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Abstract: We introduce the quantum indeterminate set (QIS), a novel mathematical framework
that integrates complex-valued membership functions and phase-based interference into classical and
generalized set theory. Unlike complex fuzzy sets, QIS formally encodes both amplitude and phase
interactions, allowing constructive and destructive interference to emerge naturally in reasoning. This
feature distinguishes QIS as a bridge between fuzzy logic and quantum probability. We define its
structure, explore its algebraic properties, and demonstrate its practical capability through a real-world
decision-making case study in energy-system evaluation. The model generalizes fuzzy, intuitionistic,
and neutrosophic sets while introducing a quantum-inspired interference mechanism that enables more
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in quantum decision theory, quantum-inspired soft computing, and uncertainty modeling in artificial
intelligence.
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1. Introduction and related work

Modeling uncertainty is a fundamental task in mathematics, computer science, and artificial
intelligence. Various set-theoretic frameworks and probability-based models have been introduced
to address vagueness, incompleteness, and ambiguity in information. Below, we summarize the most
influential models:

• Classical Set Theory: Each element either belongs to a set or not, with membership values in
{0, 1}. It cannot express partial or uncertain membership.
• Fuzzy Set Theory (Zadeh, 1965): Allows partial membership by assigning a real value in [0, 1]

to each element, capturing degrees of uncertainty [1].
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• Intuitionistic Fuzzy Sets (Atanassov, 1986): Associates each element with both membership
and non-membership degrees, leaving room for hesitation [2].
• Vague Sets: Similar to intuitionistic fuzzy sets, but interprets hesitation more explicitly as a

measurable range [3].
• Neutrosophic Sets (Smarandache): Generalizes intuitionistic sets by introducing independent

degrees of truth, indeterminacy, and falsity [4].
• Possibility Theory (Dubois and Prade): An uncertainty framework based on fuzzy sets, where

possibility and necessity functions represent imprecise information [5].
• Probability Theory: Models randomness and uncertainty via axiomatic probabilities, useful

when dealing with known distributions. [6]
• Complex Fuzzy Sets: Extends fuzzy sets by assigning complex numbers to membership

functions, enabling a phase component without formal interference [7].

While each of these frameworks extends the expressiveness of uncertainty modeling, they
mostly rely on real-valued or additive interpretations of uncertainty. However, in many real-
world situations—such as cognitive modeling, quantum-inspired reasoning, and decision-making with
conflicting expert opinions—uncertainty behaves in oscillatory or interference-like patterns.

How QIS differs from complex fuzzy sets: While complex fuzzy sets (CFS) [7] endow membership
with a complex number, they typically aggregate evidence additively without a built-in notion of phase-
coherence control or normalized interference. By contrast, QIS: (i) constrains |µ(x)| ≤ 1 and uses
explicit renormalization after unions/intersections to avoid amplitude blow-up; (ii) interprets φ(x) as a
semantic phase that propagates through operations and can be aligned, compared, or regularized; and
(iii) couples amplitude and phase to a collapsed score PQ(x) = |µ(x)|2 used for decision-making. This
makes interference and directionality operational, not merely representational, and enables stability
and interpretability analyses absent in standard CFS.

2. Results

Let X be a universal set. A classical fuzzy set F on X is defined by a membership function µF :
X → [0, 1]. In intuitionistic fuzzy sets, each element is associated with both a degree of membership
and non-membership. Neutrosophic sets further extend this to include indeterminacy.

In contrast, the QIS introduces a new structure.

2.1. Definition of the QIS

Definition 1. (QIS) Let X be a universal set. A QIS Q is defined as

Q = {(x, µQ(x), φQ(x)) | x ∈ X},

where

• µQ(x) = a+bi ∈ C is the complex-valued membership function, with a, b ∈ [−1, 1] and |µQ(x)| ≤ 1.
• φQ(x) = arg(µQ(x)), which may be computed as tan−1

(
b
a

)
adjusted for the correct quadrant.

The collapsed probability (observation-based certainty) is

PQ(x) = |µQ(x)|2 = a2 + b2.
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2.1.1. Interpretation of parameters

• a: real part—represents the classical degree of membership (positive for support, negative for
opposition).
• b: imaginary part—models uncertainty, hesitation, or quantum-like interference.
• φ(x): phase—captures the semantic direction of uncertainty and determines

constructive/destructive interference.

The semantic roles of the phase components are summarized in Table 1.

Table 1. Semantic interpretation of QIS phase quadrants.

Quadrant Signs of a, b Interpretation
I +,+ Support with aligned uncertainty
II −,+ Opposition with ambiguous evidence
III −,− Rejection with reinforcing contradiction
IV +,− Support with skeptical interference

2.1.2. Remark

The QIS model generalizes fuzzy sets by

• Allowing negative real and imaginary parts, capturing opposition and contradiction.
• Encoding phase explicitly to model interference patterns.
• Supporting richer decision reasoning in quantum-inspired systems.

2.2. Uncertainty propagation and stability

Let µ(x) = a + bi = reiφ be a QIS membership. A small perturbation δµ changes the phase by

∆φ ≈ Im
(
δµ

µ

)
, |∆φ| ≤

|δµ|

|µ|
whenever µ , 0.

Proposition 1 (Phase-sensitivity bound). For any x with µ(x) , 0, a perturbation δµ induces a phase
change bounded by |∆φ| ≤ |δµ|/|µ|. Consequently, for elements with larger |µ| the phase is more robust
to noise.

Proof. Write ∆φ = arg(µ + δµ) − arg(µ). First-order expansion gives ∆φ ≈ Im(δµ/µ), hence |∆φ| ≤
|δµ|/|µ|. �

Proposition 2 (Normalization-stability). Let µ∪(x) = µ1(x) + µ2(x). Define the normalized union
µ̂∪(x) = µ∪(x) if |µ∪(x)| ≤ 1, else µ̂∪(x) = µ∪(x)/|µ∪(x)|. Then, |̂µ∪(x)| ≤ 1, and any additive
perturbation on inputs is not amplified in modulus beyond 1 in the output.

Proof. Immediate by construction since either the sum is inside the unit disk or is projected to it by
dividing by its modulus. �

The above shows how QIS keeps amplitudes bounded and offers a quantitative handle on phase
robustness during multi-step operations.
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3. Representation of complex membership in QISs

In QISs, the membership function takes complex values. There are two common ways to represent
this membership function:

• Cartesian form:
µQ(x) = a + bi,

where a is the real part and b is the imaginary part.
• Polar form:

µQ(x) = reiφ = r(cos φ + i sin φ),

where r =
√

a2 + b2 is the magnitude of membership and φ = arctan b
a is the phase angle.

The choice between these two representations depends on the purpose and interpretation:

• Cartesian form is useful for explicit numerical calculations and algebraic manipulations, as the
real and imaginary parts are directly accessible.
• Polar form is more suitable when the phase has a meaningful interpretation and needs to be

explicitly incorporated, for example in defining subset relations or operations that depend on
phase equality.

In particular, when domain experts assign or interpret the phase φ to represent qualitative or
interference effects, the polar form becomes essential. However, for computational purposes, one
can always convert between the two forms as needed.

4. Interpretation of the imaginary part in decision making

Unlike classical fuzzy membership, which is a real value indicating the degree of membership, the
complex membership in QIS has an imaginary component that encodes additional information:

• The real part reflects the traditional membership degree (i.e how much an element belongs to the
set).
• The imaginary part (or equivalently the phase) captures interference effects, uncertainty, and

indeterminacy that arise in real-world decision making.

These effects are analogous to quantum phenomena, where probabilities can interfere constructively
or destructively. In decision contexts, the imaginary part can represent the following:

• Ambiguity or hesitation of experts when assigning memberships.
• Conflicting or interacting criteria that influence the final membership in a non-classical way.
• Latent or contextual information not captured by magnitude alone.

Thus, the imaginary part enriches the representation, enabling a more nuanced modeling of
uncertainty and qualitative factors in decision making. Often, the phase (or imaginary part) is assigned
by experts or inferred from domain knowledge, allowing the membership function to better reflect
complex realities beyond classical fuzzy sets.

AIMS Mathematics Volume 10, Issue 11, 26593–26612.
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Example 1. Consider the following universal set of candidates:

X = {A, B,C,D}.

Each candidate is evaluated with a complex-valued membership function µQ(x) = a + bi, where

• The real part a reflects the classical degree of membership (truth).
• The imaginary part b reflects indeterminacy, quantum interference, or hesitation.
• The phase φQ(x) = arg(a + bi) represents the direction of the complex number in the complex

plane.
• The probability PQ(x) is the squared modulus: PQ(x) = |µQ(x)|2 = a2 + b2.

Table 2 summarizes the complex-valued memberships, phase angles, and probabilities used to illustrate
the QIS decision example.

Table 2. (QIS) Membership, phase angles, and probability values for candidate elements.

Candidate Membership µQ(x) Phase φQ(x) (rad) Probability PQ(x)
A 0.8 + 0.2i arg(0.8 + 0.2i) ≈ 0.245 0.82 + 0.22 = 0.68
B 0.6 − 0.3i arg(0.6 − 0.3i) ≈ −0.464 0.62 + 0.32 = 0.45
C 0.5 + 0.5i π

4 ≈ 0.785 0.52 + 0.52 = 0.50
D 0.7 + 0i 0 0.72 = 0.49

This example illustrates the expressive power of QIS:

• Candidate A has a high truth value with minor quantum uncertainty.
• Candidate B has moderate presence with some opposing (negative phase) interference.
• Candidate C reflects balanced uncertainty and truth.
• Candidate D represents a classical membership with no interference.

4.1. Motivation and conceptual framework

4.1.1. Why do we need the QIS?

Classical fuzzy set theory describes uncertainty using a real-valued membership degree µ∈[0, 1].
While effective in many contexts, it lacks the expressive capacity to represent interference,
contradiction, and phase-based uncertainty. In real-world applications, such as multi-source decision-
making or quantum-inspired modeling, information may exhibit constructive or destructive interaction,
a concept that classical fuzzy logic cannot accommodate.

To overcome these limitations, we introduce the QIS, where each element x is assigned the
following complex-valued membership:

Ã(x) = µ(x)eiφ(x), with µ(x) ∈ [0, 1], φ(x) ∈ [0, 2π).

Here, µ(x) indicates the degree of membership (intensity or magnitude), and φ(x) represents the phase
angle, encoding the type or source of uncertainty.
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4.1.2. Comparison with existing models

Uncertainty and vagueness in classical set theory have been addressed by several frameworks.
The most classical and widely studied approach is the fuzzy set introduced by Zadeh [1], where
each element has a membership degree in the interval [0, 1]. Since then, many generalizations
like intuitionistic fuzzy sets, neutrosophic sets, and vague sets have been proposed to better capture
hesitation and indeterminacy [2–4].

Our proposed QIS extends this modeling by assigning a complex-valued membership function to
each element. This complex membership captures not only the degree of membership via its magnitude
but also an associated phase that models interference and indeterminacy phenomena analogous to those
in quantum mechanics. Table 3 summarizes key differences between classical fuzzy sets and QIS.

Table 3. Comparison of classical fuzzy sets, intuitionistic fuzzy sets, neutrosophic sets,
vague sets, and QISs.

Aspect Classical fuzzy
sets

Intuitionistic
fuzzy sets

Neutrosophic
sets

Vague sets QISs

Membership
Values

Real number in
[0, 1]

Membership and
non-membership
in [0, 1] +

hesitation

Membership,
indeterminacy
and non-
membership
in [0, 1], no sum
restriction

Interval
membership
values in [0, 1]

Complex number
with magnitude and
phase: µ(x) = reiθ,
r ∈ [0, 1], θ ∈ [0, 2π)

Indeterminacy/

Hesitation
Not explicit Explicit

(residual)
Explicit
(independent)

Implicit (interval
width)

Modeled via phase
θ, representing
interference and
uncertainty beyond
scalar degrees

Interpretation Degree of
membership

Degree of
membership and
non-membership
+ hesitation

Three
independent
degrees

Interval-based
uncertainty

Membership
amplitude and
phase, inspired
by quantum
probability and
wave interference

Mathematical
Foundation

Fuzzy logic and
set theory

Extension of
fuzzy sets

Generalization
using
neutrosophy

Interval analysis Quantum
mechanics,
complex-valued
membership
functions, phase
interference effects

Potential
Advantage

Simplicity Models hesitation Models
inconsistency
and paradox

Represents
interval
uncertainty

Captures
interference and
richer uncertainty
patterns, suitable for
complex decision
contexts

Interpretation. The phase component in QIS membership values can be understood as encoding a
degree of indeterminacy or interaction between membership and non-membership states, akin to wave
interference in quantum mechanics. This provides a novel and powerful tool for modeling decision-
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making problems where classical fuzzy sets fall short.

4.1.3. What does the phase φ represent?

In quantum physics, the phase of a wave function governs interference. Inspired by this, we define
φ as the semantic phase in QIS, which conveys the qualitative nature of the uncertainty. For instance,
sources may agree or oppose each other, leading to constructive or destructive effects.

• φ = 0: Fully supportive or confirmatory source.
• φ = π: Fully opposing or contradictory source.
• φ = π

2 ,
3π
2 : Uncorrelated or orthogonal uncertainty.

4.1.4. Who determines the values of µ and φ?

• The membership degree µ is provided by expert judgment, data-driven estimation, or linguistic
evaluation—just like in classical fuzzy theory.
• The phase φ is determined by

(1) The nature of the information source.
(2) The context or domain knowledge (e.g., agreement, hesitation, contradiction).
(3) A linguistic or numerical encoding scheme (see Table 4).

Table 4. Linguistic interpretation of phase φ in QIS.

Phase φ Linguistic Meaning
0 Strong support / full agreement
π
4 Moderate support / slightly optimistic
π
2 Neutral or undecided
3π
4 Slight opposition / skeptical
π Strong contradiction / full opposition
5π
4 Hesitant source with weak contradiction

3π
2 Independent / uncorrelated context

2π Reinforcing (repeats original direction)

4.1.5. Role of complex numbers in QIS

Using complex numbers allows the QIS to

• Represent both magnitude (µ) and directionality (φ).
• Capture interference patterns (constructive or destructive).
• Embed richer semantic interpretations into the membership function.

4.1.6. Linguistic interpretation of phase values

The inclusion of a phase angle allows for interference effects when aggregating over multiple
criteria.

AIMS Mathematics Volume 10, Issue 11, 26593–26612.
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4.2. Phase-assignment guidelines

To reduce subjectivity, we suggest a two-tier protocol:

(1) Linguistic prior: map domain attitudes to a baseline phase φprior ∈ {0, π
12 ,

π
8 ,

π
6 ,

π
4 , . . .} using

Table 4.
(2) Data-driven adjustment: set φ = φprior + κ · D, where D ∈ [0, 1] is a dispersion index (e.g.,

normalized standard deviation across sources or alternatives), and κ ∈ [0, π6 ] controls adjustment
strength.

The second stage of the protocol introduces a quantitative mechanism for refining the phase value
based on the empirical variability of the criterion. This process combines the linguistic prior with a
dispersion-based adjustment to ensure consistent and reproducible phase assignments. The complete
procedure is formalized in Algorithm 1.

Algorithm 1 Data-assisted phase assignment for a criterion j.

Require: Scores {s j(x)}x∈X normalized to [0, 1], baseline φprior
j , gain κ

1: D j ←
std({s j(x)})

max{s j(x)}−min{s j(x)}+ε . D j ∈ [0, 1]

2: φ j ← φ
prior
j + κD j

3: return φ j

5. Operations on QIS: detailed examples

Definition 2. Let Q1,Q2 be two QISs over a universe X, where

Q1 = {(x, µQ1(x))}, Q2 = {(x, µQ2(x))}.

Then, Q1 ⊆ Q2 if for every x ∈ X, the following two conditions hold:

(1) Magnitude condition: |µQ1(x)| ≤ |µQ2(x)|.
(2) Phase condition: |φQ1(x) − φQ2(x)| < ε for a small threshold ε > 0.

The first ensures containment in terms of support; the second ensures directional alignment
(semantic or interference phase proximity). Typically, ε may be chosen as π

12 (15°), depending on
application tolerance.

Example 2. Let the universe be X = {x1, x2}. Define

Q1 = {(x1, 0.6 + 0.3i, φ1(x1)), (x2, 0.4 + 0.2i, φ1(x2))} ,

Q2 = {(x1, 0.7 + 0.3i, φ2(x1)), (x2, 0.5 + 0.2i, φ2(x2))} .

We compute magnitudes and phases as follows:

• At x1:

|µQ1(x1)| =
√

0.62 + 0.32 =
√

0.45 ≈ 0.671,

AIMS Mathematics Volume 10, Issue 11, 26593–26612.
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|µQ2(x1)| =
√

0.72 + 0.32 =
√

0.58 ≈ 0.761,
φQ1(x1) = tan−1(0.3/0.6) = tan−1(0.5) ≈ 0.464,
φQ2(x1) = tan−1(0.3/0.7) ≈ 0.404,
|φ1 − φ2| ≈ |0.464 − 0.404| = 0.06 < π

12 .

• At x2:

|µQ1(x2)| =
√

0.42 + 0.22 =
√

0.20 ≈ 0.447,

|µQ2(x2)| =
√

0.52 + 0.22 =
√

0.29 ≈ 0.538,
φQ1(x2) = tan−1(0.2/0.4) = tan−1(0.5) ≈ 0.464,
φQ2(x2) = tan−1(0.2/0.5) = tan−1(0.4) ≈ 0.380,
|φ1 − φ2| ≈ |0.464 − 0.380| = 0.084 < π

12 .

Since both the magnitude and phase conditions are satisfied for all x ∈ X, we conclude as follows:

Q1 ⊆ Q2.

Interpretation. The subset relation in QIS combines classical support comparison (modulus-based)
with quantum alignment (phase coherence). This ensures that each element in Q1 is not only weaker
(or equal) in support but also directionally aligned with the corresponding element in Q2, allowing QIS
to model agreement not just in degree but in semantic or interference orientation.

Definition 3. Let Q1 = {(x, µQ1(x))} and Q2 = {(x, µQ2(x))} be two QISs defined over the same universe
X. Then,

Q1 = Q2 if and only if ∀x ∈ X :

|µQ1(x) − µQ2(x)| < δ,
|φQ1(x) − φQ2(x)| < ε,

for small tolerances δ, ε > 0 (e.g., δ = 0.01, ε = π
50 ). That is, two QISs are considered equal if their

complex memberships are approximately equal in both magnitude and phase.

Example 3. Let X = {x1}, and define the following:

Q1 = {(x1, 0.600 + 0.300i, φ1(x1))} , Q2 = {(x1, 0.605 + 0.295i, φ2(x1))} .

|µQ1(x1) − µQ2(x1)| = |(0.600 − 0.605) + i(0.300 − 0.295)| = | − 0.005 + 0.005i|

=
√

(−0.005)2 + (0.005)2 =
√

0.00005 ≈ 0.007,
φQ1(x1) = tan−1(0.3/0.6) ≈ 0.464,
φQ2(x1) = tan−1(0.295/0.605) ≈ 0.454,

|φQ1(x1) − φQ2(x1)| ≈ 0.01 <
π

50
≈ 0.063.

Since both the modulus and phase differences are below the specified thresholds, we conclude the
following:

Q1 = Q2.

AIMS Mathematics Volume 10, Issue 11, 26593–26612.
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Definition 4. Let Q = {(x, µQ(x)) | x ∈ X} be a QIS over a universe X. The complement of Q, denoted
Qc, is defined for each x ∈ X by

µQc(x) =


1 − µQ(x), if |1 − µQ(x)| ≤ 1,
1 − µQ(x)
|1 − µQ(x)|

, if |1 − µQ(x)| > 1,

φQc(x) = arg(µQc(x)).

Example 4. Let the QIS Q be defined over the universe X = {x1, x2} as follows:

Q =
{
(x1, 0.6 + 0.3i, π6 ), (x2, 0.8 + 0.2i, π7 )

}
.

We compute the complement Qc for each element.

• At x1:

µQ(x1) = 0.6 + 0.3i,

µQc(x1) = 1 − (0.6 + 0.3i) = 0.4 − 0.3i,

|µQc(x1)| =
√

0.42 + (−0.3)2 =
√

0.25 = 0.5 ≤ 1,

φQc(x1) = arg(0.4 − 0.3i) = tan−1
(
−0.3
0.4

)
≈ −0.6435.

• At x2:

µQ(x2) = 0.8 + 0.2i,

µQc(x2) = 1 − (0.8 + 0.2i) = 0.2 − 0.2i,

|µQc(x2)| =
√

0.22 + (−0.2)2 =
√

0.08 ≈ 0.283 ≤ 1,
φQc(x2) = arg(0.2 − 0.2i) = −π4 .

Therefore, the complement set is

Qc =
{
(x1, 0.4 − 0.3i,−0.6435), (x2, 0.2 − 0.2i,−π4 )

}
.

Interpretation. The complement operation flips the quantum membership relative to the full
certainty value 1 + 0i, subtracting the original support and inverting its semantic direction (phase).
The resulting values remain within the unit disk, and no normalization was needed here. The phase
angles move into the negative domain, reflecting semantic opposition or contradiction to the original
membership.

Definition 5. Let Q1 = {(x, µ1(x)) | x ∈ X} and Q2 = {(x, µ2(x)) | x ∈ X} be two QISs defined over the
same universe X. The union of Q1 and Q2, denoted by Q1 ∪ Q2, is defined element-wise by

µQ1∪Q2(x) =


µ1(x) + µ2(x), if |µ1(x) + µ2(x)| ≤ 1,
µ1(x) + µ2(x)
|µ1(x) + µ2(x)|

, if |µ1(x) + µ2(x)| > 1.

AIMS Mathematics Volume 10, Issue 11, 26593–26612.
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The phase of each element in the union set is computed as

φQ1∪Q2(x) = arg(µQ1∪Q2(x)).

This definition ensures that the resulting set remains a valid QIS, with all membership magnitudes
|µ(x)| ≤ 1.

Example 5. Let the QISs Q1 and Q2 be defined on the universe X = {x1, x2} as

Q1 =
{
(x1, 0.6 + 0.3i, π6 ), (x2, 0.4 + 0.2i, π6 )

}
, Q2 =

{
(x1, 0.7 + 0.3i, π8 ), (x2, 0.5 + 0.2i, π8 )

}
.

We compute the union Q1 ∪ Q2 using the above definition.

• At x1:

µQ1(x1) = 0.6 + 0.3i, µQ2(x1) = 0.7 + 0.3i,

µraw = 0.6 + 0.3i + 0.7 + 0.3i = 1.3 + 0.6i,

|µraw| =
√

1.32 + 0.62 ≈
√

2.05 ≈ 1.433 > 1,

µQ1∪Q2(x1) =
1.3 + 0.6i

1.433
≈ 0.907 + 0.419i,

φQ1∪Q2(x1) = arg(0.907 + 0.419i) ≈ tan−1
(
0.419
0.907

)
≈ 0.435.

• At x2:

µQ1(x2) = 0.4 + 0.2i, µQ2(x2) = 0.5 + 0.2i,

µraw = 0.4 + 0.2i+0.5 + 0.2i = 0.9 + 0.4i,

|µraw| =
√

0.92 + 0.42 =
√

0.97 ≈ 0.985 ≤ 1,
µQ1∪Q2(x2) = 0.9 + 0.4i,

φQ1∪Q2(x2) = arg(0.9 + 0.4i) = tan−1
(
0.4
0.9

)
≈ 0.418.

Thus, the resulting union QIS is

Q1 ∪ Q2 = {(x1, 0.907 + 0.419i, 0.435) , (x2, 0.9 + 0.4i, 0.418)} .

Interpretation. The union aggregates both magnitude and direction (phase) of support from the two
QISs. Normalization was applied at x1 because the combined amplitude exceeded 1, ensuring the
probabilistic consistency of the QIS model.

Definition 6. Let Q1 = {(x, µ1(x)) | x ∈ X} and Q2 = {(x, µ2(x)) | x ∈ X} be two QISs defined over the
same universe X. The intersection of Q1 and Q2, denoted Q1 ∩ Q2, is defined element-wise by

µQ1∩Q2(x) =


µ1(x) · µ2(x), if |µ1(x) · µ2(x)| ≤ 1,
µ1(x) · µ2(x)
|µ1(x) · µ2(x)|

, if |µ1(x) · µ2(x)| > 1.

φQ1∩Q2(x) = arg(µQ1∩Q2(x)).

This ensures that the resulting set remains a valid QIS with |µ(x)| ≤ 1, preserving the unit-bound
constraint on quantum-inspired complex membership values.
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Example 6. Let Q1 and Q2 be defined on the universe X = {x1, x2} as

Q1 =
{
(x1, 0.6 + 0.3i, π6 ), (x2, 0.4 + 0.2i, π6 )

}
, Q2 =

{
(x1, 0.7 + 0.3i, π8 ), (x2, 0.5 + 0.2i, π8 )

}
.

We compute the intersection Q1 ∩ Q2 using the above definition.

• At x1:

µQ1(x1) = 0.6 + 0.3i, µQ2(x1) = 0.7 + 0.3i,

µraw = (0.6 + 0.3i)(0.7 + 0.3i)
= (0.6 · 0.7 − 0.3 · 0.3) + i(0.6 · 0.3 + 0.3 · 0.7) = 0.33 + 0.39i,

|µraw| =
√

0.332 + 0.392 =
√

0.261 ≈ 0.511 ≤ 1,
µQ1∩Q2(x1) = 0.33 + 0.39i,

φQ1∩Q2(x1) = tan−1
(
0.39
0.33

)
≈ 0.755.

• At x2:

µQ1(x2) = 0.4 + 0.2i, µQ2(x2) = 0.5 + 0.2i,

µraw = (0.4 + 0.2i)(0.5 + 0.2i) = 0.16 + 0.18i,

|µraw| =
√

0.162 + 0.182 =
√

0.058 ≈ 0.241 ≤ 1,
µQ1∩Q2(x2) = 0.16 + 0.18i,

φQ1∩Q2(x2) = tan−1
(
0.18
0.16

)
≈ 0.837.

Thus, the resulting intersection QIS is

Q1 ∩ Q2 = {(x1, 0.33 + 0.39i, 0.755), (x2, 0.16 + 0.18i, 0.837)} .

Interpretation. The intersection aggregates quantum memberships multiplicatively, blending the
uncertainty and phase information of both sets. In this example, both resulting magnitudes remained
within the unit circle, so no normalization was required. The final phases illustrate interference-like
behavior, capturing how opinions or evidences interact in quantum-style reasoning.

Definition 7. The symmetric difference of two QISs, denoted Q14Q2, is the following set:

Q14Q2 = (Q1 ∪ Q2) \ (Q1 ∩ Q2).

For each x ∈ X, define the following :

µQ14Q2(x) = µQ1(x) + µQ2(x) − 2µQ1(x)µQ2(x),

φQ14Q2(x) = arg
(
µQ14Q2(x)

)
.

This formulation captures “disagreement” or “non-overlapping” support in the quantum sense. It
cancels overlap while summing distinct contributions.
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Example 7. Let

Q1 = {(x1, 0.6 + 0.3i, φ1(x1))} , Q2 = {(x1, 0.5 + 0.2i, φ2(x1))} .
µQ14Q2(x1) = (0.6 + 0.3i) + (0.5 + 0.2i) − 2(0.6 + 0.3i)(0.5 + 0.2i) = 0.62 − 0.04i,

φQ14Q2(x1) = arg(0.62 − 0.04i) ≈ −0.064.

Therefore,
Q14Q2 = {(x1, 0.62 − 0.04i,−0.064)} .

5.1. Algorithms for QIS operations

Algorithm 2 formalizes the elementwise QIS union by combining the complex memberships
through vector addition while enforcing normalization to preserve the unit-disc constraint.
Algorithm 2 QIS union (elementwise)
Require: µ1(x), µ2(x) ∈ C

1: µ← µ1(x) + µ2(x)
2: if |µ| > 1 then
3: µ← µ/|µ|

4: end if
5: return µ and φ = arg(µ)

As shown in Algorithm 3, the QIS intersection is implemented via complex multiplication, which
naturally encodes interaction between magnitudes and phases, followed by normalization when
necessary.
Algorithm 3 QIS intersection (elementwise)
Require: µ1(x), µ2(x) ∈ C

1: µ← µ1(x) · µ2(x)
2: if |µ| > 1 then
3: µ← µ/|µ|

4: end if
5: return µ and φ = arg(µ)

Algorithm 4 summarizes the phase-weighted aggregation rule, where each criterion contributes a
complex vector determined by its score, weight, and assigned phase, producing a final membership
and its associated probability.
Algorithm 4 Phase-weighted aggregation of m criteria
Require: normalized scores r j(x) ∈ [0, 1], weights w j ≥ 0, phases φ j

1: µ(x)← 0
2: for j = 1 to m do
3: µ(x)← µ(x) + w j r j(x) eiφ j

4: end for
5: if |µ(x)| > 1 then
6: µ(x)← µ(x)/|µ(x)|
7: end if
8: return µ(x), PQ(x) = |µ(x)|2
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6. Applications and limitations

The QIS model extends traditional fuzzy and neutrosophic sets by introducing complex-valued
membership and phase-based semantics. While decision-making is a key use case, the QIS framework
has broader applicability and faces several practical challenges.

6.1. Extended applications

Beyond decision-making, the QIS framework can be adapted to several advanced fields:

• Quantum-inspired machine learning: QIS can encode uncertainty in input features using
both magnitude and phase, enabling models to learn contextual or conflicting patterns through
interference effects.
• Multi-agent systems: When agents contribute opinions with different beliefs or evidence

strengths, QIS allows aggregation with phase-based differentiation, capturing conflict and
alignment.
• Conflict resolution and negotiation models: In domains such as diplomacy or group consensus,

QIS can model constructive or destructive interactions between stakeholder perspectives.

These applications highlight the general-purpose nature of QIS in environments where uncertainty
is both quantitative and directional.

6.2. Limitations

While QIS offers expressive modeling capabilities, it also introduces challenges:

• Computational complexity: Calculating phase angles and performing complex arithmetic (e.g.,
normalization, interference) is more computationally demanding than operations in classical or
fuzzy models.
• Subjective phase assignment: Assigning the phase angle φ(x) may depend on expert knowledge

or domain-specific heuristics, which could introduce inconsistency.
• Interpretability: In fields unfamiliar with complex numbers or quantum-inspired semantics,

explaining the meaning of phase and its impact may be non-trivial.

Addressing these limitations could involve developing automated phase inference techniques and
simplifying the interpretive tools for end-users.

Bias from Normalization. Projecting sums/products back to the unit disk may discard amplitude
information when |µ| > 1. In practice this bias is controlled by (i) capping frequency of renormalization
through weight tuning; (ii) logging the pre-normalized modulus as an auxiliary feature; and (iii)
sensitivity checks that compare rankings with/without normalization on borderline items.

Phase Sensitivity. By Proposition 1, |∆φ| ≤ |δµ|/|µ|. Hence, small amplitudes are intrinsically fragile
in phase, and we recommend reporting both (|µ|, φ) and PQ = |µ|2 and avoiding decisions that hinge on
very small |µ| unless supported by multiple criteria.
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6.3. Case study: multi-expert evaluation in hiring

Consider a hiring scenario where two experts evaluate a candidate x1 based on two criteria:
leadership and academic excellence. The evaluation is expressed using the QIS framework over the
universe X = {x1}. Each expert provides a complex-valued membership degree with an associated
phase angle:

Q1 =
{
(x1, 0.7 + 0.4i, φQ1(x1) = arg(0.7 + 0.4i) ≈ 0.519 rad)

}
,

Q2 =
{
(x1, 0.6 + 0.5i, φQ2(x1) = arg(0.6 + 0.5i) ≈ 0.694 rad)

}
.

We combine the evaluations using the QIS union definition as follows:

µQ1∪Q2(x1) = µQ1(x1) + µQ2(x1) = (0.7 + 0.4i) + (0.6 + 0.5i) = 1.3 + 0.9i,

|µQ1∪Q2(x1)| =
√

1.32 + 0.92 =
√

2.5 ≈ 1.58.

Since the magnitude exceeds 1, we apply normalization (optional in certain applications):

µ∗Q1∪Q2
(x1) =

1.3 + 0.9i
√

2
≈ 0.919 + 0.636i

φQ1∪Q2(x1) = arg(µ∗Q1∪Q2
(x1)) ≈ 0.608 rad.

Q1 ∪ Q2 = {(x1, 0.919 + 0.636i, φ = 0.608 rad)} .

Interpretation. The resulting complex membership degree after normalization reflects the
cumulative evaluation of the candidate. The increased magnitude indicates stronger overall agreement,
while the phase angle (approx. 0.608 radians) represents a compromise direction between the experts’
perspectives (e.g., balancing leadership and academic strength).

6.4. Case study: expert opinion aggregation with assigned phases

Consider a decision problem where two experts evaluate a product x1 for market readiness. Each
expert provides:
- A complex-valued membership µQ(x1) = a + bi ∈ C representing support and uncertainty.
- An assigned phase angle φQ(x1) ∈ [0, 2π), interpreted as the expert’s subjective orientation or context
emphasis (e.g., technical vs. financial).

Let the QISs be

Q1 =

{
(x1, 0.6 + 0.4i, φQ1(x1) =

π

4
)
}
, Q2 =

{
(x1, 0.5 + 0.5i, φQ2(x1) =

π

6
)
}
.

These phase values are expert-assigned, not derived from µQ(x1). They reflect different
interpretation strategies (e.g., π

4 : risk-balanced optimism, π
6 : cost-focused analysis).

µQ1∪Q2(x1) = (0.6 + 0.4i) + (0.5 + 0.5i) = 1.1 + 0.9i, |µQ1∪Q2(x1)| ≈ 1.42.

Since the magnitude exceeds 1, we apply normalization as follows:
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µ∗Q1∪Q2
(x1) =

1.1 + 0.9i
√

2
≈ 0.778 + 0.636i.

For the final phase, use the following magnitude-weighted average:

φQ1∪Q2(x1) =
|µQ1 | · φQ1 + |µQ2 | · φQ2

|µQ1 | + |µQ2 |
≈ 0.655 rad.

Q1 ∪ Q2 = {(x1, 0.778 + 0.636i, φ = 0.655 rad)} .

6.5. Application: multi-expert decision-making using QIS score

Three experts evaluate two candidates x1 and x2 for a research position. Their opinions are modeled
using QIS, where each expert provides µQ(x) = a + bi and φQ(x) = arg(µQ(x)).

Score function: ScoreQ(x) = |µQ(x)|2 = a2 + b2.

Expert input (QIS memberships):

Q1 = {(x1, 0.6 + 0.3i), (x2, 0.5 + 0.2i)}, Q2 = {(x1, 0.5 + 0.4i), (x2, 0.3 + 0.5i)}.

Aggregation via union:

µQ(x1) = 1.1 + 0.7i⇒ φQ(x1) ≈ 0.567, µQ(x2) = 0.8 + 0.7i⇒ φQ(x2) ≈ 0.718.

Scores:
ScoreQ(x1) = 1.70, ScoreQ(x2) = 1.13.

Hence, x1 is preferred; φQ(x1) ≈ 32.5◦ indicates moderate alignment.

6.6. Application: QIS-based MCDM for optimal energy system selection

We evaluate four alternatives: A1 Solar PV (utility-scale), A2 onshore wind, A3 gas turbine (CHP),
A4 diesel genset. Criteria: LCOE ($/MWh, ↓), CO2 (kg/MWh, ↓), Availability (%, ↑), CAPEX ($/kW,
↓), Land (m2/MW, ↓). Weights (w1, . . . ,w5) = (0.30, 0.25, 0.20, 0.15, 0.10). The techno-economic
indicators are based on industrial and research reports from Lazard [8] and IRENA [9, 10].

Before applying the QIS-based normalization and aggregation, the raw techno-economic
performance values for the four alternatives are summarized in Table 5. These values reflect realistic
order-of-magnitude benchmarks widely reported in recent energy studies.

Table 5. Raw performance (illustrative, realistic order-of-magnitude).

Alternative LCOE CO2 Avail. CAPEX Land
A1 PV 45 40 96.0 900 80,000
A2 Wind 38 12 95.0 1400 5,000
A3 Gas (CHP) 70 400 99.5 1000 1,000
A4 Diesel 150 700 99.0 500 800

Data sources: Lazard levelized cost of energy+ (2025) [8] and IRENA renewable power generation
costs (2024) [10].
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We min–max normalize each criterion to the interval [0, 1], where cost-type attributes use N =

(max−x)/(max−min) and benefit-type attributes use N = (x − min)/(max−min). The resulting
normalized decision matrix, which serves as the input for the QIS aggregation stage, is provided in
Table 6.

Table 6. Normalized scores r j(x) ∈ [0, 1].

Alternative LCOE CO2 Avail. CAPEX Land
A1 PV 0.9375 0.9593 0.2222 0.5556 0.0000
A2 Wind 1.0000 1.0000 0.0000 0.0000 0.9470
A3 Gas (CHP) 0.7143 0.4360 1.0000 0.4444 0.9975
A4 Diesel 0.0000 0.0000 0.8889 1.0000 1.0000

We assign criterion phases (linguistic prior + mild dispersion):

(φ1, φ2, φ3, φ4, φ5) =
( π

12 ,
π
8 ,

π
6 ,

π
12 ,

π
5

)
.

Aggregate complex membership per alternative using Algorithm 4:

µ(A) =

5∑
j=1

w j r j(A) eiφ j , PQ(A) = |µ(A)|2.

Using the worked complex-valued scores shown above, we compute the QIS probabilities PQ(A) =

|µ(A)|2 for each alternative. These values form the basis for the final ranking obtained through the QIS
aggregation model, as reported in Table 7.

Worked numbers (rounded): Using cos( π
12 ) ≈ 0.9659, sin( π

12 ) ≈ 0.2588, cos(π8 ) ≈ 0.9239, sin(π8 ) ≈
0.3827, cos(π6 )=0.8660, sin(π6 )=0.5, cos(π5 )≈0.8090, sin(π5 )≈0.5878, we obtain the following:

µ(A1) ≈ 0.612 + 0.208 i, PQ(A1) ≈ 0.418,
µ(A2) ≈ 0.597 + 0.229 i, PQ(A2) ≈ 0.409,
µ(A3) ≈ 0.626 + 0.273 i, PQ(A3) ≈ 0.466,
µ(A4) ≈ 0.380 + 0.187 i, PQ(A4) ≈ 0.179.

Table 7. QIS scores and ranking.

Alternative PQ(A) = |µ(A)|2 Rank
A3 Gas (CHP) 0.466 1
A1 PV 0.418 2
A2 Wind 0.409 3
A4 Diesel 0.179 4

Interpretation. Under the chosen weights, the high availability and compact land footprint lift A3.
If environmental weight increases (e.g., wCO2 ↑), A1–A2 quickly overtake. QIS makes this trade-off

transparent via phase-aware aggregation and the scalar PQ for ranking, consistent with the latest global
cost trends reported by IRENA [9].
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6.7. Uncertainty propagation experiment

To examine the robustness of the QIS-based decision under small perturbations, we vary:

• Criterion weights by ±5% around their baseline values.
• Phases by ±5% (i.e., φ j 7→ φ j(1 ± 0.05)).

For each perturbed configuration, we recompute PQ(A) = |µ(A)|2 using the same normalization rules
as before.

Perturbation of Weights. Let w′j = w j(1 + η j) with η j ∈ {−0.05, 0,+0.05} independently sampled
(renormalized so that

∑
j w′j = 1). Monte–Carlo simulation with 100 draws produces the mean and

standard deviation of PQ(A) shown in Table 8.

Table 8. Sensitivity of PQ(A) to ±5% weight perturbations (100 trials).

Alternative E[PQ(A)] Std(PQ(A))
A3 Gas (CHP) 0.465 0.009
A1 PV 0.418 0.011
A2 Wind 0.407 0.013
A4 Diesel 0.179 0.007

The ranking remains invariant across all perturbations, demonstrating low weight sensitivity.
Perturbation of Phases. For phase variation, φ′j = φ j(1+ ζ j) with ζ j ∈ {−0.05, 0,+0.05}. The resulting
deviations are summarized in Table 9.

Table 9. Sensitivity of PQ(A) to ±5% phase perturbations.

Alternative E[PQ(A)] Std(PQ(A))
A3 Gas (CHP) 0.466 0.005
A1 PV 0.417 0.006
A2 Wind 0.410 0.006
A4 Diesel 0.179 0.003

Interpretation. Both experiments show that PQ(A) exhibits sub-linear sensitivity to small input
perturbations. By Proposition 1, since |µ(A)| ≈ 0.6 for leading alternatives, the expected phase
deviation |∆φ| . 0.05/0.6 ≈ 0.083 rad (≈ 5◦), which explains the minor score fluctuation. Thus,
QIS-based ranking is numerically and semantically stable for realistic uncertainty levels.

7. Discussion

The QIS model offers a powerful extension to classical fuzzy and soft set theories by incorporating
both magnitude and phase as fundamental dimensions of uncertainty. Unlike traditional models that
rely solely on scalar degrees of truth, QIS expresses membership through complex numbers µQ(x) =

a + bi, with a corresponding phase angle φQ(x) = arg(µQ(x)). This phase-based modeling allows QIS
to naturally capture interference, opposition, and constructive ambiguity—properties commonly found
in quantum logic and human expert reasoning.
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Through the use of normalized operations, QIS maintains stability even under cumulative
uncertainty. A key feature is the ability to support decision-making without reliance on external
parameter sets, making it suitable for contexts with minimal or ambiguous information. The score
function derived from complex membership also offers an interpretable scalar for ranking or evaluation,
while preserving the original semantic orientation of the data through its phase.

Furthermore, the example of multi-expert hiring demonstrated how QIS can model consensus and
divergence in expert judgments, using both modulus (confidence) and phase (semantic alignment).
Compared to fuzzy sets, QIS handles contradiction more gracefully, offering a richer structure to
encode and manipulate uncertainty.

8. Conclusions

This paper introduced the QIS, a new set-theoretic framework designed to capture both the
magnitude and phase of uncertainty through complex-valued membership functions. By extending
membership values into the complex plane, QIS incorporates quantum-like interference, enabling the
modeling of constructive and destructive interactions among uncertain elements.

We defined the fundamental operations of QIS, provided formal proofs of their properties, and
illustrated their interpretability through numerical examples and a real-world multi-criteria decision-
making application in energy-system evaluation. Compared with fuzzy, intuitionistic, and neutrosophic
sets, QIS offers richer semantics, a stronger interpretive phase mechanism, and more flexible
aggregation under contradictory evidence.

Overall, QIS establishes a mathematical foundation for integrating phase-based reasoning into
uncertainty modeling, marking a potential paradigm shift toward quantum-inspired intelligent systems
and phase-dependent decision analytics.

9. Future work

The QIS framework opens several promising research directions:

• Uncertainty propagation and phase stability: Investigate cumulative phase effects in sequential
operations and large-scale decision systems to formally quantify how interference evolves and
stabilizes across iterative reasoning steps.
• Learning-based phase assignment: Develop data-driven and neural learning approaches for

automatic phase inference, linking QIS semantics with observable features to reduce subjectivity.
• Quantum-inspired machine learning: Integrate QIS into neural and kernel architectures,

enabling phase-aware learning and interpretable uncertainty modeling.
• Multi-agent reasoning: Extend QIS to model cooperative and competitive decision systems

where each agent carries distinct phase orientations.
• Computational optimization: Design efficient numerical and matrix-based implementations for

QIS operations to enhance scalability in AI and uncertainty analytics.
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