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1. Introduction

Accurate spatial prediction and robust uncertainty quantification are paramount when modelling
regionalized variables, which inherently exhibit spatial dependence and variation. This uncertainty
arises from factors such as limited data sampling, measurement inaccuracies, and the intrinsic
variability of the underlying phenomena. In critical fields like mining, environmental sciences, and
oilfield characterization, where operational and strategic decisions often hinge on spatial estimates, a
comprehensive understanding of this uncertainty is indispensable.

To meet this critical need, a diverse array of geostatistical estimation and simulation algorithms
has been developed over the years. Widely adopted methods, including turning-bands
simulation [1, 2] and sequential Gaussian simulation [3–5], are designed to generate multiple, equally
probable realizations of a spatial variable. Each realization represents a plausible configuration of
reality, meticulously respecting the statistical and spatial characteristics inferred from observed data.
The analysis of variability across these multiple realizations provides a rigorous assessment of the
inherent uncertainty within spatial models.

Despite their established utility, conventional geostatistical estimation and simulation methods
often present several practical challenges. A significant hurdle is the demand for exhaustive parameter
estimation, such as variogram modelling, which frequently necessitates specialized knowledge and
can be both subjective and time-consuming [6, 7]. Furthermore, regionalized variables in real-world
scenarios often display complex spatial structures and heterogeneity that are difficult to capture with
precision, potentially compromising the reliability of estimation outcomes [8, 9]. An additional
complication arises from the widespread assumption of stationarity in many traditional geostatistical
approaches, where statistical properties are presumed constant throughout the domain. In practice,
this assumption is often violated, as natural spatial variables frequently exhibit non-stationary
behavior. Adapting classical algorithms to effectively manage non-stationarity remains a non-trivial
endeavor [10–12]. Other techniques have been designed for complex situations with local changes in
the regionalized variable [13–15], where it is necessary to specify parameters, trends or fields, which
increases the complexity of modelling and the expertise required of the user. Moreover, some
regionalized variables—such as metallurgical recovery rates—are intrinsically non-additive. In these
instances, values observed in small-scale samples cannot be meaningfully averaged to infer
block-scale values, thereby limiting the direct applicability of conventional geostatistical
frameworks [16–18].

Given these inherent challenges, data-driven methodologies have emerged as compelling
alternatives to traditional geostatistical modelling. Recent advancements in machine learning have
demonstrated substantial promise for modelling spatial variables, especially in complex,
high-dimensional [19, 20], and non-linear environments [21–23]. These techniques, while not yet
data-driven, tend to require fewer restrictive modelling assumptions, such as normality or stationarity
of observations, and have the flexibility necessary to capture complex and non-linear interactions
between variables. [24, 25]. Furthermore, they often streamline the modelling process by reducing the
number of parameters necessitating manual adjustment.

In this study, we propose a novel data-driven methodology for the estimation of the full spatial
random field. This method has evolved from the foundational concepts of ensemble spatial
interpolation (ESI), as introduced by Egaña et al. [26] and Menafoglio et al. [27], and its subsequent
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development into adaptive ensemble spatial analysis (ESA) proposed by Egaña et al. [28]. Our
approach achieves this by inferring local predictive distributions through adaptively defined and
overlapping spatial partitions. The spatial coherence of the estimated field is implicitly preserved
through the underlying statistical relationships, which are governed by a learned statistical copula that
emerges from shared local information. This offers a powerful, non-parametric, and highly flexible
alternative to conventional geostatistical estimation techniques, with minimal modelling effort that is
intended for a much broader geoscience audience. Although this type of modelling may be less
intuitive from a geological or geoscientific point of view, it allows for greater expressiveness at a
statistical level, with the possibility of representing complex and non-linear forms of spatial
dependence. As a direct application of this estimation, the method readily allows for the generation of
multiple, equally probable realizations, enabling a robust quantification of spatial uncertainty and
demonstrating a particular ability to capture fine-scale variability, including the nugget effect, without
explicit parameterization.

The paper is structured as follows: Section 2 contains the central message of this work and
describes in detail the theoretical results that support the proposed model. Section 3 presents a
detailed case study of the model applied to the formulation of an adhoc geostatistical simulation
method. Section 4 presents the results of the case study. Section 5 analyses these results in detail,
exploring their theoretical, methodological, and practical implications, as well as outlining directions
for future research. Section 6 concludes the article by highlighting the main theoretical contribution.
For completeness, the supplementary material contains the statements of the relevant theorems used
in Section 2.

2. Spatial distributional estimation

2.1. Overview of the proposed model

Before introducing the formal details, we summarize the structure of the proposed spatial
distributional estimation (SDE) model. Namely, at each discretized location xi ∈ X, we estimate a
local empirical distribution F̂(T )

i from a neighborhood-informed ensemble of conditional realizations.
These neighborhoods are adaptively defined through a data-driven partitioning mechanism that
preserves local spatial information while ensuring global coverage. Crucially, instead of fitting a
single joint model across all locations, the method constructs a local marginal distribution at each site
and implicitly infers the joint structure via the dependencies induced by overlapping neighborhoods.
This leads to a collection of measurable random elements {F̂(T )

i }
N
i=1, whose dependence structure is

governed by an estimated copula ĈT . The resulting model is entirely non-parametric, decentralized,
and spatially coherent by design. The following section provides the formal foundation of this
construction, with particular attention to the measurability, dependence, and convergence properties
of the estimated distributions.

2.2. Ensemble spatial interpolation

The ESI method provides a flexible, data-driven framework for spatial prediction. It is designed to
estimate the posterior predictive distribution of a spatial variable at unsampled locations, without
requiring explicit assumptions of stationarity or manual modelling of spatial continuity [26]. ESI is
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particularly suitable for complex and heterogeneous spatial domains where classical geostatistical
techniques may have difficulties due to the need for variographic modelling or domain-specific
parameter adjustment. For an overview of ESI, let S ⊂ Rd be the spatial domain, and let Z : S → R be
the spatial variable of interest. Given a finite set of observations O = {(xi, zi)}ni=1, with xi ∈ S and
zi = Z(xi), the objective is to infer the predictive distribution p(Z(x) | O) for all x ∈ S. Thus, the ESI
method is based on a hierarchical generative model:

p(Z,P) = p(Z | P) · p(P), (2.1)

where P ∈ Π(S) denotes a random partition (or tessellation) of the spatial domain. The partition
P = {Pk}

K
k=1 divides S into disjoint regions, and within each region Pk, a local interpolation model is

used to estimate the value of Z(x) at locations x ∈ Pk. The predictive distribution at a query point x is
obtained by marginalizing over the ensemble of partitions in such a way that:

p(Z(x)) = EP
[
p(Z(x) | x ∈ Pk)

]
. (2.2)

The term ensemble comes from the fact that the expression (2.2) encodes a bagging-type process in
ensemble learning schemes [29]. Figure 1 shows the basic components of the ESI method, an example
of tessellations and the distribution sampling applied after the ESI framework (see Section 2.3.1).

a) DATA b) TESSELLATION c) DISTRIBUTION SAMPLING

spatial domain  

observations

discretised spatial
locations (grid)

...

...

...

After ESI/ESA 
framework

Figure 1. SDE model flow: Tessellation generation and distribution sampling. a) Basic
components to apply the ESI/ESA framework. b) An example of a random partition over the
spatial domain. c) The distribution sampling after the ESI/ESA framework.

2.2.1. Adaptive ensemble spatial analysis

In general, within each cell Pk, prediction can be performed using any interpolation function. The
basic idea of this function is that it should not be too complex because it is intensively used. For this,
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the first versions proposed were a simple inverse distance weighting (IDW) or a kind of radial basis
function version of kriging (where the covariance model is fixed for all cells, so as to avoid variogram
analysis), both with quite good results [26]. Later, Egaña et al. [28] proposed a variation of ESI, which
they called adaptive ensemble spatial analysis (ESA), using a type of local interpolator that is a locally
adaptive version of the IDW method, which analyses (optimizes) the IDW parameters according to the
data present in each cell of each partition. Namely, let

NPk(x) = {(x j, z j) | x j ∈ Pk} ⊂ O, (2.3)

be the set of neighboring observations of (i.e., in the same partition cell Pk as) x. Then, for a fixed
exponent p, in the original IDW version, the interpolated value for all elements in Pk is given by:

Ẑ(x) =

∑
j w j z j∑

j w j
, where w j =

1
d(x j, x)p and (x j, z j) ∈ NPk(x). (2.4)

In its adaptive version, the distance metric d(·, ·) incorporates local anisotropy and orientation
through a linear transformation:

d(x j, x) =
∥∥∥Aθ(x j − x)

∥∥∥
2
, (2.5)

where Aθ is a scaling-rotation matrix parameterized by θ = (a f , φ), representing an anisotropy factor
and an azimuthal orientation, respectively. The parameters p, a f , φ are optimized locally in each cell by
minimizing a cross-validated error, such as the mean absolute error (MAE) under leave-one-out (LOO)
validation:

(pk, a f ,k, φk)∗ = arg min
p,a f ,φ

∑
i

∣∣∣zi − ẐLOO
i

∣∣∣ . (2.6)

This new adaptive version allows for better capture of the local properties of the regionalized
variable, requiring fewer partitions to find convergence in the results [28]. It is also interesting to note
that the overlap that occurs between cells for each position analyzed allows spatial dependencies to be
maintained. This makes it possible to implicitly capture anisotropy (even in very complex situations)
and other spatial characteristics, without the need for explicit parameterization.

2.2.2. ESA posterior samples

In practice, in order to implement the model for the predictive distribution of the expression (2.2),
multiple partitions {P(1), . . . ,P(T )} are sampled from the partition distribution p(P), typically generated
using stochastic tessellation processes such as the Mondrian process [26] or the Voronoi process [27].
Each partition induces a complete interpolation map over S. The final output is a sample from the
predictive distribution at each location:

{z(1)(x), . . . , z(T )(x)}, ∀ x ∈ S. (2.7)

These posterior samples are called ESA samples and are the final stage of the ESA methodology
flow, whose estimate is given by

z∗(x) = T (z(1)(x), . . . , z(T )(x)), ∀ x ∈ S, (2.8)
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where T is a statistic that minimizes some loss function (usually T is the mean and the loss function is
based on the mean squared error or MSE). However, what matters to us here is that the ESA samples
provide the basis for the random field estimation described in the next section.

2.3. Random field estimation

As mentioned above, the SDE model leverages local predictive distribution samples obtained from
ESA. Therefore, instead of aggregating ESA samples to form a single interpolated estimate, the SDE
model uses them to estimate the entire random field.

2.3.1. Local distributional estimation

For a set X = {x1, . . . , xN} ⊂ S of discretized spatial locations (e.g., a regular grid), the ESA method
provides, for each location xi, a set of predictive samples based on neighborhood information gathered
from multiple ensemble partitions.

Let us define the local neighborhood of xi as:

N(xi) =

T⋃
t=1

K(t)⋃
k=1

N
P

(t)
k

(xi) ⊂ O, (2.9)

where N
P

(t)
k

(xi) denotes the set of observed locations contributing to the prediction at xi under the k-
th cell of the t-th tessellation (partition). This union accounts for the variability introduced by the
ensemble strategy and captures a rich and diverse local context for the estimation process.

Using the aggregated information from these neighborhoods, we define:

Zi = {z(1)
i , . . . , z(T )

i } ⊂ R, (2.10)

as the set of ESA samples at location xi –Figure 1 c) shows the relation between Zi and z(t) for
distribution sampling after the application of the ESI/ESA framework. With these samples, the most
basic model we can build at xi is the empirical distribution:

F̂(T )
i (z) :=

1
T

T∑
t=1

I{z(t)
i ≤ z}, (2.11)

where I{·} is the indicator function. In this way, the estimated random field, conditionally defined with
respect to the neighborhood system {N(xi)}Ni=1, is constructed completely locally (position by position)
as follows:

Z̃(T ) | {N(xi)}Ni=1 = (Z̃(T )
1 | N(x1), . . . , Z̃(T )

N | N(xN)), where (2.12)

Z̃(T )
i | N(xi) ∼ F̂(T )

i (z) ∀ i ∈ {1, · · · ,N}. (2.13)

The notation Z̃(T ) | {N(xi)}Ni=1 emphasizes that each local distribution F̂(T )
i is constructed from the

predictive ESA samples Zi derived from the specific neighborhood structure N(xi) around each
location.
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2.3.2. Copula-based joint distribution and spatial structure

In this section, we aim to formalize how the spatial dependency structure inherent in the estimated
random field can be recovered when estimating local empirical distributions pointwise using the SDE
model. Although the field is defined through local distributions, the overlapping structure of the
neighborhoods ensures that dependencies between points are preserved and summarized by a unique
joint copula, yielding a coherent spatial model.

To this end, let us consider the following proposition. Its proof is based on the fact that each local
empirical distribution is measurable with respect to the information contained in its neighborhood.
Overlapping neighborhoods induce a direct dependency between the corresponding distributions. In
the case of non-overlapping neighborhoods, the connectivity of adaptive partition cells guarantees
a chain of overlapping neighborhoods connecting any two points. This spatial connectivity ensures
mutual dependence between all local distributions. According to Sklar’s theorem [30], this implies
the existence of a unique copula that describes their joint distribution, capturing the underlying spatial
dependency structure.

Proposition 1. Under the SDE framework, the joint distribution of the estimated random field
(Z̃(T ) | {N(xi)}Ni=1) is governed by an implicitly learned copula ĈT , which emerges from the
overlapping structure of local neighborhoods N(xi) used to learn F̂(T )

i ∀ xi ∈ X.
Proof. Let (Ω,F ,P) be a probability space, and let Z : S → R be a real-valued spatial random field
defined over a domain S ⊂ Rd. Consider a finite set of discretized spatial locations X = {x1, . . . , xN} ⊂

S. For each location xi ∈ X, the SDE method produces a local sample set Zi = {z(1)
i , . . . , z(T )

i }, from
which the empirical distribution function is defined as

F̂(T )
i (z) :=

1
T

T∑
t=1

I{z(t)
i ≤ z}. (2.14)

Each empirical distribution F̂(T )
i is constructed based on conditioning data supported on the local

neighborhood N(xi). Let FN(xi) ⊆ F denote the sub-σ-algebra generated by the random variables
{Z(s) : s ∈ N(xi)}. By construction, each empirical distribution

F̂(T )
i : (Ω,FN(xi))→ (D,B), (2.15)

is measurable with respect to its local sub-σ-algebra, where D is the space of cumulative distribution
functions on R and B its Borel σ-algebra.

Statistical dependence between F̂(T )
i and F̂(T )

j arises naturally from the spatial configuration of their
respective neighborhoods. If the neighborhoods overlap,

N(xi) ∩ N(x j) , ∅, (2.16)

then the corresponding sub-σ-algebras FN(xi) and FN(x j) share common information, which induces
dependence between F̂(T )

i and F̂(T )
j – Figure 2. If the neighborhoods do not overlap,

N(xi) ∩ N(x j) = ∅, (2.17)
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dependence may still be present due to the spatial connectivity of the ensemble partitions. Since each
N(xi) is contained by a union of overlapping partition cells, the collection of partition cells containing
{N(xi)}Ni=1 constitutes a connected covering of the domain S. More precisely, as shown in Figure 3, for
any pair xi, x j ∈ X, there exists a finite sequence

{xk0 , xk1 , . . . , xkp} ⊂ X, (2.18)

with xk0 = xi and xkp = x j, such that

N(xkl) ∩ N(xkl+1) , ∅, ∀l = 0, . . . , p − 1. (2.19)

N(xi) ∩ N(x j) , ∅

F̂(T )
i F̂(T )

j

Figure 2. Dependence between F̂(T )
i and F̂(T )

j through having a common set of observations
that generated them.

To verify the previous statement, suppose for the sake of contradiction that there exist two
neighborhoods N(xi) and N(x j) such that:

N(xi) N(x j)

F̂(T )
i F̂(T )

j

Figure 3. There is a path of dependencies (via intersections of the extended sets of
observations) that make F̂(T )

i and F̂(T )
j dependent on each other.

(1) Their neighborhoods are disjoint: N(xi) ∩ N(x j) = ∅.

(2) There exists no finite chain of overlapping neighborhoods connecting N(xi) to N(x j).

Since each neighborhood is defined as the union of the observations contained in partition cells of
the ensemble tessellations, this assumption implies that the sets of observations associated with N(xi)
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and N(x j) belong to two disconnected families of partition cells. By construction, the partition cells
cover the entire spatial domain in a connected manner. Specifically, the collection of partition cells
cannot be split into two disjoint subsets with no adjacency or overlap. This ensures that any two sets of
observations contained in the cells must be connected through a chain of overlapping or adjacent cells.
Therefore, the assumption that N(xi) and N(x j) correspond to disconnected families of partition cells
and their observations contradict the fundamental property of any partitioning scheme.

In order to formalize this connectivity scheme, we construct a discrete neighborhood graph G =

(V, E), whose vertex set V and corresponds to the locationsX = {x1, . . . , xN}. An edge (xi, x j) ∈ E exists
if and only if their respective neighborhoods overlap, i.e.,N(xi)∩N(x j) , ∅. The chain of overlapping
neighborhoods that connects any two points, xi and x j, corresponds exactly to the existence of a path
in the graph G between vertices xi and x j. The spatial connectivity of the domain, guaranteed by the
partitioning scheme, implies that this graph G is fully connected (directly or indirectly via a path) by
construction. To verify how this affects mutual dependencies in our random field, we must refer to
some well-known concepts and results from probabilistic graphical models theory [31]. In this regard,
we consider the following lemma.

Lemma: Let the graph G = (V, E) be defined with V = {x1, . . . , xN} and (xi, x j) ∈ E if N(xi) ∩
N(x j) , ∅. Let Ui := F̂(T )

i (zi) for i = 1, . . . ,N be the vector of transformed marginal variables.
Assuming that the joint distribution of U = (U1, . . . ,UN) satisfies the global Markov property with
respect to G and is also faithful to G, then for any i , j, there is a path in G that connects xi and x j if
and only if Ui and U j are not conditionally independent.
Proof. The proof general idea is that a path in G between xi and x j means that there is no set S ⊂ V \
{xi, x j} that graphically separates xi from x j. By the global Markov property, any graphical separation
corresponds to a statistical independence in the distribution. The faithfulness assumption provides the
converse argument, i.e., any statistical independence must correspond to a graphical separation. Since
there is no graphical separation in this case, there cannot be statistical independence between Ui and
U j. Formally:

( =⇒ ): To prove that if there is a path in G that connects xi and x j, then Ui and U j are not
conditionally independent, we will reason by contradiction. The premise of our method implies that
the graph G is fully connected, thus we can always assume that there is a path between xi and x j in G.
This means that there is no set S ⊂ V \ {xi, x j} that graphically separates them. Suppose, for the sake
of contradiction, that Ui and U j are conditionally independent given some set of variables US ′ , where
S ′ ⊂ V \ {xi, x j}. By the faithfulness assumption, this statistical independence (Ui ⊥ U j | US ′) must
imply a corresponding graphical separation in G. Thus, the set of vertices S ′ must graphically separate
xi and x j (⇒|⇐).

( ⇐= ): On the other hand, to prove that if Ui and U j are not conditionally independent, then there
is a path in G that connects xi and x j, we will reason by contraposition. The contrapositive of this
statement is that if there is no path in G that connects xi and x j, then Ui and U j are conditionally
independent. Thus, if there is no path between xi and x j in G, they are neither directly nor indirectly
connected. This implies that there is a set S ⊂ V \ {xi, x j} that graphically separates them, i.e.,
xi ⊥G x j | S . By the global Markov property, a graphical separation implies a statistical conditional
independence. Thus, xi ⊥G x j | S =⇒ Ui ⊥ U j | US . This means that if there is no path in the graph
G, the corresponding variables are conditionally independent. �

It should be noted that both assumptions (Markov global property and faithfulness) are valid by
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construction in the SDE scheme.

Remark on global Markov property: The SDE construction is intrinsically local, i.e., each empirical
distribution F̂(T )

i is generated solely from observations within N(xi). This means that the random
element Ui := F̂(T )

i (Zi) is measurable with respect to the sub-σ-algebra FN(xi). This locality implies
conditional independence in the sense that if two neighborhoods are disjoint and separated by others,
the information in one cannot influence the other except through the overlapping chain. This is exactly
what formalizes the global Markov property, which states that conditional independence corresponds
to graphical separation in G. It is worth to mention that it is the same hypothesis as in classical
Markov random fields (MRFs) on a network, where the random field satisfies Hammersley-Clifford’s
theorem [32] which states that the joint probability factors according to the neighborhood graph if it
is strictly positive [32, 33]. Thus, in our construction U is naturally Markovian with respect to G (for
further details, see the supplementary material).

Remark on faithfulness: The phenomenon of unfaithfulness corresponds to “accidental
cancellations” that could produce independence along paths and is well known in probabilistic
graphical model theory. This generally occurs in parameter configurations that produce unfaithful
topologies in dependency graphs, such as G. The independence constraints that would produce an
unfaithful probability correspond to non-trivial algebraic equalities between the model parameters
(e.g., linear constraints such as c + ab = 0 in simple illustrative cases). Unless these equalities are
maintained identically (a degenerate structural constraint), their solution sets have zero Lebesgue
measure [31, 34, 35]. Within the framework of the SDE, this may be associated with three
phenomena: (i) the set of overlapping neighborhoods, (ii) the local parameters associated with each
cell in the local interpolator, and (iii) certain rare pathological configurations of the observations.
Cases (i) and (ii) do not pose a problem, since it is assumed, by construction, that the SDE partition
generator produces configurations with a non-degenerate probability (i.e., without atoms, or at least
absolutely continuous) and that the local parameters depend continuously on the geometry of the
partition. This makes the probability of sampling an exactly unfaithful configuration zero. Case (iii) is
more of a practical nature and could occur if some observations, with highly punctual support,
represent a pure nugget effect; such cases, given their punctual support, are also zero Lebesgue
measure sets and therefore have zero probability of occurrence.

Thus, this fully connected graph G, far from being a mere combinatorial abstraction, accurately
and faithfully reflects the information connectivity induced by the SDE overlapping neighborhood
system. The global Markov property and faithfulness ensure that the fully statistical dependence
structure of the local distributions {F̂(T )

i }
N
i=1 is captured by the topology of G. Consequently, the

guaranteed connectivity of the SDE method implies that the family {F̂(T )
i }

N
i=1 forms a collection of

mutually dependent distributional elements, as there is always a path of information connecting them.

This intrinsic dependence, which is not assumed but rather emerges from the overlapping
neighborhood structure, and assuming each F̂(T )

i is continuous, which holds almost surely for
sufficiently large T as a consequence of the Glivenko–Cantelli theorem [36, 37], are the necessary
conditions for applying Sklar’s theorem [30]. The theorem guarantees the existence of a unique
copula

ĈT : [0, 1]N → [0, 1], (2.20)

AIMS Mathematics Volume 10, Issue 11, 26351–26388.



26361

such that, for all (u1, . . . , uN) ∈ [0, 1]N ,

P
(
F̂(T )

1 (Z1) ≤ u1, . . . , F̂
(T )
N (ZN) ≤ uN

)
= ĈT (u1, . . . , uN). (2.21)

This copula fully captures the joint dependence structure induced by the overlapping neighborhood
system. �

2.3.3. Convergence of the estimated copula

Let C denote the true copula associated with the joint distribution H of Z(x1), . . . ,Z(xN), and let ĈT

denote the copula implicitly defined by the SDE framework using T ensemble samples.
We are interested in the convergence

ĈT
L
−−−−→
T→∞

C, (2.22)

understood as weak convergence of distribution functions or uniform convergence on compact subsets
of [0, 1]N .

We verify this convergence by establishing the following conditions.

(C1) Consistent marginal estimation. For each xi ∈ X, the empirical distribution

F̂(T )
i (z) :=

1
T

T∑
t=1

I{z(t)
i ≤ z} (2.23)

converges almost surely to the conditional marginal distribution

Fi(z) := P(Z(xi) ≤ z | FN(xi)). (2.24)

Proof. Each sample z(t)
i is drawn via ESA using information from an adaptive neighborhood

N
P

(t)
k

(xi). Under the assumption that the underlying tessellation process is stationary and ergodic,
the strong law of large numbers (SLLN) for conditionally i.i.d. sequences ensures that [38]

F̂(T )
i (z)

a.s.
−−−−→
T→∞

E
[
I{Z(xi) ≤ z} | FN(xi)

]
= Fi(z). (2.25)

�

Remark 1. The assumption of stationarity in the tessellation process ensures that the statistical
properties of the partitioning mechanism do not change across ensemble iterations. In particular,
it guarantees that the neighborhoods N

P
(t)
k

(xi) used to generate each sample z(t)
i are drawn from

a distribution that is invariant with respect to t. Without this invariance, the empirical average
would reflect a mixture of non-homogeneous sampling schemes, thereby violating the conditions
required for almost sure convergence to a well-defined conditional distribution.

Remark 2. In this context, ergodicity implies that averaging over T ensemble realizations yields
convergence to conditional expectations with respect to the neighborhood N(xi). That is, for any
measurable function g,

1
T

T∑
t=1

g(z(t)
i )

a.s.
−−−−→
T→∞

E[g(Z(xi)) | FN(xi)]. (2.26)
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(C2) Stability of the dependence structure. For any pair i , j ∈ {1, · · · ,N}, the empirical copula

Ĉ(T )
i j (u, v) :=

1
T

T∑
t=1

I
{
F̂(T )

i (z(t)
i ) ≤ u, F̂(T )

j (z(t)
j ) ≤ v

}
. (2.27)

converges in probability to the true pairwise copula Ci j(u, v) of the pair (Z(xi),Z(x j)).

Proof. Assuming that z(t) = (z(t)
1 , . . . , z

(t)
N ) denote the t-th ensemble sample drawn from the SDE

framework (Figure 1), the pairs (z(t)
i , z

(t)
j ) are spatially dependent due to overlapping neighborhoods

and data reuse as proved in Proposition 1. Although the Glivenko–Cantelli theorem is classically
stated for i.i.d. sequences, convergence results also hold under weak dependence assumptions [36,
37]. Specifically, suppose that the sequence of ensemble samples satisfies an α-mixing condition,
that is, there exists a sequence of σ-algebras (At), adapted to the ensemble sampling process,
such that the strong mixing coefficients

α(n) := sup
t
{ sup

A∈At , B∈At+n

{|P(A ∩ B) − P(A)P(B)|}} (2.28)

satisfy
∞∑

n=1

α(n)δ/(2+δ) < ∞ for some δ > 0. (2.29)

Under this assumption, the empirical process associated with the transformed pairs
(F̂(T )

i (z(t)
i ), F̂(T )

j (z(t)
j )) satisfies a uniform law of large numbers. Therefore,

Ĉ(T )
i j (u, v)

P
−−−−→
T→∞

Ci j(u, v) (2.30)

holds uniformly on [0, 1]2. This convergence implies that the estimated pairwise copula recovers
the true spatial dependence structure as T → ∞. �

Remark 3. In practice, in our context the α-mixing condition reflects the idea that ensemble
samples z(t)

i and z(t+n)
i generated for the location xi at distant indices t and t + n become

increasingly decorrelated as n → ∞. For the SDE framework, this means that the dependence
between distinct ensemble realizations diminishes when the tessellation process introduces
sufficient variability across ensemble iterations. Such variability ensures that the aggregated
statistics do not remain locked into a single spatial configuration, enabling convergence results
akin to those of independent sampling.

(C3) Compactness and equicontinuity of the copula process. The sequence of empirical copulas
{ĈT }T∈N is relatively compact and equicontinuous in C([0, 1]N), the space of continuous functions
on the unit hypercube with the uniform norm.

Proof. Let z(t) = (z(t)
1 , . . . , z

(t)
N ) denote again the t-th ensemble sample drawn from the SDE

framework (Figure 1). Each marginal observation z(t)
i is transformed via its corresponding

empirical distribution into a pseudo-observation u(t)
i := F̂(T )

i (z(t)
i ) ∈ [0, 1]. The empirical copula is

then defined by:

ĈT (u) :=
1
T

T∑
t=1

I
{
u(t)

1 ≤ u1, . . . , u
(t)
N ≤ uN

}
=

1
T

T∑
t=1

N∏
i=1

I
{
u(t)

i ≤ ui

}
. (2.31)
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which corresponds to the empirical joint distribution function of the transformed data.

This construction satisfies several regularity properties:

(1) The map z(t)
i 7→ u(t)

i is non-decreasing and Lipschitz continuous (with constant 1) if F̂(T )
i is

continuous, which holds almost surely when T is large.

(2) The indicator functions I{u(t)
i ≤ ui} are bounded between 0 and 1, so ĈT (u) ∈ [0, 1] for all

u ∈ [0, 1]N , and thus the sequence {ĈT }T∈N is uniformly bounded.

(3) To show equicontinuity, note that small perturbations in the evaluation point u modify only
a few terms in the empirical sum. More precisely, for any ε > 0, there exists δ > 0 such that

‖u1 − u2‖∞ < δ ⇒ |ĈT (u1) − ĈT (u2)| < ε, (2.32)

for all T . This follows from the fact that the transformed pseudo-observations u(t) are
smoothly spread over the unit hypercube due to the continuity of the marginal distributions
F̂(T )

i , and that the indicator function is almost everywhere continuous in u.

These properties ensure that the sequence {ĈT }T∈N is both uniformly bounded and
equicontinuous. Therefore, by the Arzelà–Ascoli theorem [37], it is relatively compact in
C([0, 1]N). This compactness result is essential, as it guarantees the existence of uniformly
convergent subsequences, and, combined with the convergence of the marginals and stability of
the pairwise dependence structure, leads to the convergence of the empirical copula ĈT to the
true copula C.

�

Remark 4. The existence of such δ follows from the fact that the pseudo-observations
{u(t)}Tt=1 ⊂ [0, 1]N , being obtained through continuous transformations of the marginal data, are
asymptotically dense in the unit hypercube. Consequently, for any ε > 0, one can always find a
sufficiently small δ > 0 such that the number of pseudo-observations affected by a perturbation
of size δ in the evaluation point u remains uniformly small relative to T .

2.3.4. Consequence and generative interpretation

Under conditions (C1)–(C3), the convergence

sup
u∈[0,1]N

∣∣∣∣ĈT (u) −C(u)
∣∣∣∣ P
−−−−→
T→∞

0 (2.33)

follows from classical results in empirical process theory, including the uniform consistency of
empirical copulas [36] and weak convergence theorems for copula processes [37]. In statistical terms,
this means that ĈT is a consistent estimator of C.

Although the above already provides the certainty we were looking for, this can also be reinforced
from another perspective. Since [0, 1]N is a compact metric space and each ĈT defines a valid
probability measure over it, the sequence {ĈT }T∈N is tight. By Prokhorov’s theorem [38], this implies
that the sequence is relatively compact in the topology of weak convergence. Combined with the
uniqueness of the limit, guaranteed by Sklar’s theorem under continuous marginals [30], we conclude
that the sequence ĈT converges in law to the true copula C.
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Remark 5. In compact metric spaces, such as [0, 1]N , tightness and relative compactness are
equivalent. Therefore, verifying tightness (e.g., via uniform boundedness and equicontinuity of the
associated stochastic process) implies that the sequence {ĈT }T∈N of empirical copulas is relatively
compact. This is a key step in establishing convergence in distribution to the true copula C.

Corollary (Consistency of the joint distribution). Under conditions (C1)–(C3), the joint
distribution of estimated random field (Z̃(T ) | {N(xi)}Ni=1) converges in law to the true joint distribution
H, i.e.,

(Z̃(T ) | {N(xi)}Ni=1)
L
−−−−→
T→∞

Z ∼ H(z) = C(F1(z1), . . . , FN(zN)). (2.34)

This confirms that the SDE model asymptotically recovers the full joint distribution of the spatial
random field, including both marginals and dependence structure. In this sense, spatial dependence
is conveyed smoothly through neighborhood geometry and data reuse, rather than through the direct
parameterization of a global model or a family of known parametric copulas.

Finally, from a generative modelling perspective, this mechanism constitutes a remarkable non-
parametric approximation of what in classical geostatistics is known as a random function, or what in
this framework corresponds to the true joint spatial distribution p(Z(x1), . . . ,Z(xN) | O), based on:

p(Z(x1), . . . ,Z(xN) | O) ≈
N∏

i=1

p(Z(xi) | N(xi)). (2.35)

2.4. Practical considerations and applications

In practice, several considerations affect the implementation of the SDE framework.

(a) Quality and quantity of observations. Condition (C1), which ensures consistent marginal
estimation, relies on the convergence of empirical distributions computed at each location xi.
This convergence improves with larger ensemble size T and higher data quality in the local
neighborhoods. Sparse or noisy data in N(xi) can degrade the accuracy of F̂(T )

i , making the
estimation less reliable. Moreover, unbalanced sampling across space may induce heterogeneous
estimation quality. Thus, while theoretical convergence holds under general assumptions,
practical performance depends critically on both the number and informativeness of the
observations that contribute to each neighborhood.

(a) Empirical distributions vs continuous estimates. Throughout this analysis, we have
considered empirical distributions F̂(T )

i due to their theoretical tractability and convergence
properties. However, in applied settings, continuous approximations such as kernel density
estimators (KDEs) or Gaussian mixture models (GMMs) with strictly positive variances may be
preferred. These estimators preserve the essential assumptions behind Conditions (C1)–(C3):

→ They produce smooth transformations z 7→ F̂i(z) that improve numerical inversion and
sampling.

→ They maintain consistency under standard regularity assumptions.

→ They lead to well-behaved pseudo-observations u(t)
i := F̂i(z

(t)
i ) over [0, 1], supporting the

construction of equicontinuous empirical copulas.
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(a) Point estimation and scenario simulation. The distributional estimation model proposed in
this work supports both point estimation and the generation of spatially consistent scenarios.
Point estimation adheres to the same core philosophy as the ESA framework, in which local
information is adaptively aggregated to inform estimates at each location. This approach not only
preserves spatial consistency with the underlying data but also enables data augmentation through
the ensemble structure. Empirical evidence has shown that the ESA approach achieves results
comparable to, and in challenging cases superior to, those of classical geostatistical methods [28].

In addition, the model introduces a new class of geostatistical simulation methods, which we refer
to as ensemble spatial simulation (ESS). This technique, in accordance with the theoretical basis
already presented, has two key properties: (1) it generates results that are highly consistent with
the spatial structure expressed in the data, due to the structure imposed by the latent copula ĈT ,
and (2) it focuses on local statistics due to the pointwise fitting of local distributions (F̂i(z)). The
performance of the ESS is examined in detail through empirical studies presented in the following
sections.

These tools enable spatial inference without requiring parametric assumptions on the global spatial
dependence structure, aligning with the data-driven philosophy of the SDE framework.

3. Case study

As mentioned above, solely as a case study, we use the SDE model to introduce a new class of
geostatistical simulation methods, which we refer to as ensemble spatial simulation (ESS), based on
independent sampling at each location, while preserving the spatial structure through the learned
copula.

3.1. Simulation of scenarios

Zi Z j

p̂i(z) p̂ j(z)

z̃(m)
i z̃(m)

j

Figure 4. The samples z̃(m)
i and z̃(m)

j are dependent on each other because of the dependence
betweenZi andZ j.
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In this configuration, we assume that a univariate probabilistic model p̂i(z) can be fitted to Zi,
yielding a smoothed estimate of the local predictive density for Z(xi) that generalizes the empirical
distribution F̂(T )

i (z). Once local densities are obtained p̂i(z) for all i = 1, . . . ,N, M spatial realizations
are generated by independent sampling, while preserving the spatial structure through the mutual
statistical dependencies demonstrated in Proposition 1 – Figure 4:

z̃(m)
i ∼ p̂i(z), m = 1, . . . ,M. (3.1)

Then, each realization Z̃(m) ∈ RN is given by:

Z̃(m) = (z̃(m)
1 , . . . , z̃(m)

N )>. (3.2)

So the complete output is a matrix:

S = [Z̃(1), . . . , Z̃(M)] ∈ RN×M, (3.3)

which represents a set of spatial scenarios consistent with the inferred posterior uncertainty of ESA.

3.2. Local predictive models and configurations

To assess the sensitivity and robustness of ESS, two local predictive models for estimating p̂i(z) at
each spatial location xi are selected:

3.2.1. Kernel density estimation

Kernel density estimation (KDE) is a non-parametric method that estimates a probability density
function by summing kernel functions placed at each data point. The general form is:

p̂i(z) =
1

T · hi

T∑
j=1

K

z − z( j)
i

hi

 , (3.4)

where T is the size of the ESA sample at xi (Zi), K(·) is the kernel function, and hi is the associated
bandwidth.

In our study, we consider two kernel types:

• Gaussian kernel: K(u) = 1
√

2π
e−

1
2 u2

. It provides a smooth, bell-shaped contribution.

• Top-hat (rectangular) kernel: K(u) = 1
2 for |u| ≤ 1 and 0 otherwise. It is useful for capturing

sudden local changes in density. This is especially necessary in geostatistical data to account for
the nugget effect that the data may present.

As for bandwidth selection, the Silverman method is used to select the bandwidth automatically.
Therefore, our bandwidth is given by:

hi = 0.9 min
(
σi,

IQRi

1.34

)
T−1/5, (3.5)

where σi is the standard deviation and IQRi is the interquartile range of the point ESA sample Zi. It
is worth mentioning that the method of Silverman is preferred over the rule of Scott due to its slightly
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increased robustness to outliers and skewed distributions, common in geostatistical data, providing a
smoother estimate.

3.2.2. Gaussian mixture models

Gaussian mixture models (GMM) represent a probability distribution as a sum of multiple Gaussian
distributions, effective for modelling complex, multimodal or skewed distributions:

p̂i(z) =

K∑
k=1

πk,iN(z|µk,i, σ
2
k,i), (3.6)

where πk,i is the weight of the k-th component at location xi, and N(z|µk,i, σ
2
k,i) is the Gaussian

probability density function with mean µk,i and variance σ2
k,i for the k-th component at the same

location.
For this, we consider two fitting methods:

• Expectation-maximization (EM): An iterative algorithm for finding maximum likelihood
estimates. In general, it is computationally efficient and provides good local optima for
unimodal/bimodal distributions. However, it is prone to overfitting with too many components or
sparse data, which can occur in many cases of the samplesZi.

• Variational inference (VI): Another type of inference method that approximates the true
posterior distribution by minimizing KL divergence. It is less prone to overfitting due to its
inherent regularization structure and provides more robust estimates for smaller sample sizes or
sparse data. However, it generally requires greater computational effort.

Both EM and VI are tested with one component, assuming local Gaussianity, and two components
to capture bimodality or asymmetry.

3.3. Datasets

Two datasets are used: (i) a simulated dataset for controlled testing, and (ii) a real-world dataset for
practical assessment. In both cases, it is essential to define a base scenario, which serves as the “ground
truth” and from which a number of samples are extracted to generate various simulated versions.

3.3.1. Simulated data

For controlled testing, 100 Gaussian simulations were generated using the turning bands algorithm
(TBSIM) [1], which generates stationary and spatially correlated Gaussian fields by integrating one-
dimensional random processes. This provides a benchmark to assess the ability of ESS to implicitly
reproduce known spatial structures.
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Figure 5. Base scenario used in the simulated data case.

One simulation is chosen as the base scenario (Figure 5). From this, three conditioning data sets are
extracted to simulate varying data availability (Figure 6):

(a) 5% Random sample: Moderately dense sampling.

(b) 1% Random sample: Sparse sampling scenario.

(c) Reduced sample (50 samples): Fixed small sample size, regardless of domain size.

Figure 6. Conditioning locations for each sampling case: Reduced sample (left), 1%
Sampling (middle), and 5% Sampling (right).

3.3.2. Real data

To demonstrate practical applicability, a set of real conditioning data is utilized. It is built upon a real
data set taken from the Rı́o Blanco–Los Bronces porphyry copper deposit, which is a breccia complex
located in the Chilean central Andes. These data, obtained from [26], correspond to a 2D cross-
section (north-east horizontal plane) of a three-dimensional drill-hole information. The conditioning
data locations (400 data samples) are presented in Figure 7. The highest values of copper grade are
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concentrated in the center (mainly in south and north places) of the study area, whereas the lowest ones
can be observed in the east and west zones.

Figure 7. Conditioning locations for the real data case.

Figure 8. Estimations used in the real data case: ESA estimation (left), kriging estimation
(middle), and Average of both (right) used as the reference in this case.

Since there is no “true” baseline scenario for the real data, the average of two estimates is considered
as the baseline scenario, one estimate using ordinary kriging (which tends to favor TBSIM) and one
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estimate using ESA (which tends to favor our proposed ESS model) – see Figure 8.

4. Results

This section presents and discusses the results obtained from applying the ESS algorithm with
different local predictive model configurations on both simulated and real-world datasets.

4.1. Visual analysis of ESS realizations

Figures 9 and 10 present visual examples of ESS realizations for simulated (1% sampling) and real
conditioning datasets, respectively. A remarkable observation from both of them is how the ESS
model proves its capability to preserve the spatial structure. Despite the fact that the ESS model is
simulated by independent spatial sampling at each location, the global spatial structure is effectively
preserved through the implicit learning of the underlying latent copula Ĉ that governs the spatial
relationships within the data. The resulting ESS simulations are highly consistent with the ground
truth (for the simulated data) and with each other, evidencing high precision in capturing essential
spatial patterns. This inherent data-driven approach addresses a well-known limitation of traditional
Gaussian and TBSIM simulations (the rightmost column in both Figures 9 and 10), which can
sometimes lead to practically unfeasible scenarios if their explicit variogram models do not accurately
reflect actual spatial variability or if the simulation model is not modified to adapt to harder
constraints [12].

Upon closer inspection, the KDE simulations generally exhibit a more textured appearance than the
GMM simulations. This is to be expected, since KDE is an approach that can more directly reflect the
more marked local variability present in the ensemble. On the other hand, a somewhat contradictory
phenomenon is observed in KDE configurations, which is that the Gaussian kernel tends to show more
texture than the Top-hat kernel. This could be attributed to the local bandwidth hi chosen in the Top-hat
kernel, which, if relatively wide, could produce an unwanted smoothing effect, thereby reducing the
visible texture. In contrast, the Gaussian kernel, although often associated with smoothing, seems to
preserve more fine-scale details in these specific contexts, possibly due to a more nuanced interaction
with the local data density.

This observation about bandwidth and smoothing seems to be corroborated by GMM simulations.
The 2-component GMM configurations tend to appear smoother than their 1-component counterparts.
This suggests the local presence of more than one significant (local) population, which the
2-component model attempts to fit, potentially resulting in a more generalized and smooth local
distribution. An interesting consequence of this is that, in general, GMM realizations tend to be
smooth with highly localized areas of texture. This pattern suggests that ESS, through its construction
of local models, favors the reproduction of local effects and characteristics over strictly global ones,
allowing for adaptive behavior in heterogeneous spatial domains. Both EM and VI fitting methods for
GMMs show similar overall visual characteristics, with VI potentially offering slightly more robust
estimates in regions of sparse data due to its inherent regularization.
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4.2. Global statistics check

4.2.1. First and second order

This section presents a straightforward inspection of the fundamental first-order and second-order
statistics of the ensemble of scenarios: mean, standard deviation, and median.

Figure 11. Box plots of first-order and second-order statistics for the synthetic case. The
solid horizontal line in gray represents the corresponding statistic in the base scenario.

Figure 12. Box plots of first-order and second-order statistics for the real data case.
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Figure 11 displays box plots of these statistics for the synthetic case, where the solid horizontal line
represents the corresponding statistic in the base scenario. Similarly, Figure 12 shows the same for the
real data case.

The means appear quite stable across all cases (synthetic and real), although slightly biased in the
1% and 5% sampling scenarios for the synthetic data. It is important to note, however, that considering
the scale of the plots, this bias is not significant.

Regarding the standard deviation, it is observed that in the synthetic cases, it tends to be lower in all
scenarios for ESS, whereas TBSIM remains stable around the ground-truth. This can be attributed to
the construction of the TBSIM model, which is specifically designed to replicate global second-order
statistics. While this might initially appear as a limitation of ESS, it can be explained by the fact that
the ESS model inherently allows less “freedom” in choosing scenarios, as it anchors itself to the data,
thereby producing a smoothing effect in the results. In the real data case, a more or less expected
outcome is observed, namely that ESS-KDE demonstrates a better ability to capture the local behavior
of the spatial structure, owing to the inherent properties of its fitting method.

The case of the median is particularly interesting, as it appears very stable in the reduced scenario,
likely due to the low expressiveness of the limited amount of data. It gradually becomes more biased
as the data volume increases. In the 5% case, it is once again corroborated that the choice of the fitting
method plays a crucial role in capturing local spatial properties. This is particularly evident in the case
of real data.

4.2.2. Structure of spatial continuity

This section presents the variograms calculated along the principal directions (X and Y axes).
Variograms are statistical tools used in geostatistics to quantify the spatial autocorrelation of a
regionalized variable. They describe the degree of spatial dependence between two data points as a
function of their separation distance and direction, thereby summarizing the second-order statistics of
the spatial field.

Figure 13 shows the average variograms of the scenarios for different sampling cases. The first row
displays variograms along the X-axis, and the second row along the Y-axis. The noisy gray line
represents the reference variogram, calculated from the ground truth. It can be observed that TBSIM
most closely matches the reference, which is expected given its design specifically for reproducing
second-order statistics. However, for the 1% and 5% sampling cases, ESS produces variograms that,
although exhibiting a slightly lower sill (explained by the reduction in variance mentioned
previously), successfully reproduce the shape of the reference variogram. This indicates that ESS
effectively captures spatial continuity. Under reduced sampling, ESS loses more of the variogram
structure compared to TBSIM, likely due to its focus on capturing local statistics exclusively from the
data. This is further corroborated by the remarkable ability of ESS to capture the nugget effect
directly from the data across all sampling cases. For algorithms like TBSIM (or traditional Gaussian
simulation), this is impossible unless explicitly incorporated into their hyperparameters.
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Figure 13. Average variograms for the synthetic data scenarios. The first row shows
variograms along the X-axis, the second row along the Y-axis. The noisy gray line represents
the reference variogram calculated from the ground truth.

Figure 14. Average variograms for the real data simulations. The first row shows variograms
along the X-axis, the second row along the Y-axis.

Conversely, Figure 14 displays the average variograms for simulations using real data. Here, both
ESS and TBSIM demonstrate a similar capacity to capture the structure of spatial continuity, as
evidenced by the consistent shape of their variograms. However, a clear distinction emerges when it is
noted that TBSIM fails to capture the nugget effect (because it was not explicitly included in its
hyperparameters), whereas ESS successfully captures it in all real data cases. It should be noted in
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this regard that the proposed ESS methodology infers spatial dependence through a latent
(non-parametric) copula structure learned directly from the data, while the TBISM method requires
the explicit characterization of the modelled variogram as input (and, therefore, it is easier for it to
establish a correspondence between this spatial continuity reference and the resulting variograms).

4.3. Local statistics check

To assess the reproduction of local statistics, we employed the following methodology. A sample of
random positions within the base scenario was selected. For each position, the empirical distribution
(histogram) of values within a w×w window centered on that position was computed, both in the base
scenario and in each generated simulation. The Jensen-Shannon distance (JSD), DJS (P‖Q), between
the empirical distributions of the windows in the base scenario (P) and those in each simulation (Q)
was then calculated. The JSD is a symmetric and finite measure of similarity between two probability
distributions. It is based on the Kullback-Leibler (KL) divergence and defined as:

DJS (P‖Q) =
1
2

DKL(P‖M) +
1
2

DKL(Q‖M), (4.1)

where M = 1
2 (P + Q). The JSD ranges from 0 to 1, with 0 indicating identical distributions and

1 indicating maximum dissimilarity. Its properties, including its relationship with KL divergence,
allow it to compare distributions across all their moments, making it a robust metric for assessing the
similarity of empirical distributions. The average JSD across all selected positions was then computed;
a lower average JSD indicates better reproduction of local distributions. We tested this for window
sizes w = 7, 13, 19, where smaller w values are assumed to capture more localized statistics.

Figure 15 presents the results for the synthetic data. It can be seen that for all sampling cases and
for the smallest window size (w = 7), ESS consistently shows better performance in capturing local
behavior. The ESS-KDE configuration yields the best results, which is consistent with its observed
ability to capture the nugget effect. As the window size increases, the performance of TBSIM improves,
which is consistent with its design. Notably, even for the largest window size (w = 19), ESS remains
competitive with TBSIM in the 5% sampling case.

However, with real data (Figure 16), where TBSIM is no longer operating under its ideal conditions
(i.e., when explicit variogram modelling for real data might be challenging or less accurate), ESS
demonstrates better performance across all cases.
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Figure 15. Jensen-Shannon distance comparison for synthetic data. Box plots show the
distribution of JSD values for different sampling cases and window sizes (w=7, 13, 19).
Lower values indicate better local statistics reproduction.

Figure 16. Jensen-Shannon distance comparison for real data. Box plots show the
distribution of JSD values for different window sizes (w=7, 13, 19). Lower values indicate
better local statistics reproduction.
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4.4. Similarity measurement

It is crucial to quantify the observation from the visual inspection section that ESS, as a data-
driven model, does not generate infeasible simulations. While this is inherently non-trivial to measure,
given its dependence on the specific characteristics of the Z(xi) distribution, measuring the ‘similarity‘
between the base scenario and the generated simulations seems a pertinent approach, assuming that
infeasible scenarios tend to be less similar to the base scenario.

To quantify this similarity, we employ the structural similarity index measure (SSIM), a widely
recognized metric in image analysis literature [39]. Formally, SSIM between two images (or spatial
fields) x and y is defined as:

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ, (4.2)

where l(x, y) is the luminance comparison function, c(x, y) is the contrast comparison function, and
s(x, y) is the structure comparison function. These are typically defined as:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(4.3)

s(x, y) =
σxy + C3

σxσy + C3
.

Here, µx, µy are the means of x, y; σx, σy are the standard deviations of x, y; and σxy is the covariance
of x, y. C1,C2,C3 are small constants to prevent division by zero, and α, β, γ are weights, typically set
to 1. The SSIM metric yields values in the range [0, 1], where a value of 1 signifies perfect similarity
between the compared images. Similar to the local statistics check, this method also employs a moving
window over the images to compute the statistics. We also tested for window sizes w = 7, 13, 19.

Figure 17 shows the results for the synthetic data. It can be seen that ESS generally demonstrates
better performance across all cases. Interestingly, ESS-KDE (particularly with the Gaussian kernel)
shows a decrease in performance in some cases, becoming comparable to TBSIM. This does not
imply the generation of infeasible scenarios; rather, this is explained by the known tendency of SSIM
to heavily penalize salt and pepper noise [39], which is highly compatible with the nugget effect
effectively captured by these models. This phenomenon is observed more explicitly in the real data
case shown in Figure 18.
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Figure 17. SSIM comparison for synthetic data. Box plots show the distribution of SSIM
values for different sampling cases and window sizes (w=7, 13, 19). Higher values indicate
greater similarity.

Figure 18. SSIM comparison for real data. Box plots show the distribution of SSIM values
for different window sizes (w=7, 13, 19). Higher values indicate greater similarity.
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4.5. Computational performance

A relevant aspect of the proposed methodology is its speed in performing a simulation of a spatial
variable. In order to contrast this aspect between the different ESS variants with the way of estimating
the local distribution, as well as with respect to the TBSIM simulation methodology, an experiment
was carried out in which 1000 realizations of the base scenario used in the simulated data case (Figure
5). Table 1 shows the results of the experiments performed for the different sampling cases considered
(reduced, 1% and 5%), shown in Figure 6. In this experiment, we considered the separation of the
total time into: (i) modelling time tM by an expert person before the application of the simulation
methodology, (ii) base time tB which includes the different pre-computations necessary to optimize the
referred process to generate each realization, and (iii) the simulation time tS considered to generate the
1000 realizations of the spatial variable.

Table 1. Calculation times for simulation methods (in seconds) to generate 1000 realizations.

Sampling reduced Sampling with 1% Sampling with 5%
Methods tM tB tS tM tB tS tM tB tS

ESS-KDE(Gaussian) 0 11 4 0 285 4 0 5919 4
ESS-KDE(Top-hat) 0 11 8 0 285 8 0 5919 7

ESS-GMM(EMM, 1 comp) 0 11 88 0 285 80 0 5919 71
ESS-GMM(EMM, 2 comp) 0 11 85 0 285 81 0 5919 71

ESS-GMM(VI, 1 comp) 0 11 60 0 285 58 0 5919 55
ESS-GMM(VI, 2 comp) 0 11 207 0 285 196 0 5919 163

TBSIM * 7 354 * 210 353 * 5509 356

It is verified that for the different ESS variants, we have the same times tB (as well as the null time
tM = 0 in each case). This is due to the fact that this time is considered in the stages prior to the
generation of the realizations: (i) partitioning, (ii) parameter adjustment in each cell, and (iii) creation
of the ESA samples. On the other hand, the generation of the realizations (considered in time tS )
includes the adjustment of the local distribution and the sampling of the 1000 values for each position,
information with which each of the 1000 spatial realizations is constructed. Naturally, the impact of
each local distribution adjustment methodology is verified at each of the reported times tS .

[*] It should be noted that obtaining results with the TBSIM methodology depends on parameters
that are adjusted by expert judgement. This naturally entails an associated modelling time tM, which
depends to a large extent on the expertise of the person carrying out the analysis and the means used
to do so (e.g. using semi-automatic tools will probably take less time than just manually adjusting
the parameters). In contrast, the automatic methodology proposed in ESS has no time associated with
modelling.

On the other hand, the choice of parameters in TBSIM has an impact on the computational time
associated with the computation prior to a realization, i.e., the base time tB. In this sense, the time
reported in Table 1 with the TBSIM method was obtained considering a kriging conditioning that uses
a sample search in a neighborhood of 50 units, both in the x-axis and in the y-axis. Increasing the
search neighborhood, while ideal in theoretical terms, is impractical in terms of how it increases the
associated computational time for this methodology. Thus, unlike the ESS methodology that considers
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all available samples for the estimation of each position in space, the TBSIM method only considers
one neighborhood to obtain computation times of the same order as ESS.

Comparing the different sampling cases studied, it is verified that the time base tB increases as the
amount of conditioning data increases.

5. Discussion

The proposed framework extends ensemble-based approaches such as ensemble spatial
interpolation (ESI) and adaptive ensemble spatial analysis (ESA). These methods generate multiple
conditional predictions for each location, which form the basis for estimating local distributions. A
central theoretical result established in this work is that, although these distributions are computed
independently, the overlapping neighborhood structure induces a unique statistical dependency across
the spatial domain. This dependency is rigorously characterized by a statistical latent copula that
emerges from the data, showing that the spatial structure can be captured without the need to specify a
global model explicitly. Furthermore, it is proven that, as the number of ensemble predictions
increases, the estimated marginals converge to the true conditional distributions, and the copula
describing spatial dependencies converges to the true structure. These results ensure that the full joint
distribution of the spatial field is consistently approximated in a non-parametric and data-driven
manner.

An additional theoretical aspect concerns the tessellation process. For the copula convergence to
hold, the process must be stationary, ergodic, and generate weakly independent samples. While these
requirements are difficult to guarantee in observational data, they can be transferred to a latent sampling
process designed to satisfy them, thereby providing a theoretical basis for the approach.

Therefore, the uncertainty associated with the proposed model is completely encoded intrinsically
in the estimated joint distribution of the data. Thus, any probabilistic statement about the field
(marginal, conditional, or joint) can be derived directly from this distribution. This represents a new
approach compared to traditional geostatistical frameworks, where the quantification of uncertainty is
often external to the model and requires measures such as coverage rates, prediction intervals, or
calibration metrics calculated over realizations to assess the variability of predictions.

Just to show a relevant case study, the framework was evaluated in one of its most prominent and
promising applications, namely the generation of simulated scenarios through joint spatial simulation
(ESS). Visual inspection of the generated simulations suggested that the model is capable of
reproducing the overall spatial structure and texture of the data. This observation is consistent with
the theoretical assertion that spatial coherence can arise solely from local information. Different local
estimation methods appeared to influence the visual results. In this regard, KDEs tended to capture
small-scale variability and features such as the nugget effect, while GMMs often produced smoother
and more uniform results, reflecting their adaptation to multimodal local populations.

In terms of statistical properties, ESS produced overall averages and variability that generally
matched the original data, although in some cases the simulations showed lower dispersion. This
behavior can be interpreted, on the one hand, as greater adherence to the observed data and, on the
other, as SDE seeking to approximate the complete distribution, with all its moments, compromising
adherence to specific moments (first and second order, as in the case of TBSIM). The choice of local
estimator appeared to affect the ability to capture small-scale features, and kernel-based methods
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provided richer variability.
Spatial continuity was also reasonably reproduced, suggesting that the framework can capture how

spatial values vary with distance and direction. It should be noted that the nugget effect (representing
microscale variability or measurement error) appeared naturally in the simulations, without the need
to specify it manually. However, it should be remembered that ESS is only a case study in this work
and that there is still some way to go before it can compete with established methods such as TBSIM
in this regard.

Performance at the local scale was encouraging. Quantitative assessments indicated that the method
is effective in capturing fine-scale variability, particularly when kernel-based estimators were used.
A standard image similarity index was employed to evaluate spatial realism, and in most cases the
proposed approach compared favorably to conventional methods. Slight reductions in similarity were
occasionally observed, possibly reflecting the preservation of small-scale noise, which the similarity
metric may penalize despite its fidelity to real structure.

From a practical standpoint, the method showed computational efficiency. It reduces the need for
manual setup and expert intervention, and enables fast simulation generation – especially when kernel-
based estimators are employed. These properties suggest that the framework could be well suited for
applications requiring large numbers of spatial realizations.

Looking ahead, several avenues of research appear promising. One direction involves developing
more adaptive, data-driven techniques for selecting and tuning local distribution estimators, which
could improve performance in complex and heterogeneous environments. Another concerns the
systematic evaluation of robustness and sensitivity under challenging conditions such as sparse data
and high noise levels, in order to better understand the practical limitations of the method. Although
the theoretical results provide guarantees of asymptotic convergence, further work is needed to
investigate finite-sample effects, approximation errors associated with different estimator choices, and
the impact of variable data quality. Scalability also remains an important challenge; advances in
algorithmic design, including parallel computing and efficient approximation methods, may allow the
approach to be applied to very large datasets and higher-dimensional problems. Extensions to
incorporate auxiliary information such as covariates, temporal dynamics, or multivariate spatial fields
could further broaden the applicability of the framework. Finally, integrating recent advances in
machine learning may enable more accurate and flexible local distribution estimation, better capturing
intricate spatial dependencies that conventional methods might overlook. The development of
advanced tools for uncertainty quantification and visualization also represents an important step, as
these would support decision-making by allowing users to interpret the confidence and variability of
spatial predictions more effectively.

6. Conclusions

We have introduced a novel, non-parametric, and decentralized geostatistical methodology for
estimating spatial random fields. The central theoretical contribution lies in the identification of a
latent statistical copula that naturally emerges when local probability distributions are combined
through overlapping adaptive neighborhoods. This emergent copula captures spatial dependence
without requiring a predefined global model and, under mild regularity conditions, converges to the
true dependency structure. In this way, the framework provides a consistent non-parametric estimator
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of the joint distribution of a spatial random field.
This theoretical insight may have important implications for spatial statistics. It indicates that global

spatial coherence could emerge from local information alone, with latent copulas serving as a possible
link between local estimation and global structure. Such a perspective could open new avenues for
understanding and modelling spatial processes in a decentralized, data-driven manner.

Future theoretical work should further characterize the convergence properties of the emergent
latent copula, study finite-sample effects, and extend the framework to more complex settings such as
multivariate or spatio-temporal fields. Further exploration of these foundations could consolidate the
role of local–to–global latent copula emergence as a cornerstone in modern non-parametric
geostatistics.
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Supplementary

Code availability

The Spatialize library, which implements the proposed methodology (SDE with the case study of
ESS), is available on GitHub (https://github.com/alges/spatialize).

Statements of relevant theorems

[Sklar theorem] Let H : Rd → [0, 1] be a joint cumulative distribution function (CDF) with marginals
F1, . . . , Fd. Then there exists a copula C : [0, 1]d → [0, 1] such that for all x = (x1, . . . , xd) ∈ Rd,

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (6.1)

If each Fi is continuous, then the copula C is unique. If some of the Fi are not continuous, then C
is uniquely determined on Ran(F1) × · · · × Ran(Fd).

Conversely, if C is a copula and F1, . . . , Fd are univariate CDFs, then the function

H(x1, . . . , xd) := C(F1(x1), . . . , Fd(xd)) (6.2)

is a valid joint CDF with marginals F1, . . . , Fd.
[Glivenko–Cantelli theorem] Let X1, X2, . . . be a sequence of independent and identically distributed
(i.i.d.) real-valued random variables with cumulative distribution function F. Let Fn be the empirical
distribution function defined by:

Fn(x) :=
1
n

n∑
i=1

I{Xi ≤ x}. (6.3)

Then,
sup
x∈R
|Fn(x) − F(x)|

a.s.
−−−→
n→∞

0. (6.4)

In other words, Fn converges uniformly almost surely to the true distribution function F.
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[Arzelà–Ascoli theorem] Let F ⊂ C(K), the space of continuous real-valued functions on a compact
metric space K, equipped with the uniform norm. If F is uniformly bounded and equicontinuous,
then F is relatively compact in C(K). That is, every sequence { fn} ⊂ F has a uniformly convergent
subsequence.
[Uniform consistency of empirical copulas theorem] Let {(X(1)

t , . . . , X(N)
t )}Tt=1 be an i.i.d. sample from

a continuous multivariate distribution H with continuous marginals F1, . . . , FN and copula C. Let F̂i

denote the empirical distribution of the i-th margin, and let ĈT be the empirical copula defined by

ĈT (u) :=
1
T

T∑
t=1

N∏
i=1

I
{
F̂i(X

(i)
t ) ≤ ui

}
, u ∈ [0, 1]N . (6.5)

Then,
sup

u∈[0,1]N

∣∣∣∣ĈT (u) −C(u)
∣∣∣∣ a.s.
−−−−→
T→∞

0. (6.6)

[Weak convergence of the empirical copula process theorem] Under suitable regularity conditions,
the empirical copula process √

T
(
ĈT (u) −C(u)

)
(6.7)

converges in distribution in `∞([0, 1]N) to a tight Gaussian process with mean zero and covariance
structure determined by C.
[Prokhorov theorem] Let {µT }T≥1 be a family of probability measures on a separable metric space. If
the family is tight, that is, for every ε > 0, there exists a compact set Kε ⊆ R

d such that

µT (Kε) > 1 − ε for all T, (6.8)

then the family {µT } is relatively compact in the topology of weak convergence. That is, every sequence
{µTk} has a subsequence that converges in distribution to a probability measure.
[Hammersley–Clifford theorem] This theorem establishes a direct equivalence between graphical
separation properties and the factorization of the joint distribution into local components. Before
stating the theorem, it is important to consider the following two definitions.

[Global Markov property]: Let G = (V, E) be an undirected graph, and let {Xv : v ∈ V} denote
a collection of random variables indexed by V . A strictly positive probability distribution P on these
variables is said to satisfy the global Markov property with respect to G if, for any disjoint subsets
A, B, S ⊆ V ,

S separates A and B in G =⇒ XA ⊥⊥ XB | XS under P.

[Clique]: A clique C ⊆ V is a subset of vertices such that every pair of distinct vertices in C is
connected by an edge in G. A clique is maximal if it is not properly contained in any other clique.

[Theorem statement [32]]: Let P be a strictly positive probability distribution over {Xv : v ∈ V}.
Then the following are equivalent:

(1) P satisfies the global Markov property with respect to G.

(2) P admits a factorization of the form

P(x1, . . . , x|V |) =
1
Z

∏
C∈C

ψC(xC),
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where C is the set of maximal cliques of G, ψC are strictly positive potential functions, and Z is a
normalizing constant.

Remark. This result implies that once a distribution is strictly positive, the conditional independence
relations encoded by the graph G are exactly those reflected in its factorization. In our setting, the
neighborhood graph G constructed from overlapping partitions plays the role of such an undirected
graph. By ensuring that G is fully connected, we guarantee that dependencies can be transmitted along
any path of overlapping neighborhoods. Consequently, the latent copula learned from local marginals
can be understood as an estimator of the joint distribution that is consistent with the factorization
induced by G.
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