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1. Introduction

Since the classic work on HIV dynamics was proposed by Perelson [1, 2], many scholars are
investigating various pathways of viral infection, such as virus-to-cell infection [3,4], and cell-to-
cell transmission [5]. Additionally, some studies examine cytokine-enhanced viral infection [6-8].
As indicated by the above references, caspase-1-mediated pyroptosis is the primary pathway driving
CD4* T cell death. Infected CD4* T cells that undergo death release inflammatory signals, attracting
more uninfected CD4* T cells to die. Also, more and more work has focused on the two modes
of viral infection (virus-to-cell infection and cell-to-cell transmission) and the two responses of
human immunity (Cytotoxic T Lymphocyte (CTL) and antibody immunity) [9-11]. Wodarz [12]
first considered two immune responses to establish a five-dimensional ODE model with bilinear
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interaction. Subsequently, a large number of papers have developed models with rich dynamic behavior
to study virus transmission and immune response, taking into account time delay [13, 14], saturation
relationship [15-17], general functional relationship [18-20], or only considering virus-to-cell
infection [21,22]. Lai and Zou [5] first proposed (possibly for the first time) two transmission modes of
virus-cell and cell-to-cell infection and focused on the study of Hopf bifurcation. Subsequently, Wang
et al. [23], Lin et al. [17], and Guo et al. [14] continued with a series of follow-up studies focusing on
the global stability of equilibria. These models typically have five equilibria, and it is worth noting that
accounting for time delay generally does not significantly change the dynamic behavior. Existing
studies mainly focus on verifying the global asymptotic stability of equilibria; however, there are
limitations in the following three key dimensions: (1) coexistence of the equilibria of the models is
not discussed; (2) the models usually do not discuss the local asymptotic stability of each equilibrium;
(3) the conditions for the global asymptotic stability of the equilibria are not rigorous.

To elucidate critical computational details, we conduct a re-examination of the time-delayed viral
dynamics model originally formulated by Guo et al. [14], incorporating dual transmission pathways
and two modes of immune responses for further investigation:

d
Z(tt) = b — cx(t) — B1x(t)v(t) — Bx(t)y(2),
d
% = ﬁle_“mx(l —T)(t — T1) + Bre” T x(t — Tl))’(t -T) - d}’(t) - hy(t)w(l),
d;(tt) — ke—uz‘rzy(t —T,) — mv(t) — nv(t)z(¢), (11)
dw_it) = ry(Ow(t) — sw(t),
dz(t) _
— = PV = gz(0),

where x(1), y(t), v(t), w(t), and z(#) denote concentrations of uninfected cells, infected cells, free virus
particles, CTL, and B cells, respectively. Uninfected cells are produced at a constant rate b, and the rate
of natural death is c. §; and 3, denote the rate of infection transmission between uninfected cells and
viral particles and cell-to-cell spread, respectively. d is the death rate of infected cells. m and g are the
clearance rates of free virus and B cells. CTL expands at a rate of r and decays at s. The parameter 4 is
the killing rate of CTL on productive infected cells. k and p represent the generation rate of virus and
B cells, respectively. n determines the rate at which B cells neutralize free virus. The delay 7; denotes
the duration of infection, while 7, represents the period of virus production. The terms e " (i = 1,2)
are the survival probabilities from time ¢ — 7; (i = 1,2) to ¢. All the parameters are positive constants.
The five threshold conditions of model (1.1) are as follows:

_ Bre T pk N Bre “"h r (bB1ke 179" + bByme™ " — cdm)

R RY = ’
© cdm ed sd (Brke==7> + Bym)

R = pk (bﬂ]ke_al‘n—az‘rz + bﬁzme—al‘rl — cdm) R ke~ @272 sp
1 mdq (ﬁlk +,82me“m) > IV qm_r s

RY — re " (bpB, — cdpe®™ — Bidge®™ + L)
2 2s5dpps ’

where L = \/4195132616‘“”176] + (—=bpBs + cdpe®™ + Bidgen™)*.
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Obviously, the study results in [10, 16,24] and others are similar to model (1.1). Moreover, for viral
dynamic models that consider only one mode of transmission or one immune response, they are only
special cases of the model (1.1). Our new main results and proofs will be presented in Section 2. The
numerical simulations are presented in Section 3, while the conclusions are placed in Section 4.

2. Main result

The threshold values in literature [10, 14, 16] are not suitable for further discussion because their
positivity cannot be guaranteed. We redefine the following four threshold conditions (the basic
reproduction number R;, the CTL immune response reproduction number R,, the antibody immune
response reproduction number R3, and two immune response reproduction numbers Ry) to discuss the
coexistence and local stability of the equilibria:

_ Bibke™ ™22 + Bybme™ ™! bre™"\(B1ke” ™ + Bym)

R , R = ,
: cdm >7 cdmr + Bodms + Bi1dske@72 @
bpke @1 T1—@T2 ke %272 4 :
Ry= — P Brke =0+ Pam) g, — min(R,, RY),
dm(Brgm + pcke=7 + ,qke™%72)
k —apTy b —aiT +
where K = spre " and R} = ro¢ Bigr +B2sp) . It is worth noting that R,, R3, and R; have
qrm ds(Biqr + Basp + cpr)

obvious relationships as below:

cmr pcke ™

R, = R1<R1, R3:

R < R;.
> omr + Boms + B ske~ 2T Bomq + pcke=@™ + B1gke=>" ! !

2.1. Coexistence of equilibria

Referring to the results in [14] and doing further simplification, we have the following five equilibria
of model (1.1):
b
(1) The infection-free equilibrium Ey = (xo, yo, Vo, Wo, 20) = (—, 0,0, 0, 0).
c
dme™™

2) The immunity-inactivated equilibrium E; = (xy, y;, v{, Wi, 21), Where x; = =
(2) y q 1= (XL,YL VLWL ) 1= ke 1 Bom

b cm(R; - 1) cke (R, - 1) 0 0
—, V1 = ,V = ,wi =0,z =0.
CRl N Blke‘“m +,82m ! ,Blke‘“m +ﬁ2m ! 4
(3) The cell-mediated immunity-activated equilibrium E, = (x,y2,Vv2,W2,22), Where x, =
brm bR, S ske™42"2 R, — 1) 0
= s = -,V = ,Wor = — — S = U.
Biske=2™ + Boms + cmr R Y2 Pl 2T 2
(4) The humoral immunity-activated equilibrium E; = (x3,y3,Vv3,W3,23), where x3 =
bp _mgtngsn g

s Y3 = ,v3 = =, w3 = 0 and z; is the positive real root of the following
cp +pig + Bapys pke=e P
quadratic equation:

(2B2gme™™ + pck + PB1gk) (1 - R?,) m(Bagme™™ + pck + Bi1gk) (1 —R3)

G+ Bange® 3t ,82’126]6“272 0,
where
_— Bobkpe-aimi—ar: _ Bombkpe-tTi-em R
3 d(2Brgm + pcke=72 + Bigke®2)  Brdgm? + dm(Bagm + pcke= @7 + B gke®72) >
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Obviously, if R; > 1, and the above quadratic equation has only one positive root. Otherwise, if R; < 1,
then RS < 1, and the equation has only negative roots or zero roots.
bpr

(5) The immunity-activated equilibrium E; = (x4, Y4, V4, W4, 24), Where x4 = ,
Bigr + Baps + cpr

s d m
V4= =, V4= 4wy = Ry = 1), z4 = =(R; - 1).
r p h n

Based on the above statements, we can directly conclude that the four thresholds R, > 1, R, > 1,
R; > 1,and Ry > 1 can determine the existence of the four equilibria E, E;, E3, and E4 in model (1.1).
Then, we give the complete results on the coexistence of the equilibria neglected by Guo et al. [14].

Proposition 1. Firstly, the model (1.1) always has the equilibrium E,, then,

(1) If Ry < 1 and Ry < 1, model (1.1) has only the equilibrium E;

(2)If Ry < 1 and Ry > 1, two equilibria, Ey and E, coexist;

(IR >1, R, <1, R; <1, and Ry < 1, two equilibria Ey and E, coexist;

(4)If Ry > 1, R3 < 1, and Ry < 1, three equilibria E, E,, and E, coexist;

(5)If Ry <1, Rs > 1, and Ry < 1, three equilibria E, E,, and E5 coexist;
(6)If Ry > 1, R, <1, R; <1, and Ry > 1, three equilibria Ey, E,, and E, coexist;
(7)If Ry > 1, R3 > 1, and Ry < 1, four equilibria Ey, E,, E,, and E5 coexist;
(8) If Ry > 1, R3 < 1, and Ry > 1, four equilibria Ey, E,, E,, and E4 coexist;
(9)If Ry < 1, Rs > 1, and Ry > 1, four equilibria Ey, E,, E3, and E4 coexist;
(10) If R, > 1, R3 > 1, and Ry > 1, all equilibria E,, E,, E,, E3, and E4 coexist.

The newly proposed basic reproduction number of model (1.1) inherently ensures positivity.
Through the analysis of equilibrium existence, we demonstrate that each threshold corresponds to
distinct virological-immune implications: the viral infection reproduction number R; (where the first
term represents the average number of actively infected cells generated through virus-to-cell infection,
and the second term represents the average number generated through cell-to-cell transmission),
the CTL immune-response reproduction number R, (representing the average number of CTL cells
activated by infected cells when viral infection succeeds in the absence of antibody response), the
humoral immunity reproduction number R; (denoting the average number of antibodies activated by
viruses when CTL response is absent), the competitive reproduction numbers for CTL-mediated (R},
the average number of CTLs activated by infected cells when antibody response is present) and humoral
(R;, the average number of antibodies generated per viral infection under active CTL response) immune

responses R4. The specific results can also be seen in the following Table 1.
Table 1. Coexistence of equilibrium states of model (1.1).

Condition Coexist

R <1 Ry <1 Ey
R4 > 1 Eo,E4

R1>1 RQSI,R3S1,R4S1 Eo,El
R2>1,R3§1,Q4S1 Eo,El,Ez
RQSI,R3>1,R4SI Eo,El,E3
Rle,R3S1,R4>1 Eo,El,E4
R2>1,ﬂ3>1,R431 Eo,El,Ez,E3
R2>1,Q3SI,R4>1 Eo,El,Ez,E4
Rzﬁl,ﬂ3>1,ﬂ4>l E(),E],E3,E4
Rz > 1,R3 > 1, R4 > 1 Eo,E],Ez,E3,E4
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2.2. Local asymptotic stability

The characteristic equation of model (1.1) at an arbitrary equilibrium E = x(1), y(1), v(t), w(t), (1))
can be calculated as
Po(A) + P (e~ + Py(2)e 147 = (, (2.2)

where
Py D) =(A+B1v+ L2y +c)(A+ s —ry) (A +d+ hw) + rwhy)
X((A+qg—pv)(A+m+nZ)+nvpz),
Pi(AD) = Boxe ™ (A+s—ry)(A+c)(A+q— pV) (A +m+nZ) +nvp3?),
Py(A) = —Brkxe ™M e 2 (A+s—ry)(A+c)(A+q— pv).
Theorem 1. If Ry < 1, the infection-free equilibrium E of the model (1.1) is locally asymptotically
stable; if Ry > 1, then E is unstable.

Proof. The characteristic equation of model (1.1) at Ej is
(A+¢) (1+5) (/l+q)><((/l+d) (A+m)—Baxoe ™ (A+m) e~ — B kxge 1 g7 ¢~ o7 ) ~0. (23)

It is clear that Eq (2.3) has three negative roots, A = —¢, 4 = —s, and A = —q at E, and other roots are
determined by the following equation:

(A+d)(A+m) = Boxoe™ ™ (A +m) e — Brkxge e e e = 0, (2.4)
bk —a|TI—ax7n b —apT|
Denote R; = Rio + Ry1, where Ryg = 'Bled—, R = ﬁze—d. Substituting Ry and R;; into
cdm c
Eq (2.4) yields
A A A
(Rme—m F Ry (— ; 1)) e = (— ; 1)(— ; 1). 2.5)
m d m

Next, we show that Eq (2.5) has only the roots with negative real parts. Otherwise, one assumes that
Eq (2.5) has a root of the form 4; = ReAd; +ilmA; with Red; > 0. In this case, if R; < 1, then it is clear

A
that e~41™ < j + 1| and

A
—1+1‘.
m

A A
Rloe_l‘” + Rt (—1 + 1)‘ <R + Rll—l <
m m

It follows that,
o 4
—+1||—+1
d m

>

A
(721()6_/1172 + Rll (—1 + 1)) €_/11T1
m

b

which contradicts Eq (2.5). Therefore, if R; < 1, all roots of Eq (2.3) have negative real parts, and E
is locally asymptotically stable. If R; > 1, we denote the left side of Eq (2.4) by F(A):

F) = +d) (A+m) = Boxoe ™ (A +m) e — Bikxge e @21 7472

where F(0) = dm(l — Ry) < 0 and F(4+o0) = +co. Noting that (1) is a continuous function with
respect to A, if R; > 1, Eq (2.3) has at least a positive real root, then E is unstable. O

AIMS Mathematics Volume 10, Issue 11, 26446-26458.



26451

Theorem 2. If R, > 1, R, < 1, and R3 < 1, the immunity-inactivated equilibrium E, of the model (1.1)
is locally asymptotically stable; E; is unstable if R, > 1 or Rz > 1.

Proof. First, we give the characteristic equation of the model (1.1) at E; as

A+s—ry)(@+q— pvl)( A+ Bvi+Bayr +¢) (A+d) (1 +m)
(2.6)
—Box1e” T (A +m) (A +c) e — Brkxje T e e T2 () 4 ) ) =0.

The following results can be converted from the expression of y; and v;:

Bike ™ + Bom
cmr + Boms + 1 ske-@2m2’
Bike ™ + Bom
Bagm + pcke=®T2 + Bigke=wm

Ro—1=(ry1 - 5)

Ry —1=(pvi—¢q)

It is clear that if R, < 1 and R; < 1, Eq (2.6) has two negative real roots 4 = ry; — s and 4 = pv; — q.
Next, we continue to discuss the case of the remaining roots of Eq (2.6), and

A+Bvi+Byi+0)A+d)(A+m) = Boxie ™ (A+m)e ™ (1 +¢)

— Bikxje g™ @™ emA () 4 ) = 0.

2.7)

Note that, A + B1v; + B2y1 + ¢ = A + ¢R, and we assume that Eq (2.7) has a root of the form 4, =
ReA, + ilmA, with Red; > 0. By modulo operation, we get

A2 A ‘ A2 ‘ P ' Rii A Rio
—+R||=+ || =+ 1= |—=+1||=—(—+ 1)+ 7.
c "a m |e c Rl(m ) 7318
A A A
But when Ry > 1, it’s very easy to get 2 4)< —2+R1,|e"1271 < ‘EZ+1 and
c c
Rii A Rio _, R Ru R _y A
—(—+ D+ ——e " =|07—+ 5+ e <|—+1].
R m TR Rim R R m

This is in contradiction to Eq (2.7). To sum up the above discussion, if R; > 1, R, < 1, and R; < 1, all
roots of Eq (2.6) have a negative real part, and E| is locally asymptotically stable. O

Theorem 3. If R, > 1 and R < 1, then the cell-mediated immunity-activated equilibrium E, of model
(1.1) is locally asymptotically stable; E, is unstable if R > 1.

Proof. Let us write the characteristic equation of model (1.1) at E, in terms of Eq (2.2), and
Po(D) = (A +Bva+Biys+ ) (A + 5 —ryy) (A +d+ hwy) + ryhw,) (A + g — pva) (A +m),
Pi(D) = —frxae™ ™ (A+s—ry) (A+c)(A+q—pv)(d+m),
Py(A) = =Bikxye™ e ™2 (A + s —ry))(A+c)(A+qg— pvy).

It is easy to know pv, — g = q(R] — 1) by the expression for v,, so naturally, when R} < 1, model (1.1)

cR
has one negative real root 1 = pv, —q. Note that A + B1v, + Boy, + ¢ = A + R_l’ and according to the

2
characteristic equation of (1.1) at E,, we remove the common factor A + g — pv,, then
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R
(/1 + %) (/12 + dRA + sd(R, — 1)) (A+m) —Baxae ™™ A(A+m)(A+c)e ™
2

— Bikxye e 2T e ) (1 4 ) = 0.
Next, we assume that Eq (2.8) has a root of the form A; = Red; + ilmA; with Red; > 0. Denote

brf31ke 1T e %2™2 brByme ™
R, = Ryg + Ryy, where Ryy = and Ry, = .
? 20 2 W 7 cdmr + Bodms + B1dske 2 T cdmr + Badms + B1dske @™
By modulo operation,

(2.8)

A R A A A
24 22 4+ dR s + sd(Ry — 1| |2 + 1' =24 1‘ Rox (—3 N 1) T Rage 2 |ddzem|
c R m c m
. o A3 5 R 2
Obviously, when R, > 1 (in this case, Ry > R, > 1), |[—+1| < |[—+ | |dR2/13e M <
C C 2
|32 + AR5 + 5d(R, — 1)| and
Roi (/13 ) R _4 Roi Az R Rao _, A3 '
— =+ 1|+ =" =|F—+ 7+ — P <|=+1].
Rz m Rz ¢ Rz m Rz Rz ¢ m

As a result, the above equation is in contradiction to Eq (2.8). We can get that if R, > 1 and R < 1,
all roots of the model (1.1) at £, have a negative real part and E; is locally asymptotically stable. O

Theorem 4. If Ry > 1 and R} < 1, then the humoral immunity-activated equilibrium E3 of the
model (1.1) is locally asymptotically stable; Es is unstable if R} > 1.

Proof. We can write the characteristic equation of the model (1.1) at £5 in terms of Eq (2.2) and

Po(A) = (A +B1vz +Boys + ) (A + 5 —ry3) (A + d) (A(A + m + nzz) + nv3pz3),
Pi(A) = —Boxze™™™ (A + 5 = ry3) (A + ) (A(A + m + nzz) + nv3pza),
Py(A) = —Brkxze e A (A + s —ry;)(A+c).

Since the equilibrium of model (1.1) is easily obtained as follows: be ™™ = dy; + cx;e”™ and
pBe "' x3y3 = pdy; — gB1e" """ x3, hence,

r(cx;e™™ + dys) (Bigr + Basp)ys — ds(Biqr + Basp + cpr)y;
ds(Biqr + Basp + cpr)ys
Bigrdys + Brspdys + Bigrexze
ds(Bigr + Ba2sp + cpr)y; '

R~ 1=

=(ry; —s)
. . : pke™ys
Evidently, if R} < 1, model (1.1) has a negative real root A = rys; — s. Note that m + nzz3 = ———,
we discuss the remaining eigenvalues of the model (1.1) at E5 as follows:

—axT2

k
(A+B1vs+ Bays +¢) (A +d) (/1 (/l + u) + pke®y; — qm)
q

pke‘“mya) (2.9)

= Brxze” ™ (A1 +¢) (/l (/l +

— Bikxze e (A + ¢) e e,

+ pke™®y; — qm) e
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It’s assumed that Eq (2.9) has a root of the form 44, = Redy + ilmA, with Red, > 0. By modulo

. A
operation, we have |14 + B1v; + B2ys + ¢| > |4 + ¢, 34 + 1] > |e““l and
k —axT) —apT] k —axT
A4 (14 + u) + pke™ 7y — qm| - ﬁz% A (14 + u) + pke™*y; — qm‘
k —a|T] ,—aA272
_ Bikxse y e |/l4e—/1472
Poxzyze M ot Bre " x3v; ot
>(1 - d—yg |/142 + pke “*"y3 —qm| - ld—y3 |/l42 + pke “*"y3 —qm| > 0.

This contradicts Eq (2.9). In summary, we have that if R3 > 1 (ensure the existence of E£3) and R} < 1,
all roots of the model (1.1) at E5 have a negative real part, and Ej is locally asymptotically stable. O

Theorem 5. If Ry, > 1, then the immunity-activated equilibrium E4 of the model (1.1) is locally
asymptotically stable.

Proof. The characteristic equation of Eq (2.2) at E4 of model (1.1) is

Po(A) = (A +B1vs + Boys + ©) (A(A + dRY) + sd(Ry — 1) (1(A+ mR) + gm(RS - 1)),

P1(2) = —Boxse™ ™ A+ 0) (A (A + mR) + gm(R; - 1)),

Py(1) = —Bikxse e 22 (A + ¢) .
We assume that model (1.1) at E, has a root of the form A5 = Reds + ilmAs with Reds > 0. Denote
3 Basprbe™™
~ ds(Biqr + Basp + cpr)’

w
41

by modulo operation,

|Po() + Pi(D)e™™™ + Py(De e ™
> A+ Bivs + Bays + ¢l (|/15|4 + (dRY + mR; — Brxae™ ™) Asl

+ (sd(R} = 1) + gm(RE = 1) + dmRy R, — LaxamRie™ ™ = Brkxse™ ™ e ™) A5

+ (sdm(Ry — DR + gmd(R, — DR} = Boxagm(R; — 1)e™™)|As| + sdgm(Ry — 1)(R;, — 1))

(2.10)

=14+ Brva + By + cl (15" + (MR + Bre™ ™ D)5 + (sd(RY = 1) + gm(R; — D)5/’
+ (sdm(Ry — DR + gmd(R — 1)(R} — Ry))|As| + sdgm(Ry — 1)(R] - 1)) > 0.
We derive a contradiction with Eq (2.10). To summarize the above discussion, if R4 > 1, all roots of

the model (1.1) at E4 have a negative real part, and E, is locally asymptotically stable. m|

Therefore, combining the coexistence and the local asymptotic stability of the equilibria, we correct
the results of the global stability of the equilibria, and the specific proof can refer to the results of
[10,14,16,17,21].

Theorem 6. (1) If Ry < 1 and Ry < 1, the infection-free equilibrium E is globally asymptotically
stable;
)IfR > 1, R <1, Rs < 1, and Ry < 1, the immunity-inactivated equilibrium E, is globally

AIMS Mathematics Volume 10, Issue 11, 26446-26458.
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asymptotically stable;

(3)If R, > 1, Ry < 1, and Ry < 1, the cell-mediated immunity-activated equilibrium E, is globally
asymptotically stable;

(4) If R, < 1, R3 > 1, and Ry < 1, the antibody immunity-activated equilibrium E; is globally
asymptotically stable;

(5) If Ry > 1, Ry > 1 and the immunity-activated equilibrium E4 is globally asymptotically stable.

Through straightforward calculations, it can be verified that our basic reproduction number is
equivalent to Guo et al.’s [14]. Therefore, we omit the proof of global asymptotic stability for the
equilibria. Clearly, the basic reproduction numbers we propose exhibits stronger positivity and better
interpretability. Compared to Theorem 6 in this paper with Guo’s Theorems 3.1-3.5 (as well as Yan and
Wang [10], Jiang and Wang [16], Lin et al. [17], and so on), our results differ due to the consideration
of coexistence and local asymptotic stability of equilibria. Under the premise of unique local stability,
the conditions for global stability are distinct.

Remark 1. The equilibria Ey (when Ry = 1), Ey (When Ry = 1orR, =10rR; =1), E; (When R, = 1
or R, = 1), E3 (when Ry = 1 or R} = 1), and E4 (when R} = 1 or R} = 1) all have saddle-node
bifurcations.

3. Numerical simulation

In this section, we refer to the results obtained by Li et al. [9] using a time-delay age-structured
model for fitting HIV data, and we take Patient ID 1092 as an example. We will demonstrate the global
stability of the five equilibria through some numerical simulations. We have selected the following
initial parameter values for system (1.1): ¢ = 0.0076, 8; = B, = 0.0133, a; = 0.5014, a, = 0.0014,
h = 0.0500, k = 2.9787, m = 2.0602, n = 0.0002, r = 0.2056, s = 0.0911, p = 0.0830, g = 0.0500,
T = 17, = 8.8609, x(0) = 482, y(0) = 2, v(f) = 16, w(0) = 3, and z(0) = 5, while the other three
variable parameters are displayed in the captions of Figures 1-5. As can be seen from Figures 1-5, the
numerical results are consistent with the theoretical analysis.

2000

Z£1000 -
= /

I I I I I
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Figure 1. The global stability diagram of the infection-free equilibrium E, =
(1061.55,0,0,0,0) of system (1.1), where R; = 0.8748, R, = 0.3031, R; = 0.3129,
R4 = 0.3000. The three variable parameters are b = 8.0678, d = 0.4619, r = 0.2056.
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Figure 2. The global stability diagram of the immunity-inactivated equilibrium E,
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(688.01,0.13,0.18,0,0) of system (1.1), where R; = 1.5429, R, = 0.5345, R; = 0.5518,

Ry = 0.5292. The three variable parameters are b = 8.0678, d = 0.2619, r = 0.2056.
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Figure 3. The global stability diagram of the cell-mediated immunity-activated equilibrium

E> = (735.20,0.36,0.51,0.36,0) of system (1.1), where R; = 2.6904, R, = 1.0686, R;
0.9621, R, = 0.8449. The three variable parameters are b = 14.0678, d = 0.4619, r
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Figure 4. The global stability diagram of tllle antibody immunity-activated equilibrium
E; = (699.93,0.44,0.61,0,301.28) of system (1.1), where R; = 2.8816, R, = 0.9982,
R; = 1.0305, Ry = 0.9883. The three variable parameters are b = 15.0678, d = 0.2619,

r = 0.2056.
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Figure 5. The global stability diagram of the immunity-activated equilibrium E; =
(699.55,0.44,0.60,1.94,514.00) of system (1.1), where R; = 4.6615, R, = 1.6148,
R; = 1.6670, Ry = 1.0503. The three variable parameters are b = 15.0678, d = 0.1619,
r = 0.2056.

4. Conclusions

Based on the research findings of the existing model incorporating virus-to-cell infection, cell-to-
cell transmission, CTL, and antibody immune responses, we redefined the basic reproduction number
and established the necessary and sufficient conditions for the uniqueness of each equilibrium (where
one class of equilibria is unique) and the coexistence among equilibria (five classes of equilibria). This
aspect has not been investigated in existing dynamic analyses of such models.

Using the contraction and expansion method, we have obtained sufficient conditions (but not
necessary ones) for the local stability and instability of these five equilibrium points. It is highly
challenging to directly solve the characteristic equation to obtain the necessary and sufficient conditions
for the local stability of each equilibrium state. Based on the coexistence of equilibrium states and their
local asymptotic stability, we have revised the global stability conditions in the existing model. The
revised global stability conditions for E\ to E, remain slightly more stringent in our current work. This
study can inspire future research to further refine these findings.

However, this class of models does not exhibit pure imaginary roots but may have zero eigenvalues,
including multiple zero eigenvalues. Therefore, further research on these models remains meaningful.
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