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1. Introduction

Since the classic work on HIV dynamics was proposed by Perelson [1, 2], many scholars are
investigating various pathways of viral infection, such as virus-to-cell infection [3, 4], and cell-to-
cell transmission [5]. Additionally, some studies examine cytokine-enhanced viral infection [6–8].
As indicated by the above references, caspase-1-mediated pyroptosis is the primary pathway driving
CD4+ T cell death. Infected CD4+ T cells that undergo death release inflammatory signals, attracting
more uninfected CD4+ T cells to die. Also, more and more work has focused on the two modes
of viral infection (virus-to-cell infection and cell-to-cell transmission) and the two responses of
human immunity (Cytotoxic T Lymphocyte (CTL) and antibody immunity) [9–11]. Wodarz [12]
first considered two immune responses to establish a five-dimensional ODE model with bilinear
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interaction. Subsequently, a large number of papers have developed models with rich dynamic behavior
to study virus transmission and immune response, taking into account time delay [13, 14], saturation
relationship [15–17], general functional relationship [18–20], or only considering virus-to-cell
infection [21,22]. Lai and Zou [5] first proposed (possibly for the first time) two transmission modes of
virus-cell and cell-to-cell infection and focused on the study of Hopf bifurcation. Subsequently, Wang
et al. [23], Lin et al. [17], and Guo et al. [14] continued with a series of follow-up studies focusing on
the global stability of equilibria. These models typically have five equilibria, and it is worth noting that
accounting for time delay generally does not significantly change the dynamic behavior. Existing
studies mainly focus on verifying the global asymptotic stability of equilibria; however, there are
limitations in the following three key dimensions: (1) coexistence of the equilibria of the models is
not discussed; (2) the models usually do not discuss the local asymptotic stability of each equilibrium;
(3) the conditions for the global asymptotic stability of the equilibria are not rigorous.

To elucidate critical computational details, we conduct a re-examination of the time-delayed viral
dynamics model originally formulated by Guo et al. [14], incorporating dual transmission pathways
and two modes of immune responses for further investigation:

dx(t)
dt

= b − cx(t) − β1x(t)v(t) − β2x(t)y(t),
dy(t)

dt
= β1e−a1τ1 x(t − τ1)v(t − τ1) + β2e−a1τ1 x(t − τ1)y(t − τ1) − dy(t) − hy(t)w(t),

dv(t)
dt

= ke−a2τ2y(t − τ2) − mv(t) − nv(t)z(t),
dw(t)

dt
= ry(t)w(t) − sw(t),

dz(t)
dt

= pv(t)z(t) − qz(t),

(1.1)

where x(t), y(t), v(t), w(t), and z(t) denote concentrations of uninfected cells, infected cells, free virus
particles, CTL, and B cells, respectively. Uninfected cells are produced at a constant rate b, and the rate
of natural death is c. β1 and β2 denote the rate of infection transmission between uninfected cells and
viral particles and cell-to-cell spread, respectively. d is the death rate of infected cells. m and q are the
clearance rates of free virus and B cells. CTL expands at a rate of r and decays at s. The parameter h is
the killing rate of CTL on productive infected cells. k and p represent the generation rate of virus and
B cells, respectively. n determines the rate at which B cells neutralize free virus. The delay τ1 denotes
the duration of infection, while τ2 represents the period of virus production. The terms e−aiτi(i = 1, 2)
are the survival probabilities from time t − τi (i = 1, 2) to t. All the parameters are positive constants.
The five threshold conditions of model (1.1) are as follows:

R0 =
β1e−a1τ1−a2τ2bk

cdm
+
β2e−a1τ1b

cd
, Rw

1 =
r (bβ1ke−a1τ1−a2τ2 + bβ2me−a1τ1 − cdm)

sd (β1ke−a2τ2 + β2m)
,

Rz
1 =

pk (bβ1ke−a1τ1−a2τ2 + bβ2me−a1τ1 − cdm)
mdq (β1k + β2mea2τ2)

, Rz
2 =

ke−a2τ2 sp
qmr

,

Rw
2 =

re−a1τ1 (bpβ2 − cdpea1τ1 − β1dqea1τ1 + L)
2sdpβ2

,

where L =

√
4bβ1β2dea1τ1 pq + (−bpβ2 + cdpea1τ1 + β1dqea1τ1)2.
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Obviously, the study results in [10,16,24] and others are similar to model (1.1). Moreover, for viral
dynamic models that consider only one mode of transmission or one immune response, they are only
special cases of the model (1.1). Our new main results and proofs will be presented in Section 2. The
numerical simulations are presented in Section 3, while the conclusions are placed in Section 4.

2. Main result

The threshold values in literature [10, 14, 16] are not suitable for further discussion because their
positivity cannot be guaranteed. We redefine the following four threshold conditions (the basic
reproduction number R1, the CTL immune response reproduction number R2, the antibody immune
response reproduction number R3, and two immune response reproduction numbers R4) to discuss the
coexistence and local stability of the equilibria:

R1 =
β1bke−a1τ1−a2τ2 + β2bme−a1τ1

cdm
, R2 =

bre−a1τ1(β1ke−a2τ2 + β2m)
cdmr + β2dms + β1dske−a2τ2

,

R3 =
bpke−a1τ1−a2τ2(β1ke−a2τ2 + β2m)

dm(β2qm + pcke−a2τ2 + β1qke−a2τ2)
, R4 = min{Rz

4,R
w
4 },

(2.1)

where Rz
4 =

spke−a2τ2

qrm
and Rw

4 =
rbe−a1τ1(β1qr + β2sp)
ds(β1qr + β2sp + cpr)

. It is worth noting that R2, R3, and R1 have

obvious relationships as below:

R2 =
cmr

cmr + β2ms + β1ske−a2τ2
R1 < R1, R3 =

pcke−a2τ2

β2mq + pcke−a2τ2 + β1qke−a2τ2
R1 < R1.

2.1. Coexistence of equilibria

Referring to the results in [14] and doing further simplification, we have the following five equilibria
of model (1.1):

(1) The infection-free equilibrium E0 = (x0, y0, v0,w0, z0) = (
b
c
, 0, 0, 0, 0).

(2) The immunity-inactivated equilibrium E1 = (x1, y1, v1,w1, z1), where x1 =
dmea1τ1

β1ke−a2τ2 + β2m
=

b
cR1

, y1 =
cm(R1 − 1)

β1ke−a2τ2 + β2m
, v1 =

cke−a2τ2(R1 − 1)
β1ke−a2τ2 + β2m

, w1 = 0, z1 = 0.

(3) The cell-mediated immunity-activated equilibrium E2 = (x2, y2, v2,w2, z2), where x2 =
brm

β1ske−a2τ2 + β2ms + cmr
=

bR2

cR1
, y2 =

s
r

, v2 =
ske−a2τ2

mr
, w2 =

d
h

(R2 − 1), z2 = 0.

(4) The humoral immunity-activated equilibrium E3 = (x3, y3, v3,w3, z3), where x3 =
bp

cp + β1q + β2 py3
, y3 =

mq + nqz3

pke−a2τ2
, v3 =

q
p

, w3 = 0 and z3 is the positive real root of the following

quadratic equation:

z2
3 +

(2β2qmea2τ2 + pck + β1qk)
(
1 − Rz

3

)
β2nqea2τ2

z3 +
m(β2qmea2τ2 + pck + β1qk) (1 − R3)

β2n2qea2τ2
= 0,

where

Rz
3 =

β2bkpe−a1τ1−a2τ2

d(2β2qm + pcke−a2τ2 + β1qke−a2τ2)
=

β2mbkpe−a1τ1−a2τ2

β2dqm2 + dm(β2qm + pcke−a2τ2 + β1qke−a2τ2)
< R3.
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Obviously, ifR3 > 1, and the above quadratic equation has only one positive root. Otherwise, ifR3 ≤ 1,
then Rz

3 < 1, and the equation has only negative roots or zero roots.

(5) The immunity-activated equilibrium E4 = (x4, y4, v4,w4, z4), where x4 =
bpr

β1qr + β2 ps + cpr
,

y4 =
s
r

, v4 =
q
p

, w4 =
d
h

(Rw
4 − 1), z4 =

m
n

(Rz
4 − 1).

Based on the above statements, we can directly conclude that the four thresholds R1 > 1, R2 > 1,
R3 > 1, and R4 > 1 can determine the existence of the four equilibria E1, E2, E3, and E4 in model (1.1).
Then, we give the complete results on the coexistence of the equilibria neglected by Guo et al. [14].

Proposition 1. Firstly, the model (1.1) always has the equilibrium E0, then,
(1) If R1 ≤ 1 and R4 ≤ 1, model (1.1) has only the equilibrium E0;
(2) If R1 ≤ 1 and R4 > 1, two equilibria, E0 and E4 coexist;
(3) If R1 > 1, R2 ≤ 1, R3 ≤ 1, and R4 ≤ 1, two equilibria E0 and E1 coexist;
(4) If R2 > 1, R3 ≤ 1, and R4 ≤ 1, three equilibria E0, E1, and E2 coexist;
(5) If R2 ≤ 1, R3 > 1, and R4 ≤ 1, three equilibria E0, E1, and E3 coexist;
(6) If R1 > 1, R2 ≤ 1, R3 ≤ 1, and R4 > 1, three equilibria E0, E1, and E4 coexist;
(7) If R2 > 1, R3 > 1, and R4 ≤ 1, four equilibria E0, E1, E2, and E3 coexist;
(8) If R2 > 1, R3 ≤ 1, and R4 > 1, four equilibria E0, E1, E2, and E4 coexist;
(9) If R2 ≤ 1, R3 > 1, and R4 > 1, four equilibria E0, E1, E3, and E4 coexist;
(10) If R2 > 1, R3 > 1, and R4 > 1, all equilibria E0, E1, E2, E3, and E4 coexist.

The newly proposed basic reproduction number of model (1.1) inherently ensures positivity.
Through the analysis of equilibrium existence, we demonstrate that each threshold corresponds to
distinct virological-immune implications: the viral infection reproduction number R1 (where the first
term represents the average number of actively infected cells generated through virus-to-cell infection,
and the second term represents the average number generated through cell-to-cell transmission),
the CTL immune-response reproduction number R2 (representing the average number of CTL cells
activated by infected cells when viral infection succeeds in the absence of antibody response), the
humoral immunity reproduction number R3 (denoting the average number of antibodies activated by
viruses when CTL response is absent), the competitive reproduction numbers for CTL-mediated (Rw

4 ,
the average number of CTLs activated by infected cells when antibody response is present) and humoral
(Rz

4, the average number of antibodies generated per viral infection under active CTL response) immune
responses R4. The specific results can also be seen in the following Table 1.

Table 1. Coexistence of equilibrium states of model (1.1).
Condition Coexist
R1 ≤ 1 R4 ≤ 1 E0

R4 > 1 E0, E4
R1 > 1 R2 ≤ 1, R3 ≤ 1, R4 ≤ 1 E0, E1

R2 > 1, R3 ≤ 1, R4 ≤ 1 E0, E1, E2
R2 ≤ 1, R3 > 1, R4 ≤ 1 E0, E1, E3
R2 ≤ 1, R3 ≤ 1, R4 > 1 E0, E1, E4
R2 > 1, R3 > 1, R4 ≤ 1 E0, E1, E2, E3
R2 > 1, R3 ≤ 1, R4 > 1 E0, E1, E2, E4
R2 ≤ 1, R3 > 1, R4 > 1 E0, E1, E3, E4
R2 > 1, R3 > 1, R4 > 1 E0, E1, E2, E3, E4
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2.2. Local asymptotic stability

The characteristic equation of model (1.1) at an arbitrary equilibrium E = (x(t), y(t), v(t),w(t), z(t))
can be calculated as

P0(λ) + P1(λ)e−λτ1 + P2(λ)e−λ(τ1+τ2) = 0, (2.2)

where
P0(λ) = (λ + β1v̄ + β2ȳ + c) ((λ + s − rȳ) (λ + d + hw̄) + rwhy)

× ((λ + q − pv̄) (λ + m + nz̄) + nv̄pz̄) ,
P1(λ) = −β2 x̄e−a1τ1 (λ + s − rȳ) (λ + c) ((λ + q − pv̄) (λ + m + nz̄) + nv̄pz̄) ,
P2(λ) = −β1kx̄e−a1τ1e−a2τ2 (λ + s − rȳ) (λ + c) (λ + q − pv̄) .

Theorem 1. If R1 < 1, the infection-free equilibrium E0 of the model (1.1) is locally asymptotically
stable; if R1 > 1, then E0 is unstable.

Proof. The characteristic equation of model (1.1) at E0 is

(λ+c) (λ+s) (λ+q)×
(
(λ+d) (λ+m )−β2x0e−a1τ1 (λ+m) e−λτ1−β1kx0e−a1τ1e−a2τ2e−λτ1e−λτ2

)
= 0. (2.3)

It is clear that Eq (2.3) has three negative roots, λ = −c, λ = −s, and λ = −q at E0, and other roots are
determined by the following equation:

(λ + d) (λ + m) − β2x0e−a1τ1 (λ + m) e−λτ1 − β1kx0e−a1τ1e−a2τ2e−λτ1e−λτ2 = 0. (2.4)

Denote R1 = R10 + R11, where R10 =
β1bke−a1τ1−a2τ2

cdm
, R11 =

β2be−a1τ1

cd
. Substituting R10 and R11 into

Eq (2.4) yields (
R10e−λτ2 + R11

(
λ

m
+ 1

))
e−λτ1 =

(
λ

d
+ 1

) (
λ

m
+ 1

)
. (2.5)

Next, we show that Eq (2.5) has only the roots with negative real parts. Otherwise, one assumes that
Eq (2.5) has a root of the form λ1 = Reλ1 + iImλ1 with Reλ1 ≥ 0. In this case, if R1 < 1, then it is clear

that e−λ1τ1 <

∣∣∣∣∣λ1

d
+ 1

∣∣∣∣∣ and

∣∣∣∣∣R10e−λ1τ2 + R11

(
λ1

m
+ 1

)∣∣∣∣∣ < ∣∣∣∣∣R1 + R11
λ1

m

∣∣∣∣∣ < ∣∣∣∣∣λ1

m
+ 1

∣∣∣∣∣ .
It follows that, ∣∣∣∣∣λ1

d
+ 1

∣∣∣∣∣ ∣∣∣∣∣λ1

m
+ 1

∣∣∣∣∣ > ∣∣∣∣∣(R10e−λ1τ2 + R11

(
λ1

m
+ 1

))
e−λ1τ1

∣∣∣∣∣ ,
which contradicts Eq (2.5). Therefore, if R1 < 1, all roots of Eq (2.3) have negative real parts, and E0

is locally asymptotically stable. If R1 > 1, we denote the left side of Eq (2.4) by F(λ):

F(λ) = (λ + d) (λ + m) − β2x0e−a1τ1 (λ + m) e−λτ1 − β1kx0e−a1τ1e−a2τ2e−λτ1e−λτ2 ,

where F(0) = dm(1 − R1) < 0 and F(+∞) = +∞. Noting that F(λ) is a continuous function with
respect to λ, if R1 > 1, Eq (2.3) has at least a positive real root, then E0 is unstable. �
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Theorem 2. If R1 > 1, R2 < 1, and R3 < 1, the immunity-inactivated equilibrium E1 of the model (1.1)
is locally asymptotically stable; E1 is unstable if R2 > 1 or R3 > 1.

Proof. First, we give the characteristic equation of the model (1.1) at E1 as

(λ + s − ry1) (λ + q − pv1)
(

(λ + β1v1 + β2y1 + c) (λ + d) (λ + m)

−β2x1e−a1τ1 (λ + m) (λ + c) e−λτ1 − β1kx1e−a1τ1e−a2τ2e−λτ1e−λτ2 (λ + c)
)

= 0.
(2.6)

The following results can be converted from the expression of y1 and v1:

R2 − 1 = (ry1 − s)
β1ke−a2τ2 + β2m

cmr + β2ms + β1ske−a2τ2
,

R3 − 1 = (pv1 − q)
β1ke−a2τ2 + β2m

β2qm + pcke−a2τ2 + β1qke−a2τ2
.

It is clear that if R2 < 1 and R3 < 1, Eq (2.6) has two negative real roots λ = ry1 − s and λ = pv1 − q.
Next, we continue to discuss the case of the remaining roots of Eq (2.6), and

(λ + β1v1 + β2y1 + c) (λ + d) (λ + m) − β2x1e−a1τ1 (λ + m) e−λτ1 (λ + c)

− β1kx1e−a1τ1e−a2τ2e−λτ1e−λτ2 (λ + c) = 0.
(2.7)

Note that, λ + β1v1 + β2y1 + c = λ + cR1, and we assume that Eq (2.7) has a root of the form λ2 =

Reλ2 + iImλ2 with Reλ2 ≥ 0. By modulo operation, we get∣∣∣∣∣λ2

c
+ R1

∣∣∣∣∣ ∣∣∣∣∣λ2

d
+ 1

∣∣∣∣∣ ∣∣∣∣∣λ2

m
+ 1

∣∣∣∣∣ =
∣∣∣e−λ2τ1

∣∣∣ ∣∣∣∣∣λ2

c
+ 1

∣∣∣∣∣ ∣∣∣∣∣R11

R1
(
λ2

m
+ 1) +

R10

R1
e−λ2τ2

∣∣∣∣∣ .
But when R1 > 1, it’s very easy to get

∣∣∣∣∣λ2

c
+ 1

∣∣∣∣∣ < ∣∣∣∣∣λ2

c
+ R1

∣∣∣∣∣, ∣∣∣e−λ2τ1
∣∣∣ < ∣∣∣∣∣λ2

d
+ 1

∣∣∣∣∣ and∣∣∣∣∣R11

R1
(
λ2

m
+ 1) +

R10

R1
e−λ2τ2

∣∣∣∣∣ =

∣∣∣∣∣R11

R1

λ2

m
+
R11

R1
+
R10

R1
e−λ2τ2

∣∣∣∣∣ < ∣∣∣∣∣λ2

m
+ 1

∣∣∣∣∣ .
This is in contradiction to Eq (2.7). To sum up the above discussion, if R1 > 1, R2 < 1, and R3 < 1, all
roots of Eq (2.6) have a negative real part, and E1 is locally asymptotically stable. �

Theorem 3. If R2 > 1 and Rz
4 < 1, then the cell-mediated immunity-activated equilibrium E2 of model

(1.1) is locally asymptotically stable; E2 is unstable if Rz
4 > 1.

Proof. Let us write the characteristic equation of model (1.1) at E2 in terms of Eq (2.2), and

P0(λ) = (λ + β1v2 + β1y2 + c) ((λ + s − ry2) (λ + d + hw2) + ry2hw2) (λ + q − pv2) (λ + m) ,
P1(λ) = −β2x2e−a1τ1 (λ + s − ry2) (λ + c) (λ + q − pv2) (λ + m) ,
P2(λ) = −β1kx2e−a1τ1e−a2τ2 (λ + s − ry2) (λ + c) (λ + q − pv2) .

It is easy to know pv2 − q = q(Rz
4 − 1) by the expression for v2, so naturally, when Rz

4 < 1, model (1.1)

has one negative real root λ = pv2 − q. Note that λ + β1v2 + β2y2 + c = λ +
cR1

R2
, and according to the

characteristic equation of (1.1) at E2, we remove the common factor λ + q − pv2, then

AIMS Mathematics Volume 10, Issue 11, 26446–26458.
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(
λ +

cR1

R2

) (
λ2 + dR2λ + sd(R2 − 1)

)
(λ + m) − β2x2e−a1τ1λ (λ + m) (λ + c) e−λτ1

− β1kx2e−a1τ1e−a2τ2e−λτ1e−λτ2λ (λ + c) = 0.
(2.8)

Next, we assume that Eq (2.8) has a root of the form λ3 = Reλ3 + iImλ3 with Reλ3 ≥ 0. Denote

R2 = R20 + R21, where R20 =
brβ1ke−a1τ1e−a2τ2

cdmr + β2dms + β1dske−a2τ2
and R21 =

brβ2me−a1τ1

cdmr + β2dms + β1dske−a2τ2
.

By modulo operation,∣∣∣∣∣λ3

c
+
R1

R2

∣∣∣∣∣ ∣∣∣λ3
2 + dR2λ3 + sd(R2 − 1)

∣∣∣ ∣∣∣∣∣λ3

m
+ 1

∣∣∣∣∣ =

∣∣∣∣∣λ3

c
+ 1

∣∣∣∣∣ ∣∣∣∣∣R21

(
λ3

m
+ 1

)
+ R20e−λ3τ2

∣∣∣∣∣ ∣∣∣dλ3e−λ3τ1
∣∣∣ .

Obviously, when R2 > 1 (in this case, R1 > R2 > 1),
∣∣∣∣∣λ3

c
+ 1

∣∣∣∣∣ < ∣∣∣∣∣λ3

c
+
R1

R2

∣∣∣∣∣, ∣∣∣dR2λ3e−λ3τ1
∣∣∣ <∣∣∣λ3

2 + dR2λ3 + sd(R2 − 1)
∣∣∣ and∣∣∣∣∣R21

R2

(
λ3

m
+ 1

)
+
R20

R2
e−λ3τ2

∣∣∣∣∣ =

∣∣∣∣∣R21

R2

λ3

m
+
R21

R2
+
R20

R2
e−λ3τ2

∣∣∣∣∣ < ∣∣∣∣∣λ3

m
+ 1

∣∣∣∣∣ .
As a result, the above equation is in contradiction to Eq (2.8). We can get that if R2 > 1 and Rz

4 < 1,
all roots of the model (1.1) at E2 have a negative real part and E2 is locally asymptotically stable. �

Theorem 4. If R3 > 1 and Rw
4 < 1, then the humoral immunity-activated equilibrium E3 of the

model (1.1) is locally asymptotically stable; E3 is unstable if Rw
4 > 1.

Proof. We can write the characteristic equation of the model (1.1) at E3 in terms of Eq (2.2) and

P0(λ) = (λ + β1v3 + β2y3 + c) (λ + s − ry3) (λ + d) (λ(λ + m + nz3) + nv3 pz3) ,
P1(λ) = −β2x3e−a1τ1 (λ + s − ry3) (λ + c) (λ(λ + m + nz3) + nv3 pz3) ,
P2(λ) = −β1kx3e−a1τ1e−a2τ2λ (λ + s − ry3) (λ + c) .

Since the equilibrium of model (1.1) is easily obtained as follows: be−a1τ1 = dy3 + cx3e−a1τ1 and
pβ2e−a1τ1 x3y3 = pdy3 − qβ1e−a1τ1 x3, hence,

Rw
4 − 1 =

r (cx3e−a1τ1 + dy3) (β1qr + β2sp)y3 − ds(β1qr + β2sp + cpr)y3

ds(β1qr + β2sp + cpr)y3

= (ry3 − s)
β1qrdy3 + β2spdy3 + β1qrcx3e−a1τ1

ds(β1qr + β2sp + cpr)y3
.

Evidently, if Rw
4 < 1, model (1.1) has a negative real root λ = ry3 − s. Note that m + nz3 =

pke−a2τ2y3

q
,

we discuss the remaining eigenvalues of the model (1.1) at E3 as follows:

(λ + β1v3 + β2y3 + c) (λ + d)
(
λ

(
λ +

pke−a2τ2y3

q

)
+ pke−a2τ2y3 − qm

)
− β2x3e−a1τ1 (λ + c)

(
λ

(
λ +

pke−a2τ2y3

q

)
+ pke−a2τ2y3 − qm

)
e−λτ1

− β1kx3e−a1τ1e−a2τ2λ (λ + c) e−λτ1e−λτ2 .

(2.9)
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It’s assumed that Eq (2.9) has a root of the form λ4 = Reλ4 + iImλ4 with Reλ4 ≥ 0. By modulo

operation, we have |λ4 + β1v3 + β2y3 + c| > |λ4 + c|,
∣∣∣∣∣λ4

d
+ 1

∣∣∣∣∣ > ∣∣∣e−λ4τ1
∣∣∣ and∣∣∣∣∣∣λ4

(
λ4 +

pke−a2τ2y3

q

)
+ pke−a2τ2y3 − qm

∣∣∣∣∣∣ − β2x3e−a1τ1

d

∣∣∣∣∣∣λ4

(
λ4 +

pke−a2τ2y3

q

)
+ pke−a2τ2y3 − qm

∣∣∣∣∣∣
−
β1kx3e−a1τ1e−a2τ2

d

∣∣∣λ4e−λ4τ2
∣∣∣

>

(
1 −

β2x3y3e−a1τ1

dy3

) ∣∣∣λ4
2 + pke−a2τ2y3 − qm

∣∣∣ − β1e−a1τ1 x3v3

dy3

∣∣∣λ4
2 + pke−a2τ2y3 − qm

∣∣∣ > 0.

This contradicts Eq (2.9). In summary, we have that if R3 > 1 (ensure the existence of E3) and Rw
4 < 1,

all roots of the model (1.1) at E3 have a negative real part, and E3 is locally asymptotically stable. �

Theorem 5. If R4 > 1, then the immunity-activated equilibrium E4 of the model (1.1) is locally
asymptotically stable.

Proof. The characteristic equation of Eq (2.2) at E4 of model (1.1) is

P0(λ) = (λ + β1v4 + β2y4 + c)
(
λ
(
λ + dRw

4
)

+ sd(Rw
4 − 1)

) (
λ
(
λ + mRz

4

)
+ qm(Rz

4 − 1)
)
,

P1(λ) = −β2x4e−a1τ1λ (λ + c)
(
λ
(
λ + mRz

4

)
+ qm(Rz

4 − 1)
)
,

P2(λ) = −β1kx4e−a1τ1e−a2τ2λ2 (λ + c) .

We assume that model (1.1) at E4 has a root of the form λ5 = Reλ5 + iImλ5 with Reλ5 ≥ 0. Denote

Rw
41 =

β2sprbe−a1τ1

ds(β1qr + β2sp + cpr)
, by modulo operation,

∣∣∣P0(λ) + P1(λ)e−λ5τ1 + P2(λ)e−λ5τ1e−λ5τ2
∣∣∣

> |λ + β1v4 + β2y4 + c|
(
|λ5|

4 +
(
dRw

4 + mRz
4 − β2x4e−a1τ1

)
|λ5|

3

+
(
sd(Rw

4 − 1) + qm(Rz
4 − 1) + dmRw

4R
z
4 − β2x4mRz

4e−a1τ1 − β1kx4e−a1τ1e−a2τ2
)
|λ5|

2

+
(
sdm(Rw

4 − 1)Rz
4 + qmd(Rz

4 − 1)Rw
4 − β2x4qm(Rz

4 − 1)e−a1τ1
)
|λ5| + sdqm(Rw

4 − 1)(Rz
4 − 1)

)
= |λ + β1v4 + β2y4 + c|

(
|λ5|

4 +
(
mRz

4 + β1e−a1τ1 xv
y

)
|λ5|

3 +
(
sd(Rw

4 − 1) + qm(Rz
4 − 1)

)
|λ5|

2

+
(
sdm(Rw

4 − 1)Rz
4 + qmd(Rz

4 − 1)(Rw
4 − R

w
41)

)
|λ5| + sdqm(Rw

4 − 1)(Rz
4 − 1)

)
> 0.

(2.10)

We derive a contradiction with Eq (2.10). To summarize the above discussion, if R4 > 1, all roots of
the model (1.1) at E4 have a negative real part, and E4 is locally asymptotically stable. �

Therefore, combining the coexistence and the local asymptotic stability of the equilibria, we correct
the results of the global stability of the equilibria, and the specific proof can refer to the results of
[10, 14, 16, 17, 21].

Theorem 6. (1) If R1 < 1 and R4 ≤ 1, the infection-free equilibrium E0 is globally asymptotically
stable;
(2) If R1 > 1, R2 ≤ 1, R3 ≤ 1, and R4 ≤ 1, the immunity-inactivated equilibrium E1 is globally
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asymptotically stable;
(3) If R2 > 1, R3 ≤ 1, and R4 ≤ 1, the cell-mediated immunity-activated equilibrium E2 is globally
asymptotically stable;
(4) If R2 ≤ 1, R3 > 1, and R4 ≤ 1, the antibody immunity-activated equilibrium E3 is globally
asymptotically stable;
(5) If R1 > 1, R4 > 1 and the immunity-activated equilibrium E4 is globally asymptotically stable.

Through straightforward calculations, it can be verified that our basic reproduction number is
equivalent to Guo et al.’s [14]. Therefore, we omit the proof of global asymptotic stability for the
equilibria. Clearly, the basic reproduction numbers we propose exhibits stronger positivity and better
interpretability. Compared to Theorem 6 in this paper with Guo’s Theorems 3.1–3.5 (as well as Yan and
Wang [10], Jiang and Wang [16], Lin et al. [17], and so on), our results differ due to the consideration
of coexistence and local asymptotic stability of equilibria. Under the premise of unique local stability,
the conditions for global stability are distinct.

Remark 1. The equilibria E0 (when R1 = 1), E1 (when R1 = 1 or R2 = 1 or R3 = 1), E2 (when R2 = 1
or Rz

4 = 1), E3 (when R3 = 1 or Rw
4 = 1), and E4 (when Rw

4 = 1 or Rz
4 = 1) all have saddle-node

bifurcations.

3. Numerical simulation

In this section, we refer to the results obtained by Li et al. [9] using a time-delay age-structured
model for fitting HIV data, and we take Patient ID 1092 as an example. We will demonstrate the global
stability of the five equilibria through some numerical simulations. We have selected the following
initial parameter values for system (1.1): c = 0.0076, β1 = β2 = 0.0133, a1 = 0.5014, a2 = 0.0014,
h = 0.0500, k = 2.9787, m = 2.0602, n = 0.0002, r = 0.2056, s = 0.0911, p = 0.0830, q = 0.0500,
τ1 = τ2 = 8.8609, x(θ) = 482, y(θ) = 2, v(θ) = 16, w(0) = 3, and z(0) = 5, while the other three
variable parameters are displayed in the captions of Figures 1–5. As can be seen from Figures 1–5, the
numerical results are consistent with the theoretical analysis.
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Figure 1. The global stability diagram of the infection-free equilibrium E0 =

(1061.55, 0, 0, 0, 0) of system (1.1), where R1 = 0.8748, R2 = 0.3031, R3 = 0.3129,
R4 = 0.3000. The three variable parameters are b = 8.0678, d = 0.4619, r = 0.2056.
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Figure 2. The global stability diagram of the immunity-inactivated equilibrium E1 =

(688.01, 0.13, 0.18, 0, 0) of system (1.1), where R1 = 1.5429, R2 = 0.5345, R3 = 0.5518,
R4 = 0.5292. The three variable parameters are b = 8.0678, d = 0.2619, r = 0.2056.
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Figure 3. The global stability diagram of the cell-mediated immunity-activated equilibrium
E2 = (735.20, 0.36, 0.51, 0.36, 0) of system (1.1), where R1 = 2.6904, R2 = 1.0686, R3 =

0.9621, R4 = 0.8449. The three variable parameters are b = 14.0678, d = 0.4619, r =

0.2556.
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Figure 4. The global stability diagram of the antibody immunity-activated equilibrium
E3 = (699.93, 0.44, 0.61, 0, 301.28) of system (1.1), where R1 = 2.8816, R2 = 0.9982,
R3 = 1.0305, R4 = 0.9883. The three variable parameters are b = 15.0678, d = 0.2619,
r = 0.2056.
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Figure 5. The global stability diagram of the immunity-activated equilibrium E4 =

(699.55, 0.44, 0.60, 1.94, 514.00) of system (1.1), where R1 = 4.6615, R2 = 1.6148,
R3 = 1.6670, R4 = 1.0503. The three variable parameters are b = 15.0678, d = 0.1619,
r = 0.2056.

4. Conclusions

Based on the research findings of the existing model incorporating virus-to-cell infection, cell-to-
cell transmission, CTL, and antibody immune responses, we redefined the basic reproduction number
and established the necessary and sufficient conditions for the uniqueness of each equilibrium (where
one class of equilibria is unique) and the coexistence among equilibria (five classes of equilibria). This
aspect has not been investigated in existing dynamic analyses of such models.

Using the contraction and expansion method, we have obtained sufficient conditions (but not
necessary ones) for the local stability and instability of these five equilibrium points. It is highly
challenging to directly solve the characteristic equation to obtain the necessary and sufficient conditions
for the local stability of each equilibrium state. Based on the coexistence of equilibrium states and their
local asymptotic stability, we have revised the global stability conditions in the existing model. The
revised global stability conditions for E0 to E4 remain slightly more stringent in our current work. This
study can inspire future research to further refine these findings.

However, this class of models does not exhibit pure imaginary roots but may have zero eigenvalues,
including multiple zero eigenvalues. Therefore, further research on these models remains meaningful.
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