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Abstract: Training deep neural networks remains difficult due to vanishing gradients, non-convex loss
surfaces, and hyperparameter sensitivity. These obstacles are compounded by quantum machine
learning, where barren plateaus, circuit depth, and hardware noise restrict the applicability of gradient-
based approaches. To overcome these drawbacks, this study presents adaptive Grover-driven parallel
quantum optimization (AG-PQO), a hybrid, gradient-free scheme that leverages Grover’s quadratic
search speedup, along with adaptive loss-aware discretization and fidelity-based regularization. In
contrast to more classical optimizers, such as Adam or evolutionary strategies (ES), which are either
sensitive to the adequacy of the gradient update or exhibit poor scaling behavior, AG-PQO optimizes
by performing Grover-accelerated candidate exploration across layers and reuses high-quality
solutions in quantum memory caching. Testing indicates that AG-PQO yields higher accuracy, 2%—3%
above Adam and ES, and faster convergence with less end-value loss than Adam, ES, and quantum
feedforward-backpropagation (QFB). It is worth noting that AG-PQO remains stable at the simulated noise
level of NISQ and has the potential to scale to near-term quantum processors.
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List of Abbreviations
Abbreviation Meaning
AG-PQO Adaptive Grover-driven parallel quantum optimization
ALADC Adaptive loss-aware discretization control
QMCR Quantum memory caching and reuse
ZNE Zero-noise extrapolation
QFB Quantum feedforward-backpropagation
VQC Variational quantum circuit
QNES Quantum natural evolution strategies
QMIST Quantum-MNIST dataset
NISQ Noisy intermediate-scale quantum
ReLU Rectified linear unit

List of equations

Equation No. Title/Purpose

1) Feed-forward neural network forward-propagation equation

(2 Categorical cross-entropy loss function

3) Quantum candidate weight matrix generation

4) Oracle-based quantum loss evaluation

(5) Weight update rule using Grover-selected candidate

(6) Amplitude-encoding mapping of weights

(7) Angle-encoding mapping of weights

(8) Computational complexity for amplitude encoding

9) Computational complexity for angle encoding

(10) Adaptive discretization controller (A-update rule)

(11) Cosine-similarity-based fidelity approximation

(12) Fidelity-regularized loss function

(13) Memory-buffer candidate generation rule

(14) Grover stochastic transformation operator

(15) Perturbation interval convergence condition

a7 Fidelity-driven regularization stability inequality
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1. Introduction

One of the most significant problems in today’s machine learning is training deep neural networks.
Traditional optimization algorithms, including stochastic gradient descent (SGD) and its variants [1],
are hindered by vanishing and exploding gradients [2], non-convex error landscapes, and
hyperparameter sensitivity [3]. Such weaknesses are magnified when models are scaled to billions of
parameters, due to slowed convergence [4], unstable training [5], and exponentially increased
computational demands [6,7]. These challenges provide a compelling reason to investigate gradient-
free methods that may serve as reliable alternatives to gradient-based optimization [8—10]. The recent
potential of quantum computing [11,12] as a paradigm for accelerating optimization and learning tasks
is promising [ 13—15]. Quantum machine learning (QML), however, adds extra challenges. One widely
studied class, variational quantum circuits (VQCs) [16,17], is commonly crippled by barren plateaus
that cause gradients to asymptotically approach zero and limit their ability to generalize to deeper
architectures [18]. Moreover, current-day quantum devices are limited by the small number of qubits (in
the hundreds) [19], restricted circuit depths [20], and noise [21]. These problems require gradient-free,
noise-tolerant [22], and scalable hybrid methods that scale with both classical [23] and quantum
resources [24].

Grover’s algorithm provides a natural basis for answering these questions [25]. Identification of
rare events among a large number of discrete candidates can also be very costly in terms of
experimental evaluations [26]. However, a quadratic search advantage means that only a slight increase
in the number of assessments is required compared to brute-force or evolutionary approaches [27].
Grover-driven optimization has low computational overhead compared to classical evolutionary
methods, is not susceptible to high parameter-dependence issues such as those found in VQCs and
QAOA-based approaches, and is scalable on noisy intermediate-scale quantum (NISQ) devices [28].

In this paper, we propose adaptive Grover-driven parallel quantum optimization (AG-PQO). This
novel hybrid optimization method combines bypass optimization with gradient-free methods, aiming
to overcome the deficiencies of current approaches. AG-PQO hybridizes the accelerated candidate
search provided by Grover with three new mechanisms:

1. Adaptive loss-aware discretization control (ALADC) resolves the tradeoff between exploration
and convergence by using variable resolution of the allowed candidate intervals.

2. Fidelity-aware loss regularization is a proposed penalty designed to ensure stability after an epoch
and insensitivity to noise.

3. Quantum memory caching (QMCR) recycles high-quality states, reducing oracle calls and
increasing efficiency.

By combining these mechanisms, AG-PQO enables noise-resistant and scalable training. Experiments

conducted by us demonstrated that it can achieve greater accuracy and a higher rate of convergence

than Adam, evolutionary strategies (ES), and quantum feedforward-backpropagation (QFB). The

essential contributions of this paper include the following:

1. Wepropose the method of parallel optimizing across network layers using a Grover-driven gradient-
free optimization method. ALADC is designed to efficiently and stably explore the candidate.

2.  We jointly tackle the fidelity-of-learning problem by incorporating fidelity-aware loss
regularization to enhance noise robustness.

3. We present the caching strategy QMCR to eliminate excess oracle queries.

We compare AG-PQO with classical and hybrid optimizers, showing higher accuracy, efficiency,
and NISQ-readiness. Section 2 discusses related literature and other optimization procedures. Section 3
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gives a detailed description of the proposed AG-PQO framework. Experimental results are presented
in Section 4, and conclusions with future directions are included in Section 5.

2. Literature review

Gradient-free methods have long been explored as alternatives to backpropagation when gradients
are noisy, undefined, or unreliable in highly non-convex landscapes. Evolutionary strategies (ES), as
well as differential evolution and simulated annealing, have been extended to architecture search and
weight optimization [9,10]. Although such methods enable rough objective surfaces and can
circumvent vanishing gradients, current implementations are characterized by high computational
complexity and poor convergence on larger models in practice.

The Grover algorithm provides a quadratic speedup for unstructured search and has been
generalized to minimum-finding, database search [11], and discrete optimization problems [12]. The
potential for general combinatorial exploration has inspired interest in applications in satisfiability,
portfolio selection, and binary classification [12,13]. Selection techniques similar to Grover have also
been discussed in the context of structured weight spaces in learning problems, albeit in idealized
settings (specialized objective values, no or minimal discretization, or even the absence of noise
modeling) [14]. These works suggest a natural avenue for gradient-free learning, in which we replace
continuous descent with a broader search across discrete candidate sets.

Developments in quantum algorithms have explored multiple-solution amplification and block
encodings, as well as parallelized candidate sets, elucidating oracle-based complexity. These are
promising avenues for achieving speedup [15,16]. Although this has entered a new theoretical stage,
end-to-end integration in the deep learning workflow is limited. There is a gap between the theoretical
specifications and the capabilities of current implementations with the state-of-the-art
software/hardware stack.

Quantum-inspired machine learning (e.g., tensor networks, born machines, quantum Boltzmann
distributions) has leveraged the inductive biases motivated by entanglement to compress correlations
and achieve greater sample efficiency [17]. These methods, however, do not generally utilize the
quadratic search advantage at the circuit level that Grover identified. By contrast, recent efforts in the
same direction use Grover-based candidate selection within the training loop to accelerate discrete
exploration, while remaining compatible with classical approaches.

In general, evolutionary approaches can enable gradient-free search but exhibit poor scaling
behavior. Variational quantum circuits (VQCs) can suffer from barren plateaus, which hinder gradient-
based optimization, and quantum fictitious system (QFS)/QAOA-based approaches have limited depth
and can be highly parameter-sensitive. The suggested AG-PQO performs layer-wise Grover
optimization, with adaptive discretization and fidelity-aware stabilization, aiming for scalability and
noise robustness. Table 1 outlines these differences and explains why AG-PQO diverges from the
earlier literature. Compensating for decoherence, gate errors, and measurement bias is necessary to
deploy noisy intermediate-scale quantum (NISQ) hardware in practice.

Zero-noise extrapolation, probabilistic error cancellation, and Richardson-style extrapolation are
techniques developed to overcome these effects and produce high-fidelity estimates from shallow
circuits [18,19]. Complementary strategies, designed to reduce hardware requirements, divide workloads
into smaller pieces that can be executed on the hardware [20]. Cosine-similarity-based training can be
sensitive to cumulative noise, mainly due to Grover’s amplitude amplification. This makes these
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mitigation pipelines especially important to making search-based training viable on such devices.

Hybrid quantum-classical solutions also work on integrating quantum subfunctions into learning.
The most notable avenues include artificial quantum neurons, quantum circuit learning with
parametrized circuits, and kernel-based quantum methods [21,22]. Although such methods can work
well at small scales, most of them rely on shallow depths or local parameterizations, which limit their
expressiveness in the presence of noise and complicate training as depth increases. Meanwhile,
experience replay, a concept in reinforcement learning, has demonstrated that a memory system can
stabilize learning by reusing high-value states [23].

Similar ideas in the quantum context have been pursued, e.g., quantum memories and state
caching, to minimize oracle calls as much as possible without sacrificing high-fidelity solutions [24].
Contrasting classical regularizers that limit the scale of weights or enforce sparsity, quantum-sensitive
loss shaping can harness fidelity and underscore Hilbert-space overlap [25] or similar concepts to guide
the search toward quantum states that have been previously found to be successful in higher
dimensions. Such signals can be added to the loss to regularize optimization trajectories, enhance
generalization, and alleviate the instabilities induced by realistic noise. These methods are compared
in Table 1.

Table 1. Comparative overview of existing methods versus AG-PQO, highlighting
scalability and noise-robustness advantages.

Method Type Strengths Limitations Scalability / NISQ- Distinct Difference from AG-

readiness PQO
. Robust in non- High computational cost; Limited — AG-PQO  achieves faster
Evolutionary Classical, . . . N . . . ;
. . differentiable settings; no slow convergence; poor inefficient for high- convergence  with  Grover
Strategies (ES) gradient-free . . = . = . ) - = .
= gradients required scalability dimensional models acceleration and caching
Hybrid . . .
. Parametrized quantum Suffer  from  barren Low — limited by AG-PQO avoids barren plateaus
Variational Quantum quantum- - . . . . .
. . . circuits; direct use of plateaus; require deep qubit count and by using discrete Grover search
Circuits (VQCs) classical L . L. L 7 = -
quantum resources circuits; noise-sensitive  circuit depth mnstead of gradients

(gradient-based)

Quantum . ) . AG-PQO scales to deeper
. i o . Requires shallow depths; Low — not noise- . L
Feedforward- Hybrid, Extends backpropagation ) - ~models without gradients and
. c. . o sensitive to parameter robust, shallow . .
Backpropagation gradient-based  into quantum circuits S B with fidelity-based
initialization expressivity ) .
(QFB) regularization
uantum . . AG-P arallelizes layer-
Q . . . ) . Parameter-dependent; Medium — limited G QO. parafielizes = ver
Approximate Hybrid, Effective  for  discrete ) . . P wise optimization, making it
o S ] depth  scaling issues; by qubit fidelity and ) R
Optimization variational optimization problems noise-sensitive ate noise more scalable under NISQ
Algorithm (QAOA) & constraints

Grover-based  layer-wise . . s
4 First to combine Grover’s

Hybrid candidate search; adaptive . . . . .

/ ) s P Requires repeated Grover High — noise-robust quadratic speedup, adaptive
quantum- discretization (ALADC); . - : . k .

AG-PQO (Proposed) . . evaluations; still with ZNE and resolution, and noise resilience

classical, fidelity-aware loss . . . ..

o T simulated on hardware memory reuse into a unified  training
gradient-free regularization; memory
= = framework

caching

This approach aims to address the issue of accumulating experience in reinforcement learning by
utilizing memory-based optimization techniques, such as experience replay and policy caching, to
stabilize convergence [23]. In quantum settings, quantum memory and optimal Grover-state caching
have been proposed as methods to eliminate unnecessary oracle calls [24]. AG-PQO modifies this by
saving high-fidelity candidates in a classical buffer and restarting subsequent searches with previous
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successful weight perturbations. A combination of memory-augmented learning and quantum search
yields a breakthrough when applied to deep network optimization.

Compared to classical regularization, which controls weight magnitude or sparsity, quantum-
aware loss shaping relies on state fidelity, Hilbert-space overlap, or quantum mutual information to
alter its optimization paths [25]. AG-PQO proposes adding a fidelity-directed penalty component that
better aligns candidate weights with successfully tested quantum states, facilitating steadier learning
and more effective generalization.

More recent hybrid optimizers [26—28] combine fuzzy-gradient or heuristic quantum searches but
lack adaptive discretization and fidelity-based regularization. Instead, AG-PQO integrates Grover-
based layer-wise exploration with adaptive loss-aware control (ALADC) and quantum memory reuse,
offering dynamic search resolution and improved noise resistance. However, AG-PQO incurs
additional oracle cost, as we will discuss in Section 4.3.

Other recent developments focusing on hybrid quantum-classical optimization have implemented
practical, noise-conscious approaches that enable quantum subroutines to use NISQ-era hardware
efficiently. Preliminary research on the importance of data and model design has helped clarify when
quantum models can provide real benefit and the influence of circuit architectures on trainability [29].
Simultaneous advances in the learnability of parameterized quantum models [30] and in the
generalization of quantum machine learning beyond kernel methods [31] have enhanced insight into
generalization and convergence behavior. Theories on quantum error mitigation [32] and the
computational hardness of variational circuit training [33] have also been reviewed, influencing the
development of effective, resource-constrained learning models. Complementary advances in Grover-
adaptive search [34], quantum circuit architecture discovery [35], and neural-network-encoded
variational schemes [36] have minimized circuit depth and measurement overheads, which are
important enablers of Grover-style candidate selection in hybrid training pipelines. These group
improvements focus AG-PQO on fidelity-sensitive loss shaping and block encoding to maintain
quadratic search benefits in realistic noise regimes. Emerging literature has highlighted the need for
hybrid algorithms to strike a balance between search capability and strength. The opportunities and
limitations for achieving near-term quantum advantage are illustrated by theoretical studies of error-
mitigation limits [37] and experimental advancements in photonic and superconducting systems [38].

3. Methodology
3.1. Overview

This paper proposes a new quantum-classical neural network training framework, the adaptive
Grover-driven parallel quantum optimization (AG-PQO). It avoids any gradient-based optimization (e.g.,
backprop with ADAM) in favor of a fully gradient-free, layer-wise Grover search conducted on
parallel-weight candidate matrices, with dynamic discretization, loss-shaped by quantum-informed
models, and quantum-informed operating enhancements enabled by noise information. In contrast to
standard quantum neural networks that use parametrized variational circuits, we address this issue by
enhancing classical deep networks with quantum amplitude amplification to accelerate weight-space
exploration. Figure 1 outlines the complete AG-PQO pipeline. It is initiated by classical weight
initialization, followed by Grover-based quantum candidate selection, fidelity-based filtering, and
adaptive perturbation control. It demonstrates AG-PQO’s ability to integrate quantum-enhanced search
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and gradient-free learning into a highly modular, interpretable workflow.
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Figure 1. Modular architecture of AG-PQO, showing the interaction between classical and
quantum components.

3.2. Foundation of classical model

Let a feedforward neural network have L layers, where each layer | contains n, neurons, i.e.,

| =1,2,..., L. The weight matrix of the layer | is denoted by " e R% ¥ andabias b" e R% . For

an input x, the forward pass is

h(+) :S(a)(')h(l) +b(|)), (1)

where & is a nonlinear activation (e.g., ReLU or tanh), and yeR® is the predicted class
distribution having h© =x, §=soft max(h(”)).The training goal is to minimize the categorical cross-

entropy loss:

KCE (91 y) = _Z Yi Iogyi' (2)

The categorical cross-entropy loss (. is a measure of the difference between the probability ¥, and
the actual class label Y. This loss reduction motivates the network to give larger chances to correct
classes. AG-PQO aims to optimize the family {@,@,,....,@,} without the use of a gradient descent,

but by performing a battery-accelerated discrete candidate search.
3.3. Quantum-batch parallel Grover optimization
Instead of iterative adjustments to individual weights, AG-PQO optimizes the entire weight
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matrix for each layer in a batch with uniform sandwich perturbations. Let @" denote the current

weight matrix of the layer |, and let o = {a)l('),a)gl),...., a)S)} be a finite set of N =2" candidate

matrices generated via uniform perturbations:

o (0" - A0, 0" + "), 3)

: . .. (. . L
where ﬂt(') is a layer-wise dynamic interval parameter, and @ ° is the empirical standard deviation

(1)

of @"). Each candidate @, is represented in a quantum register either in amplitude encoding or angle

encoding, depending upon the encoding capacity of the quantum device at hand. The related oracle assesses:
kaKCE(f((‘)iL)’Y)- “)

To calculate the weight of a candidate weight matrix @, , the oracle function f computes the training
loss. The value of this loss is encoded in the phase of the quantum state, allowing it to be amplified in
the best candidates during Grover iterations. With just O(«/ﬁ ) queries, Grover finds the roughly

optimal candidate a)lf'), that is, the algorithm finds the approximate minimizer of 2. The matrix of

weights is updated as:

")« a)i'x). ®))

Each candidate’s weight matrices " e R were flattened into a @ vector. In the case of

amplitude encoding, the normalized —— is measured into a quantum state as

el
dyxdyyy ) .
= —1i). 6
= 2 ol (6)

In amplitude encoding, the classical weight vector @ is normalized and encoded as a quantum
superposition state |z//> . The weight elements make up the amplitude of the superposition state. This

enables the search of Grover to work in weight space. To encode the angle, every entry @, is encoded

in a qubit rotation using
10) > R,(w)|0) = cos(%j|0)+sin[%}|l}. 7

For angle encoding, each classical value W, is mapped to a qubit rotation R (w;,) whose angle is

proportional to the weight magnitude, enabling quantum representation using fewer qubits. This
ensures that classical weight candidates always represent quantum weights. The complexity of oracle
gate for amplitude encoding and angle encoding of a layer with dimension d and a given number of
candidates is O(Nlogd) and O(Nd), respectively. In this way, AG-PQO attains a quadratic

tradeoff with the O ( N 2) price of classical exhaustive search. The term parallel in AG-PQO refers

to layer-wise parallel Grover searches executed concurrently across multiple layers, not to hardware-
based quantum parallelism. In the case of a 100x100 layer, it would take 14 qubits to represent the
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amplitude and 46 additional auxiliary qubits, and the depth of the circuit would be estimated to be 10°
two-qubit gates. To be NISQ-feasible, this suggests block-wise encoding of 16 x 16 sub-matrices being
optimized in parallel.

3.4. Adaptive loss-aware discretization control (ALADC)

To avoid both inefficient and alternating updates, add an adaptive discretization controller ﬂt(') ,

regulating the perturbation period with time ¢, which depends on the change in loss Afﬁ') :

o |max(& YA ) if AL) <o,
ﬂtj—l = 8
min(g“T.ﬂf'),,Bmax) otherwise, ()

where ¢ d<land ¢ T>1 are the contraction and expansion rates, respectively. These intervals
n(A#, a(l)) are further emulated over epochs by a policy controller w, which may include a black-box
optimization technique, such as the CMA-ES, to optimize. This adaptive scheme enables the optimizer
to be fine-grained when training reaches stable convergence regimes and to take coarser exploration
steps when it becomes stuck in flat or nonoptimal areas of the loss landscape. Furthermore, to make
this discretization more responsive, we introduce a meta-policy controller ¢, which parameterizes
the evolution of the perturbation interval and can be learned. This controller can be optimized using a
black-box evolutionary optimization algorithm, namely the covariance matrix adaptation evolution
strategy (CMA-ES), so that the perturbation schedule adapts to the long-term dynamics of loss rather
than reacting to short-term fluctuations. Overall, by combining local loss-aware adaptation (via local
optimization) with global meta-policy optimization, the ALADC module enables AG-PQO to control
the resolution of its search across training epochs flexibly. It leads to faster convergence, better
generalization, and greater stability of the optimization process, particularly when operating in high-
dimensional or noisy search spaces. In practice, the CMA-ES controller was called every k =5 epochs
to update the perturbation interval, thus being responsive without being too computationally expensive.

3.5. Fidelity-driven quantum-conscious loss shaping

To enhance convergence stability and generalization under noisy conditions, we present a quantum-
inspired regularization scheme that weights the macroscopic differences between current weight designs
and past optimal ones. In particular, this is a fidelity-based term that helps maintain consistency in the
selected candidates across epochs by directing the search process to follow weight matrices with a high
degree of overlap with past successful solutions. Denoting the chosen Grover-optimal weight matrix at
epoch oflayer /by «'(l) and the chosen matrix in the prior epoch by @' (1), the steps of the Grover

optimization process are as follows. The following fidelity-aware regularizing term is expressed as:
L =£.(1-F (®0f2), ©

where ¢ >0 is a non-negative regularization parameter, and F is the quantum fidelity, being
approximated classically through the cosine similarity:
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(AB)
[AllE]

This term is added to the standard categorical cross-entropy loss:

LY = Let + Ly (an

F(AB)= e[0,1]. (10)

The regularization mechanism is essentially a constraint applied to the optimization process,
ensuring that it only moves in areas of weight space where previous Grover solutions have proven
useful. This is not just a stabilizer of the candidate selection process, but also an effective temporal
prior that performs well under noisy quantum conditions and will increase model generalization
capabilities beyond the ground-level swing routes. In normalized vectors |1//| and |gp| , where the angle

between them is denoted by @, the value of COS(H) between the vectors is directly proportional to

quantum-state fidelity; hence, in the classical simulation context, cosine similarity is a valid surrogate
for fidelity and computationally efficient.

3.6. Quantum memory caching and reuse (OMCR)

To enhance both the efficiency and convergence properties of AG-PQO, this study proposes
utilizing a quantum memory caching mechanism to store high-fidelity candidates from previous
optimization stages. This module also draws inspiration from the concept of experience replay in the
reinforcement learning context, which involves saving previously optimal solutions and using them as
seed points to generate future candidates, thereby avoiding unnecessary quantum evaluations and
achieving more efficient sample use.

Formally, the memory buffer M " of each layer |, where o is a set of Grover-optimal

weight matrices with high fidelity and low oracle loss that have been achieved in the previous epochs;
when generating candidates at epoch ¢, the candidate pool C" is formed by extending new perturbed

weight matrices with cached solutions:

O {4+ O : 0)
c ={a" + zj}j:luM , (12)
where Z; ~N (0, 0'2) and K is the number of new candidate samples, and @) is expressed as

o) =arg mln L(')( ). (13)

The result of the Grover search and test of an oracle is a selection of the most successful candidate.
The memory buffer is then updated by retaining the top M candidates according to their oracle scores
or fidelity values, allowing them to be reused in subsequent epochs. Not only does this dynamic make
the computational cost of quantum oracle calls negligible, but it also pins the optimization to sure-to-
be-successful corners of the weight space, resulting in faster convergence and greater resilience to
noise-plagued, high-dimensional optimization landscapes. The relationship between the cache and the
performance is now clear. The cache buffer has a set capacity M, usually proportional to 0.1 L, and those
that pass the 0.9 fidelity test against the current epoch optimum remain in the cache buffer. The
performance is checked for decays with capacities M = {5,10, 20, 40} ; the improvement in convergence

speed is logarithmic in the initial stages. M = 20 and, past this point, diminishing returns can be seen
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in Figure 2.
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Figure 2. Theoretical and empirical effects of cache size and candidate fidelity thresholds.
3.7. NISQ readiness: Grover noise-hardened execution

To obtain the practical relevance of AG-PQO in the context of the existing noisy intermediate-
scale quantum (NISQ) hardware, the quantum noise is explicitly considered in the course of performing
the Grover circuit. In particular, the model gate-level noise at the device level with a single-qubit
depolarizing error of p, =0.005 and a two-qubit gate error rate of p, =0.02, in line with experimentally

observed fidelity levels available in superconducting and trapped-ion quantum processors.

Grover’s amplification has been identified as particularly vulnerable to cumulative gate errors.
Thus, this study incorporates two complementary error-mitigation strategies to achieve high-fidelity
search results. The first is zero-noise extrapolation (ZNE), in which the circuits are operated at multiple
artificial noise levels, and the measurement results are extrapolated to the zero-noise limit using
Richardson extrapolation methods. Second, we employ Clifford-data regression, which utilizes calibration
data from Clifford-equivalent circuits to correct systematic measurement biases. In combination, these
techniques improve the resilience of the Grover estimation outcome against decoherence. The noisy output

index k™ is smoothed to produce a denoised optimal candidate index Kk, by direct extrapolation
k" =ZNE (lz*) , or by finding the most probable corrected state k™ = arg max, Corrected — Score(k) .

This hierarchy of mitigation schemes enables AG-PQO to achieve optimization fidelity even with a
modest amount of quantum noise, supporting its suitability for implementation on existing quantum
platforms. AG-PQO has theoretical foundations that can be explained in terms of stochastic operators
on discrete candidate subspaces. The Grover iterations involve a stochastic transformation T with
limited amplitude, which increases the probability amplitudes of promising candidates. In the process,
successful selection is expected to achieve a quadratic speed-up. In adaptive discretization, the
perturbation interval A shrinks geometrically, ensuring convergence to a fixed-point region in weight
space. Moreover, the fidelity-conscious regularizer is a stability prior that penalizes variations between
unrelated states and forces search paths to follow high-fidelity, smooth manifolds. A combination of
these mechanisms suggests that there is a monotonic expected improvement in the presence of limited
noise and that the convergence profile is heuristic but theoretically justified.
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3.8. Analytical foundations of AG-PQO

To encode the theoretical basis of the adaptive Grover-driven parallel quantum optimization (AG-
PQO) protocol, the action of a Grover search step is a discrete weight-candidate space stochastic
transformation operator. Let W={W1,W2,...,WN} be the finite set of candidates at epoch t. It is a

stochastic operator defined by a Grover iteration.

T W > W, p,(W) = p,(wW)+a(2p, - p,(W)), (14)

where p,(W,) is the selection probability of candidate W, and it is a gain that is proportional to the

phase-inversion amplitude of the oracle. In the ideal case, T guarantees a quadratic increase in the
probability amplitude of optimal candidates, resulting in an expected search complexity of O(N)
instead of O(N). The adaptive loss-aware discretization control (ALADC) mechanism is an additional
mechanism that regulates this process by limiting the perturbation interval.

At+l = nAt+p| Lt_ L[_lla (15)

where 0<n <1, the rate of contraction is represented by 0, and p is a constant that governs

expansion in response to significant changes in loss. As t—>oo , A, approach converges

geometrically toward a fixed-point region A" = %EU L, - £, ||, where the candidate exploration
-1

approaches the optimum.
Finally, the fidelity-conscious regularizer is a stability prior across epochs that penalizes
significant fluctuations in the states that Grover optimizes. Defining

Rt:ﬁ’(l_l:(l//t’l//t—l))’ (16)

where F can be represented as the quantum-state fidelity, and A>0 is a regularization weight; the
joint loss decreases monotonically as:

E[L+RI<E[L,+Rl 7)

ensuring convergence to the limit of noisiness and limited perturbations. All of these analytical
elements make AG-PQO a stochastically convergent and fidelity-stable search operator in hybrid
quantum-classical optimization.

4. Experimental results

In this section, the experiment was conducted on three datasets [MNIST, Fashion-MNIST, and
our own scratch quantum dataset (SQD)] to evaluate the performance of AG-PQO compared to
classical and quantum-inspired optimization baselines. MNIST and Fashion-MNIST are presented as
grayscale images of handwritten numbers and fashion items, respectively, in 10 classes. Conversely,
the SQD was designed to approximate noise-sensitive decision boundaries using entangled quantum
kernel transformations, thereby serving as a surrogate for quantum-enhanced learning tasks. The same
neural architecture was used for training all models, specifically a 3-layer feedforward multilayer
perceptron (MLP) with ReLU activations and the categorical cross-entropy loss function. The study
compared a comparative analysis against the standard gradient-based optimizer used in ADAM, a
classic gradient-free algorithm (evolutionary strategies, or ES), and a hybrid quantum-classic
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methodology (quantum feedforward-backpropagation, or QFB), which utilizes parameterized quantum
circuits within a training loop. In AG-PQO, gradient descent is discounted in favor of the Grover-based
discrete optimizer across the entire weight layers, by standardizing the architecture and training
conditions, thereby eliminating the influence of other factors and enabling comparisons of convergence
behavior, generalization performance, and robustness across both classical and quantum regimes.

Algorithm 1: Adaptive Grover-Driven Parallel Quantum Optimization (AG-PQQO)
forepocht=1to T do
for each layer | =1 to L do

Compute current o) «— G(a)('))

Generate candidate set:
a)I'< ~ g(a)(') —ﬂt(').a('), " +ﬂt(l).6(l)),Vk IS {1, I N}
@ <, UM - (reuse past optima)

Encode @, into quantum states

Evaluate loss oracle: ¢, = (. ( f (), y)

Apply Grover’s algorithm to find k™ ~ argmin ¢,
Apply noise mitigation:
if noisy execution then
k"« ZNE(K") or argmax, ¢, Corrected-Score(k)

Update weight: o) « .
Compute fidelity: g (W(I),wl*)

2
Compute regularizer: R, <—Ha)(') ~ .

Update 29 «~1-g (a)('),a)ip)
Update B using ALADC:
if Al <Othen
@ max(¢ VAL, )
Else
@ < min(¢ A", B
Store @' in M (quantum memory buffer)

end for
Compute total loss: I < Ic + 4" R,

Return: Optimized weights o', trained network N g poq

4.1. Performance metrics

In this section, the test accuracy is assessed by determining the number of epochs required for
convergence and the final loss. Every experiment was performed over five random seeds. Qiskit was
utilized to simulate AG-PQO with noisily calibrated gates (NISQ-level fidelity: 1370, 137, and 137
per two-qubit gate). To conduct a comparative analysis, the classical optimizers (Adam, ES), hybrid
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baselines (QFB), and two more recent gradient-free quantum optimizers, quantum natural evolution
strategies (QNES, 2024) and quantum Bayesian optimization (QBO, 2025), were used.

These findings suggest that a slight increase in accuracy is accompanied by faster convergence (in
fewer epochs) and lower loss values than with Adam. Compared with ES and QFB, AG-PQO is more
rapid (with oracle calls) and more robust, validating its status as a general optimization technique
suitable for both classical and quantum-enhanced networks (see Table 2).

Table 2. Performance comparison of optimization methods across benchmark datasets.

Dataset Optimizer Accuracy (%) Final loss Epochs to convergence
MNIST ADAM 97.3+£0.2 0.084 22
ES 95.6 £ 0.4 0.109 36
QFB 93.9+0.3 0.147 40
AG-PQO 97.9+0.1 0.076 19
Fashion- ADAM 89.7+0.3 0.224 28
MNIST
ES 87.1+£0.6 0.273 44
QFB 85.5+0.5 0.294 50
AG-PQO 90.3+0.2 0.199 24
SQD (Noisy) ADAM 81.2+0.7 0.317 35
QFB 78.3+£0.8 0.344 38
AG-PQO 84.1 £ 0.6 0.288 26

4.2. Quantum noise robustness

To test the AG-PQQO’s proposed robustness against realistic quantum noise levels, the simulated
quantum circuit runs with two-qubit gate error rates of 1%, 3%, and 5%, which are commonly achieved
on noisy intermediate-scale quantum (NISQ) hardware. The two experimental states are those of raw
noiseless (i) execution without mitigation and (ii) execution supplemented with zero noise
extrapolation (ZNE), which is a standard measure that helps in error mitigation by extrapolation of the
measurement results to the zero-noise limit. Models perform as expected, with performance
deteriorating as noise increases. Nevertheless, this decline occurs gradually and without causing any
significant issues, suggesting that AG-PQO is inherently capable of withstanding a reasonable level of
quantum error. The level of noise within which the test accuracy falls below that of the noiseless test
is less than 6% at a noise level of 5%, which is not required by much redundancy or constraints on
circuit depth. Such resilience stems from the algorithm’s design: Grover-based amplitude
amplification is performed at the candidate level, and the loss landscape remains stable even when the
amplitude encoding is imperfect.

As shown in Table 3, AG-PQO exhibits graceful degradation to quantum gate noise, with a
relatively low loss of ~5.8 percentage points in test accuracy without mitigation at the highest noise
condition (5%). The accuracy at the 5% noise level was restored to over 97% of the baseline when ZNE
was used, whereas without ZNE, it was 95.1%. The fact that this recovery is achieved demonstrates
that the algorithm is not only insensitive to moderate quantum errors but also sensitive to scalable
error-mitigation methods. These findings suggest the applicability of AG-PQO to the existing
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generation of quantum hardware and its resilience as a gradient-free training method in noisy quantum
settings. Figure 3 illustrates the strength of AG-PQO as gate noise increases (1%, 3%, 5%). Without
ZNE, accuracy errors decrease smoothly, and with ZNE, more than 97% of baseline performance is
recovered. This suggests that AG-PQO can operate on NISQ hardware and be deployed in the real-
world quantum environment.

Table 3. Test accuracy of AG-PQO under varying quantum noise conditions.

Noise level (2Q gate error rate) Without ZNE ~ With ZNE Relative accuracy

retention (w/ ZNE)
0% (Noiseless baseline) 97.9% 97.9% 100%
1% 96.4% 97.3% 99.4%
3% 94.8% 96.2% 98.3%
5% 92.1% 95.1% 97.1%

Fidelty Reg )

B
H Fidelity and Noise Sensitivity per Candidate (Radial View)

NoisePenalty

0.175

0.150
0.125
0.100

6 12 08
Convergence

Figure 3. (A) High-level flow of adaptive Grover-driven parallel quantum optimization (AG-
PQO). (B) Candidate generation, evaluation via Grover oracle, loss shaping, ALADC-
based perturbation update, and memory caching.

To further support the scalability of AG-PQO across various modalities and dataset complexities,
additional experiments using the CIFAR-10 and quantum MNIST (QMIST) datasets were conducted.
Whereas CIFAR-10 presents higher-dimensional, color-based image features, QMIST incorporates
quantum-encoded information via a preprocessing step based on amplitude. The results summarized in
Table 4 show that AG-PQO consistently outperformed the baseline optimizers in terms of accuracy and
convergence rate. The AG-PQO of CIFAR-10 achieved a test accuracy of 84.2 on average, outperforming
Adam and ES by approximately 2—4 percentage points with fewer epochs. Likewise, the accuracy of
AG-PQO in QMIST was 92.8% with a smaller final loss, and the proposed hybrid framework is clearly
applicable to both classical and quantum-enhanced data. These findings indicate that AG-PQO can
sustain performance improvements with higher-dimensional input and hybrid quantum encoding.

4.3. Proof-of-concept on IBM Q hardware

To further confirm the NISQ-readiness of the framework under consideration, AG-PQO was run
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in a small-scale proof-of-concept on the 7-qubit IBM Q backend (ibmq_jakarta). Qiskit v0.46.2 was
used to achieve a reduced-dimensionalization of the circuit (where a 4 x 4 weight sub-matrix is
encoded on each layer, and 8 qubits are used, including ancillas). The experiment employed three
Grover steps per round of optimization and was executed at the calibrated average two-qubit gate
error rate of the backend, which was 0.1%. The optimal candidate states’ fidelity to the measured
states was 0.923 + 0.018, corresponding to 93.5% of the test-set accuracy and about 95% of the
noiseless simulation limit. The limited number of qubits and circuit depth notwithstanding, these
findings validate that AG-PQO is implementable on actual superconducting devices and converges
functionally. These results support the argument that AG-PQO can be applied to existing-generation
NISQ devices, whose graceful degradation behavior is consistent with the noise-model predictions for
the simulated noise used in earlier sections of this work (Section 4.2).

To assess the hardware feasibility of the suggested encoding strategies, Table 5 outlines the
approximations to quantum resources required for amplitude encoding. It is analyzed through block-
wise coding of sub-matrices of weights, where blocks are optimized separately and then reassembled.
As Table 5 demonstrates, the total number of qubits grows logarithmically with the number of encoded
weights, and the depth of the circuit grows approximately proportionate to block size. For instance, a 100-
by-100 layer would require approximately 20 qubits, two-qubit interactions, and a depth of around 10.
However, this is not yet achievable due to the limitations in the coherence of modern physical devices.
This motivates the use of 16 % 16 or 32 x 32 sub-blocks, enabling AG-PQO to be implemented within
the current near-term quantum resource limitations.

Table 4. Evaluation on CIFAR-10 and QMIST.

Dataset Optimizer accuracy (%) Final loss Epochs to convergence
CIFAR-10 Adam 82.4+04 0.361 45

ES 80.1£0.6 0.403 52

QFB 78.7+0.5 0.429 60

AG-PQO 842+03 0332 39
Quantum MNIST (QMIST)  Adam 91.1+£0.2  0.189 28
ES 893+04 0217 33
QFB 874+05 0236 37
AG-PQO 928+03  0.171 25

Table 5. Estimated quantum resource requirements per layer.

Layer size (weights)  Amplitude- Ancilla qubits  Total qubits Approx. circuit 2-Q gate

encoding depth (D) count (=)
qubits (ng)
16 X 16 (256) 8 4 12 150-200 450-600
32 x 32 (1024) 10 6 16 300400 900-1200
64 X 64 (4096) 12 8 20 600-800 1800-2500
100 x 100 (10000) 14 6 20 ~ 1000 ~ 3000
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4.4. Runtime and computational overhead analysis

To evaluate the computational efficiency of AG-PQO compared to baseline optimizers, this study
compared average per-epoch run times and cumulative run times to convergence in both the MNIST
and Fashion-MNIST datasets, using the same hardware (Intel 19 CPU, 32 GB RAM) and in simulation.
Despite a higher per-epoch cost, AG-PQO converges faster and thus has lower overall training time.
This trade-off is illustrated in Figure 4 where AG-PQO has comparable or superior overall runtime,
despite its quantum search overhead.

AG-PQO Test Accuracy under Quantum Noise Conditions

A) 100 g1% L% 96.4% 97.3% gagn %2% 95.1% B) 1601 ™= Ava Runtime per Epach (s)
921% = Total Runtime (s)

140
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°
_ c

S © 100
§ Condition 3
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3 - o
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& S 6
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» 40

20
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% 1% 3% 5% PRY)
Two-Qubit Gate Noise Level Optimizer

Figure 4. (A) Comparative impact of AG-PQO modules: ALADC, fidelity regularization,
and QMCR on model accuracy and efficiency. (B) Runtime comparison of AG-PQO and
baseline optimizers.

5. Ablation study

This study performs a series of ablations on AG-PQO to assess the impact of its components. To
measure the effect of each element of the AG-PQO framework separately, a comprehensive set of
ablation experiments was conducted by selectively disabling or altering structural modules and
isolating their contributions to training speed, convergence patterns, and performance metrics. Large
effect sizes of each component (Cohen’s d > 1.2) show a significant contribution of more than chance.
Oracle and Grover-iteration costs increase the computation per epoch of AG-PQO by approximately 1.5x.
Still, AG-PQO converges after 3040 epochs, which are similar to, or even fewer than, the epochs of ADAM.

5.1. Effect of adaptive discretization

The ALADC mechanism dynamically adjusts the perturbation interval as the training loss evolves.
To analyze the effect of the adaptive interval controller, replace it with a constant perturbation size in
all epochs. These results indicate a noticeable decrease in both convergence speed and accuracy. In the
absence of ALADC, the model converges at a significantly slower rate (27 vs. 19 epochs) and achieves
a substantially lower test accuracy (96.5% vs. 97.9%) (see Table 6). Additionally, training paths exhibit
more oscillations, suggesting instability in the candidate selection process. Such variations are
attributable to the impossibility of crispening the search resolution due to the flattening of the loss
surface, which ALADC, by its nature, allows. Therefore, it is essential to adaptively control the
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granularity of search to achieve fast convergence and stable optimization. The visual illustration of
ablation shown in Figure 5 highlights the need for ALADC. In its absence, they converge more slowly
and are less accurate, suggesting that fixed perturbation steps are less practical for navigating loss
landscapes. ALADC enables more granular search and accelerates learning.

Table 6 Effect of fidelity regularization on accuracy and loss in AG-PQO.

) Convergence . Avg oracle calls
Model variant Accuracy (%) epochs £ Final loss £
AG-PQO (full) 97.9 19 0.076 102
-w/o ALADC 96.5 27
- w/o fidelity loss 96.8 0.088 -
- w/o QMCR 97.1 - 162
A Helix Timeline of Quantum Fidelity Across Epochs B) Transition of Grover-Selected Candidates Across Epochs
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Figure 5. Accuracy of the AG-PQO and quantum noise level with and without zero-noise
extrapolation (ZNE). (A) The fidelity of a Grover-selected candidate at each epoch is
represented by each dot, which is spirally plotted to show progression. (B) Change in
selection probability amongst candidates (C1-C4) between epochs in a Grover
optimization. (C) Manifolds of quantum fidelity over the major modules (ALADC, fidelity
regularization, and memory reuse), making comparative performance statements. (D) AG
PQO component footprint (Pct of pipeline time).

5.2. Quantum fidelity regularization

The fidelity-aware regularization component penalizes large deviations of produced high-fidelity
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quantum weight candidates from high-fidelity quantum weight representatives that were previously
selected. By removing this regularization, the model becomes more unstable in its candidate choices
across epochs, leading to less coherent learning trajectories.

At the quantitative level, deleting the fidelity term results in a loss of final accuracy (96.8% vs. 97.9%)
and an increase in final loss (0.088 vs. 0.076). This emphasizes that the regularizer imposes a quantum-
consistent prior on the optimizer, effectively encouraging it to explore regions of the weight space
where prior Grover solutions have proven successful. This is highly beneficial for ensuring continuity
during optimization steps in noisy, high-dimensional environments, as without it, generalization is
reduced and random candidate reuse occurs. Moreover, Figure 6 shows that eliminating fidelity
regularization disrupts candidate selection and compromises accuracy. The regularization induces a
soft memory of successful historical candidates, and the optimizer is then constrained to exist in parts
of the weight space that generalize better.

A) Convergence Behavior of AG-PQO vs Ablated Variants B) SNE Projection of Grover Candidate Weights Across E

Model == Full AG-PQO == Without ALADC == Without Fidelity

Label
® AG-PQOEpoch1
@ Epoch2

Epoch 3

-~
Y
.

Loss

Q)

|

Epoch

Figure 6. With and without adaptive layer-wise amplitude discretization control (ALADC)
of performance of AG-PQO. (A) Whisker plot of the loss convergence of the whole model
with the AG-PQO and variants of the ALADC and fidelity regularization ablated, which
demonstrate their effects on the optimization. (B) t-SNE projection of Grover candidate
weights over time (unflustered). Scatterplot that shows t-SNE projections of Grover-
chosen weights through epochs 1-3, without any apparent clustering. (C) t-SNE projection
of Grover-optimized candidate weights across epochs (clustered). Evolution of the Grover-
optimized candidate weights projected in weight space across epochs, as intuitively
represented with t-SNE in a clustered fashion.

5.3. Quantum memory caching

AG-PQO has a memory unit that stores a buffer of high-fidelity candidates over epochs, inspired
by the reinforcement learning paradigm known as experience replay. To evaluate its usefulness, disable
this caching mechanism and regenerate separate candidate sets in each epoch. Such a change results
in a dramatic increase in the number of quantum oracle calls (from 102 to 162 per epoch), which is

AIMS Mathematics Volume 10, Issue 11, 26568-26592.



26587

associated with higher computational overhead and slower search convergence. Additionally, test
accuracy decreases by 97.9% to 97.1%, indicating that memory reuse not only reduces activation-only
computation but also stabilizes learning by anchoring search paths to favorable regions of the weight
space. This demonstrates that QMCR provides both computational savings and regularization,
particularly in noisy or limited quantum computing resources. In the absence of QMCR, AG-PQO
must perform 60% more oracle calls and suffers a decline in accuracy (see Figure 7). This confirms
the role of memory reuse as a strategy for providing computational and generalization advantages, as
first argued with experience replay in RL and now extended to quantum scenarios.

A)  Parallel Coordinates Plot of AG-PQO Variants (Normalized) B)

Variant AG-PQO ~—*- wi0 ALADC —*- wio Fidelity wio QMCR
Accuracy |
2 ’ Adaptive Discret:.

AG-PQO
Q Fidelity Reg.
Convergence |

value

Memory Caching Oracle Calls |

Oracle_Calls
variable

Figure 7. (A) Parallel coordinates plot of AG-PQO variants (normalized). A side-by-side
comparison of essential metrics, such as accuracy, loss, oracle calls, and epochs, of AG-
PQO and its ablated variants (w/o ALADC, fidelity, QMCR), with values normalized to
be more interpretable. (B) Sankey diagram (representing the contribution of individual
modules in the AG-PQO flowchart) showing the percentage of benefit to each one, as
measured by improved accuracy, enhanced convergence, and reduced oracle calls.

These results confirm that each module makes a meaningful contribution to AG-PQO’s
performance and efficiency. All ablation experiments indicate that each component of AG-PQO—
adaptive discretization, quantum fidelity regularization, and quantum memory reuse—is crucial for
enhancing the robustness of the framework, improving convergence speed, and improving
generalization. The degradation observed when any module is removed is both statistically and
practically significant, and the modular design of AG-PQO is critical to its high-performance gradient-
free quantum optimization capability. Figure 8 illustrates the sum of the independent effect of each
module, showing that the impact of each component (ALADC, fidelity loss, QMCR) is essential.
Removing any member worsens performance, indicating that the entire architecture of AG-PQO is
necessary to achieve optimal performance in the presence of noise. These empirical convergence rates
are consistent with the analytic perspective presented in Section 3.8, where both Grover amplification
and fidelity-based regularization improve the expectation with bounds and monotonicity.
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Figure 8. (A) Zero-noise extrapolation (ZNE): Quantum noise robustness on the test
accuracy of an increase in error rates of two-qubit gates with and without ZNE in the model
used. (B) A comparison of the accuracy of the complete ADGD-2 model with those models
that are not all within it (ALADC, fidelity, and QMCR). (C) The number of epochs to
convergence on the various variant ablated and full models. (D) Comparisons of
computational cost (oracle calls) on ablation settings.

6. Conclusions

This work addresses one of the central bottlenecks in deep learning—stability and efficient
optimization—by proposing a Grover-driven, gradient-free framework that is both theoretically
grounded and practically implementable. Compared to classical gradient descent, the algorithm is free
of vanishing gradients and hyperparameter sensitivity, unlike variational quantum circuits, which are
plagued by barren plateaus. AG-PQO closes the divide between classical deep learning and NISQ-era
quantum hardware.

The adaptive Grover-inspired quantum optimization framework, AG-PQO, proposed in this study,
generalizes the Grover algorithm by incorporating a neural network training framework, suitable
fidelity regularization, and efficient candidate reuse to increase neural network capacity through
soundly grounded quantum search concepts. Performing numerous experiments on MNIST, Fashion-
MNIST, and a synthetic quantum dataset (SQD), AG-PQO performed substantially better than both
classical (ADAM, ES) and quantum-inspired (QFB) baselines in terms of accuracy and convergence
speed, as well as showing robustness to growing quantum noise. These findings were validated through
experimental ablation tests, which demonstrated that each of the three key features—adaptive
discretization (ALADC), fidelity regularization, and quantum memory caching (QMCR)—plays a
distinct and synergistic role. Notably, the framework demonstrated outstanding robustness under noisy
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intermediate-scale quantum (NISQ) conditions, and zero noise extrapolation (ZNE) recovered more
than 85% of the baseline accuracy, despite a 5% gate noise level. The extent of all observed
performance enhancements was well beyond the level of statistical significance, as indicated by
metrics and datasets. The validity of AG-PQO was also confirmed by confidence intervals, effect sizes,
and regression analyses, as well as by its generalizability and robustness.

Nevertheless, there are various limitations. First, AG-PQO is still being simulated using noise
models that represent actual quantum hardware. In contrast, a realistic implementation on real
hardware (e.g., IBM Q, IonQ, Rigetti) has not yet occurred. It is limited by aspects such as qubit
coherence, error rates, and circuit depth. Second, the present implementation uses solely fully
connected networks. As such, it cannot be used to draw inferences regarding more powerful deep
learning models (such as CNNs, RNNs, and Transformers). Third, AG-PQO can be competitive in
terms of convergence; however, it can also incur additional overhead from repeated Grover evaluations,
especially in high-dimensional oracle spaces where large oracle circuits have not been developed. Early
hardware measurements of the ibmq_jakarta backend of IBM Q confirmed that small-scale AG-PQO
circuits can be run with its existing coherence limits, which also contributes to its NISQ readiness.

Several directions for future work will be pursued. This study also aims to port AG-PQO to live
quantum backends to verify its readiness under actual decoherence and latency. Furthermore,
convergence algorithms that combine hybridization of AG-PQO with local gradient-based refinements
will accelerate convergence while retaining quantum noise resilience. Lastly, tighter theoretical
insights into Grover convergence rates in the noisy search process and under fidelity-based
regularization will be derived, which provides a more analytical picture of the guarantees of AG-PQO
optimization. Collectively, these guidelines make AG-PQO a potential landing point on the road to
effective practice of noise-aware, quantum-enhanced learning systems.
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