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Abstract: Training deep neural networks remains difficult due to vanishing gradients, non-convex loss 

surfaces, and hyperparameter sensitivity. These obstacles are compounded by quantum machine 

learning, where barren plateaus, circuit depth, and hardware noise restrict the applicability of gradient-

based approaches. To overcome these drawbacks, this study presents adaptive Grover-driven parallel 

quantum optimization (AG-PQO), a hybrid, gradient-free scheme that leverages Grover’s quadratic 

search speedup, along with adaptive loss-aware discretization and fidelity-based regularization. In 

contrast to more classical optimizers, such as Adam or evolutionary strategies (ES), which are either 

sensitive to the adequacy of the gradient update or exhibit poor scaling behavior, AG-PQO optimizes 

by performing Grover-accelerated candidate exploration across layers and reuses high-quality 

solutions in quantum memory caching. Testing indicates that AG-PQO yields higher accuracy, 2%–3% 

above Adam and ES, and faster convergence with less end-value loss than Adam, ES, and quantum 

feedforward-backpropagation (QFB). It is worth noting that AG-PQO remains stable at the simulated noise 

level of NISQ and has the potential to scale to near-term quantum processors. 
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1. Introduction  

One of the most significant problems in today’s machine learning is training deep neural networks. 

Traditional optimization algorithms, including stochastic gradient descent (SGD) and its variants [1], 

are hindered by vanishing and exploding gradients [2], non-convex error landscapes, and 

hyperparameter sensitivity [3]. Such weaknesses are magnified when models are scaled to billions of 

parameters, due to slowed convergence [4], unstable training [5], and exponentially increased 

computational demands [6,7]. These challenges provide a compelling reason to investigate gradient-

free methods that may serve as reliable alternatives to gradient-based optimization [8–10]. The recent 

potential of quantum computing [11,12] as a paradigm for accelerating optimization and learning tasks 

is promising [13–15]. Quantum machine learning (QML), however, adds extra challenges. One widely 

studied class, variational quantum circuits (VQCs) [16,17], is commonly crippled by barren plateaus 

that cause gradients to asymptotically approach zero and limit their ability to generalize to deeper 

architectures [18]. Moreover, current-day quantum devices are limited by the small number of qubits (in 

the hundreds) [19], restricted circuit depths [20], and noise [21]. These problems require gradient-free, 

noise-tolerant [22], and scalable hybrid methods that scale with both classical [23] and quantum 

resources [24].  

Grover’s algorithm provides a natural basis for answering these questions [25]. Identification of 

rare events among a large number of discrete candidates can also be very costly in terms of 

experimental evaluations [26]. However, a quadratic search advantage means that only a slight increase 

in the number of assessments is required compared to brute-force or evolutionary approaches [27]. 

Grover-driven optimization has low computational overhead compared to classical evolutionary 

methods, is not susceptible to high parameter-dependence issues such as those found in VQCs and 

QAOA-based approaches, and is scalable on noisy intermediate-scale quantum (NISQ) devices [28].  

In this paper, we propose adaptive Grover-driven parallel quantum optimization (AG-PQO). This 

novel hybrid optimization method combines bypass optimization with gradient-free methods, aiming 

to overcome the deficiencies of current approaches. AG-PQO hybridizes the accelerated candidate 

search provided by Grover with three new mechanisms:  

1. Adaptive loss-aware discretization control (ALADC) resolves the tradeoff between exploration 

and convergence by using variable resolution of the allowed candidate intervals.  

2. Fidelity-aware loss regularization is a proposed penalty designed to ensure stability after an epoch 

and insensitivity to noise.  

3. Quantum memory caching (QMCR) recycles high-quality states, reducing oracle calls and 

increasing efficiency.  

By combining these mechanisms, AG-PQO enables noise-resistant and scalable training. Experiments 

conducted by us demonstrated that it can achieve greater accuracy and a higher rate of convergence 

than Adam, evolutionary strategies (ES), and quantum feedforward-backpropagation (QFB). The 

essential contributions of this paper include the following:  

1. We propose the method of parallel optimizing across network layers using a Grover-driven gradient-

free optimization method. ALADC is designed to efficiently and stably explore the candidate.  

2. We jointly tackle the fidelity-of-learning problem by incorporating fidelity-aware loss 

regularization to enhance noise robustness.  

3. We present the caching strategy QMCR to eliminate excess oracle queries.  

We compare AG-PQO with classical and hybrid optimizers, showing higher accuracy, efficiency, 

and NISQ-readiness. Section 2 discusses related literature and other optimization procedures. Section 3 
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gives a detailed description of the proposed AG-PQO framework. Experimental results are presented 

in Section 4, and conclusions with future directions are included in Section 5. 

2. Literature review  

Gradient-free methods have long been explored as alternatives to backpropagation when gradients 

are noisy, undefined, or unreliable in highly non-convex landscapes. Evolutionary strategies (ES), as 

well as differential evolution and simulated annealing, have been extended to architecture search and 

weight optimization [9,10]. Although such methods enable rough objective surfaces and can 

circumvent vanishing gradients, current implementations are characterized by high computational 

complexity and poor convergence on larger models in practice. 

The Grover algorithm provides a quadratic speedup for unstructured search and has been 

generalized to minimum-finding, database search [11], and discrete optimization problems [12]. The 

potential for general combinatorial exploration has inspired interest in applications in satisfiability, 

portfolio selection, and binary classification [12,13]. Selection techniques similar to Grover have also 

been discussed in the context of structured weight spaces in learning problems, albeit in idealized 

settings (specialized objective values, no or minimal discretization, or even the absence of noise 

modeling) [14]. These works suggest a natural avenue for gradient-free learning, in which we replace 

continuous descent with a broader search across discrete candidate sets. 

Developments in quantum algorithms have explored multiple-solution amplification and block 

encodings, as well as parallelized candidate sets, elucidating oracle-based complexity. These are 

promising avenues for achieving speedup [15,16]. Although this has entered a new theoretical stage, 

end-to-end integration in the deep learning workflow is limited. There is a gap between the theoretical 

specifications and the capabilities of current implementations with the state-of-the-art 

software/hardware stack.  

Quantum-inspired machine learning (e.g., tensor networks, born machines, quantum Boltzmann 

distributions) has leveraged the inductive biases motivated by entanglement to compress correlations 

and achieve greater sample efficiency [17]. These methods, however, do not generally utilize the 

quadratic search advantage at the circuit level that Grover identified. By contrast, recent efforts in the 

same direction use Grover-based candidate selection within the training loop to accelerate discrete 

exploration, while remaining compatible with classical approaches. 

In general, evolutionary approaches can enable gradient-free search but exhibit poor scaling 

behavior. Variational quantum circuits (VQCs) can suffer from barren plateaus, which hinder gradient-

based optimization, and quantum fictitious system (QFS)/QAOA-based approaches have limited depth 

and can be highly parameter-sensitive. The suggested AG-PQO performs layer-wise Grover 

optimization, with adaptive discretization and fidelity-aware stabilization, aiming for scalability and 

noise robustness. Table 1 outlines these differences and explains why AG-PQO diverges from the 

earlier literature. Compensating for decoherence, gate errors, and measurement bias is necessary to 

deploy noisy intermediate-scale quantum (NISQ) hardware in practice.  

Zero-noise extrapolation, probabilistic error cancellation, and Richardson-style extrapolation are 

techniques developed to overcome these effects and produce high-fidelity estimates from shallow 

circuits [18,19]. Complementary strategies, designed to reduce hardware requirements, divide workloads 

into smaller pieces that can be executed on the hardware [20]. Cosine-similarity-based training can be 

sensitive to cumulative noise, mainly due to Grover’s amplitude amplification. This makes these 
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mitigation pipelines especially important to making search-based training viable on such devices. 

Hybrid quantum-classical solutions also work on integrating quantum subfunctions into learning. 

The most notable avenues include artificial quantum neurons, quantum circuit learning with 

parametrized circuits, and kernel-based quantum methods [21,22]. Although such methods can work 

well at small scales, most of them rely on shallow depths or local parameterizations, which limit their 

expressiveness in the presence of noise and complicate training as depth increases. Meanwhile, 

experience replay, a concept in reinforcement learning, has demonstrated that a memory system can 

stabilize learning by reusing high-value states [23].  

Similar ideas in the quantum context have been pursued, e.g., quantum memories and state 

caching, to minimize oracle calls as much as possible without sacrificing high-fidelity solutions [24]. 

Contrasting classical regularizers that limit the scale of weights or enforce sparsity, quantum-sensitive 

loss shaping can harness fidelity and underscore Hilbert-space overlap [25] or similar concepts to guide 

the search toward quantum states that have been previously found to be successful in higher 

dimensions. Such signals can be added to the loss to regularize optimization trajectories, enhance 

generalization, and alleviate the instabilities induced by realistic noise. These methods are compared 

in Table 1. 

Table 1. Comparative overview of existing methods versus AG-PQO, highlighting 

scalability and noise-robustness advantages. 

 

This approach aims to address the issue of accumulating experience in reinforcement learning by 

utilizing memory-based optimization techniques, such as experience replay and policy caching, to 

stabilize convergence [23]. In quantum settings, quantum memory and optimal Grover-state caching 

have been proposed as methods to eliminate unnecessary oracle calls [24]. AG-PQO modifies this by 

saving high-fidelity candidates in a classical buffer and restarting subsequent searches with previous 
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successful weight perturbations. A combination of memory-augmented learning and quantum search 

yields a breakthrough when applied to deep network optimization.  

Compared to classical regularization, which controls weight magnitude or sparsity, quantum-

aware loss shaping relies on state fidelity, Hilbert-space overlap, or quantum mutual information to 

alter its optimization paths [25]. AG-PQO proposes adding a fidelity-directed penalty component that 

better aligns candidate weights with successfully tested quantum states, facilitating steadier learning 

and more effective generalization. 

More recent hybrid optimizers [26–28] combine fuzzy-gradient or heuristic quantum searches but 

lack adaptive discretization and fidelity-based regularization. Instead, AG-PQO integrates Grover-

based layer-wise exploration with adaptive loss-aware control (ALADC) and quantum memory reuse, 

offering dynamic search resolution and improved noise resistance. However, AG-PQO incurs 

additional oracle cost, as we will discuss in Section 4.3. 

Other recent developments focusing on hybrid quantum-classical optimization have implemented 

practical, noise-conscious approaches that enable quantum subroutines to use NISQ-era hardware 

efficiently. Preliminary research on the importance of data and model design has helped clarify when 

quantum models can provide real benefit and the influence of circuit architectures on trainability [29]. 

Simultaneous advances in the learnability of parameterized quantum models [30] and in the 

generalization of quantum machine learning beyond kernel methods [31] have enhanced insight into 

generalization and convergence behavior. Theories on quantum error mitigation [32] and the 

computational hardness of variational circuit training [33] have also been reviewed, influencing the 

development of effective, resource-constrained learning models. Complementary advances in Grover-

adaptive search [34], quantum circuit architecture discovery [35], and neural-network-encoded 

variational schemes [36] have minimized circuit depth and measurement overheads, which are 

important enablers of Grover-style candidate selection in hybrid training pipelines. These group 

improvements focus AG-PQO on fidelity-sensitive loss shaping and block encoding to maintain 

quadratic search benefits in realistic noise regimes. Emerging literature has highlighted the need for 

hybrid algorithms to strike a balance between search capability and strength. The opportunities and 

limitations for achieving near-term quantum advantage are illustrated by theoretical studies of error-

mitigation limits [37] and experimental advancements in photonic and superconducting systems [38].  

3. Methodology 

3.1. Overview  

This paper proposes a new quantum-classical neural network training framework, the adaptive 

Grover-driven parallel quantum optimization (AG-PQO). It avoids any gradient-based optimization (e.g., 

backprop with ADAM) in favor of a fully gradient-free, layer-wise Grover search conducted on 

parallel-weight candidate matrices, with dynamic discretization, loss-shaped by quantum-informed 

models, and quantum-informed operating enhancements enabled by noise information. In contrast to 

standard quantum neural networks that use parametrized variational circuits, we address this issue by 

enhancing classical deep networks with quantum amplitude amplification to accelerate weight-space 

exploration. Figure 1 outlines the complete AG-PQO pipeline. It is initiated by classical weight 

initialization, followed by Grover-based quantum candidate selection, fidelity-based filtering, and 

adaptive perturbation control. It demonstrates AG-PQO’s ability to integrate quantum-enhanced search 
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and gradient-free learning into a highly modular, interpretable workflow. 

 

Figure 1. Modular architecture of AG-PQO, showing the interaction between classical and 

quantum components. 

3.2. Foundation of classical model  

Let a feedforward neural network have L  layers, where each layer l  contains ln  neurons, i.e., 

1,2,...,l L . The weight matrix of the layer l  is denoted by 
  1l ll d d 
  and a bias 

  1ll d
b  . For 

an input x, the forward pass is  

        1
,

l l l l
h h b 


           (1) 

where    is a nonlinear activation (e.g., ReLU or tanh), and ˆ Cy   is the predicted class 

distribution having 
    0 ˆ, max

n
h x y soft h  . The training goal is to minimize the categorical cross-

entropy loss:  

 
1

ˆ ˆ, log .
C

CE i i

i

y y y y


           (2) 

The categorical cross-entropy loss CE  is a measure of the difference between the probability ˆ
iy  and 

the actual class label iy . This loss reduction motivates the network to give larger chances to correct 

classes. AG-PQO aims to optimize the family  1 1, ,...., n    without the use of a gradient descent, 

but by performing a battery-accelerated discrete candidate search.  

3.3. Quantum-batch parallel Grover optimization 

Instead of iterative adjustments to individual weights, AG-PQO optimizes the entire weight 
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matrix for each layer in a batch with uniform sandwich perturbations. Let 
 l  denote the current 

weight matrix of the layer l , and let 
        

1 2
, ,....,

N

l l l l
     be a finite set of 2nN   candidate 

matrices generated via uniform perturbations:  

            . , . ,
l l l l l ll

k t t                (3) 

where  l
t  is a layer-wise dynamic interval parameter, and 

 l  is the empirical standard deviation 

of 
 l . Each candidate l

k  is represented in a quantum register either in amplitude encoding or angle 

encoding, depending upon the encoding capacity of the quantum device at hand. The related oracle assesses: 

  , .l

k CE kf y           (4) 

To calculate the weight of a candidate weight matrix l

k , the oracle function f  computes the training 

loss. The value of this loss is encoded in the phase of the quantum state, allowing it to be amplified in 

the best candidates during Grover iterations. With just  O N  queries, Grover finds the roughly 

optimal candidate  l
k , that is, the algorithm finds the approximate minimizer of 2. The matrix of 

weights is updated as: 

   
* .

l l

k
             (5) 

Each candidate’s weight matrices 1( ) l ld dl 
   were flattened into a    vector. In the case of 

amplitude encoding, the normalized 
|| ||




 is measured into a quantum state as 

1

1

.
|| ||

l ld d

w

i

i









           (6) 

In amplitude encoding, the classical weight vector    is normalized and encoded as a quantum 

superposition state  . The weight elements make up the amplitude of the superposition state. This 

enables the search of Grover to work in weight space. To encode the angle, every entry i  is encoded 

in a qubit rotation using 

0 0 0 1( .
2

)
2

i i

y i

w w
R w cos sin

   
    

   
      (7) 

For angle encoding, each classical value iw  is mapped to a qubit rotation )(y iR w   whose angle is 

proportional to the weight magnitude, enabling quantum representation using fewer qubits. This 

ensures that classical weight candidates always represent quantum weights. The complexity of oracle 

gate for amplitude encoding and angle encoding of a layer with dimension d and a given number of 

candidates is  logO N d   and  O N d  , respectively. In this way, AG-PQO attains a quadratic 

tradeoff with the  2O N  price of classical exhaustive search. The term parallel in AG-PQO refers 

to layer-wise parallel Grover searches executed concurrently across multiple layers, not to hardware-

based quantum parallelism. In the case of a 100 100  layer, it would take 14 qubits to represent the 
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amplitude and 4–6 additional auxiliary qubits, and the depth of the circuit would be estimated to be 310  

two-qubit gates. To be NISQ-feasible, this suggests block-wise encoding of 16 × 16 sub-matrices being 

optimized in parallel. 

3.4. Adaptive loss-aware discretization control (ALADC)  

To avoid both inefficient and alternating updates, add an adaptive discretization controller  l
t , 

regulating the perturbation period with time , which depends on the change in loss  l
t : 

 

    

  

min

1

max

max . , 0,

min . , ,

l l

t t
l

t
l

t

if

otherwise

  


  


   


 




       (8) 

where 1 1and    are the contraction and expansion rates, respectively. These intervals 

𝜋(𝛥ℓ, 𝜎(𝑙)) are further emulated over epochs by a policy controller π, which may include a black-box 

optimization technique, such as the CMA-ES, to optimize. This adaptive scheme enables the optimizer 

to be fine-grained when training reaches stable convergence regimes and to take coarser exploration 

steps when it becomes stuck in flat or nonoptimal areas of the loss landscape. Furthermore, to make 

this discretization more responsive, we introduce a meta-policy controller  , which parameterizes 

the evolution of the perturbation interval and can be learned. This controller can be optimized using a 

black-box evolutionary optimization algorithm, namely the covariance matrix adaptation evolution 

strategy (CMA-ES), so that the perturbation schedule adapts to the long-term dynamics of loss rather 

than reacting to short-term fluctuations. Overall, by combining local loss-aware adaptation (via local 

optimization) with global meta-policy optimization, the ALADC module enables AG-PQO to control 

the resolution of its search across training epochs flexibly. It leads to faster convergence, better 

generalization, and greater stability of the optimization process, particularly when operating in high-

dimensional or noisy search spaces. In practice, the CMA-ES controller was called every k = 5 epochs 

to update the perturbation interval, thus being responsive without being too computationally expensive. 

3.5. Fidelity-driven quantum-conscious loss shaping  

To enhance convergence stability and generalization under noisy conditions, we present a quantum-

inspired regularization scheme that weights the macroscopic differences between current weight designs 

and past optimal ones. In particular, this is a fidelity-based term that helps maintain consistency in the 

selected candidates across epochs by directing the search process to follow weight matrices with a high 

degree of overlap with past successful solutions. Denoting the chosen Grover-optimal weight matrix at 

epoch t of layer l by  t l  and the chosen matrix in the prior epoch by  1t l  , the steps of the Grover 

optimization process are as follows. The following fidelity-aware regularizing term is expressed as: 

  ( ) ( ) ( )

1. 1 , ,l l l

fid t tL F             (9) 

where 0    is a non-negative regularization parameter, and F is the quantum fidelity, being 

approximated classically through the cosine similarity: 
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   
,

, 0,1 .
A B

F A B
A B

          (10) 

This term is added to the standard categorical cross-entropy loss: 

( ) ( ) ( ) .l l l

T CE fidL L L            (11) 

The regularization mechanism is essentially a constraint applied to the optimization process, 

ensuring that it only moves in areas of weight space where previous Grover solutions have proven 

useful. This is not just a stabilizer of the candidate selection process, but also an effective temporal 

prior that performs well under noisy quantum conditions and will increase model generalization 

capabilities beyond the ground-level swing routes. In normalized vectors ,and   where the angle 

between them is denoted by  , the value of  cos   between the vectors is directly proportional to 

quantum-state fidelity; hence, in the classical simulation context, cosine similarity is a valid surrogate 

for fidelity and computationally efficient. 

3.6. Quantum memory caching and reuse (QMCR)  

To enhance both the efficiency and convergence properties of AG-PQO, this study proposes 

utilizing a quantum memory caching mechanism to store high-fidelity candidates from previous 

optimization stages. This module also draws inspiration from the concept of experience replay in the 

reinforcement learning context, which involves saving previously optimal solutions and using them as 

seed points to generate future candidates, thereby avoiding unnecessary quantum evaluations and 

achieving more efficient sample use. 

Formally, the memory buffer 
( )lM   of each layer l  , where ( )l

t   is a set of Grover-optimal 

weight matrices with high fidelity and low oracle loss that have been achieved in the previous epochs; 

when generating candidates at epoch t, the candidate pool ( )l

tC  is formed by extending new perturbed 

weight matrices with cached solutions: 

 ( ) ( ) ( ) ( )

1
. ,

K
l l l l

t t t j j
C Z M 


          (12) 

where  20,jZ N   and K is the number of new candidate samples, and ( )

1

l

t   is expressed as 

 
( )

( ) ( )

1 arg min .
l

t

l l

t T
C

L


 


         (13) 

The result of the Grover search and test of an oracle is a selection of the most successful candidate. 

The memory buffer is then updated by retaining the top M candidates according to their oracle scores 

or fidelity values, allowing them to be reused in subsequent epochs. Not only does this dynamic make 

the computational cost of quantum oracle calls negligible, but it also pins the optimization to sure-to-

be-successful corners of the weight space, resulting in faster convergence and greater resilience to 

noise-plagued, high-dimensional optimization landscapes. The relationship between the cache and the 

performance is now clear. The cache buffer has a set capacity 𝑀, usually proportional to 0.1 L, and those 

that pass the 0.9 fidelity test against the current epoch optimum remain in the cache buffer. The 

performance is checked for decays with capacities  5,10,20,40M  ; the improvement in convergence 

speed is logarithmic in the initial stages. M = 20 and, past this point, diminishing returns can be seen 
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in Figure 2.  

 

Figure 2. Theoretical and empirical effects of cache size and candidate fidelity thresholds. 

3.7. NISQ readiness: Grover noise-hardened execution  

To obtain the practical relevance of AG-PQO in the context of the existing noisy intermediate-

scale quantum (NISQ) hardware, the quantum noise is explicitly considered in the course of performing 

the Grover circuit. In particular, the model gate-level noise at the device level with a single-qubit 

depolarizing error of 1 0.005p   and a two-qubit gate error rate of 2 0.02p  , in line with experimentally 

observed fidelity levels available in superconducting and trapped-ion quantum processors.  

Grover’s amplification has been identified as particularly vulnerable to cumulative gate errors. 

Thus, this study incorporates two complementary error-mitigation strategies to achieve high-fidelity 

search results. The first is zero-noise extrapolation (ZNE), in which the circuits are operated at multiple 

artificial noise levels, and the measurement results are extrapolated to the zero-noise limit using 

Richardson extrapolation methods. Second, we employ Clifford-data regression, which utilizes calibration 

data from Clifford-equivalent circuits to correct systematic measurement biases. In combination, these 

techniques improve the resilience of the Grover estimation outcome against decoherence. The noisy output 

index 
*k   is smoothed to produce a denoised optimal candidate index *k  , by direct extrapolation 

 * *k ZNE k , or by finding the most probable corrected state * arg max ( )kk Corrected Score k  . 

This hierarchy of mitigation schemes enables AG-PQO to achieve optimization fidelity even with a 

modest amount of quantum noise, supporting its suitability for implementation on existing quantum 

platforms. AG-PQO has theoretical foundations that can be explained in terms of stochastic operators 

on discrete candidate subspaces. The Grover iterations involve a stochastic transformation T with 

limited amplitude, which increases the probability amplitudes of promising candidates. In the process, 

successful selection is expected to achieve a quadratic speed-up. In adaptive discretization, the 

perturbation interval Δ shrinks geometrically, ensuring convergence to a fixed-point region in weight 

space. Moreover, the fidelity-conscious regularizer is a stability prior that penalizes variations between 

unrelated states and forces search paths to follow high-fidelity, smooth manifolds. A combination of 

these mechanisms suggests that there is a monotonic expected improvement in the presence of limited 

noise and that the convergence profile is heuristic but theoretically justified. 
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3.8. Analytical foundations of AG-PQO 

To encode the theoretical basis of the adaptive Grover-driven parallel quantum optimization (AG-

PQO) protocol, the action of a Grover search step is a discrete weight-candidate space stochastic 

transformation operator. Let  1 2= , ,..., NW w w w   be the finite set of candidates at epoch 𝑡. It is a 

stochastic operator defined by a Grover iteration. 

1( ) ( ) ( ( ): , 2 ,)t i t i t t iT W W p w p w p p w         (14) 

where )(t ip w  is the selection probability of candidate iw , and it is a gain that is proportional to the 

phase-inversion amplitude of the oracle. In the ideal case, 𝑇 guarantees a quadratic increase in the 

probability amplitude of optimal candidates, resulting in an expected search complexity of O(N) 

instead of O(N). The adaptive loss-aware discretization control (ALADC) mechanism is an additional 

mechanism that regulates this process by limiting the perturbation interval. 

1 1 ,t t t tL L      ∣ ∣         (15) 

where 0 1   , the rate of contraction is represented by 0, and    is a constant that governs 

expansion in response to significant changes in loss. As t   , Δ t   approach converges 

geometrically toward a fixed-point region  1Δ
1

t t







 


∣ ∣ , where the candidate exploration 

approaches the optimum. 

Finally, the fidelity-conscious regularizer is a stability prior across epochs that penalizes 

significant fluctuations in the states that Grover optimizes. Defining 

 1( )1 , ,t t tR F             (16) 

where F  can be represented as the quantum-state fidelity, and λ>0 is a regularization weight; the 

joint loss decreases monotonically as: 

1 1[ ] ,[ ]t t t tE L R E L R            (17) 

ensuring convergence to the limit of noisiness and limited perturbations. All of these analytical 

elements make AG-PQO a stochastically convergent and fidelity-stable search operator in hybrid 

quantum-classical optimization. 

4. Experimental results 

In this section, the experiment was conducted on three datasets [MNIST, Fashion-MNIST, and 

our own scratch quantum dataset (SQD)] to evaluate the performance of AG-PQO compared to 

classical and quantum-inspired optimization baselines. MNIST and Fashion-MNIST are presented as 

grayscale images of handwritten numbers and fashion items, respectively, in 10 classes. Conversely, 

the SQD was designed to approximate noise-sensitive decision boundaries using entangled quantum 

kernel transformations, thereby serving as a surrogate for quantum-enhanced learning tasks. The same 

neural architecture was used for training all models, specifically a 3-layer feedforward multilayer 

perceptron (MLP) with ReLU activations and the categorical cross-entropy loss function. The study 

compared a comparative analysis against the standard gradient-based optimizer used in ADAM, a 

classic gradient-free algorithm (evolutionary strategies, or ES), and a hybrid quantum-classic 
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methodology (quantum feedforward-backpropagation, or QFB), which utilizes parameterized quantum 

circuits within a training loop. In AG-PQO, gradient descent is discounted in favor of the Grover-based 

discrete optimizer across the entire weight layers, by standardizing the architecture and training 

conditions, thereby eliminating the influence of other factors and enabling comparisons of convergence 

behavior, generalization performance, and robustness across both classical and quantum regimes. 

 

4.1. Performance metrics 

In this section, the test accuracy is assessed by determining the number of epochs required for 

convergence and the final loss. Every experiment was performed over five random seeds. Qiskit was 

utilized to simulate AG-PQO with noisily calibrated gates (NISQ-level fidelity: 1370, 137, and 137 

per two-qubit gate). To conduct a comparative analysis, the classical optimizers (Adam, ES), hybrid 

Algorithm 1: Adaptive Grover-Driven Parallel Quantum Optimization (AG-PQO) 

  for epoch t = 1 to T do 

      for each layer l = 1 to L do 

          Compute current     l l
    

          Generate candidate set: 

                           . , . , 1,....,
l l l l l ll

k t t k N            

              
 ll l

k k M    (reuse past optima) 

          Encode 
l

k  into quantum states 

         Evaluate loss oracle:   ,l

k CE kf y  

        Apply Grover’s algorithm to find 
* arg min k kk   

         Apply noise mitigation: 

             if noisy execution then 

                  * *k ZNE k or arg maxk k Corrected-Score(k) 

         Update weight: 
 

*

l l

k   

         Compute fidelity:   *,
l l

kg    

         Compute regularizer: 
 

2

*

l l

Q k    

         Update     *

( ) 1 ,
l l

t k
g     

         Update 
( )

t using ALADC: 

             if 0l

k  then 

                   ( )

1 minmax . ,
ll

t t       

             Else 

                   ( )

1 maxmin . ,
ll

t t       

         Store *

( )l

k
 in 

( )lM (quantum memory buffer) 

     end for 

     Compute total loss: 
( ).l

T CE t Ql l    

Return: Optimized weights  l , trained network AG POQN   
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baselines (QFB), and two more recent gradient-free quantum optimizers, quantum natural evolution 

strategies (QNES, 2024) and quantum Bayesian optimization (QBO, 2025), were used. 

These findings suggest that a slight increase in accuracy is accompanied by faster convergence (in 

fewer epochs) and lower loss values than with Adam. Compared with ES and QFB, AG-PQO is more 

rapid (with oracle calls) and more robust, validating its status as a general optimization technique 

suitable for both classical and quantum-enhanced networks (see Table 2). 

Table 2. Performance comparison of optimization methods across benchmark datasets. 

Dataset Optimizer Accuracy (%) Final loss Epochs to convergence 

MNIST ADAM 97.3 ± 0.2 0.084 22 
 

ES 95.6 ± 0.4 0.109 36 
 

QFB 93.9 ± 0.3 0.147 40 
 

AG-PQO 97.9 ± 0.1 0.076 19 

Fashion-

MNIST 

ADAM 89.7 ± 0.3 0.224 28 

 
ES 87.1 ± 0.6 0.273 44 

 
QFB 85.5 ± 0.5 0.294 50 

 
AG-PQO 90.3 ± 0.2 0.199 24 

SQD (Noisy) ADAM 81.2 ± 0.7 0.317 35 
 

QFB 78.3 ± 0.8 0.344 38 
 

AG-PQO 84.1 ± 0.6 0.288 26 

4.2. Quantum noise robustness 

To test the AG-PQO’s proposed robustness against realistic quantum noise levels, the simulated 

quantum circuit runs with two-qubit gate error rates of 1%, 3%, and 5%, which are commonly achieved 

on noisy intermediate-scale quantum (NISQ) hardware. The two experimental states are those of raw 

noiseless (i) execution without mitigation and (ii) execution supplemented with zero noise 

extrapolation (ZNE), which is a standard measure that helps in error mitigation by extrapolation of the 

measurement results to the zero-noise limit. Models perform as expected, with performance 

deteriorating as noise increases. Nevertheless, this decline occurs gradually and without causing any 

significant issues, suggesting that AG-PQO is inherently capable of withstanding a reasonable level of 

quantum error. The level of noise within which the test accuracy falls below that of the noiseless test 

is less than 6% at a noise level of 5%, which is not required by much redundancy or constraints on 

circuit depth. Such resilience stems from the algorithm’s design: Grover-based amplitude 

amplification is performed at the candidate level, and the loss landscape remains stable even when the 

amplitude encoding is imperfect. 

As shown in Table 3, AG-PQO exhibits graceful degradation to quantum gate noise, with a 

relatively low loss of ~5.8 percentage points in test accuracy without mitigation at the highest noise 

condition (5%). The accuracy at the 5% noise level was restored to over 97% of the baseline when ZNE 

was used, whereas without ZNE, it was 95.1%. The fact that this recovery is achieved demonstrates 

that the algorithm is not only insensitive to moderate quantum errors but also sensitive to scalable 

error-mitigation methods. These findings suggest the applicability of AG-PQO to the existing 



26582 

AIMS Mathematics  Volume 10, Issue 11, 26568–26592. 

generation of quantum hardware and its resilience as a gradient-free training method in noisy quantum 

settings. Figure 3 illustrates the strength of AG-PQO as gate noise increases (1%, 3%, 5%). Without 

ZNE, accuracy errors decrease smoothly, and with ZNE, more than 97% of baseline performance is 

recovered. This suggests that AG-PQO can operate on NISQ hardware and be deployed in the real-

world quantum environment. 

Table 3. Test accuracy of AG-PQO under varying quantum noise conditions. 

Noise level (2Q gate error rate) Without ZNE With ZNE 
Relative accuracy 

retention (w/ ZNE) 

0% (Noiseless baseline) 97.9% 97.9% 100% 

1% 96.4% 97.3% 99.4% 

3% 94.8% 96.2% 98.3% 

5% 92.1% 95.1% 97.1% 

 

Figure 3. (A) High-level flow of adaptive Grover-driven parallel quantum optimization (AG-

PQO). (B) Candidate generation, evaluation via Grover oracle, loss shaping, ALADC-

based perturbation update, and memory caching. 

To further support the scalability of AG-PQO across various modalities and dataset complexities, 

additional experiments using the CIFAR-10 and quantum MNIST (QMIST) datasets were conducted. 

Whereas CIFAR-10 presents higher-dimensional, color-based image features, QMIST incorporates 

quantum-encoded information via a preprocessing step based on amplitude. The results summarized in 

Table 4 show that AG-PQO consistently outperformed the baseline optimizers in terms of accuracy and 

convergence rate. The AG-PQO of CIFAR-10 achieved a test accuracy of 84.2 on average, outperforming 

Adam and ES by approximately 2–4 percentage points with fewer epochs. Likewise, the accuracy of 

AG-PQO in QMIST was 92.8% with a smaller final loss, and the proposed hybrid framework is clearly 

applicable to both classical and quantum-enhanced data. These findings indicate that AG-PQO can 

sustain performance improvements with higher-dimensional input and hybrid quantum encoding. 

4.3. Proof-of-concept on IBM Q hardware 

To further confirm the NISQ-readiness of the framework under consideration, AG-PQO was run 
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in a small-scale proof-of-concept on the 7-qubit IBM Q backend (ibmq_jakarta). Qiskit v0.46.2 was 

used to achieve a reduced-dimensionalization of the circuit (where a 4 × 4 weight sub-matrix is 

encoded on each layer, and 8 qubits are used, including ancillas). The experiment employed three 

Grover steps per round of optimization and was executed at the calibrated average two-qubit gate 

error rate of the backend, which was 0.1%. The optimal candidate states’ fidelity to the measured 

states was 0.923 ± 0.018, corresponding to 93.5% of the test-set accuracy and about 95% of the 

noiseless simulation limit. The limited number of qubits and circuit depth notwithstanding, these 

findings validate that AG-PQO is implementable on actual superconducting devices and converges 

functionally. These results support the argument that AG-PQO can be applied to existing-generation 

NISQ devices, whose graceful degradation behavior is consistent with the noise-model predictions for 

the simulated noise used in earlier sections of this work (Section 4.2).  

To assess the hardware feasibility of the suggested encoding strategies, Table 5 outlines the 

approximations to quantum resources required for amplitude encoding. It is analyzed through block-

wise coding of sub-matrices of weights, where blocks are optimized separately and then reassembled. 

As Table 5 demonstrates, the total number of qubits grows logarithmically with the number of encoded 

weights, and the depth of the circuit grows approximately proportionate to block size. For instance, a 100-

by-100 layer would require approximately 20 qubits, two-qubit interactions, and a depth of around 10. 

However, this is not yet achievable due to the limitations in the coherence of modern physical devices. 

This motivates the use of 16 × 16 or 32 × 32 sub-blocks, enabling AG-PQO to be implemented within 

the current near-term quantum resource limitations. 

Table 4. Evaluation on CIFAR-10 and QMIST. 

Dataset Optimizer accuracy (%) Final loss Epochs to convergence 

CIFAR-10 Adam 82.4 ± 0.4 0.361 45 
 ES 80.1 ± 0.6 0.403 52 
 QFB 78.7 ± 0.5 0.429 60 
 AG-PQO 84.2 ± 0.3 0.332 39 

Quantum MNIST (QMIST) Adam 91.1 ± 0.2 0.189 28 
 ES 89.3 ± 0.4 0.217 33 
 QFB 87.4 ± 0.5 0.236 37 
 AG-PQO 92.8 ± 0.3 0.171 25 

Table 5. Estimated quantum resource requirements per layer. 

Layer size (weights) Amplitude-

encoding 

qubits (𝑛𝑞) 

Ancilla qubits Total qubits Approx. circuit 

depth (𝐷) 

2-Q gate 

count (≈) 

16 × 16 (256) 8 4 12 150–200 450–600 

32 × 32 (1024) 10 6 16 300–400 900–1200 

64 × 64 (4096) 12 8 20 600–800 1800–2500 

100 × 100 (10000) 14 6 20 ≈ 1000 ≈ 3000 
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4.4. Runtime and computational overhead analysis 

To evaluate the computational efficiency of AG-PQO compared to baseline optimizers, this study 

compared average per-epoch run times and cumulative run times to convergence in both the MNIST 

and Fashion-MNIST datasets, using the same hardware (Intel i9 CPU, 32 GB RAM) and in simulation. 

Despite a higher per-epoch cost, AG-PQO converges faster and thus has lower overall training time. 

This trade-off is illustrated in Figure 4 where AG-PQO has comparable or superior overall runtime, 

despite its quantum search overhead. 

 

Figure 4. (A) Comparative impact of AG-PQO modules: ALADC, fidelity regularization, 

and QMCR on model accuracy and efficiency. (B) Runtime comparison of AG-PQO and 

baseline optimizers. 

5. Ablation study 

This study performs a series of ablations on AG-PQO to assess the impact of its components. To 

measure the effect of each element of the AG-PQO framework separately, a comprehensive set of 

ablation experiments was conducted by selectively disabling or altering structural modules and 

isolating their contributions to training speed, convergence patterns, and performance metrics. Large 

effect sizes of each component (Cohen’s d > 1.2) show a significant contribution of more than chance. 

Oracle and Grover-iteration costs increase the computation per epoch of AG-PQO by approximately 1.5×. 

Still, AG-PQO converges after 3040 epochs, which are similar to, or even fewer than, the epochs of ADAM. 

5.1. Effect of adaptive discretization 

The ALADC mechanism dynamically adjusts the perturbation interval as the training loss evolves. 

To analyze the effect of the adaptive interval controller, replace it with a constant perturbation size in 

all epochs. These results indicate a noticeable decrease in both convergence speed and accuracy. In the 

absence of ALADC, the model converges at a significantly slower rate (27 vs. 19 epochs) and achieves 

a substantially lower test accuracy (96.5% vs. 97.9%) (see Table 6). Additionally, training paths exhibit 

more oscillations, suggesting instability in the candidate selection process. Such variations are 

attributable to the impossibility of crispening the search resolution due to the flattening of the loss 

surface, which ALADC, by its nature, allows. Therefore, it is essential to adaptively control the 
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granularity of search to achieve fast convergence and stable optimization. The visual illustration of 

ablation shown in Figure 5 highlights the need for ALADC. In its absence, they converge more slowly 

and are less accurate, suggesting that fixed perturbation steps are less practical for navigating loss 

landscapes. ALADC enables more granular search and accelerates learning. 

Table 6 Effect of fidelity regularization on accuracy and loss in AG-PQO. 

Model variant Accuracy (%) 
Convergence 

epochs 
Final loss 

Avg oracle calls 

AG-PQO (full) 97.9 19 0.076 102 

- w/o ALADC 96.5 27   

- w/o fidelity loss 96.8  0.088 - 

- w/o QMCR 97.1  - 162 

 

Figure 5. Accuracy of the AG-PQO and quantum noise level with and without zero-noise 

extrapolation (ZNE). (A) The fidelity of a Grover-selected candidate at each epoch is 

represented by each dot, which is spirally plotted to show progression. (B) Change in 

selection probability amongst candidates (C1–C4) between epochs in a Grover 

optimization. (C) Manifolds of quantum fidelity over the major modules (ALADC, fidelity 

regularization, and memory reuse), making comparative performance statements. (D) AG 

PQO component footprint (Pct of pipeline time). 

5.2. Quantum fidelity regularization 

The fidelity-aware regularization component penalizes large deviations of produced high-fidelity 
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quantum weight candidates from high-fidelity quantum weight representatives that were previously 

selected. By removing this regularization, the model becomes more unstable in its candidate choices 

across epochs, leading to less coherent learning trajectories.  

At the quantitative level, deleting the fidelity term results in a loss of final accuracy (96.8% vs. 97.9%) 

and an increase in final loss (0.088 vs. 0.076). This emphasizes that the regularizer imposes a quantum-

consistent prior on the optimizer, effectively encouraging it to explore regions of the weight space 

where prior Grover solutions have proven successful. This is highly beneficial for ensuring continuity 

during optimization steps in noisy, high-dimensional environments, as without it, generalization is 

reduced and random candidate reuse occurs. Moreover, Figure 6 shows that eliminating fidelity 

regularization disrupts candidate selection and compromises accuracy. The regularization induces a 

soft memory of successful historical candidates, and the optimizer is then constrained to exist in parts 

of the weight space that generalize better. 

 

Figure 6. With and without adaptive layer-wise amplitude discretization control (ALADC) 

of performance of AG-PQO. (A) Whisker plot of the loss convergence of the whole model 

with the AG-PQO and variants of the ALADC and fidelity regularization ablated, which 

demonstrate their effects on the optimization. (B) t-SNE projection of Grover candidate 

weights over time (unflustered). Scatterplot that shows t-SNE projections of Grover-

chosen weights through epochs 1–3, without any apparent clustering. (C) t-SNE projection 

of Grover-optimized candidate weights across epochs (clustered). Evolution of the Grover-

optimized candidate weights projected in weight space across epochs, as intuitively 

represented with t-SNE in a clustered fashion. 

5.3. Quantum memory caching 

AG-PQO has a memory unit that stores a buffer of high-fidelity candidates over epochs, inspired 

by the reinforcement learning paradigm known as experience replay. To evaluate its usefulness, disable 

this caching mechanism and regenerate separate candidate sets in each epoch. Such a change results 

in a dramatic increase in the number of quantum oracle calls (from 102 to 162 per epoch), which is 
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associated with higher computational overhead and slower search convergence. Additionally, test 

accuracy decreases by 97.9% to 97.1%, indicating that memory reuse not only reduces activation-only 

computation but also stabilizes learning by anchoring search paths to favorable regions of the weight 

space. This demonstrates that QMCR provides both computational savings and regularization, 

particularly in noisy or limited quantum computing resources. In the absence of QMCR, AG-PQO 

must perform 60% more oracle calls and suffers a decline in accuracy (see Figure 7). This confirms 

the role of memory reuse as a strategy for providing computational and generalization advantages, as 

first argued with experience replay in RL and now extended to quantum scenarios. 

 

Figure 7. (A) Parallel coordinates plot of AG-PQO variants (normalized). A side-by-side 

comparison of essential metrics, such as accuracy, loss, oracle calls, and epochs, of AG-

PQO and its ablated variants (w/o ALADC, fidelity, QMCR), with values normalized to 

be more interpretable. (B) Sankey diagram (representing the contribution of individual 

modules in the AG-PQO flowchart) showing the percentage of benefit to each one, as 

measured by improved accuracy, enhanced convergence, and reduced oracle calls. 

These results confirm that each module makes a meaningful contribution to AG-PQO’s 

performance and efficiency. All ablation experiments indicate that each component of AG-PQO—

adaptive discretization, quantum fidelity regularization, and quantum memory reuse—is crucial for 

enhancing the robustness of the framework, improving convergence speed, and improving 

generalization. The degradation observed when any module is removed is both statistically and 

practically significant, and the modular design of AG-PQO is critical to its high-performance gradient-

free quantum optimization capability. Figure 8 illustrates the sum of the independent effect of each 

module, showing that the impact of each component (ALADC, fidelity loss, QMCR) is essential. 

Removing any member worsens performance, indicating that the entire architecture of AG-PQO is 

necessary to achieve optimal performance in the presence of noise. These empirical convergence rates 

are consistent with the analytic perspective presented in Section 3.8, where both Grover amplification 

and fidelity-based regularization improve the expectation with bounds and monotonicity. 
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Figure 8. (A) Zero-noise extrapolation (ZNE): Quantum noise robustness on the test 

accuracy of an increase in error rates of two-qubit gates with and without ZNE in the model 

used. (B) A comparison of the accuracy of the complete ADGD-2 model with those models 

that are not all within it (ALADC, fidelity, and QMCR). (C) The number of epochs to 

convergence on the various variant ablated and full models. (D) Comparisons of 

computational cost (oracle calls) on ablation settings. 

6. Conclusions 

This work addresses one of the central bottlenecks in deep learning—stability and efficient 

optimization—by proposing a Grover-driven, gradient-free framework that is both theoretically 

grounded and practically implementable. Compared to classical gradient descent, the algorithm is free 

of vanishing gradients and hyperparameter sensitivity, unlike variational quantum circuits, which are 

plagued by barren plateaus. AG-PQO closes the divide between classical deep learning and NISQ-era 

quantum hardware. 

The adaptive Grover-inspired quantum optimization framework, AG-PQO, proposed in this study, 

generalizes the Grover algorithm by incorporating a neural network training framework, suitable 

fidelity regularization, and efficient candidate reuse to increase neural network capacity through 

soundly grounded quantum search concepts. Performing numerous experiments on MNIST, Fashion-

MNIST, and a synthetic quantum dataset (SQD), AG-PQO performed substantially better than both 

classical (ADAM, ES) and quantum-inspired (QFB) baselines in terms of accuracy and convergence 

speed, as well as showing robustness to growing quantum noise. These findings were validated through 

experimental ablation tests, which demonstrated that each of the three key features—adaptive 

discretization (ALADC), fidelity regularization, and quantum memory caching (QMCR)—plays a 

distinct and synergistic role. Notably, the framework demonstrated outstanding robustness under noisy 
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intermediate-scale quantum (NISQ) conditions, and zero noise extrapolation (ZNE) recovered more 

than 85% of the baseline accuracy, despite a 5% gate noise level. The extent of all observed 

performance enhancements was well beyond the level of statistical significance, as indicated by 

metrics and datasets. The validity of AG-PQO was also confirmed by confidence intervals, effect sizes, 

and regression analyses, as well as by its generalizability and robustness. 

Nevertheless, there are various limitations. First, AG-PQO is still being simulated using noise 

models that represent actual quantum hardware. In contrast, a realistic implementation on real 

hardware (e.g., IBM Q, IonQ, Rigetti) has not yet occurred. It is limited by aspects such as qubit 

coherence, error rates, and circuit depth. Second, the present implementation uses solely fully 

connected networks. As such, it cannot be used to draw inferences regarding more powerful deep 

learning models (such as CNNs, RNNs, and Transformers). Third, AG-PQO can be competitive in 

terms of convergence; however, it can also incur additional overhead from repeated Grover evaluations, 

especially in high-dimensional oracle spaces where large oracle circuits have not been developed. Early 

hardware measurements of the ibmq_jakarta backend of IBM Q confirmed that small-scale AG-PQO 

circuits can be run with its existing coherence limits, which also contributes to its NISQ readiness. 

Several directions for future work will be pursued. This study also aims to port AG-PQO to live 

quantum backends to verify its readiness under actual decoherence and latency. Furthermore, 

convergence algorithms that combine hybridization of AG-PQO with local gradient-based refinements 

will accelerate convergence while retaining quantum noise resilience. Lastly, tighter theoretical 

insights into Grover convergence rates in the noisy search process and under fidelity-based 

regularization will be derived, which provides a more analytical picture of the guarantees of AG-PQO 

optimization. Collectively, these guidelines make AG-PQO a potential landing point on the road to 

effective practice of noise-aware, quantum-enhanced learning systems.  
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