
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(11): 26527–26544.
DOI: 10.3934/math.20251166
Received: 01 July 2025
Revised: 18 September 2025
Accepted: 25 September 2025
Published: 17 November 2025

Research article

Linearized L1-Galerkin method for variable order time-fractional
Schrödinger equation with unconditional convergence

Boya Zhou1, Shaohong Pan1, Zhiwei Fang1,* and Min Li2

1 School of Mathematics, Foshan University, Foshan, 52800, Guangdong, China
2 School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan

430074, Hubei, China

* Correspondence: Email: fangzw@fosu.edu.cn; Tel: +86075782981755.

Abstract: The nonlinear Schrödinger equation with a nonlocal operator plays an important role in
quantum mechanics, and the time-fractional Schrödinger problems have been widely studied for the
case of constant exponents. In this paper, we propose a linearized unconditionally convergent L1-
Galerkin method to solve the variable-exponent fractional Schrödinger equations. The optimal error
convergence of the fully discrete scheme is proved without any time-space step restriction condition,
even when incorporating the influence of the nonlocal operator in the temporal direction. The proof
relies critically on the Sobolev embedding theorem combined with the inverse inequality. The discrete
fractional Grönwall inequality is also used to obtain the error estimates. Numerical experiments are
given to verify our theoretical results.
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1. Introduction

This paper numerically deals with the following nonlinear variable order time-fractional
Schrödinger equation (VOTFSE) in multiple dimensions:


iC0 Dα(t)

t u + ∆u + |u|2u = 0, (x, t) ∈ Ω × (0,T ],
u(0, x) = u0(x), x ∈ Ω,

u(t, x) = 0, (x, t) ∈ ∂Ω × (0,T ],

(1.1)
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where i denotes the imaginary unit; Ω ∈ Rd with d being the dimension; and C
0 Dα(t)

t is the variable order
Caputo fractional differential operator defined by [1],

C
0 Dα(t)

t φ =
1

Γ(1 − α(t))

∫ t

0

φ′(s)
(t − s)α(t) ds, 0 < α(t) < 1. (1.2)

Time-fractional Schrödinger equations have been considered in various fields, including physical
[2], chemical [3], and biological situations [4,5]. It can be used to describe the laws of fluids’ motion in
fluid dynamics and can also explain the impact of in-process interactions arising from the propagation
of free particles in physics [6, 7].

Recent studies have demonstrated that anomalous diffusion processes often exhibit time- or
space-dependent rate dynamics, challenging traditional constant-order models. This finding has
drawn researchers’ attention to applying variable-order (VO) fractional problems to describe these
physical phenomena [8–10]. Smako and Ross [11] first introduced the definition of a fractional
operator and established some properties of the integral with VO. Later, Lorenzo and Hartley [12]
aimed at the concept of VO integration and differentiation and introduced several candidate
definitions in terms of different order memories. Sun et al. [13] discussed the application of VO in
terms of simulating the anomalous diffusion processes in many systems. To investigate this problem
systematically and explore the connections between variable-order and constant-order fractional
operators, Wang and Zheng [14] discussed the well-posedness of VO time-fractional diffusion
equations and the regularity of the solutions. Their works provide theoretical supports for solving VO
fractional equations numerically.

Considering the complexities of the VO fractional derivatives, analytical solutions are difficult to
obtain, with which several numerical explorations arise. Lin et al. [15] proposed a new explicit finite
difference method to solve a VO fractional diffusion equation and proved the convergence results under
the assumption that the nonlinear term satisfies a Lipschitz condition. Moreover, Zhao et al. [16] via
a Mid-point formula to discrete the fractional derivative operator with VO, and they derived a second
order scheme. Zheng and Wang [17] studied the effects on convergence results from α(t) and proved
that applying the finite element methods to VO time-fractional diffusion equations (TFDEs) achieved
the optimal convergent order on uniform meshes with α(0) = α′(0) = 0. They also considered a VO
space-fractional equation under the condition that the VO reduces to an integer value at the boundary.
Zaky et al. [18] studied the VOTFDEs with fixed delay, and the VO fractional derivatives were discreted
by L1−scheme. Collocation methods for this problem were subsequently developed in [19]. Later,
Wei and Yang [20] conducted a finite difference local discontinuous Galerkin method to approximate
the linear VOTFDEs, proving the optimal error estimate and the stability analysis for the fully discrete
scheme. Du et al. [21] developed a second-order finite difference method in the temporal direction,
achieved high accuracy in space with applying alternating direction implicit (ADI) and compact ADI
skills to approximate space derivative. Jia et al. proposed a fast algorithm [22] and Huang et al. [23]
constructed a super convergent scheme to solve linear VOTFEs. Existing studies primarily focus on
linear formulations or Lipschitz-constrained VOTFDEs, while few studies address nonlinear cases or
VOTFDEs. In [24], the Jacobi collocation method was used for VO space-time Schrödinger equation
and they proved that the scheme had high accuracy in one dimension, which could be extended to
solve the two dimensional case. Atangana and Cloot [25] derived a Crank−Nicolson scheme to solve
the space-fractional VO Schrödinger equation and found the stability and error estimate order to be
O(τ + h2).
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The primary objective of this paper is to construct an unconditional convergent linearized
L1-Galerkin discrete scheme for the nonlinear VOTFSE (1.1). As is widely known, nonlinear
equations are typically addressed through two primary approaches: The fully implicit method, which
involves solving a nonlinear system iteratively, and the linearized method, which relies on the
boundedness of the numerical solution. Classical error analysis for these methods often requires
restrictive time-step constraints.

To achieve our goals, two primary difficulties should be addressed: (1) The loss of the convolution
structure in the VO differential operator, which is retained in constant-order fractional equations and
essential for deriving error estimates; (2) the inherent complexity of the VO time-fractional
Schrödinger equation, accounting for the influence of the imaginary part and the nonlinear term. To
overcome these challenges, we apply a vital method which is also considered in [26, 27] with
inter-order cases for analyzing unconditional convergence. This approach leverages the Sobolev
embedding theorem and interpolation inequalities, diverging from the popular time−space splitting
technique which was first introduced by Li and Sun [28, 29]. This time-space splitting technique has
been applied to various Schrödinger equations [30–32], but is not employed here. Furthermore, we
incorporate an extrapolation technique to avoid solving nonlinear systems. An iterative process is
applied at the initial time step to ensure optimal error estimation.

The organization of this paper is as follows. In Section 2, a fully linearized L1-Galerkin scheme is
performed to solve the VOTFSE. Moreover, we give some important lemmas in this section, which
are necessary for our analysis. In Section 3, we prove our main results. Considering this two-step
method, we start by presenting the proof of the case n = 1, and then derive the analysis of the
unconditional convergent results in Theorem 2.1 by utilizing Sobolev’s embedding theorem and the
discrete energy technique. Some numerical experiments are carried out to investigate the numerical
accuracy, reliability, and efficiency in Section 4. Finally, several conclusions are done in Section 5.

2. L1-Galerkin methods and main results

Let Th be a conforming and shape regular simplicial triangulation or tetrahedra of Ω, and let h =

maxK∈Th{diam K} be the mesh size, where the diam K means the diameter of any element K. We
use Vh to denote the finite-dimensional subspace of H1

0(Ω), which consists of continuous piecewise
polynomials of degree r (r ≥ 1) on Th. Let N be a positive number, tk = kτ, k = 0, . . . ,N be the mesh
points, and the time step τ = T/N. For a sequence of functions {ωn}, we write

δτω
n = ωn − ωn−1, ω̂n =

3
2
ωn−1 −

1
2
ωn−2. (2.1)

We introduce the inner product over the complex space

(u, v) =

∫
Ω

uv∗dΩ,

where v∗ means the conjugate of v. Denoting αn := α(tn) and taking tn in place of t in (1.2), L1
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approximation to the VO Caputo fractional derivative leads to

C
0 Dαn

t φ(tn) =
1

Γ(1 − αn)

∫ tn

0

φ′(s)
(tn − s)αn

ds =
1

Γ(1 − αn)

n∑
k=1

∫ tk

tk−1

φ′(s)
(tn − s)αn

ds

=
1

τΓ(1 − αn)

n∑
k=1

δτφ
k
∫ tk

tk−1

(tn − s)−αnds + Qn

=
1

τΓ(2 − αn)

n∑
k=1

δτφ
k[(tn − tk−1)1−αn − (tn − tk)1−αn] + Qn

=

n∑
k=1

δτφ
kbn,k + Qn =

n−1∑
k=1

(bn,k − bn,k+1)φk + bn,nφ
n − bn,1φ

0 + Qn

:= Dαn
τ φ

n + Qn,

where

bn,k =
(tn − tk−1)1−αn − (tn − tk)1−αn

τΓ(2 − αn)
, (2.2)

and Qn means the local truncation error. If φ ∈ C2([0,T ]; L2(Ω)), the error satisfies( [33, 34]),

‖Qn‖L2 ≤ Cτ. (2.3)

Noting that ϕ(x) = x1−αn − (x − 1)1−αn is a decreasing function when x ≥ 1, we have

0 < bn,1 < bn,2 < . . . < bn,n−1 < bn,n =
τ−αn

Γ(2 − αn)
. (2.4)

Assume that
0 ≤ α(t) ≤ αM := max

t∈[0,T ]
α(t) < 1.

Letting Un
h be approximate to un := u(x, tn) and recalling the notations (2.1), we can propose a

linearized L1-Galerkin finite element method. First, find Un
h ∈ Vh, such that for any v ∈ Vh,

i(Dαn
τ Un

h , v) + (∆Un
h , v) + (|Ûn

h |
2Un

h , v) = 0, n ≥ 2. (2.5)

At the initial step n = 1, we choose U0
h = Πhu0 and apply a linearized Euler method to arrive

i(
U1

h − U0
h

µ
, v) + (∆U1

h , v) + (|U0
h |

2U1
h , v) = 0, ∀v ∈ Vh, (2.6)

where µ = τα1Γ(2 − α1) .

Lemma 2.1. Let Um
h be the numerical solution of Eq (2.5). We then have

‖Um
h ‖L2 ≤ ‖U0

h‖L2 , m = 1, 2, . . . ,N. (2.7)
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Proof. We will prove the result by applying mathematical induction. Considering the imaginary part
of Eq (2.6) with v = U1

h , it is obvious that

‖U1
h‖L2 ≤ ‖U0

h‖L2 ,

which shows that the result holds with m = 1. Suppose that Eq (2.7) is satisfied when m ≤ n − 1. Then
we prove the case m = n.

Taking v = Un
h in Eq (2.5) and extracting the imaginary part, we derive

<(Dαn
τ Un

h ,U
n
h) = 0. (2.8)

Considering the definition of a fractional derivative and Cauchy−Schwarz inequality, we can obtain
the following from (2.8):

bn,n‖Un
h‖

2
L2 =

n−1∑
k=1

(bn,k+1 − bn,k)<(Uk
h,U

n
h) + bn,1<(U0

h ,U
n
h)

≤

n−1∑
k=1

(bn,k+1 − bn,k)
‖Uk

h‖
2
L2 + ‖Un

h‖
2
L2

2
+ bn,1

‖U0
h‖

2
L2 + ‖Un

h‖
2
L2

2

=
1
2

n−1∑
k=1

(bn,k+1−bn,k)‖Uk
h‖

2
L2 +

1
2

n−1∑
k=1

(bn,k+1 − bn,k)‖Un
h‖

2
L2 + bn,1

‖U0
h‖

2
L2 + ‖Un

h‖
2
L2

2

=
1
2

n−1∑
k=1

(bn,k+1 − bn,k)‖Uk
h‖

2
L2 +

1
2

bn,n‖Un
h‖

2
L2 +

1
2

bn,1‖U0
h‖

2
L2 .

If we recall the assumption of induction and inequality (2.4), it can be obtained that

bn,n‖Un
h‖

2
L2 ≤

1
2

n−1∑
k=1

(bn,k+1 − bn,k)‖U0
h‖

2
L2 +

1
2

bn,n‖Un
h‖

2
L2 +

1
2

bn,1‖U0
h‖

2
L2

=
1
2

(bn,n − bn,1)‖U0
h‖

2
L2 +

1
2

bn,n‖Un
h‖

2
L2 +

1
2

bn,1‖U0
h‖

2
L2

=
1
2

bn,n‖U0
h‖L2 +

1
2

bn,n‖Un
h‖

2
L2 .

(2.9)

Together with bn,n > 0, we can obtain the following from (2.9):

‖Un
h‖L2 ≤ ‖U0

h‖L2

and the mathematical induction is finished, which completes our proof. �

Lemma 2.2. [35] Suppose that the non-negative sequences {ξn, ηn|n ≥ 0} and φn satisfy

φnDαn
τ φ

n ≤ ηnφn + ξn, (2.10)

then
φn ≤ φ0 + max

1≤ j≤n

{
Γ(1 − α j)t

α j

j η
j} + max

1≤ j≤n

{ √
Γ(1 − α j)t

α j/2
j ξ j

}
.
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Now, we give the main result and provid its proof in next section.

Theorem 2.1. Suppose that u0 ∈ Hr+1(Ω)
⋂

H1
0(Ω) and the problem (1.1) has an unique solution

u ∈ C2([0,T ]). Then, system (2.5)–(2.6) has a unique solution Un
h , n = 1, 2, 3, . . . ,N and positive

constants τ0 and h0 exist, such that when τ ≤ τ0 and h ≤ h0, , satisfying

‖un − Un
h‖L2 ≤ C0(τ + hr+1), (2.11)

where un = u(·, tn) and C0 is a positive constant that is independent of τ and h.

Remark 1. When the weak singular regularity at the initial time is considered, the corresponding
unconditional convergent results can also be obtained by using some nonuniform meshes, such as the
graded meshes.

3. Proof of the main result

In this section, we present a rigorous analysis of Theorem 2.1.

3.1. Preliminaries

Let Rh : H1
0(Ω)→ Vh be Ritz projection operator satisfying

(∇(u − Rhu),∇ω) = 0, ∀ω ∈ Vh. (3.1)

By classical finite element method theory [36], we can find that for any v ∈ H s(Ω) ∩ H1
0(Ω),

‖v − Rhv‖L2 + h‖∇(v − Rhv)‖L2 ≤ Cγhs‖v‖Hs , 1 ≤ s ≤ r + 1, (3.2)

where Cγ denotes a positive constant dependent only only on the domain Ω. Besides, for any v ∈
H1

0(Ω), we have the Sobolev embedding theorem and Cauchy−Schwarz inequality

‖v‖Lp ≤ C(‖v‖L2 + ‖∇v‖L2), 1 ≤ p ≤ 6, (3.3)
‖v‖2L3 ≤ ‖v‖L2‖v‖L6 . (3.4)

For any v ∈ Vh, the following inverse inequality holds.

‖v‖Lp ≤ Cγh
d
p−

d
q ‖v‖Lp , 1 ≤ q ≤ p ≤ ∞, d = 2 or 3. (3.5)

Taking t = tn in the first equation of (1.1) and considering the weak form of the resulting equation,
we obtain

i(Dαn
τ un, v) + (∆un, v) + (|ûn|2un, v) = (Pn, v), ∀v ∈ Vh, n ≥ 2, (3.6)

where
Pn = i

(
Dαn
τ un − C

0 Dαn
t (un)

)
+ |ûn|2un − |un|2un.

Moreover, u1 solves

i
u1 − u0

µ
+ ∆u1 + |u0|2u1 = P1, (3.7)
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with

P1 = i
(u1 − u0

µ
− C

0 Dα1
t (u1)

)
+ |u0|2u1 − |u1|2u1.

The truncation error can be estimated as follows from (2.3):

‖Pn‖L2 ≤ Cτ, for 1 ≤ n ≤ N. (3.8)

Subtracting (3.6) from (2.5), applying (3.1) and letting

un − Un
h = un − Rhun + Rhun − Un

h := un − Rhun + θn
h, n = 1, 2, . . . ,N,

we have the following for n ≥ 2,

i(Dαn
τ θ

n
h, v) + (∆θn

h, v) + (|ûn|2un − |Ûn
h |

2Un
h , v) = (Pn, v) − i(Dαn

τ (un − Rhun), v), (3.9)

and when n = 1, the error equation gives

i(
θ1

h

µ
, v) − (∇θ1

h,∇v) + (|û0|2u1 − |Û0
h |

2U1
h , v) = (P1, v) − i(

u1 − Rhu1

µ
, v). (3.10)

Lemma 3.1. If we suppose that U1
h is the solution of Eq (2.6) and Rhu0 = U0

h , then there exist two
positive constants τ̂, ĥ, such that when τ ≤ τ̂ and h ≤ ĥ, (3.10) can be estimated as

‖θ1
h‖L2 + τα1/2‖∇θ1

h‖L2 ≤ C2(τ + hr+1), (3.11)

where C2 > 0 is independent of τ and h.

Proof. Substituting θ1
h for v and considering the imaginary part of Eq (3.10), we can obtain that

1
µ
‖θ1

h‖
2
L2 + =(|u0|2u1 − |U0

h |
2U1

h , θ
1
h) = =(P1, θ1

h) −<(
u1 − Rhu1

µ
, θ1

h), (3.12)

and
=(|u0|2u1 − |U0

h |
2U1

h , θ
1
h)

≤ |=(|u0|2u1 − |U0
h |

2u1 + |U0
h |

2u1 − |U0
h |

2U1
h , θ

1
h)|

≤
∣∣∣|u0|2 − |U0

h |
2
∣∣∣‖u1‖L∞‖θ

1
h‖L2 + ‖|U0

h |
2‖L∞‖u1 − U1

h‖L2‖θ1
h‖L2

≤ Ck(‖u0 − Rhu0‖2L2 +
1
4
‖θ1

h‖
2
L2) + (‖u1 − Rhu1‖2 +

1
4
‖θ1

h‖
2
L2)

≤ (C2
k + Ck)h2(r+1) +

(Ck + 1)
4

‖θ1
h‖

2
L2 ,

where Ck is a positive constant dependent only on the regularity of the exact solution. The Cauchy-
Schwarz inequality and classical theory in finite element space are used in the last inequality. Together
with (3.8), Eq (3.12) yields:

1
µ
‖θ1

h‖
2
L2 ≤ (C2

k + Ck)h2(r+1) +
Ck + 1

4
‖θ1

h‖
2
L2

+ ‖P1‖2L2 +
1
4
‖θ1

h‖
2
L2 +

1
µ

(u1 − Rhu1, θ1
h)

≤ (C2
k + 2Ck)h2(r+1) + C2τ2 +

1 + µ + µ(Ck + 1)
4µ

‖θ1
h‖

2
L2 .
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Taking τ̂α1Γ(2 − α1) = 3
2 , when τ ≤ τ̂, the inequality above yields that

‖θ1
h‖

2
L2 ≤ 4(C2

k + 2Ck)h2(r+1) + 4C2τ2.

Taking v = θ1
h in (3.10) and extracting the real part of the resulting equation, the following formula

is derived:

‖∇θ1
h‖

2
L2 = <(|u0|2u1 − |U0

h |
2U1

h , θ
1
h) −<(P1, θ1

h) + =(
u1 − Rhu1

µ
, θ1

h). (3.13)

Similarly, we can get

‖∇θ1
h‖

2
L2 ≤ 4(C2

k + 2Ck)h2(r+1) + 4C2τ2 + τ2−α1 . (3.14)

The proof is finished. �

3.2. Proof of Theorem 2.1

We have obtained the convergent results when n = 1, as described in Lemma 3.1. In this subsection,
our goal is to present unconditionally optimal error estimates of the fully discrete numerical schemes.

Taking v = θn
h and Rn

1 = |ûn|2un − |Ûn
h |

2Un
h in (3.9), we obtain

i(Dαn
τ θ

n
h, θ

n
h) + (∆θn

h, θ
n
h) + (Rn

1, θ
n
h) = (Pn, θn

h) − i(Dαn
τ (un − Rhun), θn

h). (3.15)

Then extracting the imaginary part of (3.15) yields

<(Dαn
τ θ

n
h, θ

n
h)+=(Rn

1, θ
n
h)==(Pn, θn

h)−<(Dαn
τ (un−Rhun), θn

h). (3.16)

Now, we estimate the second part on the left-hand side of (3.16). Using the Sobolev embedding
theorem and Cauchy−Schwarz inequality, we arrive

=(Rn
1, θ

n
h) = =(|ûn|2un − |Ûn

h |
2Un

h , θ
n
h)

==(|ûn|2(un − ûn) + |ûn|2(ûn − Rhun) + |ûn|2θn
h + (|ûn|2 − |Ûn

h |
2)(Rhun − θn

h), θn
h)

≤
∣∣∣(|ûn|2(un − ûn), θn

h)
∣∣∣ + Ck‖un − Rhun‖L2‖θn

h‖L2 + Ck‖θ
n
h‖

2
L2

+
∣∣∣∣(ûn(Rhun − θn

h)(ûn − Rhûn + θ̂n
h)∗, θn

h
)∣∣∣∣

+
∣∣∣∣((Rhun − θn

h)(ûn − Rhûn + θ̂n
h)(Rhûn − θ̂n

h)∗, θn
h
)∣∣∣∣

≤C1(‖θ̂n
h‖

2
L2 + ‖θn

h‖
2
L2) + C2(‖θ̂n

h‖
2
L3‖θ

n
h‖

2
L6) + C3(τ + hr+1)2.

(3.17)

Here we use the equality |a|2 − |b|2 = a(a − b)∗ + (a − b)b∗ and

|((θ̂n
h)∗θn

h, θ
n
h)| ≤ ‖θ̂n

hθ
n
h‖L2‖θn

h‖L2 ≤
1
2

(‖θ̂n
h‖

2
L2‖θ

n
h‖

2
L2 + ‖θn

h‖
2
L2)

≤
1
2

(‖θ̂n
h‖

2
L3‖θ

n
h‖

2
L6 + ‖θn

h‖
2
L2),

(3.18)

|((θ̂n
h)∗θ̂n

h, θ
n
h)| ≤ ‖θ̂n

h‖
2
L2‖θ

n
h‖L2 ≤

1
2

(‖θ̂n
h‖

2
L2‖θ

n
h‖

2
L2 + ‖θ̂n

h‖
2
L2)

≤
1
2

(‖θ̂n
h‖

2
L3‖θ

n
h‖

2
L6 + ‖θ̂n

h‖
2
L2).

(3.19)
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We then consider the estimation on the right-hand side of (3.16). On the basis of, the assumptions
of regularity and classical theory in (3.2), we obtain

|<(Dαn
τ (un − Rhun), θn

h)| ≤ ‖Dαn
τ (un − Rhun)‖L2‖θn

h‖L2

≤ ‖Dαn
τ un‖Hr+1hr+1‖θn

h‖L2

≤
1
2

(‖θn
h‖

2
L2 + h2(r+1)),

(3.20)

and
|(Pn, θn

h)| ≤ C(τ2 + ‖θn
h‖

2
L2). (3.21)

Substituting (3.17)–(3.21) into (3.16), we can get

<(Dαn
τ θ

n
h, θ

n
h) ≤ C1(‖θ̂n

h‖
2
L2 + ‖θn

h‖
2
L2) + C2(‖θ̂n

h‖
2
L3‖θ

n
h‖

2
L6) + C3(τ + hr+1)2. (3.22)

Recalling the definition of Dαn
τ θ

n
h and using the Cauchy−Schwarz inequality, we derive

<(Dαn
τ θ

n
h, θ

n
h) ≥

n−1∑
k=1

(bn,k − bn,k+1)
‖θk

h‖
2
L2 + ‖θn

h‖
2
L2

2
+ bn,n‖θ

n
h‖

2
L2 − bn,1

‖θ0
h‖

2
L2 + ‖θn

h‖
2
L2

2

=
1
2

(bn,n‖θ
n
h‖

2
L2 +

n−1∑
k=1

(bn,k − bn,k+1)‖θk
h‖

2
L2 − bn,1‖θ

0
h‖

2
L2

=
1
2

Dαn
τ ‖θ

n
h‖

2
L2 .

(3.23)

For the proof of Theorem 2.1, it suffices to prove that τ2 and h2 exist, when τ ≤ τ2, h ≤ h2, the
following holds

‖θn
h‖L2 + ταn/2‖∇θn

h‖L2 ≤ C4(τ + hr+1), (3.24)

where C4 is a constant independent of τ and h.
It follows from Lemma 3.1 that (3.24) holds when m = 1. Suppose that for m = 2, 3, . . . , n − 1,

the conclusion (3.24) holds. Now we consider the situation m = n. First, we estimate the equation
‖θ̂m

h ‖
2
L3‖θ

m
h ‖L6 . Then, the inequality is estimated in the following two cases.

Case A: τ ≤ h
Applying the inverse inequality (3.5) and the assumption of mathematical induction, it yields

‖θ̂m
h ‖L3 ≤ Cγh−

d
6 ‖θ̂m

h ‖L2 ≤ Cγh−
d
6 (

3
2
‖θm−1

h ‖L2 +
1
2
‖θm−2

h ‖L2)

≤ 2Cγh2− d
6 , m = 2, 3, . . . , n,

(3.25)

and
‖θm

h ‖L6 ≤ Cγh−
d
3 ‖θm

h ‖L2 . (3.26)

Together with Lemma 3.1, we obtain

‖θ̂m
h ‖L3‖θm

h ‖L6 ≤ 2C2
γh

2− d
2 ‖θm

h ‖L2 ≤ ‖θm
h ‖L2 , m ≤ n, (3.27)

AIMS Mathematics Volume 10, Issue 11, 26527–26544.



26536

where h3 = (2C2
γ)

2
4−d and h ≤ h3. Combining (3.23) with (3.25), (3.27) and inserting inequality (3.22),

we obtain
Dαn
τ ‖θ

n
h‖

2
L2 ≤ C1(‖θ̂n

h‖
2
L2 + ‖θn

h‖
2
L2) + ‖θn

h‖
2
L2 + C3(τ + hr+1)2.

Applying the discrete fractional Grönwall inequality(2.10) leads to

‖θn
h‖L2 ≤ C(τ + hr+1). (3.28)

Then, we give the estimation of ‖∇θn
h‖L2 . First, we derive the estimation of ‖Dαn

τ θ
n
h‖L2 from the

definition of the VO Caputo fractional derivative:

‖Dαn
τ θ

n
h‖L2 ≤

n−1∑
k=1

(bn,k − bn,k+1) max
1≤ j≤n−1

‖θ
j
h‖L2 + bn,n‖θ

n
h‖L2 + bn,1‖θ

0
h‖L2

≤ (bn,1 − bn,n) max
1≤ j≤n−1

‖θ
j
h‖L2 + bn,n‖θ

n
h‖L2 + bn,1‖θ

0
h‖L2 .

(3.29)

Together with (2.4) and (3.28), we can obtain the following from (3.29):

‖Dαn
τ θ

n
h‖L2 ≤ 4Cbn,n(τ + hr+1) ≤

4C
Γ(2 − αn)

τ−αn(τ + hr+1). (3.30)

Then, we take the real part of (3.15) to get

‖∇θn
h‖

2
L2 = =(Dαn

τ θ
n
h, θ

n
h) +<(Rn

1, θ
n
h) −<(Pn, θn

h) + =(Dαn
τ (un − Rhun), θn

h)
≤ (‖Dαn

τ θ
n
h‖L2 + ‖Pn‖L2 + ‖Dαn

τ (un − Rhun)‖L2)‖θn
h‖L2 +<(Rn

1, θ
n
h)

≤ ((C4τ
−αn + C5)(τ + hr+1) + Chr+1)‖θn

h‖L2 + |(Rn
1, θ

n
h)|.

(3.31)

Replacing with (3.31), we can invert (3.31) into

‖∇θn
h‖

2
L2 ≤ C6τ

−αn(τ + hr+1)‖θn
h‖L2 +C1(‖θ̂n

h‖
2
L2 +‖θn

h‖
2
L2) + C2(‖θ̂n

h‖
2
L3‖θ

n
h‖

2
L6). (3.32)

Substituting (3.27) and (3.28) into the inequality yields

ταn‖∇θn
h‖

2
L2 ≤ C6(τ + hr+1)2 + ταn‖θ̂n

h‖
2
L3‖θ

n
h‖

2
L6

≤ (3C1 + C6 + ταn)(τ + hr+1)2 ≤ C5(τ + hr+1)2.
(3.33)

Thus, (3.24) holds for m = n.
Case B: τ > h
By mathematical induction, we need to consider the case m = n. Applying Sobolev inequality (3.3),

we obtain the following, for m = 2, 3, . . . , n:

‖θ̂m
h ‖

2
L3 ≤ ‖θ̂

m
h ‖L2‖θ̂m

h ‖L6 ≤ C‖θ̂m
h ‖L2(‖∇θ̂m

h ‖L2 + ‖θ̂m
h ‖L2) ≤ C4τ

2− αm
2 .

Together with inequality (3.3) we have

‖θ̂m
h ‖

2
L3‖θ

m
h ‖

2
L6 ≤ C4τ

2− αm
2 (‖θm

h ‖
2
L2 + ‖∇θm

h ‖
2
L2)

≤
1
2
‖∇θm

h ‖
2
L2 + ‖θm

h ‖
2
L2 ,

(3.34)
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where τ ≤ τ3 = min{2C4
− 2

4−αm , 1}.
Substituting (3.34) into (3.32) and applying the Cauchy−Schwarz inequality, we have

ταn‖∇θn
h‖

2
L2 ≤ C6(τ + hr+1)2 + C1(‖θ̂n

h‖
2
L2 + ‖θn

h‖
2
L2) +

ταn

2
‖∇θn

h‖
2
L2 . (3.35)

Together with (3.34) and (3.35), Eq (3.22) yields

<(Dαn
τ θ

n
h, θ

n
h) ≤ C1(‖θn−1

h ‖
2
L2 + ‖θn−2

h ‖
2
L2) + (C1 + 1)‖θn

h‖
2
L2 + ταn‖∇θn

h‖
2
L2 + C3(τ + hr+1)2

≤ (C1 +
9
4

)‖θn−1
h ‖

2
L2 + (C1 +

1
4

)‖θn−2
h ‖

2
L2 + (C1 + 7)‖θn

h‖
2
L2 + 2C4(τ + hr+1)2,

Using Lemma 2.2 and inequality (3.23), we obtain

‖θn
h‖

2
L2 ≤ C7(τ + hr+1)2, (3.36)

which further implies that
ταn‖∇θn

h‖
2
L2 ≤ C8(τ + hr+1)2.

Taking
τ0 = min{τ1, τ2, τ3}, h0 = min{h1, h2, h3},

we can see that when τ ≤ τ0 and h ≤ h0, conclusion (3.24) holds. We now turn to consider the case
τ + hr+1 ≥ Cτ. Applying the triangle inequality and Lemma 2.1, we have

‖un − Un
h‖L2 ≤ ‖un‖L2 + ‖Un

h‖L2 ≤ ‖un‖L2 + ‖U0
h‖L2

≤
max1≤n≤N ‖un‖L2 + ‖U0

h‖L2

Cτ

(τ + hr+1).

Taking C0 = max{C7,
max

1≤n≤N
‖un‖L2 +‖U0

h‖L2

Cτ
}, the proof of Theorem 2.1 is completed. �

4. Numerical experiments

In this section, we present two numerical examples to verify the unconditional convergence results
of the full−discrete scheme. The finite element method (FEM) is implemented in space in the following
examples. Here, we choose α(t) = α(1) +

(
α(0) − α(1)

)(
1 − t − sin(2π(1 − t))/(2π)

)
.

Example 1. Consider the following cubic Schrödinger equation:
iC0 Dα(t)

t u + ∆u + |u|2u = g(x, t), (x, t) ∈ Ω × (0, 1],
u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, 1],

(4.1)

where Ω = [0, 1] × [0, 1] and g(x, t) was chosen such that (4.1) has the following solution

u(x, t) = (1 + t3)x2 sin(πx)y2 sin(πy).
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Table 1. L2-errors and convergence orders in the temporal direction for (Example 1)with
α(1) = 0.9.

α(0) = 0 α(0) = 0.5 α(0) = 0.8
N Errors Orders Errors Orders Errors Orders
5 9.36e − 04 ∗ 1.02e − 03 ∗ 1.07e − 03 ∗

10 4.10e − 04 1.18 4.10e − 04 1.31 4.07e − 04 1.40
20 1.99e − 04 1.06 1.97e − 04 1.06 1.97e − 04 1.05
40 9.38e − 05 1.09 9.31e − 05 1.08 9.37e − 05 1.07

Table 2. Errors and convergence rates with α(0) = 0.4 and α(1) = 0.6 (Example 1).

L−FEM Q−FEM
M Errors Orders Errors Orders
5 2.93e − 02 ∗ 1.94e − 03 ∗

10 8.71e − 03 1.75 2.19e − 04 3.15
20 2.28e − 03 1.93 2.65e − 05 3.05
40 5.77e − 04 1.98 3.36e − 06 2.98

We compute the VOTFSE (4.1) by applying linear FEM (L-FEM) and quadratic FEM (Q-FEM). In
order to test the convergence order in temporal direction, we set M = 50, where M implies the uniform
triangular partition with M + 1 nodes and N = 5, 10, 20, 40, with α(0) = 0.0, 0.5, 0.8, and α(1) = 0.9.
Table 1 reveals that the numerical scheme for solving VOTFSEs can achieve first order in time with
different parameters. The spatial results are verified by taking M = 5, 10, 20, 40 with fixed N = 1000.
Taking the VO differential operator into account, we choose α(0) = 0.4, α(1) = 0.6, which gives the
results in Table 2. The unconditional results are displayed in Figure 1 with α(0) = 0.4, α(1) = 0.6. It is
easy to find that for any fixed τ, the value of the scheme’s error tends to a constant, which justifies our
conclusion.
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L
2
-n

o
rm
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o
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=1/5

=1/10
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2
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=1/10

=1/20

=1/40

Figure 1. Two-dimensinal problem: L2-errors of L-FEM (left) and Q-FEM (right).

AIMS Mathematics Volume 10, Issue 11, 26527–26544.



26539

10 15 20 25 30 35 40

M

10-8L
2
-n

o
rm

 e
rr

o
rs

Quadratic FEM(3D)

=1/5

=1/10

=1/20

Figure 2. Three-dimensional problem: L2-errors of Q-FEM.

Example 2. The three-dimensional time-fractional Schrödinger equation is considered as follows:
iC0 Dα(t)

t u + ∆u + |u|2u = g(x, t), (x, t) ∈ Ω × (0, 1],
u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, 1],

(4.2)

where Ω = [0, 1] × [0, 1] × [0, 1] and g is chosen correspondingly to the exact solution

u(x, y, z, t) = (1 + t3)x2(1 − x)3y2(1 − y)3z2(1 − z)3.

Table 3. L2-errors and convergence orders with N = M2 (Example 2).

M Errors Orders
5 7.25e − 06 ∗

10 2.24e − 06 1.58
20 6.01e − 07 1.87
40 1.68e − 07 1.97

In order to verify the convergence orders proposed in Theorem 2.1, the L-FEM is chosen in the fully
discrete scheme (2.5) and (2.6) with N = M2, α(0) = 0.4 and α(1) = 0.6. The results displayed in Table
3 give that the convergence rates can reach first order in time and second order in space, respectively.
Figure 2 shows that the error tends to a constant for a fixed time step τ.

To estimate more examples, we define the errors in the L2-norm

‖en
h‖L2 =

( ∫
Ω

|un − Un
h |

2dΩ
)1/2

.

We test the convergence order of the scheme (2.5) and (2.6) with L-FEM and Q-FEM, respectively.
Consider the following condition:

O
(τ
4

+ (
h
2

)2
)

=
1
4
O(τ + h2), and O

(τ
8

+ (
h
2

)3
)

=
1
8
O(τ + h3),
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where the spatial convergence orders of u can be defined for a sufficiently small h and τ as follows

order1 = log2

(
‖en

h‖L2(τ, h)
‖en

h‖L2(τ/4, h/2)

)
, order2 = log2

(
‖en

h‖L2(τ, h)
‖en

h‖L2(τ/8, h/2)

)
.

The numerical experiments are carried out using different time and space step sizes. First, we
choose the spatial step sizes h = 1/4, 1/8, 1/16, 1/32. To verify the convergence order O(τ + h2) of
the schemes (2.5) and (2.6) with L-FEM in space, the time steps are set to
τ = 1/4, 1/16, 1/64, 1/256. The values in the column Order1 of Table 4 indicate that the scheme
achieves second-order convergence, which is consistent with our theoretical findings. Similarly, for
the schemes with Q-FEM in space, the time steps selected τ = 1/4, 1/32, 1/256, 1/2048 to examine
the spatial convergence behavior. The results in Table 4 reveal that the schemes achieve third order in
space.

Table 4. Spatial convergence rates with different values h in Example 2.

h τ ‖en
h‖L2 Order1 τ ‖en

h‖L2 Order2

1/4 1/4 9.50e − 06 * 1/4 1.26e − 06 *
1/8 1/16 3.56e − 06 1.42 1/32 1.57e − 07 3.01

1/16 1/64 1.01e − 06 1.81 1/256 1.83e − 08 3.10
1/32 1/256 2.63e − 07 1.95 1/2048 2.22e − 09 3.04

Moreover, we calculate the exact numerical solutions in three dimensions via L-FEM and Q-FEM.
From Figure 3, we can observe the efficiency of our numerical methods.

Figure 3. Exact and numerical solutions for Example 2 with L-FEM (middle) and Q-FEM
(right) at t = 1.

Now, we extend our methods to VOTFSE with non-smooth solutions.

Example 3. Consider equation (4.1) with the exact solution

u(x, t) = (1 + tσ) sin(πx) sin(πy).

where Ω = [0, 1] × [0, 1] and 0 < σ < 1 is a constant. The source term g(x, t) is chosen such that (4.1)
admits the non−smooth solution above.

To illustrate the unconditional convergence, we solve the problem by applying Q-FEM with varying
spatial step sizes for each fixed τ. The errors in the L2-norm at time T = 1 are presented in Figure
4. We can see that for each fixed τ with different values of σ, the errors tend to be a constant, which
demonstrates that time-step restriction is not necessary.
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Figure 4. 2D problem: L2-errors of Q-FEM with different σ.

5. Conclusions

This paper proposes a linearized unconditional convergence scheme to solve time−fractional
Schrödinger equations with a variable order. Classical time−space splitting methods, while effective
in many contexts, face challenges when dealing with variable exponents due to the inherent
complexities of such nonlinearities. Here, we apply another approach with the Sobolev inequality to
achieve the results, which provides a more adaptable framework for handling these structural
difficulties. Numerical examples are provided to demonstrate our theoretical findings. We note that
the unconditional convergence of the proposed scheme is developed on the basis uniform meshes.
Hence the given examples are tested with smooth exact solutions to demonstrate the theoretical
results. Actually, the proposed scheme could be extended to handle the problems with initial
singularity using nonuniform meshes. The relevant unconditional convergence requires special
treatment, which relies heavily on the properties of the meshes.
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