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Abstract: This paper presents a nutritional state-structured model (NSM) to explore the dynamics
of starvation and recovery in consumer-resource systems, focusing on full consumers (F), hungry
consumers (H), and resources (R). The model employs a system of differential equations to capture
ecological processes such as reproduction, starvation, and resource regeneration. Through bifurcation
analysis, we identified critical thresholds, notably the starvation rate (σ) relative to the reproduction
rate (λ), that dictate system stability, transitioning between extinction and coexistence equilibria.
Parameter sensitive and numerical simulations revealed how parameter variations influence population
persistence and resource sustainability, with σ > λ promoting balanced ecosystems and λ > σ
leading to potential overexploitation. The analogue of the basic reproduction number (Re) was derived
using the next-generation matrix method, providing insights into the invasion dynamics and stability
conditions of the system. This framework serves as a robust tool for analyzing eco-evolutionary
interactions and assessing population persistence under resource-limited conditions. Finally, we
demonstrated how higher fat reserves enhance competitive advantage, thereby driving the evolutionary
trend toward larger body sizes as predicted by Cope’s rule.
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1. Introduction

Organisms constantly face the challenge of allocating limited energy resources to competing
physiological demands, particularly between somatic maintenance and reproductive effort. This
fundamental tradeoff lies at the heart of behavioral ecology and is shaped by both internal energetic
states and external environmental uncertainties [13, 14, 29]. The timing and magnitude of energy
investment in reproduction are subject to natural selection, as these decisions have direct implications
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for survival and future fitness outcomes [12, 22].
Resource availability, or the lack thereof, exerts a profound influence on an organism’s ability

to sustain essential functions and initiate reproduction. Nutritional constraints can lead to adaptive
shifts in life-history strategies, including delayed or suppressed reproductive events. Such effects
are observable across a wide range of taxa—from irregular menstrual cycling and increased rates of
spontaneous abortion in mammals under nutritional stress [1,11] to the direct regulation of growth and
division in unicellular organisms based on resource abundance [29]. Understanding the dynamics of
consumer-resource interactions is pivotal in ecological modeling. Resource availability and consumer
behavior are deeply intertwined, particularly under the constraints imposed by starvation, which can
influence foraging strategies, reproductive timing, and survival rates. Mathematical modeling has been
widely used to understand the transmission dynamics of infectious diseases. For instance, in [31], the
authors have modeled the interaction between the complement system (CS) and bacterial infections
using nonlinear ODE frameworks. These models, incorporating functional responses like the Hill
hazard function, show that the CS can eliminate, suppress, or be overwhelmed by bacterial invaders
depending on system strength. Bifurcation analysis further highlights how changes in parameters affect
infection outcomes, emphasizing the role of both innate and adaptive immunity in disease progression.

Similarly, compartmental models such as the SEIR (Susceptible Exposed Infectious
Recovered)–SEI (Susceptible Exposed Infectious) framework have been employed to describe
the transmission dynamics of vector-borne diseases like dengue. In these models, determining the key
parameters influencing disease transmission is critical. Sensitivity analysis serves as an essential tool
in identifying which parameters most significantly impact the spread of infection. For example, Chitnis
et al. performed a sensitivity analysis to determine important parameters in the spread of malaria [5].
Further studies by Shah and Gupta, and Rodrigues et al., also used sensitivity analysis to assess the
relative importance of model parameters in understanding disease transmission dynamics [25].

Mathematical modeling has been widely used to understand the transmission dynamics of infectious
diseases. For instance, Diekmann et al. introduced the concept and methods for computing the
basic reproduction ratio R0 in structured populations [8], which was further extended by Van den
Driessche and Watmough to explore reproduction numbers and sub-threshold endemic equilibria in
compartmental models [28]. Recently, in [4], the studies present deterministic SIR-type models
to analyze the spread of the Zika virus in Brazil, using published epidemic data. Parameter
estimation is achieved through a hybrid optimization method combining stochastic search and heuristic
descent, improving computational efficiency. The models are validated against real data, and the
estimated basic reproduction number aligns with values reported in the literature. Several studies
have used compartmental models to estimate transmission dynamics and reproduction numbers during
infectious disease outbreaks. Adaptive SIR models have been applied to COVID-19 data for real-time
tracking [26], while multi-wave dynamics have been captured using effective reproduction number
modeling [23]. Foundational methods for estimating the reproduction number from outbreak data
were developed in [7]. Recent advancements in bifurcation theory have offered powerful tools for
analyzing complex dynamical behaviors across a range of applied systems. For instance, Elsadany
et al. [10] examined bifurcation structures in discrete ecological models, whereas Margenov et al. [19],
in the context of epidemiological modeling, applied these techniques to an SEIRS model that
incorporates vaccination and hospitalization dynamics. Magnitskii [18] demonstrated that transitions
to chaos in chemical and biological systems follow the universal Feigenbaum–Sharkovsky–Magnitskii
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(FShM) bifurcation theory through subharmonic and homoclinic cascades of limit cycles. In [2, 3],
mathematical models incorporating age structure and time delays were developed to analyze complex
dynamics in epidemiological and social contexts—specifically, a double age-dependent SIRS model
with incubation and immunity delays, and an age-structured heroin transmission model with a
remission delay. Both studies focus on the emergence of Hopf bifurcation and support their theoretical
findings with numerical simulations, highlighting implications for disease control and public health.
Several recent studies have employed mathematical modeling and bifurcation analysis to investigate
complex biological systems. In [16], a fractional-order immune response model for conjunctivitis was
developed using the ABC operator, with stability, bifurcation, and sensitivity analyses confirming the
model’s robustness under early detection and treatment scenarios. In [21] analyzed soliton dynamics
in a (3 + 1)-dimensional p-type model using bifurcation and chaos theory, while [15] explored
fixed points and bifurcation behavior in a discrete predator–prey system. Similarly, [24] examined
a discrete-time plant–herbivore model, identifying Neimark–Sacker and transcritical bifurcations
and applying chaos control techniques. In addition, [20] investigated predator–prey interactions
with harvesting and social behavior, revealing Hopf and Turing-Hopf bifurcations through reaction-
diffusion analysis. Together, these studies underscore the broad applicability of bifurcation theory in
analyzing complex dynamics across physical and biological systems. Similarly, mathematical models
in ecology have long been employed to capture interactions between species and their environments.
Beyond epidemiological applications, the Lotka–Volterra equations have played a foundational role in
mathematical biology, describing interactions between predator and prey populations through coupled
nonlinear dynamics [17,32]. These classical models capture how interspecific interactions and resource
limitation drive oscillatory population behavior and have inspired a vast body of theoretical work
exploring ecological stability, coexistence, and bifurcation phenomena [6, 9, 27]. Our nutritional state-
structured model (NSM) is conceptually related to this tradition in that it also represents population
interactions through coupled differential equations. However, rather than modeling predator–prey
encounters, the NSM focuses on transitions between nutritional states—full and hungry consumers—
linking individual energetic balance to population persistence.

In this work, we study the nutrition-structured model introduced in [30], which builds upon the
framework of the starving random walk paradigm. The model emphasizes transitions between two
key nutritional states: full and hungry. Consumers in the full state become hungry as local resources
are depleted, while hungry individuals can recover to the full state upon encountering and consuming
resources. The system comprises three state variables: full consumers (F), hungry consumers (H), and
resources (R). Their dynamics are governed by the following equations:

Ḟ = λF + ξρRH − σ(1 − R)F, (1.1a)
Ḣ = σ(1 − R)F − ξρRH − µH, (1.1b)
Ṙ = α(1 − R)R − (ρR + δ)H − βF. (1.1c)

The mathematical model consists of three state variables: full consumers (F), hungry consumers (H),
and resources (R), whose dynamics are described by a system of differential equations. The first
equation captures the changes in the full consumer population. Full consumers reproduce at a rate
proportional to their population, denoted by λF, recover from the hungry state at a rate ξρRH, and
the term σ(1 − R)F denotes the rate at which full consumers become hungry due to limited resources.
When resources are abundant (R → 1), starvation is negligible, whereas when resources are scarce
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(R → 0), all full consumers experience starvation at the maximum rate σF. Thus, (1 − R) smoothly
scales starvation pressure with resource scarcity. The second equation describes the dynamics of
hungry consumers. These individuals are replenished by transitions from the full state at the same
starvation rate, σ(1− R)F, recover back to the full state at a rate −ξρRH, and experience mortality at a
rate µH.

The third equation governs the dynamics of the resource population. Resources grow logistically at
a rate α(1 − R)R, reflecting a density-dependent replenishment process. They are consumed by hungry
consumers at a rate proportional to their abundance, ρRH, and by full consumers at a constant rate, βF.
Additionally, hungry consumers require a baseline resource for maintenance, depleting resources at a
fixed rate δ. Together, these equations encapsulate the interplay between consumer states and resource
availability, providing a comprehensive framework for understanding the eco-evolutionary dynamics
of starvation and recovery. Parameters are constrained by allometric scaling with body mass M, e.g.,
λ ∝ M−3/4, σ ∝ M−1/4, ρ ∝ M−1/4, reflecting metabolic rates. Body fat percentage is parameterized by
χ, where χ > 0 indicates higher fat reserves, reducing σ and increasing ρ.

This Figure 1 illustrates the starvation-recovery model, showing the interactions among full
consumers (F), hungry consumers (H), and resources (R). Full consumers reproduce at rate λF and
transition to hungry consumers due to starvation at rate σ(1 − R)F. Hungry consumers can recover to
the full state at rate ξρRH or die at rate µH. Resources grow logistically at a rate α(1 − R)R and are
consumed by both hungry consumers at a rate (ρR + δ)H and full consumers at a rate βF.

Full
Consumers

(F)

Hungry
Consumers

(H)
Resources

(R)

λF
(Reproduction) α(1 − R)R

(Growth)

σ(1 − R)F
(Starvation)

ξρRH
(Recovery)

−µH
(Mortality)

(ρR + δ)H
(Consumption by H)

βF
(Consumption by F)

Figure 1. Starvation–recovery model showing interactions among full consumers (F),
hungry consumers (H), and resources (R).

Let the total population be defined as the sum of full consumers and hungry consumers,

N(t) = F(t) + H(t).

To find the dynamics of the total population, we differentiate with respect to time:

Ṅ = Ḟ + Ḣ.
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Substituting from the system of equations:

Ḟ = λF + ξρRH − σ(1 − R)F,
Ḣ = σ(1 − R)F − ξρRH − µH,

and we get

Ṅ = (λF + ξρRH − σ(1 − R)F) + (σ(1 − R)F − ξρRH − µH)
= λF − µH.

Therefore, the total population changes according to

Ṅ = λF − µH.

The reproduction rate is independent of resource density because full consumers allocate a fixed
amount of energy toward reproduction, regardless of how much resource is available. In contrast,
hungry consumers allocate no energy to reproduction. Similarly, the maintenance costs for consumers
in both the full (F) and hungry (H) states are also unaffected by resource levels, as they represent the
baseline energetic requirements necessary for survival in each state.

The paper is organized as follows: Section 2 introduces the model parameters and provides their
biological interpretation, emphasizing connections to metabolic scaling. Section 3 presents a stability
analysis of the system’s equilibrium points to determine conditions for local stability. Section 4
examines the dissipative nature of the system and establishes criteria for the persistence of consumer
and resource populations. In Section 5, we derive the ecological analogue of the basic reproduction
number, denoted by Re, and discuss its implications for consumer invasion and population persistence
within the ecosystem. Section 6 investigates how variation in reproduction and starvation rates
influences the system’s dynamics, including transitions between stability and extinction. Section 7
presents a sensitivity analysis to identify which parameters most significantly affect model outcomes.
Finally, Section 8 explores how the model captures Cope’s rule, illustrating how increased fat reserves
may favor larger body sizes through enhanced competitive and energetic advantages.

2. Model parameters and biological interpretation

Understanding the ecological meaning and functional roles of model parameters is essential for
interpreting the behavior of the starvation-recovery system. Each parameter in the NSM model
encapsulates a distinct biological process—such as reproduction, starvation, mortality, or resource
regeneration—and influences system stability in different ways. The balance among these processes
determines whether the consumer-resource system can persist, oscillate, or collapse. Small changes
in certain parameters can shift the system from sustainable coexistence to extinction. In this section,
we systematically describe the biological interpretation of each parameter and discuss its effects when
varied individually. The NSM model involves several parameters that govern the dynamics of full
consumers (F), hungry consumers (H), and resources (R). Each parameter encapsulates a distinct
ecological process, and its value critically affects system behavior, including potential extinction or
persistence. Below, we provide the biological interpretation of each parameter and discuss its impact
on system stability, as shown in Table 1.
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Table 1. Model parameters with their biological roles and impact on system dynamics.

Param. Biological role If too high If too low

λ Reproduction rate of
full consumers (F)

Population overshoot;
instability

Insufficient growth;
extinction risk

σ Starvation rate: F → H
when R is low

Rapid starvation; loss
of F

Delayed response to
resource shortage

µ Mortality rate of
hungry consumers (H)

Quick die-off; loss of
recovery capacity

Unrealistic survival of
starving individuals

ξ Conversion efficiency
of R to F via H

Sudden recovery;
overgrowth risk

Poor recovery even
with resources

ρ Feeding rate of H on R Resource collapse due
to overfeeding

Ineffective use of
available resources

δ Baseline resource drain
by H (maintenance)

Resource loss without
recovery

Unrealistic
maintenance without
cost

β Resource consumption
by F

Excessive depletion of
R

No cost for
reproduction;
biologically
implausible

α Intrinsic resource
growth rate

Resource overshoot;
instability

Resource fails to
replenish; leads to
starvation

Each parameter must be calibrated carefully to reflect biologically plausible dynamics. For example,
if the starvation rate σ exceeds the reproduction rate λ, the population is likely to collapse, as full
consumers become hungry faster than they can reproduce. Similarly, a high maintenance cost δ can
drain resources even when consumer populations are low, destabilizing the ecosystem.

To ensure persistence of the system, parameters must balance reproduction, starvation, recovery,
mortality, and resource renewal. In later sections, we analyze how varying these parameters influences
the equilibrium behavior and extinction risk in the system.

To identify the equilibrium points of the system described by Eqs (1.1a)–(1.1c), we set the time
derivatives equal to zero and solve the resulting algebraic equations for the state variables, see [30].

λF + ξρRH − σ(1 − R)F = 0,

σ(1 − R)F − ξρRH − µH = 0,

α(1 − R)R − (ρR + δ)H − βF = 0.
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By solving the above equations, we get three equilibrium points: two trivial points at (F∗1,H
∗
1,R

∗
1) =

(0, 0, 0) and (F∗2,H
∗
2,R

∗
2) = (0, 0, 1), and one non-trivial, internal point at

(F∗3,H
∗
3,R

∗
3),

where

F∗3 =
(σ − λ)αµ2(µ + ξρ)

A[λρB + µσ(βµ + λ(δ + ρ))]
, H∗3 =

(σ − λ)αλ2µ(µ + ξρ)
A[λρB + µσ(βµ + λ(δ + ρ))]

, R∗3 =
(σ − λ)µ

A
,

where A = λξρ + µσ and B = βµξ + δλξ − λµ.

3. Stability analysis of equilibrium points

Fixed point (0,0,0)

The trivial extinction fixed point (F∗,H∗,R∗) = (0, 0, 0) is analyzed by evaluating the Jacobian
matrix and its eigenvalues. The Jacobian matrix at this point is given as

J(0, 0, 0) =


λ − σ 0 0
σ −µ 0
−β −δ α

 .
The eigenvalues of this matrix are λ1 = λ − σ, λ2 = −µ, and λ3 = α. For the point to be stable, all

eigenvalues must have negative real parts. This condition translates to λ1 < 0, which requires σ > λ;
λ2 < 0, which is satisfied if µ > 0; and λ3 < 0, which would require α < 0. However, α < 0 is
biologically implausible as it would imply a negative resource growth rate, making (0, 0, 0) generally
unstable under realistic biological conditions.

Bifurcation analysis reveals that a bifurcation occurs when λ1 = 0, or equivalently, when σ = λ. At
this critical point, the system transitions in stability: for σ < λ, λ1 > 0, rendering (0, 0, 0) unstable,
while for σ > λ, λ1 < 0, potentially stabilizing (0, 0, 0) if α < 0, though this is unlikely in biological
terms. This transition represents a saddle-node bifurcation at σ = λ, highlighting the critical role of
the starvation rate (σ) in determining the stability of the trivial extinction point.

To visualize the bifurcation, the eigenvalues of the Jacobian can be plotted as functions of σ.
Figure 2 shows the bifurcation analysis of the eigenvalues of the Jacobian matrix at the trivial extinction
fixed point (F∗,H∗,R∗) = (0, 0, 0), as a function of the starvation rate parameterσ. The figure illustrates
the dynamics of the system at the bifurcation point (σ = λ), where the bifurcation occurs as λ1 = 0.
For σ < λ, the trivial fixed point (0, 0, 0) is unstable (λ1 > 0), representing extinction, while for σ > λ,
λ1 < 0, rendering the trivial fixed point stable along certain axes, provided other eigenvalues do not
dominate instability.

Along specific dimensions, stability and instability vary: the constant negative eigenvalue λ2 =

−µ ensures stability for the “Hungry Consumers” (H), while the positive eigenvalue λ3 = α implies
persistent instability for “Resources” (R). Biologically, the system transitions from extinction at σ < λ
to potential coexistence or new equilibrium dynamics at σ > λ, emphasizing the critical role of the
starvation rate (σ) in determining population outcomes. This represents a saddle-node bifurcation,
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where the fixed point’s stability shifts as λ1 crosses zero, although the presence of a positive eigenvalue
(λ3) necessitates further analysis of non-trivial fixed points to fully understand population persistence.
The figure thus captures the interplay of eigenvalues with σ, revealing the bifurcation point and its
implications for system stability.

Figure 2. Bifurcation analysis of eigenvalues at (0, 0, 0).

Fixed point (0, 0, 1)

The fixed point (0, 0, 1) represents a scenario where resources are at their maximum capacity (R = 1)
without any consumers present (F = 0,H = 0). The stability of this fixed point is analyzed using
the Jacobian matrix, whose entries are derived from the partial derivatives of the system equations.
Substituting (F,H,R) = (0, 0, 1), the Jacobian simplifies to

J(0, 0, 1) =


λ ξρ 0
0 −ξρ − µ 0
−β −ρ − δ −α

 .
The eigenvalues of this matrix are λ1 = λ, λ2 = −ξρ − µ, and λ3 = −α. For stability, all eigenvalues
must have negative real parts. The first eigenvalue, λ1 = λ, requires λ < 0; otherwise, the fixed point
is unstable along the F-axis, leading to exponential growth of full consumers. The second eigenvalue,
λ2 = −ξρ − µ, is negative for biologically plausible parameters (ξρ + µ > 0), ensuring stability along
the H-axis. The third eigenvalue, λ3 = −α, is negative if α > 0, ensuring stability along the R-axis.

A bifurcation occurs when any eigenvalue crosses zero. For λ1 = λ, a bifurcation arises at λ = 0,
indicating a transition from stability (λ < 0) to instability (λ > 0) along the F-axis. The remaining
eigenvalues, λ2 and λ3, remain constant and negative, preserving stability along the H- and R-axes.

A numerical example with parameters:

λ = 0.2, ξ = 0.5, ρ = 0.3, µ = 0.1, α = 0.3, β = 0.1, δ = 0.2

yields the following eigenvalues:

λ1 = 0.2, λ2 = −0.25, λ3 = −0.3,
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confirming instability along the F-axis due to the positive eigenvalue λ1 > 0.
Visualizing through bifurcation analysis reveals the dynamics of λ1 as a function of λ, where it

crosses zero at λ = 0. This bifurcation highlights the critical role of the reproduction rate in determining
stability. Constant eigenvalues λ2 and λ3 ensure stability along the other axes, reflecting that the fixed
point (0, 0, 1) is unstable under realistic conditions when λ > 0.

Figure 3 illustrates the bifurcation dynamics for the fixed point (0, 0, 1) as a function of the
reproduction rate λ. The blue curve represents the eigenvalue λ1 = λ, which crosses zero at λ = 0,
marking the bifurcation point. For λ > 0, the fixed point becomes unstable along the F-axis, indicating
exponential growth of full consumers. The green and red dashed lines correspond to the eigenvalues λ2

and λ3, respectively, which remain constant and negative, ensuring stability along the H- and R-axes.
This bifurcation at λ = 0 underscores the critical role of the reproduction rate in determining system
stability. Persistent instability along the F-axis, caused by λ > 0, prevents the fixed point (0, 0, 1) from
being globally stable under biologically realistic conditions.

Figure 3. Bifurcation analysis of eigenvalues at (0,0,1).

Non-trivial fixed point

The non-trivial fixed point of the NSM is given by

F∗ =
(σ − λ)αµ2(µ + ξρ)

A[λρB + µσ(βµ + λ(δ + ρ))]
, H∗ =

(σ − λ)αλ2µ(µ + ξρ)
A[λρB + µσ(βµ + λ(δ + ρ))]

, R∗ =
(σ − λ)µ

A
,

where A = λξρ+µσ and B = βµξ+δλξ−λµ. For the internal equilibrium (F∗3,H
∗
3,R

∗
3) to be biologically

meaningful, all components must be positive. From the expression R∗3 =
(σ−λ)µ

A with A = λξρ+µσ > 0,
it follows that R∗3 > 0 only if σ > λ. This condition ensures that starvation occurs at a sufficient rate
to prevent unbounded population growth, allowing coexistence with the resource. Positivity of F∗3 and
H∗3 further requires the denominator term D = λρB + µσ(βµ + λ(δ + ρ)) to be positive. A sufficient
condition for this is B = βµξ + δλξ − λµ > 0, which implies that the combined effects of resource
consumption and recovery efficiency dominate reproductive losses.
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Stability analysis of this fixed point reveals that under typical ecological conditions, such as σ > λ,
the real parts of all eigenvalues of the Jacobian matrix evaluated at (F∗,H∗,R∗) are negative. This
ensures that the fixed point is globally stable, representing a state where consumers and resources
coexist in a balanced equilibrium.

A bifurcation analysis highlights the occurrence of a transcritical bifurcation as σ approaches λ.
From the expression for R∗, it follows immediately that the interior equilibrium is biologically feasible
(all components positive) only when σ > λ. Moreover, since R∗ ∝ (σ − λ), we have

R∗ → 0, F∗ → 0, H∗ → 0 as σ ↓ λ.

Thus at σ = λ the interior positive branch coalesces with the extinction equilibrium (0, 0, 0). This
collision is accompanied by an eigenvalue crossing: the Jacobian at (0, 0, 0) has eigenvalues λ1 = λ−σ,
λ2 = −µ, and λ3 = α, so λ1 changes sign at σ = λ. The simultaneous facts that (i) the positive branch
exists only for σ > λ, (ii) the branch limits to (0, 0, 0) as σ ↓ λ, and (iii) an eigenvalue of (0, 0, 0)
crosses zero at the same parameter value, are the characteristic ingredients of a transcritical bifurcation.
Biologically, the threshold σ = λ marks the critical balance between starvation and reproduction.
Whenσ < λ reproduction outpaces starvation and the interior equilibrium is not feasible, and whenσ >
λ starvation sufficiently regulates reproduction, permitting a stable coexistence equilibrium. Therefore,
the fact that H∗3 = R∗3 = 0 at σ = λ is not unreasonable but is the expected signature of this transcritical
exchange of stability. For a numerical example with parameter values λ = 0.2, ξ = 0.5, ρ = 0.3,
µ = 0.1, α = 0.4, δ = 0.2, β = 0.1, and σ = 0.25, the fixed point is computed as

F∗ ≈ 0.0162, H∗ ≈ 0.0096, R∗ ≈ 0.5.

Stability analysis of the Jacobian matrix at this fixed point confirms that all eigenvalues have negative
real parts, affirming stability for σ > λ. This analysis demonstrates the model’s ability to describe
stable coexistence and highlights the critical role of bifurcation in transitions between extinction and
coexistence.

Figure 4 represents the bifurcation analysis of the non-trivial internal fixed point (F∗,H∗,R∗),
showing how the fixed point components F∗, H∗, and R∗ depend on the starvation rate parameter σ. For
starvation rates below λ, i.e., before σ = λ (σ < λ), F∗, H∗, and R∗ have negative or undefined values.
This indicates that the fixed point is not biologically feasible due to negative population or resource
densities. At σ = λ, the curves for F∗, H∗, and R∗ approach zero. This represents a transcritical
bifurcation, where the non-trivial fixed point merges with the trivial fixed point (0, 0, 0). The system
transitions between extinction ((0, 0, 0)) and coexistence ((F∗,H∗,R∗) > 0).

For starvation rates above λ, i.e., after σ = λ (σ > λ), F∗ (full consumers) increases steadily as σ
grows. H∗ (hungry consumers) also increases but at a slower rate than F∗. R∗ (resource availability)
stabilizes at a moderate value and remains positive. This indicates that the populations coexist with a
stable resource base when σ exceeds the critical threshold.

The dashed line (σ = λ) marks the bifurcation point. Below this point, the non-trivial fixed point
is not feasible, while above this point, the populations and resources stabilize at positive values. For
σ > λ, the ecosystem reaches a stable equilibrium where full and hungry consumers coexist with
a sustainable level of resources. For σ ≤ λ, the system collapses to extinction as populations and
resources cannot coexist. A higher starvation rate leads to more full and hungry consumers as σ
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increases beyond λ. Resource availability (R∗) stabilizes, indicating a balance between consumption
and replenishment.

Figure 4. Bifurcation analysis for the non-trivial fixed point.

4. Dissipativeness and persistence

In this section, we analyze the dissipativeness and persistence of the consumer-resource system
defined by Eqs (1.1), which describe the dynamics of full consumers (F), hungry consumers (H), and
resources (R). Dissipativeness ensures that all solutions are ultimately bounded, while persistence
implies the long-term survival of all populations, preventing solutions from approaching the boundary
of the non-negative cone R3

+.

Definition 4.1 (Dissipativeness). System (1.1) is said to be dissipative if there exists a compact
absorbing set B ⊂ R3

+ such that every solution (F(t),H(t),R(t)) with an initial condition in R3
+ \ {0}

eventually enters B and remains in it for all sufficiently large t.

Theorem 4.1 (Uniform boundedness of solutions). Let all parameters in system (1.1) be strictly
positive. Then every solution with an initial condition in R3

+ \ {0} is uniformly bounded, and the system
is dissipative.

Proof. Define the Lyapunov-like functional

Σ(t) = F(t) + H(t) + cR(t),

for some constant c > 0. Differentiating with respect to time gives
dΣ
dt
= Ḟ + Ḣ + cṘ,

and substituting from system (1.1):
dΣ
dt
= (λF + ξρRH − σ(1 − R)F) + (σ(1 − R)F − ξρRH − µH)

+ c (α(1 − R)R − (ρR + δ)H − βF) .
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Simplifying, we get

dΣ
dt
= F (λ − σ(1 − R) − cβ) − H (µ + c(ρR + δ)) + cαR(1 − R).

Note that R(1 − R) ≤ 1
4 for R ∈ [0, 1]. Choose

c ≥
λ + σ

β
,

so that
λ − σ(1 − R) − cβ ≤ λ + σ − cβ ≤ 0.

Hence, the F-term is nonpositive. The H-term is strictly negative, and the last term is bounded above
by cα

4 . Thus,
dΣ
dt
≤

cα
4
.

We now apply a differential inequality of the form

dΣ
dt
+ µ′Σ ≤

cα
4

for µ′ := min{µ, βc} > 0. Solving this linear inequality using the integrating factor method (or
Gronwall’s inequality), we obtain

Σ(t) ≤ Σ(0)e−µ
′t +

cα
4µ′
(
1 − e−µ

′t
)
.

Taking t → ∞, we conclude
lim sup

t→∞
Σ(t) ≤

cα
4µ′
.

Therefore, for any ε > 0, there exists T > 0 such that for all t > T :

F(t) + H(t) + cR(t) ≤
cα
4µ′
+ ε.

Define the absorbing set

B =

{
(F,H,R) ∈ R3

+

∣∣∣∣∣ F + H + cR ≤
cα
4µ′
+ ε

}
,

which is compact in R3
+. Since all trajectories eventually enter and remain in B, the system is

dissipative.
Furthermore, note that

• Ṙ < 0 for R > 1,

• Ḟ, Ḣ, Ṙ ≥ 0 at the coordinate planes F = 0, H = 0, R = 0.

So trajectories remain in the positive orthant and are forward-invariant. □
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Definition 4.2 (Persistence). System (1.1) is said to be persistent if for all initial conditions
(F(0),H(0),R(0)) ∈ R3

+ \ {0}, the corresponding solution satisfies:

lim inf
t→∞

F(t) > 0, lim inf
t→∞

H(t) > 0, lim inf
t→∞

R(t) > 0.

That is, no omega-limit points lie on the boundary of R3
+; all components of the state vector persist

over time.

Theorem 4.2 (Persistence of the eco-evolutionary system). Suppose the parameters satisfy
λ, ξ, ρ, σ, µ, α, δ, β > 0, and system is initiated with (F(0),H(0),R(0)) ∈ R3

+ \ {0}. Then system (1.1) is
persistent. That is, the positive orthant is forward invariant and repelling on all boundary planes.

Proof. We examine dynamics on the boundary of R3
+ to verify that no trajectory can remain on or

asymptotically approach the boundary unless it converges to the origin. We consider each coordinate
plane separately as

(i) Boundary F = 0
Ḟ = ξρRH.

If R > 0 and H > 0, then Ḟ > 0, so trajectories leave the boundary. If R = 0 or H = 0, we analyze

Ḣ = −(ξρR + µ)H ≤ 0, Ṙ = α(1 − R)R − (ρR + δ)H.

At the corner point (0, 0, 0), Ṙ = 0, but in any neighborhood with R > 0, Ṙ ≈ αR > 0, so solutions
escape the origin. At (0, 0, 1), we have

Ḟ = 0, Ḣ = −(ξρ + µ)H, but
∂Ḟ
∂F

∣∣∣∣∣∣
(0,0,1)

= λ > 0.

Hence, the boundary is transversally unstable.
(ii) Boundary H = 0

Ḣ = σ(1 − R)F.

If F > 0 and R < 1, then Ḣ > 0, repelling solutions from the boundary. If R = 1, then Ḣ = 0, but

Ḟ = λF > 0, Ṙ = −βF < 0,

so R decreases and Ḣ becomes positive. At (0, 0, 1), as before, ∂Ḣ
∂H > 0 due to positive λ, so solutions

cannot remain at H = 0.
(iii) Boundary R = 0

Ṙ = −δH − βF.

At first glance, this suggests Ṙ ≤ 0. However, if F = H = 0, then Ṙ = 0, and for small R > 0, the
logistic term dominates

Ṙ = α(1 − R)R ≈ αR > 0.

Thus, R = 0 is not attracting. If F > 0 or H > 0, then Ṙ < 0, but the boundedness of R(t) ≥ 0 ensures
solutions cannot stay at R = 0.

(iv) Corner point (0, 0, 0)
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At the origin
Ḟ = 0, Ḣ = 0, Ṙ = 0,

but for any small perturbation R > 0, Ṙ = αR > 0, and the system leaves the origin. Thus, the origin is
non-attracting.

Since all boundaries are repelling, and the system is dissipative (trajectories are uniformly bounded
due to resource saturation and consumer mortality), the positive orthant is invariant and solutions are
repelled from the boundary. Hence, the system is persistent. □

The basic reproduction number R0 quantifies the expected number of new full consumers produced
by a single full consumer introduced into a resource-abundant environment. It provides a threshold
for the invasion potential of the consumer population in the eco-evolutionary model (1.1), indicating
whether the consumer population can successfully establish and grow when initially rare; for more
details, see [8]. In the context of the NSM, Re represents an ecological analogue of the reproduction
number. It defines the threshold between population extinction and persistence, indicating whether
a small group of full consumers can successfully invade and maintain a stable presence within an
unexploited resource environment.

5. Invasion and persistence threshold Re (R0 analogue)

To evaluate Re, we analyze the system at the consumer-free equilibrium (F∗,H∗,R∗) = (0, 0, 1),
where both full and hungry consumers are absent, and the resource is at its maximum carrying
capacity. This equilibrium represents the worst-case scenario for resistance to invasion—resources
are plentiful and unexploited, so even minimal reproductive success could allow consumers to invade.
Mathematically, this point corresponds to the boundary equilibrium where consumer equations can be
linearized and analyzed using the next-generation matrix method. Biologically, it captures the state of
an undisturbed ecosystem prior to consumer colonization.

Theorem 5.1. Let the eco-evolutionary model (1.1) incorporate a natural mortality rate m > 0 for full
consumers. Then, the analogue of the basic reproduction number is given by

Re =
λ

m
,

where λ is the reproduction rate of full consumers. The consumer-free equilibrium is locally
asymptotically stable if Re < 1 and unstable if Re > 1.

Proof. To compute Re, we use the next-generation matrix method. Let X = [F,H]T , and decompose
the dynamics into “new infections” F (X) and “transitions”V(X) as

Ẋ = F (X) −V(X).

From the modified system with full consumer mortality m, we have

F =

[
λF + ξρRH
σ(1 − R)F

]
, V =

[
(m + σ(1 − R))F
ξρRH + µH

]
.
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Evaluating the Jacobians at the consumer-free equilibrium (F,H,R) = (0, 0, 1), we obtain

f =
∂F

∂(F,H)

∣∣∣∣∣
(0,0,1)

=

[
λ ξρ

0 0

]
, v =

∂V

∂(F,H)

∣∣∣∣∣
(0,0,1)

=

[
m 0
0 ξρ + µ

]
.

Then the next-generation matrix is

G = f v−1 =

[
λ
m

ξρ

ξρ+µ

0 0

]
.

The basic reproduction number is the spectral radius of G, i.e.,

Re = ρ(G) =
λ

m
.

Thus, Re > 1 implies exponential growth of the full consumer population, while Re < 1 implies
decay. □

Remark. If the natural mortality of full consumers is neglected (m = 0), the reproduction number
becomes infinite:

Re = ∞,

which reflects unrealistic unbounded growth. This corresponds to an epidemic without recovery or
death. Introducing mortality regularizes the invasion threshold and parallels epidemiological models
such as SIR and SEIR, where a finite R0 governs outbreak potential.

6. Impact of reproduction and starvation rates on system dynamics

To investigate the eco-evolutionary consequences of the balance between reproduction and
starvation, we consider two distinct parameter regimes: one where the starvation rate dominates
reproduction (σ > λ), and another where reproduction dominates starvation (λ > σ). Specifically,
we simulate the system dynamics under the following parameter sets:

• Case 1 (Starvation dominant): λ = 0.5 s−1, σ = 1.5 s−1 ;

• Case 2 (Reproduction dominant): λ = 1.5 s−1, σ = 0.5 s−1.

All other parameters are held constant across both cases:

ξ = 0.6 (dimensionless), ρ = 0.5 s−1, µ = 0.1 s−1, α = 1.0 s−1, δ = 0.05 s−1, β = 0.02 s−1.

Initial conditions for both simulations are:

F0 = 0.2 (dimensionless), H0 = 0.1 (dimensionless), R0 = 0.5 (dimensionless),

with simulations run over the time interval t ∈ [0, 10] s.
Case 1: Starvation rate σ > λ
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As shown in Figure 5, when starvation significantly exceeds reproduction (σ = 1.5 s−1, λ = 0.5 s−1),
the system evolves to a state where most individuals are driven into the hungry non-reproducing state.
The full consumer population remains low throughout the simulation due to high transition rates from
full to hungry consumers. Consequently, reproduction is suppressed, resulting in a low total consumer
density. However, since consumer pressure on the resource is diminished, the resource level stabilizes
at a relatively high value.

Figure 5. Time evolution of consumer-resource dynamics under high a starvation rate (σ =
1.5 s−1, λ = 0.5 s−1).

Case 2: Reproduction rate λ > σ
Figure 6 illustrates the system dynamics when the reproduction rate exceeds starvation (λ = 1.5 s−1,

σ = 0.5 s−1). In this regime, full consumers rapidly increase due to enhanced reproduction and reduced
starvation transitions. The population of hungry consumers also rises as more individuals cycle through
the states. However, the elevated consumer density exerts heavy pressure on the resource base, leading
to rapid depletion. The system exhibits large transient oscillations in both consumer and resource
populations, highlighting potential instability due to overexploitation.

Figure 6. Time evolution of consumer-resource dynamics under a high reproduction rate
(λ = 1.5 s−1, σ = 0.5 s−1).
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These simulations demonstrate that a high starvation rate suppresses consumer density and stabilizes
resource levels, but at the cost of reproductive output. In contrast, when reproduction dominates
starvation, the consumer population grows rapidly, potentially overshooting resource availability and
inducing oscillatory dynamics. These results highlight the delicate balance between energy acquisition,
reproductive strategy, and starvation tolerance in shaping ecological stability.

7. Parameter sensitivity analysis

To investigate the eco-evolutionary dynamics captured by the starvation-recovery model, we
systematically varied key parameters and analyzed their influence on the temporal evolution of full
consumers (F), hungry consumers (H), and resources (R). The system’s dynamics are governed by the
set of differential equations described in (1.1). Unless otherwise stated, the default parameter values
used in the simulations are listed in Table 2.

Table 2. Default parameter values, corresponding units, and the specific values varied in the
numerical simulations for time T = 20.

Parameter Default value Units Values used in simulations

λ 0.4 s−1 0.2, 0.4, 0.6, 0.8
σ 0.3 s−1 0.1, 0.3, 0.5, 0.7
µ 0.1 s−1 fixed
α 1.0 s−1 fixed
β 0.05 s−1 fixed
δ 0.05 s−1 fixed
ρ 1.0 s−1 0.5, 1.0, 1.5, 2.0
ξ 1.0 dimensionless fixed

Effect of reproduction rate (λ)

Figure 7 illustrates the sensitivity of the system to the reproduction rate of full consumers, λ. As λ
increases, the growth of the full consumer population (F) becomes exponential (Figure 7(a)), driven by
the positive feedback from reproduction. This rapid expansion, however, accelerates resource depletion
(Figure 7(b)), leading to a collapse of the resource base. The depletion of R subsequently triggers an
increase in the hungry consumer population (H) (Figure 7(c)), as more individuals transition from F
to H due to starvation in the absence of adequate resources. Notably, the overexploitation of resources
at higher λ values induces oscillatory or collapse-prone dynamics, underscoring the ecological cost of
aggressive reproductive strategies.
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(a) Effect of λ on F (b) Effect of λ on R

(c) Effect of λ on H

Figure 7. Parameter sensitivity: effect of λ.

Effect of starvation rate (σ)

In contrast, Figure 8 examines the role of the starvation rate σ, which governs the rate at which full
consumers transition to the hungry state under resource scarcity. Increasing σ results in a marked
decline in the full consumer population (Figure 8(a)) and a moderate rise in hungry consumers
(Figure 8(c)). Since hungry individuals are less efficient at reproduction and recovery, this leads
to slower overall population growth. The rapid conversion of F to H limits consumer pressure
on resources, thereby delaying the collapse of R (Figure 8(b)). This suggests that higher σ acts
as a stabilizing force in the system, preventing overexploitation by curbing the proliferation of full
consumers.
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(a) Effect of σ on F (b) Effect of σ on R

(c) Effect of σ on H

Figure 8. Parameter sensitivity: effect of σ.

Effect of consumption efficiency (ρ)

Finally, Figure 9 explores the effect of varying the resource consumption efficiency ρ, which
modulates both the recovery of hungry consumers and the depletion of resources. Interestingly, higher
values of ρ slow down the growth of both F and H populations (Figures 9(a) and (c)), primarily due to
accelerated resource exhaustion. As ρ increases, hungry consumers recover more efficiently to the full
state, but this comes at the cost of faster resource depletion (Figure 9(b)), leading to an earlier onset of
starvation. Lower ρ values, on the other hand, produce more gradual dynamics and prolonged resource
availability. These findings highlight a trade-off between short-term recovery benefits and long-term
ecological sustainability, governed by how efficiently consumers utilize available resources.
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(a) Effect of ρ on F (b) Effect of ρ on R

(c) Effect of ρ on H

Figure 9. Parameter sensitivity: effect of ρ.

To investigate how key ecological processes shape the internal dynamics of the NSM model, we
perform a parametric sensitivity analysis of the non-trivial equilibrium point (F∗3,H

∗
3,R

∗
3) with respect

to the reproduction rate λ and the starvation rate σ, which govern the growth of full consumers and
their transition to the hungry state, respectively, under the condition when σ > λ. Using 3D surface
plots, we visualize the equilibrium values of full consumers, hungry consumers, and the resource
across a biologically plausible range of λ ∈ [0.01, 0.49] and σ ∈ [0.5, 1.5], while holding all other
parameters constant: intrinsic resource growth rate α = 0.5 s−1, mortality rate of hungry consumers
µ = 0.2 s−1, resource-to-consumer conversion efficiency ξ = 0.3, feeding rate ρ = 0.4 s−1, baseline
resource drain δ = 0.1 s−1, and consumption rate by full consumers β = 0.1 s−1. The resulting
Figure 10 reveals that F∗3 (full consumers) is highest when both reproduction and starvation are low,
while H∗3 (hungry consumers) increases under high starvation and low reproduction, indicating energy
imbalance. Conversely, R∗3 (resource level) increases with higher starvation and decreases with higher
reproduction, reflecting reduced consumer pressure under resource scarcity. Ecologically, these results
highlight the need for a delicate balance between consumer growth and starvation response: excessive
reproduction or insufficient starvation may lead to resource collapse, while overly rapid starvation
impedes population recovery— ultimately destabilizing the system.
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(a) F∗3: Equilibrium density of full consumers. (b) H∗3: Equilibrium density of hungry consumers.

(c) R∗3: Equilibrium level of the resource.

Figure 10. 3D surface plots of the non-trivial equilibrium point (F∗3,H
∗
3,R

∗
3) as functions of

reproduction rate λ and starvation rate σ with σ > λ.

Next, we visualize the internal equilibrium values (F∗3,H
∗
3,R

∗
3) in the collapse regime defined by

λ > σ, where reproduction outpaces starvation. The parameter ranges explored are λ ∈ [0.5, 1.5] and
σ ∈ [0.01, 0.49], ensuring the system operates below the critical bifurcation line σ = λ. The first plot
(Figure 11a) shows the equilibrium density of full consumers (F∗3), which drops sharply or becomes
undefined as the system destabilizes. Similarly, the second plot (Figure 11b) for hungry consumers
(H∗3) exhibits extreme values and non-biological behavior, indicating that the population cannot persist
under these energetic imbalances. The third plot (Figure 11c) presents the equilibrium resource level
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(R∗3), which becomes negative across most of the domain, reflecting complete overexploitation of the
resource. Together, the plots in Figure 11 confirm that when reproduction exceeds starvation (i.e.,
λ > σ), the NSM predicts ecological collapse characterized by unsustainable consumer densities and
depleted resources.

(a) F∗3: Equilibrium density of full consumers. (b) H∗3: Equilibrium density of ”hungry” consumers.

(c) R∗3: Equilibrium level of the resource.

Figure 11. Equilibrium outcomes (F∗3,H
∗
3,R

∗
3) of the model under the collapse regime where

λ > σ.

8. Cope’s rule in the nutritional state-structured model

Cope’s rule posits that evolutionary lineages tend to increase in body size over time, a pattern widely
observed in mammalian fossil records. By incorporating allometric scaling and body fat reserves, the
NSM demonstrates that larger body sizes and higher fat reserves confer a selective advantage through
reduced starvation rates, lower extinction risk, and competitive superiority, driving the evolutionary
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trend toward larger body sizes up to an optimal mass (Mopt ≈ 1.748 × 107 g) and an upper bound
(Mmax = 6.54 × 107 g), see [30].

The non-trivial equilibrium (F∗3,H
∗
3,R

∗
3) represents stable coexistence, critical for analyzing Cope’s

rule. The NSM supports Cope’s rule through three mechanisms:

(1) Reduced starvation rates: Larger body sizes increase fat reserves, reducing σ, the rate at which
full consumers become hungry, maintaining a higher proportion of reproductive individuals (F).

(2) Lower extinction risk: The model identifies a stable “refuge” region in σ vs. ρ parameter space,
where extinction risk is minimized. Larger body sizes align with this region due to lower σ.

(3) Competitive advantage: Populations with higher fat reserves (χ > 0) maintain lower R∗3 for body
masses below Mopt ≈ 1.748 × 107 g, outcompeting leaner populations by sustaining populations
at lower resource levels.

The model predicts an upper bound on terrestrial mammalian body size at Mmax = 6.54 × 107 g,
where energetic reserves reach zero (ϵp = 0), consistent with fossil evidence (e.g., Indricotherium at
∼ 1.5 × 107 g).

We evaluate the internal equilibrium (F∗3,H
∗
3,R

∗
3) for body masses M = 104 g (e.g., a hare) and

M = 106 g (e.g., a rhinoceros), with fat reserve levels χ = 0.1 (high reserves) and χ = −0.1 (low
reserves). Parameters are derived from allometric scaling:

• Reproduction rate: λ = 0.1M−3/4, so λ = 0.01 yr−1 (M = 104), λ = 0.001 yr−1 (M = 106).

• Starvation rate: σ = 0.05M−1/4, so σ = 0.0158 yr−1 (M = 104), σ = 0.0089 yr−1 (M = 106).
For χ = 0.1, reduce σ by 10% (σ = 0.0142, 0.0080); for χ = −0.1, increase by 10% (σ =
0.0174, 0.0098).

• Recovery rate: ρ = 0.1M−1/4, so ρ = 0.0316 yr−1 (M = 104), ρ = 0.0178 yr−1 (M = 106).
For χ = 0.1, increase ρ by 10% (ρ = 0.0348, 0.0196); for χ = −0.1, decrease by 10% (ρ =
0.0284, 0.0160).

• Other parameters: µ = 0.1 yr−1, ξ = 1, α = 1 yr−1, δ = 0.01, β = 0.01.

Using the equilibrium formulas, we calculate

F∗3 ≈ 100.4, H∗3 ≈ 0.00100.

Higher fat reserves (χ = 0.1) yield lower R∗3 (0.237 vs. 0.366 for M = 104, 0.854 vs. 0.892 for
M = 106), indicating a competitive advantage. For M = 104, higher fat reserves increase F∗3 but reduce
H∗3, reflecting lower starvation flux. For M = 106, lower σ and λ reduce H∗3, stabilizing populations.

Extinction risk is defined as the population falling below 20% of steady-state density (F∗3 +H∗3). We
calculate the proportion of full consumers:

F∗3
F∗3 + H∗3

=
1

1 + λ2

µ2

.

• M = 104 (λ = 0.01, µ = 0.1): F∗3
F∗3+H∗3

≈ 0.990.
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• M = 106 (λ = 0.001, µ = 0.1): F∗3
F∗3+H∗3

≈ 0.999.

Larger body sizes increase the proportion of full consumers, reducing extinction risk. We simulate
the system using the Euler method (F(0) = 0.5, H(0) = 0.2, R(0) = 0.8, ∆t = 0.01, 1000 years, 100
runs with α ∈ [0.9, 1.1]). Extinction probabilities:

• M = 104, χ = 0.1: ∼4%.

• M = 104, χ = −0.1: ∼6%.

• M = 106, χ = 0.1: ∼1%.

• M = 106, χ = −0.1: ∼2%.

Larger body sizes (M = 106) have lower extinction risk due to reduced σ, and higher fat reserves
further decrease the risk.

Figure 12 plots steady-state resource density (R∗3) versus body mass (M) for the NSM, displaying
two curves: χ = 0.1 (high fat reserves, blue) and χ = −0.1 (low fat reserves, red), across a logarithmic
scale from 104 g to 1.748 × 107 g. It denotes the competitive advantage of higher fat reserves, with
χ = 0.1 showing lower R∗3 values (e.g., 0.237 vs. 0.366 at 104 g) compared to χ = −0.1, supporting
Cope’s rule by illustrating that larger body sizes with greater fat reserves thrive with fewer resources,
driving evolutionary size increase. The parameters used include fixed values such as µ = 0.1 yr−1

(mortality rate), ξ = 1.0 (recovery scaling), α = 1.0 yr−1 (resource growth rate), δ = 0.01 and β =
0.01 (consumption rates), and allometric scaling coefficients aλ = 0.1, bσ = 0.05, and cρ = 0.1 for
reproduction (λ = aλM−3/4), starvation (σ = bσM−1/4(1+ χ)), and recovery (ρ = cρM−1/4(1+ χ)) rates,
respectively, with fat reserve adjustments via χ = 0.1 and χ = −0.1.

Figure 12. Resource density vs. body mass for different fat reserves.

The NSM supports Cope’s rule by showing that larger body sizes and higher fat reserves reduce
starvation rates and extinction risk, providing a selective advantage. Numerical analysis confirms
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lower R∗3 for χ = 0.1, supporting competitive superiority, and lower extinction probabilities for larger
body sizes. The predicted Mopt and Mmax align with fossil evidence. Limitations include the binary
nutritional state assumption and herbivore focus, suggesting future extensions to continuous states or
multi-species systems.

9. Conclusions

The NSM developed in this study offers a mechanistic understanding of how starvation and
recovery dynamics shape the persistence of consumer-resource systems. By distinguishing between
full and hungry consumer states, the model captures the energetic constraints and transitions that
occur in resource-limited environments. Bifurcation analysis reveals a critical threshold at σ = λ,
marking the transition between extinction and coexistence. When starvation outpaces reproduction
(σ > λ), populations stabilize at sustainable densities with preserved resource levels, whereas higher
reproduction (λ > σ) leads to instability and potential resource collapse. This framework identifies
key thresholds—particularly the balance between reproduction and starvation rates—that enhance
our understanding of population stability and extinction risk. The results demonstrate that tuning
parameters, such as increasing fat reserves or adjusting energy allocation, can shift the system toward
persistence, supporting evolutionary principles like Cope’s rule. Furthermore, the ecological analogue
of the basic reproduction number, Re, provides a clear threshold criterion distinguishing between
population persistence and extinction within the starvation-recovery framework. By integrating
theoretical analysis with numerical simulations, the NSM provides valuable insights into ecological
resilience.

We can conclude this work by introducing some future directions.

Future research directions

• Study how changing λ and σ over time affects stability using simple periodic patterns.

• Explore random changes in resources with basic probability methods to see if extinction happens.

• Include a second consumer species and use simple competition rules to find coexistence
conditions.

• Test a basic control method (like adding resources) to keep the system balanced and avoid
extinction.
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24. M. S. Shabbir, Q. Din, M. De la Sen, J. F. Gómez-Aguilar, Exploring dynamics of plant–herbivore
interactions: bifurcation analysis and chaos control with Holling type-II functional response, J.
Math. Biol., 88 (2024), 8. https://doi.org/10.1007/s00285-023-02020-5

25. N. H. Shah, J. Gupta, SEIR model and simulation for vector borne diseases, Appl. Math., 4 (2013),
13–17. https://doi.org/10.4236/am.2013.48A003

26. M. B. Shapiro, F. Karim, G. Muscioni, A. S. Augustine, Adaptive susceptible-infectious-removed
model for continuous estimation of the COVID-19 infection rate and reproduction number in the
United States: modeling study, J. Med. Int. Res., 23 (2021), e24389. https://doi.org/10.2196/24389

27. M. Swailem, U. C. Täuber, The Lotka–Volterra predator–prey model with
periodically varying carrying capacity, Phys. Rev. E, 107 (2023), 064144.
https://doi.org/10.1103/PhysRevE.107.064144

AIMS Mathematics Volume 10, Issue 11, 26418–26445.

https://dx.doi.org/https://doi.org/10.1073/pnas.1315521110
https://dx.doi.org/https://doi.org/10.1016/j.aej.2021.12.068
https://dx.doi.org/https://doi.org/10.1016/j.jksus.2024.103273
https://dx.doi.org/https://doi.org/10.1038/116461b0
https://dx.doi.org/https://doi.org/10.3390/math11112536
https://dx.doi.org/https://doi.org/10.3390/math12243998
https://dx.doi.org/https://doi.org/10.1002/mma.7807
https://dx.doi.org/https://doi.org/10.1016/j.aej.2024.07.032
https://dx.doi.org/https://doi.org/10.1098/rspb.1965.0069
https://dx.doi.org/https://doi.org/10.1016/j.epidem.2023.100708
https://dx.doi.org/https://doi.org/10.1007/s00285-023-02020-5
https://dx.doi.org/https://doi.org/10.4236/am.2013.48A003
https://dx.doi.org/https://doi.org/10.2196/24389
https://dx.doi.org/https://doi.org/10.1103/PhysRevE.107.064144


26445

28. P. Van den Driessche, J. Watmough, Reproduction numbers and subthreshold endemic
equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.
https://doi.org/10.1016/S0025-5564(02)00108-6

29. G. B. West, J. H. Brown, B. J. Enquist, A general model for ontogenetic growth, Nature, 413
(2001), 628–631. https://doi.org/10.1038/35098076

30. J. D. Yeakel, C. P. Kempes, S. Redner, Dynamics of starvation and recovery predict
extinction risk and both Damuth’s law and Cope’s rule, Nat. Commun., 9 (2018), 657.
https://doi.org/10.1038/s41467-018-02822-y

31. G. M. Zelleke, M. I. Teboh-Ewungkem, G. A. Ngwa, Bifurcation analysis of a mathematical
model for the activated complement-mediated response to bacterial infection in humans: the
complement system as part of the innate immune system, Adv. Cont. Discr. Mod., 2025 (2025),
90. https://doi.org/10.1186/s13662-025-03878-z

32. V. Volterra, Variazioni e fluttuazioni del numero d’individui in specie animali conviventi, Memorie
della Reale Accademia Nazionale dei Lincei, Series VI, 2 (1926), 31–113.

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 11, 26418–26445.

https://dx.doi.org/https://doi.org/10.1016/S0025-5564(02)00108-6
https://dx.doi.org/https://doi.org/10.1038/35098076
https://dx.doi.org/https://doi.org/10.1038/s41467-018-02822-y
https://dx.doi.org/https://doi.org/10.1186/s13662-025-03878-z
https://creativecommons.org/licenses/by/4.0

	Introduction
	Model parameters and biological interpretation
	Stability analysis of equilibrium points
	Dissipativeness and persistence
	Invasion and persistence threshold Re (R0 analogue)
	Impact of reproduction and starvation rates on system dynamics
	Parameter sensitivity analysis
	Cope's rule in the nutritional state-structured model
	Conclusions

