(U, 7).
i€SuppR

LetF={V TIT*CT),andR= VvV T eF.IfxeC(U,v,T),then
TeT* TeT*

WR) < Z Rix; = Z T,-x,-:z Z Tixi:Zv(T). 4.1)

ieSuppR i€ U SuppT TeT* ieSuppT TeT*
TeT*

In view of (4.1), >, Ryy; = v(R)forevery T € F.

ieSuppR
Now, let R € L(U, 7 )\F, then there exists T € 7 suchthat 0 # RAT # T,leti € SuppRNSuppT,
j € SuppT\SuppR and S € F'/ satisfy S; = R.,S; = R, then S € P(7). Therefore, by the
assumption, y* € C(S,vs,,). So,

VR - D Ry=vRe VO - > Rok— > Row<vsy(Re) - Ry <0,

keSuppR keSuppR\SuppS keSuppRNSuppS

where Q = R — Ri¢'. Hence, Y, R;y; > v(R) and the proof is complete. O
i€SuppR

Definition 4.5. Let (U,v,T") be an arbitrary cooperative fuzzy game with coalition structure on Ay, if
o(U,v,T) # 0 for each (U,v,T") €Ay, then the solution o on Ay is called nonempty.

Definition 4.6. Let (U,v,T) €Ay and x € o(U,v, T), if x; > v(€') for all i € N, then the solution o on
Ay is said to satisfy individually rational (IR).

Definition 4.7. Let (U,v,T) €ay,x € o(Uv, T), if (S,v§ .. Tis) €ay and x° € o (S,v§ ., Ts) for each
S e LU,T)and 1 < |SuppS| < 2, then the solution o on Ay is said to has the weak reduced game
property (WRGP).

WRGP is a weaker form of RGP that only requires consistency for sub-coalitions of size at most 2.
While RGP implies WRGP, the converse is not generally true.

Definition 4.8. Let (U,v(,7),(U,v2,7), and (U,vi + v5,T) are in Ay. The solution o on Ay is
superadditive (SUPA) if

O-(Ua Vl,(]-) + O-(U’ Vo, T) c O-(Ua Vi + Va, T)a

where o(U, v, T ) + o(U,v,,T7) ={a+ bla € o(U,v{,T) and b € o(U,v,,7)}.

Superadditivity captures the idea that combining two games should not reduce the set of acceptable
payoffs. The core satisfies superadditivity because the sum of two core allocations remains efficient
and coalitionally rational in the combined game.

Definition 4.9. Let o be a solution on Ay. If o(U,v,T) C I(U,v,T) for each cooperative fuzzy game
with coalition structure (U,v,T") €Ay, then o is Pareto optimal (PO).

Lemma 4.3. Let 0 be a solution on Ay. If o satisfies IR, and WRGP, then it also satisfies PO.
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Proof. Assume that there exist (U,v,7) €Ay, and x € o(U, v, 7") such that

T,')C,' < V(T)
ieSuppT

foreach T € 7. let T; = 1,T € 7,5 = ¢, by WRGP, we can get (S,v?’x,']]_g) €A and
x; € o(S, VZ:X,7~|S). By IR, we have x; > v(e’). On the other hand, by the Definition 4.1, we can
obtain

VST’x(ei) =v(T) - Z Ty x; > x;.
keSuppT\{i}

Thus, it contradicts the property of IR. So, o satisfies PO. O

Lemma 4.4. Let (U,v,7) €Ay, o be a solution on Ay. For each (U,v,T) €Ay, o satisfies IR and
WRGP, then o(U,v,7) C C(U,v,7T).

Proof. Let (U,v,T) €Ay and n = max{|SuppT||T € T}. Letn = 1, x € o(U,v,T), then x; < v(e'). By
IR, we can get x; > v(e'). Therefore, x € C(U,v, 7).
By Lemma 4.3, we obtain that o satisfies PO. Therefore, let n = 2, then
o(U,v,T) C {x € I(U,v,T)|x; > v(e') for all i € SuppU} = C(U,v, 7).
Letn > 3, and x € o(U,v, 7). By WRGP, we can get that x° € (S, v{ . Ts) for all § € P(7).
Therefore x° € C(S, v(;x, Ts) forevery S € P(7°). By the proof of Lemma 4.2, we can get o(U,v,7") C
CUv, 7). O

By the proof of Lemma 4.4, we can get the following corollary.

Corollary 4.1. Let o be a solution on Ay that satisfies NE, IR, and WRGP. If the core of a cooperative
fuzzy game with coalition structure (U,v,T) consists of a single unique point, then o(U,v,T) =
CU,v,T) for each (U,v,T) €Ay.

Theorem 4.1. The core is the unique solution on A$, that satisfies NE, IR, WRGP, and SUPA.

Proof. Clearly, the core on ALC] satisfies NE, IR, and SUPA. From Lemma 4.1, we can get the core on Alcj
satisfies RGP. RGP implies WRGP, so the core on A satisfies WRGP. We only prove the uniqueness of
the core. Let (U, v,7) €Ay, o be a solution on AS that satisfies NE, IR, WRGP, SUPA. By the Lemma
4.4, we can get o(U,v,7) € C(U,v,T). Therefore, we only show that C(U,v,7) € o(U,v,7).
Assume that x € C(U,v, 7).

(1) |SuppU| > 3. We define a fuzzy coalition function w: (U,v,7) — R as follows: w(e’) = v(e)
foralli € SuppU and w(S) = >, Sx;forall S € L(U,T) with |SuppS| # 1. Since |[SuppU| > 3,

i€SuppS
we can obtain C(U, v, 7") = {x}. Therefore, by Corollary 4.1, we can get o(U, v, 7)) = {x}. Lett = v—w.

Then, t(¢') = 0 foralli € SuppU,t(R) = 0forall T € 7,and #(S) = v(S)-w(S) =v(S)— X S <
ieSuppS

O for all S € L(U,7). Thus, C(U,v,7) = {0}. By Corollary 4.1, we get o(U,v,7) = {0}. By
SUPA, we have {x} = o(U,t,7) + o(U,w,T) C o(U,v,7). Thus, x € o(U,v,7T), and it implies that
cUwv,7) co(Uwv,T).
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2) [SuppU| < 2. If |SuppU| = 1, by NE and IR, we can get x € o(U,v,T) . If [SuppU| = 2, then
assume that SuppU = {i, j}, k € N\SuppU, M = {i, j,k}. We define a fuzzy coalition function u on
FM as follows:

w(T), if |SuppS| =3,
u(S) = qv(S), if |SuppS|=2and SuppS = SuppT
Spv(eh), otherwise,
where SuppS N SuppT # 0, h € SuppS N SuppT and T € 7. We define y € R” by y* = 0 and

ySurrU = xSuppU - we can gety € C(W,u, 7 ) for W € FM, 7|y = 7 and [SuppW| = 3. Let S €
LW, 7). If |SuppS| =3, thenu(S) =v(T)= Y Tixi= Y Tyi= Y Sy.If|SuppS|=2

ieSuppT ieSuppT ieSuppS
and SuppS = SuppT, then u(S) = v(S) < > Six; = X Sy If SuppS # SuppT, then
ieSuppS ieSuppS
u(S) = S < Spx(e") = Y Suyn, where h € SuppS N SuppT. So,y € C(W,u, 7). Since
heSuppS
ISuppW| = 3, CW,u,T') C o(W,u, 7). Therefore, y € (W, u, 7). Again, (U, uf, , T;) = (U,v,T).
Thus, by WRGP, x € (U, v, T"), and we conclude that C(U,v,7) C (U, v,T"). O

This theorem establishes the core as the unique solution satisfying non-emptiness, individual
rationality, weak reduced game property, and superadditivity. It highlights the robustness and structural
consistency of the core in fuzzy games with coalition structures.

5. D-core

In this section, we define the domination core for a cooperative fuzzy game with coalition structure,
based on the definition of domination, and investigate the equivalence between the core and the
domination core.

Definition 5.1. Let (U, v, 7") be a cooperative fuzzy game with coalition structure, x,y € (U, v,T),D #
S € L(U,T). Then x is said to dominate y via fuzzy coalition S, denoted by x domy vy, if the following
conditions hold:

(1) x; > y; foralli e SuppS;
2) 2 Sixi<w(s).
ieSuppS
This definition captures the idea that a payoff vector x can dominate another vector y through a
coalition § if all members of § strictly prefer x over y, and the total payoff allocated to S under x does
not exceed the value of the coalition. Domination reflects both individual incentives and coalitional
feasibility.

Definition 5.2. The domination core (D-core) of a cooperative fuzzy game with coalition structure

(U,v,T) is the set
DCUwv,T)=I1IUv, 7))\ U D), 6.

0+SeL(U,T)

where D(S) = {y € I(U, v, T )|there exists x € I(U, v, T ) with x domg y}, i.e., the set of all undominated
elements in I(U, v, 7).
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The D-core represents the set of stable payoff distributions that cannot be improved upon by any
coalition through a feasible and unanimously preferred alternative. It is a solution concept based on
pairwise comparisons and veto power of coalitions.

Example 5.1. Consider the cooperative fuzzy game with coalition structure from Example 2.1. We
examine whether the payoff vector x = (0.5,0.25,0.4) € I(U,v,T) belongs to the domination core.
To establish x € DC(U,v,T"), we must verify that no allocation y € I(U,v,T) dominates x via any
non-empty feasible coalition S € L(U, 7).

First, consider S = T, = (0.6,0.8,0). For y to dominate x via §, we require y; > 0.5, y, > 0.25,
and 0.6y, + 0.8y, < v(T}) = 0.5. However, the allocation constraints impose 0.6y; + 0.8y, = 0.5.
The conditions y; > 0.5 and y, > 0.25 would imply 0.6y, + 0.8y, > 0.6 X 0.5 + 0.8 X 0.25 = 0.5,
contradicting the necessary equality. Thus, no such y exists.

Next, take S = T, = (0,0, 1.0). Domination requires y; > 0.4 and y; < v(7T3) = 0.4. The allocation
constraint fixes y; = 0.4, making the inequality y; > 0.4 impossible. Hence, domination cannot occur.

Now examine S = (0.6,0,0), where v(S) = 0.2. Domination requires y; > 0.5 and 0.6y; < 0.2,
implying y; < 0.2/0.6 ~ 0.333. This contradicts y; > 0.5, excluding any dominating y.

Consider § = (0,0.8,0), with v(S) = 0.2. Domination requires y, > 0.25 and 0.8y, < 0.2, forcing
v, < 0.25. This contradicts y, > 0.25, making domination impossible.

For § = U = (0.6,0.8, 1.0), domination requires y; > 0.5, y, > 0.25, y;3 > 0.4, and 0.6y, + 0.8y, +
1.0y; < v(U) = 0.7. The allocation constraint y; = 0.4 violates y; > 0.4, precluding domination.

Finally, for any coalition S with v(§) = 0, the condition », §;y; < 0 cannot be satisfied while
ieSupp S
maintaining y; > x; > 0. Thus, domination is impossible through these coalitions.
Since no feasible coalition S permits domination of x by any y € I(U,v,7 ), we conclude that
x € DC(U,v,7). This demonstrates the stability of the D-core: the allocation x cannot be improved
upon by any coalition through a mutually preferred and feasible alternative, confirming its stability

within the given coalition structure.

Theorem 5.1. Let (U,v,T) be a cooperative fuzzy game with coalition structure satisfying v(T) >
v(S)+ > Tv(e) forall T € T and S; = T, fori € SuppS N SuppT. Then,
ieSuppT\SuppS

DCU,v,T)=CU,v,T). (5.2)

Proof. Assume that x € C(U,v,7), then x € I(U,v,7). Let x ¢ DC(U,v,7). Then, there exist a
y € I(U,v,7) and a fuzzy coalition O # S € L(U,7) such that v(§) > ) S;y; and y domg x,

i€SuppS
e, y; > x; foralli € SuppS. Therefore, v(S) > > S;y; > 2 S;x;, which implies that
ieSuppS ieSuppS
x¢ C(U,v,T).
Assume that x € DC(U,v,7), then x € I(U,v,7), thus W(T) = >, T;x;. Asumme that there
ieSuppT

exists a fuzzy coalition S € L(U, 7T) satisfying SuppS € SuppT and S; = T; fori € SuppS,T € T
suchthat >, S;x; <v(S). Let

ieSupp$
v(S)— X Six
= i€SuppS - >0, = ;T(V(T) —w(S) - Z Tv(e')) > 0.
iESupp;ﬁSuppS : iESupp%SuppS i i€SuppT\Supp§
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We define y as follows:

_xite ifi€SuppsS,
= ve)+a, ifié¢SuppsS.

Then,
2 Tyi= X Tixi+e)+ by Ti(v(e) + a)
i€eSuppT i€SuppS ieSuppT\SuppS
= Y Tixi+e > T+ > Tv(e) + a > T
ieSuppS i€SuppS i€SuppT\SuppS ieSuppT\SuppS
v(S)— X Sixi
= Y T+ —Sers oy T4
i€SuppS o ,-Es%,l,s Ti iESuppTﬁS.uppS l

ﬁ(V(T) -v(S) - 2 Tiv(e")) 2 T;

ieSuppT\SuppS €S MPPT\S uppS €S uppT\S uppS .
= Y Tx;+v(iS)— Y Tix;+ D Tve)+vw(T)—-v(S) - > () =wT). O

ieSuppS ieSuppS ieSuppT\SuppS ieSuppT\SuppS

Thus, y € I(U,v,7), and y domg x, which implies x ¢ DC(U,v,T).

This theorem establishes that under the given condition—which ensures that the value of any
coalition 7 is sufficiently large to cover the value of a sub-coalition S and the individual values of
the remaining players—the core and the domination core are identical. This result generalizes the
classical equivalence between the core and the domination core to the fuzzy coalition structure setting,
highlighting the stability and rationality of the core under well-defined value constraints.

6. Conclusions

This paper has systematically investigated the core and domination core of cooperative fuzzy games
with coalition structures, extending the classical framework of the Aubin core to an environment
involving both graded membership and pre-defined coalitional organization. The main contributions
and findings of this research are summarized as follows: First, we introduced a formal model for
cooperative fuzzy games incorporating coalition structures and proposed a generalized core concept
within this setting. This model effectively captures settings where players exhibit partial participation
and are constrained by a coalition structure, thereby offering a more realistic representation of
many practical cooperative decision-making scenarios under uncertainty. Second, we constructed the
superadditive cover for such games and established key equivalence conditions under which the core
remains non-empty. It was shown that when the core is non-empty, it coincides with the core of the
superadditive cover, providing a significant bridge between fuzzy games and their crisp counterparts.
Third, an axiomatic characterization of the core was presented. We proved that the core is the unique
solution concept satisfying the properties of non-emptiness, individual rationality, weak reduced game
property, and superadditivity. This characterization not only clarifies the structural essence of the core
but also offers a solid theoretical foundation for stability analysis in fuzzy coalitional games. Finally, a
domination-core (D-core) was proposed based on a dominance relation among payoft vectors. Under
certain reasonable conditions, the D-core was shown to be equivalent to the conventional core, further
reinforcing the robustness and soundness of the core concept in fuzzy environments with coalition
constraints.

Despite these theoretical advances, there remain several promising directions for further research.
First, the current model is restricted to fuzzy games with real-valued payoffs. Extending the framework
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to more general uncertainty representations—such as interval-valued, intuitionistic, or spherical
fuzzy payoffs—would enhance its applicability to complex decision-making environments. Such
extensions would allow the model to integrate richer forms of ambiguity and linguistic information,
as seen in recent ELECTRE-based and aggregation-operator-driven approaches (e.g., spherical fuzzy
ELECTRE [23] and related fuzzy linguistic operators [24]). Second, the present study assumes a static
and fully known coalition structure. Relaxing this assumption to incorporate dynamic, evolving, or
adaptive coalition formations represents another meaningful direction. This would enable the model
to better capture real-world settings where interaction patterns change over time, such as knowledge
graph completion [25], multi-agent systems [26], and renewable energy planning. Developing a
framework that accommodates such dynamic structures would significantly broaden the applicability
of cooperative fuzzy games with coalition constraints.

In summary, this study enriches the theory of cooperative fuzzy games with coalition structures
and offers a solid basis for further theoretical exploration and practical applications in multi-agent
decision-making under fuzziness and uncertainty.
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