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Abstract: This paper investigates the dynamical behaviors for a stochastic non-autonomous enterprise
cluster model. We will analyze how the parameters of the system and white noise affect the dynamical
properties of the system. Using Ito’s formula, the comparison principle and inequality techniques, we
study the existence, uniqueness, and extinction of nontrivial positive solutions. Particularly, we also
study the existence of a stochastic positive periodic solution by using stochastic differential equation
theory. Finally, two examples are introduced to verify the main results of this paper.
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1. Introduction

Enterprise clusters have a significant impact on the development of local and national economies.
Due to the competitive relationships among various enterprises within the cluster, it is necessary to
study these relationships in order to promote the development of the enterprise cluster. In [1], Tian and
Nie considered the following autonomous competition model of two enterprises:
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where u; and u, are the outputs of two enterprises, A and B, respectively; a; and a, present the intrinsic
growth rates of two enterprises, respectively; k is the carrying capacity of the market under unlimited
conditions; and @ and S are the competitive coefficients of enterprises A and B, respectively; and ¢; and
¢, denote the initial production of enterprises A and B, respectively. In 2014, Liang, Xu and Tang [2,3]
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studied the following enterprise cluster model with multiple delays

C%l = w(Dla) — by (t = 71) — ba(ua(t — 15) — )’
dity . (1.2)
- ur()[ax — byux(t — 73) + boy(uy (t — 74) — ¢1)71,
where 7; (i = 1,2,3,4) are constant delays. Stability and the complex Hopf bifurcation phenomenon
have been obtained for system (1.2).

In recent papers, many studies have incorporated various factors into the enterprise the cluster
model. Such as variable environments [4]; the competition and cooperation model with impulse [5];
permanence, periodic solution, and global attractiveness [6]; and the competition and cooperation
model with multiple feedback controls [7-9].

Due to the unpredictability of the external environment, system (1.1) is inevitably affected by
random disturbances. For example, regarding the external competitive environment, the development
of a company is inevitably influenced and constrained by factors such as technological innovation,
economic policies, peer competition, and so on. Thus, it is reasonable to further incorporate
environmental fluctuations into system (1.1), which may provide a deeper cognizance of the dynamics
of the enterprise cluster model in stochastic environments. In the present paper, we introduce the
white noise into system (1.1), expressed as follows:

duy(t) = ay(Duy (O[1 - w () a®at) = ca(n))

ldt + o1 (H)u (t)d B, (1)

k(1) k(1) (1.3)
_ 2 '
dis(t) = axu (0[] — ”,‘j((f)) B (”(”‘(,?(t) O34t + ora(Dur(1)dBaD),

where B;(t) (i = 1,2) is one-dimensional Brownian motion, dB;(t) (i = 1,2) is white noise, (71.2(1?) >
0 (i = 1,2) is the intensity of white noise. The coefficients of the system are all positive and periodic.

The main innovations of this paper are listed as follows:

(1) There are few results for the stochastic non-autonomous enterprise cluster model. This study fills
the gap in the aforementioned research and promotes the study of enterprise clusters.

(2) The construction of Lyapunov functions in this paper is innovative and provides new ideas for
studying similar problems.

The remaining framework of this paper is organized as follows: Section 2 initially gives the
preliminaries, including the necessary assumptions and some useful lemmas. In Section 3, we study
the existence and asymptotic behaviors of stochastic positive periodic solutions for system (1.3).
Section 4 gives two numerical examples for verifying our results. We draw some conclusions and
discussions in Section 5.

2. Preliminaries

Let R be real numbers, R, = [0, +o0), and R? = {(x, x;) € R?, x1,x, > 0}. Fora,hb € R, aAb =
min{a, b}. Let (O, F;, {F:}0, P) be a completed probability space with a filtration {¥},»( satisfying the
standard normal conditions. In addition, if the number of factors is zero, then a product equals unity.

Throughout this paper, we need the following assumption:
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(H;) The functions a;(?), ax(t), a(t), B(t), k(t), ci(t), ca(t), o1(¢), and o,(¢) on R, are all bounded
positive periodic functions with a common period y > 0.
If f(¢) is a y—periodic function, we define

te[0,y]

Y
£ = max F0. = min f0. (1, =~ [ for,

We first give the definition of periodic Markove processes.
Definition 2.1 [10] A stochastic process &(f) is said to be y—periodic if its finite dimensional
distributions are y—periodic, i.e., there exist positive integer n and any moments of ¢, 1, - ,t, such
that the joint distributions of &(¢, + ky), - - - , &(¢, + ky) do not depend on k, where k € Z.

Consider the following n—dimensional stochastic system by [11]

dx = f(1,x) + g(t, x)dB(1), (2.1)
where f(t, x) = (fi(t, x), /r(t, x), -+, fu(t, x)) is an n—dimensional vector value function, (g(z, X)),xm 18
an n X m matrix function, and B(t) = (B;(¢), B»(t), - - - , B,,(¢)) is an m—dimensional standard Brownian

motion on the probability space (®, F;, {F;}»0, P). Define the following differential operator:

L=+ Z fi, x) +3 Z Z gix(t, X)g i, x)

i,j=1 k=1

where V(¢, x) € C*'(R x R", R).
Lemma 2.1 [12] Let x(¢) be a solution of system (2.1) and V(¢, x) € C>'(R x R",R). Then,

dV(t,x) = LV(t, x)dt + V. (t, x)g(t, x)dB(t),

where V,(t, x) = (6\(;(_;;)6), a‘g—;j‘), e a‘g(—;;x)).

We give the following lemma, which describes a criterion for the existence of the periodic solution
of a stochastic differential system.
Lemma 2.2 [13] Assume that the coefficients of system (2.1) are all continuous y—periodic functions
and system (2.1) has a global solution, and further suppose that there is a y—periodic function V(z, x) €
C>'(R x R, R) such that
(1) infysp V(t,x) = 00 as M — oo,
(i) LV(t, x) < —1 outside some compact set.
Then system (2.1) has a y—periodic solution.

3. Main results

Before considering the dynamic properties of system (1.3), we should first study the existence
conditions of solutions. Therefore, combining the practical significance of the system, we discuss the
existence of global positive solutions to system (1.3) by using the random analysis technique. The
following theorem can be obtained.

Theorem 3.1. Suppose that assumption (H;) holds. There exists a unique solution (u(t), u>(¢)) of
system (1.3) with initial value (1;(0), u»(0)) € R2 on ¢t > 0, and the solution will remain in R? with
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probability 1, i.e., (u;(?), u(¢)) € R? for all # > 0 almost surely.

Proof. In view of the fact that coeflicients of system (1.3) are locally Lipschitz continuous for any
given initial value (1(0), u>(0)) € R2, then system (1.3) has a unique local solution (u(2), u(t)) for
t € [0,7,), where 7, 1s the explosion time (see [14]). To show this solution is global, we should prove
that 7, = +o0 almost surely. Let ny > 0 be sufficiently large such that u;(0), u,(0) € [nl—o, nol. For each
n > ny, define the stopping time

T, = Iinf {t € [0, 7,) : min{u; (1), ur(1)} < rll or max{u; (1), ur(t)} > n}

It is easy to see that 7, is increasing as n — +oo. Let 7o, = lim,_,;« 7,. Obviously, 7., < 7, almost
surely. If we prove that 7, = oo, then 7, = oo and (u;(1), u5(t)) € R2 for all t > 0 almost surely. If
T # 00, then there is a pair of constants L > 0 and € € (0, 1) such that P(t,, < L) > &. Thus, there is
an integer n; > ng such that

P(t, <L) >¢eforalln>n,. (3.1)

Define a function V(u,(2), u(t)) € C*(R2,R,) as follows:

Vuy(0), () = t; — a— aln +u2—b—bln%,
a

where a and b are positive constants to be determined later. From x — 1 —Inx > 0 for x > 0, then V is
nonnegative. Using Ito’s formula to system (1.3), we have

b
dV = LVdr + (1 — D)oruw1dBi (1) + (1 — —)ourd B (1),
231 U

where , )
. a()ur = eo() aoy
V=(1-—)alt
LV =( )al( Jup[1 k( - k) >
BOuy — ¢ (1) b
1—-— t 1 - — .
+( )az( Jus [ k(t) + 0 ]+ >
Note that
a(t)(uy — ca(1))?
- Dyar@u[l - =L -
( )al( Jup [ 0 0 ]
a — )2 N2
— ayu - lkul B alcml(b]t: c)) a4 aaliul aala/(uli c2) 3.2)
< ( N aal) albt% alafbl]bt% N 2a,acr U Uy N ClCllCW% N 616110/6% 2c,aa;1
L L k k k k K

Similar to the proof of (3.2), we have

B)(ui = ci(1))?

1= DyarOuo[1 — 22
( )612( [ k( ) + 0 ]
ba au:  afct  aPuu’ 2ciaBu
4@%f%—1uzy+2;‘_1fl (3.3)
_ baxBu; , 2baspeiu
k k ’
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From Egs (3.2) and (3.3), we have

w a®)uy = (1)

- Dol - 2 -
( )al( [ K ) 0 1
B (uy = ci(1)?
+ (1 = —)ax(®uy[1 - +
( )az() o[ k(t) 0 ]
aa; 2ciax 2ba2,8c1) (a]aCQ 3a3B aj bazﬁ) )
< - _ -
_(a1+k . + P U, + T + 2 +3 k . u;
ba, 202aa1a) (amzcz asa  3aie? az) )
+(a, + — - +3- =
(“2 k )T\ Tk k 2 [ .
aala/cg azﬁc% '
k k
,ady 2ddB 2btaspicy ala'cy  3(a3)"(BH)" di bdpy ,
S(“‘+7_ " )“”( KT w0 T e )“1
b'at  2chaald! alatcy aaia"  3(a})(e?) d
+(at + —~ + + + +3 - —) 3
(“2 I e ) " ( I [ 2! T
adla"(c3)"  asp(c})"
KW
Let 1 ) ) 1
a au u . u 3 u u
SN o L
ku kl (kZ)l alfa,u
and o
atatct 3(6l )u(ﬁ )u K
:( 1k’ 2 4 zkz)’ +3) s
a2,8
In view of (H;) and (3.4), we have
aa a/”(c agﬁ”(c%)” a(oﬁ)” b(o% “
+ =
k! k! 2 2
Hence,
Tp AL To AL T AL a b
f dV(u, (1), ur (1)) < Hdr + f [(1 - —)O'luldBl([) + (1 - —)O'zudez(l) .
0 0 0 uj U
Take the expectation of the above inequality,
T, AL
EV(ui(t, AN L), ur(t, A L)) < V(u(0),u,(0) + E Hdt (3.5)
0 )

< V(MI(O), I/t2(0) + LH.

Forn > ny, let ®, = {r, < L}. By (3.1), P(®,) > €. For each w € ©,, there is at least one of
uy (T, w), U (1, w) equals either n or % If u;(r,, w) = nor %, then

1 1
V(@u(t, A L), uy(t, AL)) > (n —a—aln E) A (— —a—-—aln —)
a n na
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If u>(1,,, w) = nor 1, then

1 1
V(i (ty A L), un(y A L)) > (n —b-bIn g) A (— —b—bln —).

n nb
Thus,

n 1 1

V(@ (t, ANL), uy(t, AL)) > (n—a—aln—)/\ (— —a—aln—)
a n na

(3.6)
/\(n—b—blnf)/\(l —b—blnl)
b n nb)

From Egs (3.5) and (3.6), we have
V(@i (0),x0) + LH > E| 1o, V(1 A L) s, A L)

n 1 1
Zs(n—a—aln—)/\(——a—aln—)
a n na

n 1 1
Aln—b-b1 —)/\(——b—bl —),
(n . b n . nb
where 1, is the indicator function of ®,,. Letting n — oo leads to the contradiction co > V(u;(0), u(0)+
LH = oo. Hence, 7., = co almost surely. System (1.3) has a unique positive solution. O
Let )
o)

40 = (a(1) - —

)y
and
a(BO)ci(n) o3
K 2

From the perspective of the development of enterprise clusters, it is crucial to study their bankruptcy
and long-term survival conditions. Therefore, we present the following two results (Theorems 3.2 and
3.3).
Theorem 3.2. Assume that assumption (H;) holds. If A¥ < 0, i = 1,2. Then, for any initial value
(u1(0), u(0)) € Ri, the solution (u(#), u»(¢)) of system (1.3) has the following asymptotic property:
lim,_,, u;(t) = 0 almost surely, where i=1,2.
Proof. Using the Itos formula to the first equation of system (1.3), we have

m(t) _ e - aOr, oi(1)
k(1) k(1) 2

0'%(t

Ao(1) = (ax(1) +

dlnu () = [al(t)(l - ]dt + o(0dBy (D)

(3.7)

< (al(t) _ ))dt + o 1(DdBy (D).

Integrating from O to ¢ and dividing by 7 on both sides of (3.7) yield

73(s)

1 1 1
;(lnul(t)—lnul(O))s; fo (al(s)— ) )ds+; fo o1(5)dB; (). (3.8)

It follows by the strong law of large numbers for local martingales (see [16]) that
!

1
lim — o1(s)dB(s) = 0 almost surely. 3.9

t—00 0
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By assumption (H;), we have

1 ¢ 0.2 B 1 y 0.2
lim — (al(s)— i ))ds: _f (al(s)— l(s))ds. (3.10)
1= o 2 Y Jo 2
Thus,
Inu, (1
lim sup nutl( ) <A1 <0
>0

which implies lim,_,, #;(f) = 0 almost surely.
Similar to the above proof, using Itos formula to the second equation of system (1.3), we have

JPNC R
d1nus(f) = [az(t)(l _ Llf((;)) LB )(”‘(]?(t) ayy_ 022(0 di + o>()dBy(1)
(3.11)
_ 2 2
< (az O+ az(t)ﬁ(t)(zz((tt)) a®)? %Z(t) ) dt + o (t)dBy(D).

Integrating from O to ¢ and dividing by 7 on both sides of (3.11) yield
a($)Bs) i (s) = ci(s)?  T3(s)

l(1nuz(r)—1nuz(0))sl f (az(s)+ )ds+l f o>(5)dB(s). (3.12)
t t Jo t Jo

k(s) 2
We also have .
lim " 0,(s5)dB>(s) = 0 amost surely. (3.13)
[—0o0 0
and
1 ar()B(s)(ur(s) = cr(5))®  03(s) I a()B(s)ci(s) — o(s)
1 _ ( + — )d = — fy( + - )d .
pm ) (e® k(s) 2 ) | (@) k(s) 2 )¢
(3.14)
It follows by Eqs (3.12) and (3.14) that
1 t
lim sup nbf( ) <A, <0
—0o0
which implies lim,_,., u(¢) = 0 almost surely. O
Consider the following Logistic equation with periodic coefficients:
a (H)o(t
dg(1) = ()| (1) - 1%( Nar + o wpan 0
with initial value ¢(0) = u,(0) > 0. Using Lemma 2.1 in [17], we have
lim sup(¢(1)), = —, (3.15)
—0o0 a

1
provided that A} > 0.
Theorem 3.3. Assume that (H;) holds. If /111 > 0 and A5 + P

u(cl,lt)Z
k!

ﬁuag(ku/l?)Z
kl(al)?

+ < 0, where A3(r) =

{a(t) — @)y. Then, the solution (u,(?), u,(#)) of system (1.3) has the following asymptotic properties:
lim sup(u, (7)), = _11 almost surely (3.16)
—0o0 al
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and
lim u,(¢) = 0 almost surely. (3.17)
>0

Proof. From the first equation of system (1.3), we have

u (1)

duy(t) < a;(Du(O[1 - m]dl + o1 (Du (H)d B, (1)
together with (3.15) that
tlim sup{u (1)), = —ll almost surely. (3.18)
—00 a

1
Hence, (3.16) holds. Using the Itos formula to the second equation of system (1.3), we have

- 2 2
d1nu(r) = [az(t)[l - b/?((tt)) B (t)(”l(gt) al)y, _ (Tzz(t)]dr + o5(DdB(D)
a0 @B’ apt G
< (aatn - T2= 4 2 4 B0 e+ 0B,

Integrating from O to ¢ and dividing by ¢ on both sides of (3.19), and using (3.18) and A3(¢) =
o_2
{ar(t) — #% we have

U A1\2 t t
1(ln ur(t) —In uz(O)) <A+ 2ﬁ (@ ) f ——u (s)ds + 1 f 02(8)dBs(s)
0

k!
LGB Atk 1 [
< /13 + T + kl(all)z + ; \ O'z(S)de(S)
and 5 )
1 l all u CM uau ku/ll/l
lim sup nuZ()S/l’3‘+ P +ﬁ 2 D <0
100 t k! k’(atll)2

which implies lim,_,, u,(f) = 0 almost surely. Hence, (3.17) holds. O
Now, we consider the existence of a positive y—periodic solution of system (1.3) by constructing a
suitable Lyapunov function and the theory belonging to Khasminskii [15], and the following theorem
can be presented.
Theorem 3.4. Suppose that assumption (H;) holds. Then, for any initial value (1(0), u>(0)) € R2,
system (1.3) has a y—periodic solution, provided that
u( u)2

(1) - >0,

where h(¢) = (1 — o-z(t) +1- —0' 2(0)),.

Proof. According to Lemma 2. 2 for obtaining a y—periodic solution of system (1.3), we only need
to verify the conditions (i) and (ii) of Lemma 2.2. Construct a function V(t,u;,u;) € C*(R3,R) as
follows:

1
V(1 1) = M( CInu —Inu + wl(t)) O+ ) + O + )

= Vi(t,ur, up) + Vo(t,up, up),
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where M > 0 will be determined later,

, 1 1 a(nuy(t)
wit) =1~ 5(ﬁ(r) +1- Eag(r) — hy(1) - k(; ,
_ 2
W(t) = _2au,B0)(uy — ¢1(1)) (),

k(1)
1 1
hy (1) = (1 - E(T?(t) +1- Evﬁ(t»y, ha(t) = 2a) () + 4ax(t) + 05(1)),.
For showing the condition (i) of Lemma 2.2 holds, we only need to prove

inf V(t,uy,uy) > o0 asm — oo,
(t,u1,u2)ERy X(RI\Up)
where U, = ( %, m) X (%, m). Since all the coefficients of the quadratic term in V(¢, u;, u,) are positive,
the condition (i) of Lemma 2.2 holds.
Next, we show that the condition (ii) of Lemma 2.2 holds. Using Ito’s formula, we have

2 2
LVt ur, ) < _M(1 1 U%( o a(t)(t)  atul(n) ) , M@

k@) k@) k(t)
M(l — o )) LZ; ) 4 Mw () (3.20)
1 1
< M( — 61+ () + uz(t))
where 6; > 0, and
LV(t,uy, up) < w’z(t)ewz(’)l(ul + 1) + € Ouy + up)
2 2 5 _ 2
(2a1(t)u1 _ % + 2ay (D — ‘Zﬁt; 4 2aaup (t)lg(”tl) () w;(t))

1
+ Eewz(’)(of(t)ul + G%(Z)M%)

< eWZ(’)[hz(t)ul t Oty + (W’z(l‘) + 4a12(t) + 2a,(1) + lo’%(t))uz (3.21)
wi (1) + 2a, (1) + 4ay (1) 1 ) al(t) B az(t)
" ( 2 + 57 )) o) 2]

u U 1 U
< e'W2||h§|u1 + e'W2||h§|u2 + §e|W2|(|w’2(t)|” +4a} +2a;5 + (o) )u%
! I
a a
MLy 3 pwal2 3

1 w,
+ 26' (1R8] + wh|Yus — i Tl

From Egs (3.20) and (3.21), we have

M M
| . . d y 4
+ qut + Eel (8] + [wh|“yud — € 2lk_3,”? Ll 2|k5 3
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where g = %e'w3|(|w’2(t)|“ +4a} +2d4 + (0"1‘)2). Define the following bounded open set:

1 1
(ng:{(ul,uz):s<u1 < -, 8<I/t2<—}.
e e

Let
'Llé = {(ul,uz) 0<uy <¢g, uy € R+}, (ng = {(ul,uz) 0<uy <eg, u € R+},

1 1
U = {(ul,MZ) Sup = o W€ R+}, U = {(ul,uz) DUy > ol R+}~

Obviously, U = UL VU VU UUL. In the following, we show that LV (1, u;,uy) < —1 on R, X UE.
For u; < k]%, i=1,2,1let

l l

2kl 2 1 u 1, a 1, a
L = Wl 1u rpy,,2 sl 13wl 23 .
M = s =2 W {2’ quy + 5 e il waluy = e gy = e k"uz}’ =12 (22
For u; > k]%, i=1,2, let
2 | d
Moy = = max {2, 5eM80R + gt - ¥ 2ad . (3.23)
1 (ul,uz)GR%r 2 k*
2 d
My == max {2,qu% - eW’z'—luf}. (3.24)
1 (u1.up)eR2 k®
Define

M = max {M[,j, =1, 2}. (3.25)
Choose a sufficient small ¢ satisfying
k'S,

Case 1. If (1,u;, up) € Ry X U!, we have
M61 M61 M wh u
LV(t, ul,uz) < —T + [ - T + (F + e' 2||h2|)8

1 l

Méd, M 1 1,a 1a

W41 7,u 2 W4 /17,1 7y, 2 whl ™13 wh| 72 .3
+[—T+(F+€ 2|h2|)u2+qu1+§e 2(|h2|+|W2| )uz—e2ﬁu1—e2ﬁu2.

If u, < k/%, in view of (3.22), (3.25), and (3.26), we have
Mo
LV(Z,MI,LQ) < —Tl < -1.

If ur > %2 in view of (3.23)~(3.26), we have

Ms, [ M& M .,
LVt 1) < -2 +[— o G+ e
Ms, b
(= vk - T)
< Moy,
4
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Case 2. If (t,u;, up) € R, X U?, we have

M61 M61 M |wu| u
LV u) < =220+ [ -2 (F N |h2|)s]
Ms, (M, 1
* [ = (U + g e e = e

If u; < kl%, is sufficiently small, in view of (3.22), (3.25), and (3.26), we have
Mo
LV(t,ul,uz) < —Tl < -1.

If u; > %9 in view of (3.23)~(3.26), we have

z 5

M6 M6 M "
LVt ) < =220+ [ i (ﬁ ; e'Wz'|hg|)s]
Ms, 1 . o @
+ ( - Ly Eelwzl(lhgl + [wyl )u% —¢ [Zlk—iug)
< Moy,
4
Let o o
€= max, {(F ; elw3'|hg|)u1 ; (F ; elw5‘|hg|)u2
ui,up)e. +
2 L s, 2 Wl 11 3 |w'|alz 3
+ qui + Ee A(lhy| + W5 )u; — Ee 2 Eu] —e™ Euz
and Y Y
€= max, {(ﬁ n e'W3'|hg|)ul ' (F n e'w5|hg|)u2
up,up)eERy
1 wh u ’ Wl all 1 Wl alz
b qud + S+ gl — Tt - S 2
such that z
~MS; +C;+1< le|wlz|i’
2 gk
and z
1 ., a
[wyl "2
M6 +Cr+1< Eewz W
Case 3. If (t,u;, up) € R, X U3, in view of (3.27), we have
!
_ L s
.LV(I, M],le) < -Méd; + C 26 2 kuul

;. a
lwy] 1
Uu

3

uz.

(3.27)

(3.28)
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Case 4. If (t,u;,up) € R, X U2, in view of (3.28), we have
d

1
LVl u1,1) < M8y + Cy = e 228

1 4
<-Mé +C; - Eelwl2|83]2€u

<-1

Therefore, we obtain that LV, (¢, u;,u) < —1 for all (¢, u;, uz) € Ry X UL, i.e., the condition (ii) of
Lemma 2.2 is satisfied. Therefore, system (1.3) has a y—periodic solution. O

4. Examples

In this section, we give two numerical examples for verifying our main results. To this end, based on
the method in [18], system (1.3) can be discretized to the following form atz = (k+ 1)At, k =0,1,---:

u; (kAt) _ oz(kAt)(u’g — o (kAD))?
k(kAt) k(kAt)

2
“fm%%ﬂﬁm—An

us .\ BkAN (@t = ¢ (kAD))*
k(kAr) k(kAr)

2(kAt
T8 ymzar— an,

it = Uk + a (kADUA 1 -

+ o1 (kADUA (A2 & +

ustt = Ul + ax(kADUA[1 -

+ oo (kAU (AL Ty +

where &, and 7, are the N(0, 1)-distribution Gaussian stochastic variables. In the system (1.3), take the
periodic coeflicients as follows:

1 it
a;(t) = 0.6 +0.01sin ;T_O’ a)(t) =0.5+0.01 cos k(t) =20+ 0.01sin — 0"

t
a(t) = 0.65 +0.001 sm ,B(I) 0.7 +0.001 cos ;O’ c1(t) = c2(t) = 0.5+ 0.0001 sin ;—0

Example 4.1. Let o, = 1.25+ 0 05 sin 5 and 0, = 1.16+0.02 sin 55. By simple computation, we have
Al ~ =0.181 < 0 and 45 = -0.143 < 0 It follows by Theorem 3 2 that the solution (u(?), u>(t)) of
system (1.3) has the asymptotic property: lim,_,. u;(f) = 0 and lim,_,, uz(t) = 0 almost surely. Figure
1(a) and (b) verify the above results. Furthermore, let oy = 0.82+0.03 sin Z; and o = 6.15+0.01 sin 55
We have
B’ | Blask
k! kl(all )2
Then, all conditions of Theorem 3.3 hold. Therefore, the solution (u,(?), u,(¢)) of system (1.3) has
the following asymptotic properties:

A ~0263>0, 2+ ~-145<0.

uju

L ~ 8.67 almost surely

lim sup(u(2)), =
t—o00
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and
lim u,(¢) = 0 almost surely.
t—00

0.6

0.8 0.4

0.6 0.2

U0

0.2 -0.2

-0.4

Figure 1. The stochastic dynamics behaviors of system (1.3) with oy = 1.25 + 0.05 sin g—(’)
and o, = 1.16 + 0.02 sin 5.

Figures 2(a) and (b) verify the results of Theorem 3.3.

From Figure 1, when the external environment of an enterprise cluster is harsh (the densities of
white noises are very high), it will go bankrupt. From Figure 2, the density of white noise has a
direct impact on the survival of enterprises, and enterprises can overcome difficulties by implementing
various strategies.

Figure 2. The stochastic dynamics behaviors of system (1.3) with oy = 0.82 + 0.03 sin
and o = 6.15 + 0.01 sin 3.

Now, we verify the theoretical results of Theorem 3.4 and obtain that system (1.3) has a non-trivial
stochastically positive periodic solution.
Example 4.2. Let o = 0.05 + 0.02sin 75 and 07, = 0.03 — 0.02 sin 75. We obtain that

a"(cy)?
o

01 = ]’ll(t) — ~ 1.956 > 0.

Thus, all assumptions of Theorem 3.4 are satisfied. Based on Theorem 3.4, system (1.3) has a non-
trivial stochastic positive periodic solution. Figure 3(a) and (b) verify the results of Theorem 3.4. The
simulation results show that given some reasonable periodic coefficients, system (1.3) has a non-trivial
stochastic positive periodic solution.
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0 50 100 150 200 250 300 350 400 450 500
t

Figure 3. Stochastic positive periodic solution of system (1.3) with oy = 0.05 + 0.02 sin Zj
and o, = 0.03 - 0.02 sin 5.

5. Discussions and conclusions

Enterprise clusters are always in a complex competitive environment and are influenced by various
uncontrollable factors. The study of the dynamic mechanism of system (1.3) can help us formulate
reasonable strategies and promote the development of enterprises. The periodic coefficients and white
noise densities of system (1.3) are directly related to the asymptotic behavior and the existence of
positive periodic solutions. Specifically, studying the existence of stochastic periodic solutions for
enterprise clusters has significant practical value in promoting the development of enterprises and
society. In this paper, we introduced a stochastic non-autonomous enterprise cluster model, and
investigated the asymptotic behavior and the existence of stochastically positive periodic solutions of
system (1.3). By using the methods belonging to [19], we first studied the existence and uniqueness of
nontrivial global positive solutions to system (1.3), and then obtained the sufficient conditions for the
asymptotic behavior by the stochastic analysis technique and 1t6’s formula. For showing the existence
of stochastically positive periodic solutions, we used the Lyapunov function method, Ito’s formula,
and the theory of Khasminskii. Two numerical examples verified our main results and further
demonstrated that the dynamics and existence of positive periodic solutions are intimately associated
with the periodic coefficients and densities of white noise. The theoretical and numerical results in
this paper show:

o If densities of white noise are sufficiently large, the conditions of Theorem 3.2 hold, and both the
competitive enterprises u; and u, (see Fig. 1) will go bankrupt. This requires managers of enterprises to
increase their efficiency through internal reforms when facing severe external environments, in order to
achieve the survival and development of the enterprise. On the other hand, the government should also
reduce various factors that are unfavorable to the development of enterprises from a macro perspective,
strengthen positive factors, and support the development of enterprises.

e From Theorem 3.3, we find that competing enterprises do not always coexist (enterprise u; is
continuously surviving, and u, is bankrupt). Fig. 2 shows the status. The main reason for the above
situation is the periodic coefficients and densities of white noise. It is very important to increase
the intrinsic growth rate of enterprise u, and reduce the density of white noise in order to avoid its
bankruptcy.
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e Periodic phenomena and behaviors are widely present in the development of nature and human
society. The existence of a stochastic positive periodic solution for system (1.3) can be understood as
the long-term coexistence of two competing enterprises. Fig. 3 shows the existence of a stochastic
positive periodic solution. We can ensure the existence of positive periodic solutions by controlling
the parameters (including intrinsic growth rates of enterprises, the carrying capacity, the competitive
coeflicients of enterprises, etc.) of the system.

It would also be interesting to study other important issues. In the real world, system (1.3) is often
affected by time delay, so studying the dynamic mechanism of stochastic enterprise cluster systems
with variable time delay will receive increasing attention. At the same time, we should also pay
attention to the impact of pulse effects and regime switching on the dynamic behavior of system (1.3).
We leave these problems for future research.
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