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Abstract: This paper investigates the dynamical behaviors for a stochastic non-autonomous enterprise
cluster model. We will analyze how the parameters of the system and white noise affect the dynamical
properties of the system. Using Itô’s formula, the comparison principle and inequality techniques, we
study the existence, uniqueness, and extinction of nontrivial positive solutions. Particularly, we also
study the existence of a stochastic positive periodic solution by using stochastic differential equation
theory. Finally, two examples are introduced to verify the main results of this paper.
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1. Introduction

Enterprise clusters have a significant impact on the development of local and national economies.
Due to the competitive relationships among various enterprises within the cluster, it is necessary to
study these relationships in order to promote the development of the enterprise cluster. In [1], Tian and
Nie considered the following autonomous competition model of two enterprises:

du1

dt
= a1u1(t)[1 −

u1(t)
k
−
α(u2(t) − c2)2

k
]

du2

dt
= a2u2(t)[1 −

u2(t)
k
+
β(u1(t) − c1)2

k
],

(1.1)

where u1 and u2 are the outputs of two enterprises, A and B, respectively; a1 and a2 present the intrinsic
growth rates of two enterprises, respectively; k is the carrying capacity of the market under unlimited
conditions; and α and β are the competitive coefficients of enterprises A and B, respectively; and c1 and
c2 denote the initial production of enterprises A and B, respectively. In 2014, Liang, Xu and Tang [2,3]
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studied the following enterprise cluster model with multiple delays

du1

dt
= u1(t)[a1 − b11u1(t − τ1) − b12(u2(t − τ2) − c2)2]

du2

dt
= u2(t)[a2 − b21u2(t − τ3) + b22(u1(t − τ4) − c1)2],

(1.2)

where τi (i = 1, 2, 3, 4) are constant delays. Stability and the complex Hopf bifurcation phenomenon
have been obtained for system (1.2).

In recent papers, many studies have incorporated various factors into the enterprise the cluster
model. Such as variable environments [4]; the competition and cooperation model with impulse [5];
permanence, periodic solution, and global attractiveness [6]; and the competition and cooperation
model with multiple feedback controls [7–9].

Due to the unpredictability of the external environment, system (1.1) is inevitably affected by
random disturbances. For example, regarding the external competitive environment, the development
of a company is inevitably influenced and constrained by factors such as technological innovation,
economic policies, peer competition, and so on. Thus, it is reasonable to further incorporate
environmental fluctuations into system (1.1), which may provide a deeper cognizance of the dynamics
of the enterprise cluster model in stochastic environments. In the present paper, we introduce the
white noise into system (1.1), expressed as follows:

du1(t) = a1(t)u1(t)[1 −
u1(t)
k(t)
−
α(t)(u2(t) − c2(t))2

k(t)
]dt + σ1(t)u1(t)dB1(t)

du2(t) = a2(t)u2(t)[1 −
u2(t)
k(t)
+
β(t)(u1(t) − c1(t))2

k(t)
]dt + σ2(t)u2(t)dB2(t),

(1.3)

where Bi(t) (i = 1, 2) is one-dimensional Brownian motion, dBi(t) (i = 1, 2) is white noise, σ2
i (t) >

0 (i = 1, 2) is the intensity of white noise. The coefficients of the system are all positive and periodic.
The main innovations of this paper are listed as follows:

(1) There are few results for the stochastic non-autonomous enterprise cluster model. This study fills
the gap in the aforementioned research and promotes the study of enterprise clusters.
(2) The construction of Lyapunov functions in this paper is innovative and provides new ideas for
studying similar problems.

The remaining framework of this paper is organized as follows: Section 2 initially gives the
preliminaries, including the necessary assumptions and some useful lemmas. In Section 3, we study
the existence and asymptotic behaviors of stochastic positive periodic solutions for system (1.3).
Section 4 gives two numerical examples for verifying our results. We draw some conclusions and
discussions in Section 5.

2. Preliminaries

Let R be real numbers, R+ = [0,+∞), and R2
+ = {(x1, x2) ∈ R2, x1, x2 > 0}. For a, b ∈ R, a ∧ b =

min{a, b}. Let (Θ,Ft, {Ft}t≥0, P) be a completed probability space with a filtration {Ft}t≥0 satisfying the
standard normal conditions. In addition, if the number of factors is zero, then a product equals unity.
Throughout this paper, we need the following assumption:
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(H1) The functions a1(t), a2(t), α(t), β(t), k(t), c1(t), c2(t), σ1(t), and σ2(t) on R+ are all bounded
positive periodic functions with a common period γ > 0.

If f (t) is a γ−periodic function, we define

f u = max
t∈[0,γ]

f (t), f l = min
t∈[0,γ]

f (t), ⟨ f ⟩γ =
1
γ

∫ γ

0
f (t)dt.

We first give the definition of periodic Markove processes.
Definition 2.1 [10] A stochastic process ξ(t) is said to be γ−periodic if its finite dimensional
distributions are γ−periodic, i.e., there exist positive integer n and any moments of t1, t2, · · · , tn such
that the joint distributions of ξ(t1 + kγ), · · · , ξ(tn + kγ) do not depend on k, where k ∈ Z.

Consider the following n−dimensional stochastic system by [11]

dx = f (t, x) + g(t, x)dB(t), (2.1)

where f (t, x) = ( f1(t, x), f2(t, x), · · · , fn(t, x)) is an n−dimensional vector value function, (g(t, x))n×m is
an n × m matrix function, and B(t) = (B1(t), B2(t), · · · , Bm(t)) is an m−dimensional standard Brownian
motion on the probability space (Θ,Ft, {Ft}t≥0, P). Define the following differential operator:

LV(t, x) =
∂V
∂t
+

n∑
i=1

fi(t, x)
∂V
∂xi
+

1
2

n∑
i, j=1

m∑
k=1

gik(t, x)g jk(t, x)
∂2V
∂xi∂x j

,

where V(t, x) ∈ C2,1(R × Rn,R).
Lemma 2.1 [12] Let x(t) be a solution of system (2.1) and V(t, x) ∈ C2,1(R × Rn,R). Then,

dV(t, x) = LV(t, x)dt + Vx(t, x)g(t, x)dB(t),

where Vx(t, x) =
(∂V(t,x)
∂x1
, ∂V(t,x)
∂x2
, · · · , ∂V(t,x)

∂xn

)
.

We give the following lemma, which describes a criterion for the existence of the periodic solution
of a stochastic differential system.
Lemma 2.2 [13] Assume that the coefficients of system (2.1) are all continuous γ−periodic functions
and system (2.1) has a global solution, and further suppose that there is a γ−periodic function V(t, x) ∈
C2,1(R × Rn,R) such that
(i) inf |x|>M V(t, x)→ ∞ as M → ∞,
(ii) LV(t, x) ≤ −1 outside some compact set.
Then system (2.1) has a γ−periodic solution.

3. Main results

Before considering the dynamic properties of system (1.3), we should first study the existence
conditions of solutions. Therefore, combining the practical significance of the system, we discuss the
existence of global positive solutions to system (1.3) by using the random analysis technique. The
following theorem can be obtained.
Theorem 3.1. Suppose that assumption (H1) holds. There exists a unique solution (u1(t), u2(t)) of
system (1.3) with initial value (u1(0), u2(0)) ∈ R2

+ on t ≥ 0, and the solution will remain in R2
+ with
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probability 1, i.e., (u1(t), u2(t)) ∈ R2
+ for all t ≥ 0 almost surely.

Proof. In view of the fact that coefficients of system (1.3) are locally Lipschitz continuous for any
given initial value (u1(0), u2(0)) ∈ R2

+, then system (1.3) has a unique local solution (u1(t), u2(t)) for
t ∈ [0, τe), where τe is the explosion time (see [14]). To show this solution is global, we should prove
that τe = +∞ almost surely. Let n0 > 0 be sufficiently large such that u1(0), u2(0) ∈ [ 1

n0
, n0]. For each

n ≥ n0, define the stopping time

τn = inf
{
t ∈ [0, τe) : min{u1(t), u2(t)} ≤

1
n

or max{u1(t), u2(t)} ≥ n
}
.

It is easy to see that τn is increasing as n → +∞. Let τ∞ = limn→+∞ τn. Obviously, τ∞ ≤ τe almost
surely. If we prove that τ∞ = ∞, then τe = ∞ and (u1(t), u2(t)) ∈ R2

+ for all t ≥ 0 almost surely. If
τ∞ , ∞, then there is a pair of constants L > 0 and ε ∈ (0, 1) such that P(τ∞ ≤ L) > ε. Thus, there is
an integer n1 ≥ n0 such that

P(τn ≤ L) ≥ ε for all n ≥ n1. (3.1)

Define a function V(u1(t), u2(t)) ∈ C2(R2
+,R+) as follows:

V(u1(t), u2(t)) = u1 − a − a ln
u1

a
+ u2 − b − b ln

u2

b
,

where a and b are positive constants to be determined later. From x − 1 − ln x ≥ 0 for x > 0, then V is
nonnegative. Using Itô’s formula to system (1.3), we have

dV = LVdt +
(
1 −

a
u1

)
σ1u1dB1(t) +

(
1 −

b
u2

)
σ2u2dB2(t),

where

LV =
(
1 −

a
u1

)
a1(t)u1[1 −

u1

k(t)
−
α(t)(u2 − c2(t))2

k(t)
] +

aσ2
1

2

+
(
1 −

b
u2

)
a2(t)u2[1 −

u2

k(t)
+
β(t)(u1 − c1(t))2

k(t)
] +

bσ2
2

2
.

Note that(
1 −

a
u1

)
a1(t)u1[1 −

u1

k(t)
−
α(t)(u2 − c2(t))2

k(t)
]

= a1u1 −
a1u2

1

k
−

a1αu1(u2 − c2)2

k
− aa1 +

aa1u1

k
+

aa1α(u2 − c2)2

k

≤

(
a1 +

aa1

k

)
u1 −

a1u2
1

k
−

a1αu1u2
2

k
+

2a1αc2u1u2

k
+

aa1αu2
2

k
+

aa1αc2
2

k
−

2c2aa1αu2

k
.

(3.2)

Similar to the proof of (3.2), we have

(
1 −

b
u2

)
a2(t)u2[1 −

u2

k(t)
+
β(t)(u1 − c1(t))2

k(t)
]

≤

(
a2 +

ba2

k

)
u2 −

a2u2
2

k
+

a2βc2
1

k
+

a2βu2u2
1

k
−

2c1a2βu1

k

−
ba2βu2

1

k
+

2ba2βc1u1

k
.

(3.3)
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From Eqs (3.2) and (3.3), we have

(
1 −

a
u1

)
a1(t)u1[1 −

u1

k(t)
−
α(t)(u2 − c2(t))2

k(t)
]

+
(
1 −

b
u2

)
a2(t)u2[1 −

u2

k(t)
+
β(t)(u1 − c1(t))2

k(t)
]

≤

(
a1 +

aa1

k
−

2c1a2β

k
+

2ba2βc1

k

)
u1 +

(a1αc2

k
+

3a2
2β

2

k2 + 3 −
a1

k
−

ba2β

k

)
u2

1

+

(
a2 +

ba2

k
−

2c2aa1α

k

)
u2 +

(a1αc2

k
+

aa1α

k
+

3a2
1α

2

k2 + 3 −
a2

k

)
u2

2

+
aa1αc2

2

k
+

a2βc2
1

k

≤

(
au

1 +
aau

1

kl −
2cl

1al
2β

l

ku +
2buau

2β
ucu

1

kl

)
u1 +

(au
1α

ucu
2

kl +
3(a2

2)u(β2)u

(k2)l + 3 −
al

1

ku −
bal

2β
l

ku

)
u2

1

+

(
au

2 +
buau

2

kl −
2cl

2aal
1α

l

ku

)
u2 +

(au
1α

ucu
2

kl +
aau

1α
u

kl +
3(a2

1)u(α2)u

(k2)l + 3 −
al

2

ku

)
u2

2

+
aau

1α
u(c2

2)u

kl +
au

2β
u(c2

1)u

kl

(3.4)

Let

a =
(al

2

ku −
au

1α
ucu

2

kl −
3(a2

1)u(α2)u

(k2)l − 3
) kl

au
1α

u > 0

and

b =
(au

1α
ucu

2

kl +
3(a2

2)u(β2)u

(k2)l + 3
) ku

al
2β

l
.

In view of (H1) and (3.4), we have

LV ≤
aau

1α
u(c2

2)u

kl +
au

2β
u(c2

1)u

kl +
a(σ2

1)u

2
+

b(σ2
2)u

2
:= H.

Hence,∫ τn∧L

0
dV(u1(t), u2(t)) ≤

∫ τn∧L

0
Hdt +

∫ τn∧L

0

[(
1 −

a
u1

)
σ1u1dB1(t) +

(
1 −

b
u2

)
σ2u2dB2(t)

]
.

Take the expectation of the above inequality,

EV(u1(τn ∧ L), u2(τn ∧ L)) ≤ V(u1(0), u2(0) + E
∫ τn∧L

0
Hdt

≤ V(u1(0), u2(0) + LH.
(3.5)

For n ≥ n1, let Θn = {τn ≤ L}. By (3.1), P(Θn) ≥ ε. For each ω ∈ Θn, there is at least one of
u1(τn, ω), u2(τn, ω) equals either n or 1

n . If u1(τn, ω) = n or 1
n , then

V(u1(τn ∧ L), u2(τn ∧ L)) ≥
(
n − a − a ln

n
a

)
∧

(1
n
− a − a ln

1
na

)
.
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If u2(τn, ω) = n or 1
n , then

V(u1(τn ∧ L), u2(τn ∧ L)) ≥
(
n − b − b ln

n
b

)
∧

(1
n
− b − b ln

1
nb

)
.

Thus,

V(u1(τn ∧ L), u2(τn ∧ L)) ≥
(
n − a − a ln

n
a

)
∧

(1
n
− a − a ln

1
na

)
∧

(
n − b − b ln

n
b

)
∧

(1
n
− b − b ln

1
nb

)
.

(3.6)

From Eqs (3.5) and (3.6), we have

V(u1(0), u2(0) + LH ≥ E
[
1ΘnV(u1(τn ∧ L), u2(τn ∧ L))

]
≥ ε
(
n − a − a ln

n
a

)
∧

(1
n
− a − a ln

1
na

)
∧

(
n − b − b ln

n
b

)
∧

(1
n
− b − b ln

1
nb

)
,

where 1Θn is the indicator function ofΘn. Letting n→ ∞ leads to the contradiction∞ > V(u1(0), u2(0)+
LH = ∞. Hence, τ∞ = ∞ almost surely. System (1.3) has a unique positive solution. □

Let

λ1(t) = ⟨a1(t) −
σ2

1(t)
2
⟩γ

and

λ2(t) = ⟨a2(t) +
a2(t)β(t)c2

1(t)
k(t)

−
σ2

2(t)
2
⟩γ.

From the perspective of the development of enterprise clusters, it is crucial to study their bankruptcy
and long-term survival conditions. Therefore, we present the following two results (Theorems 3.2 and
3.3).
Theorem 3.2. Assume that assumption (H1) holds. If λu

i < 0, i = 1, 2. Then, for any initial value
(u1(0), u2(0)) ∈ R2

+, the solution (u1(t), u2(t)) of system (1.3) has the following asymptotic property:
limt→∞ ui(t) = 0 almost surely, where i=1,2.
Proof. Using the Itôs formula to the first equation of system (1.3), we have

d ln u1(t) =
[
a1(t)(1 −

u1(t)
k(t)
−
α(t)(u2(t) − c2(t))2

k(t)
) −
σ2

1(t)
2

]
dt + σ1(t)dB1(t)

≤

(
a1(t) −

σ2
1(t)
2

)
dt + σ1(t)dB1(t).

(3.7)

Integrating from 0 to t and dividing by t on both sides of (3.7) yield

1
t

(
ln u1(t) − ln u1(0)

)
≤

1
t

∫ t

0

(
a1(s) −

σ2
1(s)
2

)
ds +

1
t

∫ t

0
σ1(s)dB1(s). (3.8)

It follows by the strong law of large numbers for local martingales (see [16]) that

lim
t→∞

1
t

∫ t

0
σ1(s)dB1(s) = 0 almost surely. (3.9)
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By assumption (H1), we have

lim
t→∞

1
t

∫ t

0

(
a1(s) −

σ2
1(s)
2

)
ds =

1
γ

∫ γ

0

(
a1(s) −

σ2
1(s)
2

)
ds. (3.10)

Thus,

lim
t→∞

sup
ln u1(t)

t
≤ λu

1 < 0

which implies limt→∞ u1(t) = 0 almost surely.
Similar to the above proof, using Itôs formula to the second equation of system (1.3), we have

d ln u2(t) =
[
a2(t)
(
1 −

u2(t)
k(t)
+
β(t)(u1(t) − c1(t))2

k(t)
)
−
σ2

2(t)
2

]
dt + σ2(t)dB2(t)

≤

(
a2(t) +

a2(t)β(t)(u1(t) − c1(t))2

k(t)
−
σ2

2(t)
2

)
dt + σ2(t)dB2(t).

(3.11)

Integrating from 0 to t and dividing by t on both sides of (3.11) yield

1
t

(
ln u2(t)−ln u2(0)

)
≤

1
t

∫ t

0

(
a2(s)+

a2(s)β(s)(u1(s) − c1(s))2

k(s)
−
σ2

2(s)
2

)
ds+

1
t

∫ t

0
σ2(s)dB2(s). (3.12)

We also have

lim
t→∞

1
t

∫ t

0
σ2(s)dB2(s) = 0 amost surely. (3.13)

and

lim
t→∞

1
t

∫ t

0

(
a2(s) +

a2(s)β(s)(u1(s) − c1(s))2

k(s)
−
σ2

2(s)
2

)
ds =

1
γ

∫ γ

0

(
a2(s) +

a2(s)β(s)c2
1(s)

k(s)
−
σ2

2(s)
2

)
ds.

(3.14)
It follows by Eqs (3.12) and (3.14) that

lim
t→∞

sup
ln u2(t)

t
≤ λu

2 < 0

which implies limt→∞ u2(t) = 0 almost surely. □
Consider the following Logistic equation with periodic coefficients:

dϕ(t) = ϕ(t)
[
a1(t) −

a1(t)ϕ(t)
k(t)

]
dt + σ1(t)ϕ(t)dB1(t)

with initial value ϕ(0) = u1(0) > 0. Using Lemma 2.1 in [17], we have

lim
t→∞

sup⟨ϕ(t)⟩γ =
kuλu

1

al
1

, (3.15)

provided that λl
1 > 0.

Theorem 3.3. Assume that (H1) holds. If λl
1 > 0 and λu

3 +
au

2β
u(cu

1)2

kl +
βuau

2(kuλu
1)2

kl(al
1)2 < 0, where λ3(t) =

⟨a2(t)− σ
2
2(t)
2 ⟩γ. Then, the solution (u1(t), u2(t)) of system (1.3) has the following asymptotic properties:

lim
t→∞

sup⟨u1(t)⟩γ =
kuλu

1

al
1

almost surely (3.16)
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and
lim
t→∞

u2(t) = 0 almost surely. (3.17)

Proof. From the first equation of system (1.3), we have

du1(t) ≤ a1(t)u1(t)[1 −
u1(t)
k(t)

]dt + σ1(t)u1(t)dB1(t)

together with (3.15) that

lim
t→∞

sup⟨u1(t)⟩γ =
kuλu

1

al
1

almost surely. (3.18)

Hence, (3.16) holds. Using the Itôs formula to the second equation of system (1.3), we have

d ln u2(t) =
[
a2(t)[1 −

u2(t)
k(t)
+
β(t)(u1(t) − c1(t))2

k(t)
] −
σ2

2(t)
2

]
dt + σ2(t)dB2(t)

≤

(
a2(t) −

σ2
2(t)
2
+

au
2β

u(cu
1)2

kl +
au

2β
u

kl u2
1(t)
)
dt + σ2(t)dB2(t).

(3.19)

Integrating from 0 to t and dividing by t on both sides of (3.19), and using (3.18) and λ3(t) =
⟨a2(t) − σ

2
2(t)
2 ⟩γ, we have

1
t

(
ln u2(t) − ln u2(0)

)
≤ λu

3 +
au

2β
u(cu

1)2

kl +
1
t

∫ t

0

au
2β

u

kl u2
1(s)ds +

1
t

∫ t

0
σ2(s)dB2(s)

≤ λu
3 +

au
2β

u(cu
1)2

kl +
βuau

2(kuλu
1)2

kl(al
1)2

+
1
t

∫ t

0
σ2(s)dB2(s)

and

lim
t→∞

sup
ln u2(t)

t
≤ λu

3 +
au

2β
u(cu

1)2

kl +
βuau

2(kuλu
1)2

kl(al
1)2

< 0

which implies limt→∞ u2(t) = 0 almost surely. Hence, (3.17) holds. □
Now, we consider the existence of a positive γ−periodic solution of system (1.3) by constructing a

suitable Lyapunov function and the theory belonging to Khasminskii [15], and the following theorem
can be presented.
Theorem 3.4. Suppose that assumption (H1) holds. Then, for any initial value (u1(0), u2(0)) ∈ R2

+,
system (1.3) has a γ−periodic solution, provided that

δ1 = h1(t) −
αu(cu

2)2

kl > 0,

where h1(t) = ⟨1 − 1
2σ

2
1(t) + 1 − 1

2σ
2
2(t)⟩γ.

Proof. According to Lemma 2.2, for obtaining a γ−periodic solution of system (1.3), we only need
to verify the conditions (i) and (ii) of Lemma 2.2. Construct a function V(t, u1, u2) ∈ C2(R3

+,R) as
follows:

V(t, u1, u2) = M
(
− ln u1 − ln u2 + w1(t)

)
+ ew2(t) 1

2
(u1 + u2)2 + ew2(t)(u1 + u2)

= V1(t, u1, u2) + V2(t, u1, u2),
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where M > 0 will be determined later,

w′1(t) = 1 −
1
2
σ2

1(t) + 1 −
1
2
σ2

2(t) − h1(t) −
α(t)u2

2(t)
k(t)

,

w′2(t) = −
2a2u2β(t)(u1 − c1(t))2

k(t)
+ h2(t),

h1(t) = ⟨1 −
1
2
σ2

1(t) + 1 −
1
2
σ2

2(t)⟩γ, h2(t) = ⟨2a1(t) + 4a2(t) + σ2
2(t)⟩γ.

For showing the condition (i) of Lemma 2.2 holds, we only need to prove

inf
(t,u1,u2)∈R+×(R2

+\Um)
V(t, u1, u2)→ ∞ as m→ ∞,

where Um = ( 1
m ,m) × ( 1

m ,m). Since all the coefficients of the quadratic term in V(t, u1, u2) are positive,
the condition (i) of Lemma 2.2 holds.

Next, we show that the condition (ii) of Lemma 2.2 holds. Using Itô’s formula, we have

LV1(t, u1, u2) ≤ −M
(
1 −

1
2
σ2

1(t) −
α(t)c2

2(t)
k(t)

−
α(t)u2

2(t)
k(t)

)
+

Mu1(t)
k(t)

− M
(
1 −

1
2
σ2

2(t)
)
+

Mu2(t)
k(t)

+ Mw′1(t)

≤ M
(
− δ1 +

1
kl u1(t) +

1
kl u2(t)

)
,

(3.20)

where δ1 > 0, and

LV2(t, u1, u2) ≤ w′2(t)ew2(t) 1
2

(u1 + u2)2 + ew2(t)(u1 + u2)

×

(
2a1(t)u1 −

a1u2
1

k(t)
+ 2a2(t)u2 −

a2u2
2

k(t)
+

2a2u2β(t)(u1 − c1(t))2

k(t)
+ w′2(t)

)
+

1
2

ew2(t)
(
σ2

1(t)u2
1 + σ

2
2(t)u2

2

)
≤ ew2(t)

[
h2(t)u1 + h2(t)u2 +

(w′2(t) + 4a1(t) + 2a2(t)
2

+
1
2
σ2

1(t)
)
u2

1

+

(w′2(t) + 2a1(t) + 4a2(t)
2

+
1
2
σ2

2(t)
)
u2

2 −
a1(t)
k(t)

u3
1 −

a2(t)
k(t)

u3
2

]
≤ e|w

u
2 ||hu

2|u1 + e|w
u
2 ||hu

2|u2 +
1
2

e|w
u
2 |

(
|w′2(t)|u + 4au

1 + 2au
2 + (σu

1)2
)
u2

1

+
1
2

e|w
u
2 |(|hu

2| + |w
′
2|

u)u2
2 − e|w

l
2 |

al
1

ku u3
1 − e|w

l
2 |

al
2

ku u3
2.

(3.21)

From Eqs (3.20) and (3.21), we have

LV(t, u1, u2) ≤ −Mδ1 +

(M
kl + e|w

u
2 ||hu

2|

)
u1 +

(M
kl + e|w

u
2 ||hu

2|

)
u2

+ qu2
1 +

1
2

e|w
u
2 |(|hu

2| + |w
′
2|

u)u2
2 − e|w

l
2 |

al
1

ku u3
1 − e|w

l
2 |

al
2

ku u3
2,
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where q = 1
2e|w

u
2 |

(
|w′2(t)|u + 4au

1 + 2au
2 + (σu

1)2
)
. Define the following bounded open set:

Uε =

{
(u1, u2) : ε < u1 <

1
ε
, ε < u2 <

1
ε

}
.

Let
U1
ε =

{
(u1, u2) : 0 < u1 ≤ ε, u2 ∈ R+

}
, U2

ε =

{
(u1, u2) : 0 < u2 ≤ ε, u1 ∈ R+

}
,

U3
ε =

{
(u1, u2) : u1 ≥

1
ε
, u2 ∈ R+

}
, U4

ε =

{
(u1, u2) : u2 ≥

1
ε
, u1 ∈ R+

}
.

Obviously,Uc
ε = U

1
ε∪U

2
ε∪U

3
ε∪U

4
ε . In the following, we show thatLV(t, u1, u2) ≤ −1 on R+×Uc

ε.
For ui <

klδ1
2 , i = 1, 2, let

M1i =
2kl

klδ1 − 2ui
max

(u1,u2)∈R2
+

{
2, qu2

1 +
1
2

e|w
u
2 |(|hu

2| + |w
′
2|

u)u2
2 − e|w

l
2 |

al
1

ku u3
1 − e|w

l
2 |

al
2

ku u3
2

}
, i = 1, 2. (3.22)

For ui ≥
klδ1

2 , i = 1, 2, let

M21 =
2
δ1

max
(u1,u2)∈R2

+

{
2,

1
2

e|w
u
2 |(|hu

2| + |w
′
2|

u)u2
2 − e|w

l
2 |

al
2

ku u3
2

}
, (3.23)

M22 =
2
δ1

max
(u1,u2)∈R2

+

{
2, qu2

1 − e|w
l
2 |

al
1

ku u3
1

}
. (3.24)

Define
M = max

{
Mi, j, i, j = 1, 2

}
. (3.25)

Choose a sufficient small ε satisfying

0 < ε ≤
klδ1

4
. (3.26)

Case 1. If (t, u1, u2) ∈ R+ ×U1
ε , we have

LV(t, u1, u2) ≤ −
Mδ1

4
+

[
−

Mδ1

4
+

(M
kl + e|w

u
2 ||hu

2|

)
ε
]

+

[
−

Mδ1

2
+

(M
kl + e|w

u
2 ||hu

2|

)
u2 + qu2

1 +
1
2

e|w
u
2 |(|hu

2| + |w
′
2|

u)u2
2 − e|w

l
2 |

al
1

ku u3
1 − e|w

l
2 |

al
2

ku u3
2

]
.

If u2 <
klδ1

2 , in view of (3.22), (3.25), and (3.26), we have

LV(t, u1, u2) ≤ −
Mδ1

4
≤ −1.

If u2 ≥
klδ1

2 , in view of (3.23)–(3.26), we have

LV(t, u1, u2) ≤ −
Mδ1

4
+

[
−

Mδ1

4
+
(M

kl + e|w
u
2 ||hu

2|
)
ε
]

+

(
−

Mδ1

2
+ qu2

1 − e|w
l
2 |

al
1

ku u3
1

)
≤ −

Mδ1

4
≤ −1.
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Case 2. If (t, u1, u2) ∈ R+ ×U2
ε , we have

LV(t, u1, u2) ≤ −
Mδ1

4
+

[
−

Mδ1

4
+

(M
kl + e|w

u
2 ||hu

2|

)
ε
]

+

[
−

Mδ1

2
+

(M
kl + e|w

u
2 ||hu

2|

)
u1 + qu2

1 +
1
2

e|w
u
2 |(|hu

2| + |w
′
2|

u)u2
2 − e|w

l
2 |

al
1

ku u3
1 − e|w

l
2 |

al
2

ku u3
2

]
.

If u1 <
klδ1

2 , is sufficiently small, in view of (3.22), (3.25), and (3.26), we have

LV(t, u1, u2) ≤ −
Mδ1

4
≤ −1.

If u1 ≥
klδ1

2 , in view of (3.23)–(3.26), we have

LV(t, u1, u2) ≤ −
Mδ1

4
+

[
−

Mδ1

4
+

(M
kl + e|w

u
2 ||hu

2|

)
ε
]

+

(
−

Mδ1

2
+

1
2

e|w
u
2 |(|hu

2| + |w
′
2|

u)u2
2 − e|w

l
2 |

al
2

ku u3
2

)
≤ −

Mδ1

4
≤ −1.

Let

C1 = max
(u1,u2)∈R2

+

{(M
kl + e|w

u
2 ||hu

2|

)
u1 +

(M
kl + e|w

u
2 ||hu

2|

)
u2

+ qu2
1 +

1
2

e|w
u
2 |(|hu

2| + |w
′
2|

u)u2
2 −

1
2

e|w
l
2 |

al
1

ku u3
1 − e|w

l
2 |

al
2

ku u3
2

}
and

C2 = max
(u1,u2)∈R2

+

{(M
kl + e|w

u
2 ||hu

2|

)
u1 +

(M
kl + e|w

u
2 ||hu

2|

)
u2

+ qu2
1 +

1
2

e|w
u
2 |(|hu

2| + |w
′
2|

u)u2
2 − e|w

l
2 |

al
1

ku u3
1 −

1
2

e|w
l
2 |

al
2

ku u3
2

}
such that

−Mδ1 +C1 + 1 ≤
1
2

e|w
l
2 |

al
1

ε3ku , (3.27)

and

−Mδ1 +C2 + 1 ≤
1
2

e|w
l
2 |

al
2

ε3ku . (3.28)

Case 3. If (t, u1, u2) ∈ R+ ×U3
ε , in view of (3.27), we have

LV(t, u1, u2) ≤ −Mδ1 +C1 −
1
2

e|w
l
2 |

al
1

ku u3
1

≤ −Mδ1 +C1 −
1
2

e|w
l
2 |

al
1

ε3ku

≤ −1.
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Case 4. If (t, u1, u2) ∈ R+ ×U4
ε , in view of (3.28), we have

LV(t, u1, u2) ≤ −Mδ1 +C2 −
1
2

e|w
l
2 |

al
2

ku u3
2

≤ −Mδ1 +C2 −
1
2

e|w
l
2 |

al
2

ε3ku

≤ −1.

Therefore, we obtain that LV1(t, u1, u2) ≤ −1 for all (t, u1, u2) ∈ R+ × Uc
ε, i.e., the condition (ii) of

Lemma 2.2 is satisfied. Therefore, system (1.3) has a γ−periodic solution. □

4. Examples

In this section, we give two numerical examples for verifying our main results. To this end, based on
the method in [18], system (1.3) can be discretized to the following form at t = (k+ 1)∆t, k = 0, 1, · · · :

uk+1
1 = uk

1 + a1(k∆t)uk
1[1 −

u1(k∆t)
k(k∆t)

−
α(k∆t)(uk

2 − c2(k∆t))2

k(k∆t)
]∆t

+ σ1(k∆t)uk
1(∆t)

1
2 ξk +

σ2
1(k∆t)

2
(uk

1)2(ξ2
k∆t − ∆t)

uk+1
2 = uk

2 + a2(k∆t)uk
2[1 −

uk
2

k(k∆t)
+
β(k∆t)(uk

1 − c1(k∆t))2

k(k∆t)
]∆t

+ σ2(k∆t)uk
2(∆t)

1
2ηk +

σ2
1(k∆t)

2
(uk

2)2(η2
k∆t − ∆t),

where ξk and ηk are the N(0, 1)-distribution Gaussian stochastic variables. In the system (1.3), take the
periodic coefficients as follows:

a1(t) = 0.6 + 0.01 sin
πt
20
, a2(t) = 0.5 + 0.01 cos

πt
20
, k(t) = 20 + 0.01 sin

πt
20
,

α(t) = 0.65 + 0.001 sin
πt
20
, β(t) = 0.7 + 0.001 cos

πt
20
, c1(t) = c2(t) = 0.5 + 0.0001 sin

πt
20
.

Example 4.1. Let σ1 = 1.25+0.05 sin πt20 and σ2 = 1.16+0.02 sin πt20 . By simple computation, we have
λu

1 ≈ −0.181 < 0 and λu
2 ≈ −0.143 < 0. It follows by Theorem 3.2 that the solution (u1(t), u2(t)) of

system (1.3) has the asymptotic property: limt→∞ u1(t) = 0 and limt→∞ u2(t) = 0 almost surely. Figure
1(a) and (b) verify the above results. Furthermore, letσ1 = 0.82+0.03 sin πt20 andσ2 = 6.15+0.01 sin πt20 .
We have

λl
1 ≈ 0.263 > 0, λu

3 +
au

2β
u(cu

1)2

kl +
βuau

2(kuλu
1)2

kl(al
1)2

≈ −14.5 < 0.

Then, all conditions of Theorem 3.3 hold. Therefore, the solution (u1(t), u2(t)) of system (1.3) has
the following asymptotic properties:

lim
t→∞

sup⟨u1(t)⟩γ =
kuλu

1

al
1

≈ 8.67 almost surely
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and
lim
t→∞

u2(t) = 0 almost surely.

Figure 1. The stochastic dynamics behaviors of system (1.3) with σ1 = 1.25 + 0.05 sin πt20
and σ2 = 1.16 + 0.02 sin πt20 .

Figures 2(a) and (b) verify the results of Theorem 3.3.
From Figure 1, when the external environment of an enterprise cluster is harsh (the densities of

white noises are very high), it will go bankrupt. From Figure 2, the density of white noise has a
direct impact on the survival of enterprises, and enterprises can overcome difficulties by implementing
various strategies.

Figure 2. The stochastic dynamics behaviors of system (1.3) with σ1 = 0.82 + 0.03 sin πt20
and σ2 = 6.15 + 0.01 sin πt20 .

Now, we verify the theoretical results of Theorem 3.4 and obtain that system (1.3) has a non-trivial
stochastically positive periodic solution.
Example 4.2. Let σ1 = 0.05 + 0.02 sin πt20 and σ2 = 0.03 − 0.02 sin πt20 . We obtain that

δ1 = h1(t) −
αu(cu

2)2

kl ≈ 1.956 > 0.

Thus, all assumptions of Theorem 3.4 are satisfied. Based on Theorem 3.4, system (1.3) has a non-
trivial stochastic positive periodic solution. Figure 3(a) and (b) verify the results of Theorem 3.4. The
simulation results show that given some reasonable periodic coefficients, system (1.3) has a non-trivial
stochastic positive periodic solution.
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Figure 3. Stochastic positive periodic solution of system (1.3) with σ1 = 0.05 + 0.02 sin πt20
and σ2 = 0.03 − 0.02 sin πt20 .

5. Discussions and conclusions

Enterprise clusters are always in a complex competitive environment and are influenced by various
uncontrollable factors. The study of the dynamic mechanism of system (1.3) can help us formulate
reasonable strategies and promote the development of enterprises. The periodic coefficients and white
noise densities of system (1.3) are directly related to the asymptotic behavior and the existence of
positive periodic solutions. Specifically, studying the existence of stochastic periodic solutions for
enterprise clusters has significant practical value in promoting the development of enterprises and
society. In this paper, we introduced a stochastic non-autonomous enterprise cluster model, and
investigated the asymptotic behavior and the existence of stochastically positive periodic solutions of
system (1.3). By using the methods belonging to [19], we first studied the existence and uniqueness of
nontrivial global positive solutions to system (1.3), and then obtained the sufficient conditions for the
asymptotic behavior by the stochastic analysis technique and Itô’s formula. For showing the existence
of stochastically positive periodic solutions, we used the Lyapunov function method, Itô’s formula,
and the theory of Khasminskii. Two numerical examples verified our main results and further
demonstrated that the dynamics and existence of positive periodic solutions are intimately associated
with the periodic coefficients and densities of white noise. The theoretical and numerical results in
this paper show:
• If densities of white noise are sufficiently large, the conditions of Theorem 3.2 hold, and both the

competitive enterprises u1 and u2 (see Fig. 1) will go bankrupt. This requires managers of enterprises to
increase their efficiency through internal reforms when facing severe external environments, in order to
achieve the survival and development of the enterprise. On the other hand, the government should also
reduce various factors that are unfavorable to the development of enterprises from a macro perspective,
strengthen positive factors, and support the development of enterprises.
• From Theorem 3.3, we find that competing enterprises do not always coexist (enterprise u1 is

continuously surviving, and u2 is bankrupt). Fig. 2 shows the status. The main reason for the above
situation is the periodic coefficients and densities of white noise. It is very important to increase
the intrinsic growth rate of enterprise u2 and reduce the density of white noise in order to avoid its
bankruptcy.
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• Periodic phenomena and behaviors are widely present in the development of nature and human
society. The existence of a stochastic positive periodic solution for system (1.3) can be understood as
the long-term coexistence of two competing enterprises. Fig. 3 shows the existence of a stochastic
positive periodic solution. We can ensure the existence of positive periodic solutions by controlling
the parameters (including intrinsic growth rates of enterprises, the carrying capacity, the competitive
coefficients of enterprises, etc.) of the system.

It would also be interesting to study other important issues. In the real world, system (1.3) is often
affected by time delay, so studying the dynamic mechanism of stochastic enterprise cluster systems
with variable time delay will receive increasing attention. At the same time, we should also pay
attention to the impact of pulse effects and regime switching on the dynamic behavior of system (1.3).
We leave these problems for future research.

Author contributions

Xiuguo Lian: Methodology, Formal analysis, Investigation, Writing−original draft; Xiwang Cheng:
Investigation, Methodology, Writing−original draft; Famei Zheng: Formal analysis, Software.

Use of Generative-AI tools declaration

The author declares he has not used Artificial Intelligence (AI) tools in the creation of this article.

Conflict of interest

The authors declare no conflict of interest in this paper.

References

1. X. Tian, Q. Nie, On model construction of enterprises’ interactive relationship from the perspective
of business ecosystem, South. Econ. J., 4 (2006), 50–57.

2. M. Liao, C. Xu, X. Tang, Dynamical behavior for a competition and cooperation model of
enterpries with two delays, Nonlinear Dyn., 175 (2014), 257–266. https://doi.org/10.1007/s11071-
013-1063-9

3. M. Liao, C. Xu, X. Tang, Stability and Hopf bifurcation for a competition and cooperation
model of two enterprises with delay, Commun. Nonlinear Sci., 19 (2014), 3845–3856.
https://doi.org/10.1016/j.cnsns.2014.02.031

4. A. Muhammadhaji, M. Nureji, Dynamical behavior of competition and cooperation dynamical
model of two enterprises, J. Quant. Econ., 36 (2019), 94–98.

5. C. Xu, Y. Shao, Existence and global attractivity of periodic solution for enterprise clusters
based on ecology theory with impulse, J. Appl. Math. Comput., 39 (2012), 367–384.
https://doi.org/10.1007/s12190-011-0530-z

6. A. Muhammadhaji, Y. Maimaiti, New criteria for analyzing the permanence, periodic solution, and
global attractiveness of the competition and cooperation model of two enterprises with feedback
controls and delays, Mathematics, 11 (2023), 4442. https://doi.org/10.3390/math11214442

AIMS Mathematics Volume 10, Issue 11, 26511–26526.

https://dx.doi.org/https://doi.org/10.1007/s11071-013-1063-9
https://dx.doi.org/https://doi.org/10.1007/s11071-013-1063-9
https://dx.doi.org/https://doi.org/10.1016/j.cnsns.2014.02.031
https://dx.doi.org/https://doi.org/10.1007/s12190-011-0530-z
https://dx.doi.org/https://doi.org/10.3390/math11214442


26526

7. L. Lu, Y. Lian, C. Li, Dynamics for a discrete competition and cooperation model of two
enterprises with multiple delays and feedback controls, Open Math., 15 (2017), 218–232.
https://doi.org/10.1515/math-2017-0023

8. C. Xu, P. Li, Almost periodic solutions for a competition and cooperation model of two enterprises
with time-varying delays and feedback controls, J. Appl. Math. Comput., 53 (2017), 397–411.
https://doi.org/10.1007/s12190-015-0974-7

9. Y. Zhi, Z. Ding, Y. Li, Permanence and almost periodic solution for an enterprise cluster model
based on ecology theory with feedback controls on time scales, Discrete Dyn. Nat. Soc., 2013
(2013), 639138. https://doi.org/10.1155/2013/639138

10. D. Li, D. Xu, Periodic solutions of stochastic delay differential equations and applications
to Logistic equation and neural networks, J. Korean Math. Soc., 50 (2013), 1165–1181.
https://doi.org/10.4134/JKMS.2013.50.6.1165

11. X. Mao, Stochastic differential equations and applications, Horwood, 1997.

12. T. Tang, Z. Teng, Z. Li, Threshold behavior in a class of stochastic SIRS epidemic
models with nonlinear incidence, Stoch. Anal. Appl., 233 (2015), 994–1019.
https://doi.org/10.1080/07362994.2015.1065750

13. D. Jiang, N. Shi, X. Li, Global stability and stochastic permanence of a non-autonomous
logistic equation with random perturbation, J. Math. Anal. Appl., 340 (2008), 588–597.
https://doi.org/10.1016/j.jmaa.2007.08.014

14. L. Arnold, Stochastic, differential equations: Theory and applications, New York: Wiley, 1974.

15. R. Wu, X. Zou, K. Wang, Asymptotic behavior of a stochastic non-autonomous predator-
prey model with impulsive perturbations, Commun. Nonlinear Sci., 20 (2015), 965–974.
https://doi.org/10.1016/j.cnsns.2014.06.023

16. X. Mao, C. Yuan, Stochastic differential equations with Markovian switching, London: Imperial
College Press, 2006.

17. C. Ji, D. Jiang, N. Shi, Analysis of a predator-prey model with modified Leslie-Gower and
Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl., 359 (2009), 482–498.
https://doi.org/10.1016/j.jmaa.2009.05.039

18. D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential
equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302

19. R. Khasminskii, Stochastic stability of differential equations, Berlin, Heidelberg: Springer, 2012.
https://doi.org/10.1007/978-3-642-23280-0

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 11, 26511–26526.

https://dx.doi.org/https://doi.org/10.1515/math-2017-0023
https://dx.doi.org/https://doi.org/10.1007/s12190-015-0974-7
https://dx.doi.org/https://doi.org/10.1155/2013/639138
https://dx.doi.org/https://doi.org/10.4134/JKMS.2013.50.6.1165
https://dx.doi.org/https://doi.org/10.1080/07362994.2015.1065750
https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2007.08.014
https://dx.doi.org/
https://dx.doi.org/https://doi.org/10.1016/j.cnsns.2014.06.023
https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2009.05.039
https://dx.doi.org/https://doi.org/10.1137/S0036144500378302
https://dx.doi.org/https://doi.org/10.1007/978-3-642-23280-0
https://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main results
	Examples
	Discussions and conclusions

