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Abstract: In this study, we investigate the stochastic modified Korteweg-de Vries (SmKdV) equation,
which is driven in the Itd sense by advection noise. We show that by solving certain deterministic
counterparts of the modified Korteweg-de Vries with an extra diffusion term (for short DmKdV),
and then combining the results with a solution of stochastic ordinary differential equations, the exact
solution of the SmKdV equation may be discovered. We derive soliton solutions for the DmKdV
problem using two distinct methods: the extended tanh function approach and the exp(—y(n))-
expansion method. Additionally, we study how the advection noise affects the solutions of the SmKdV
equation by presenting several 3D graphs using a MATLAB program.
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1. Introduction

Partial differential equations (PDEs) are incredibly important because they are used to describe
various phenomena in nature, engineering, and other scientific fields. The solutions to PDEs allow us to
understand and predict how systems change over time and space, which is crucial for solving real-world
problems. Recently, many authors have used a number of methods to obtain the exact solutions, such
as the exponential rational function method [1], the modified tanh method [2], the generalized extended
function method [3], the planner dynamical scheme [4], the generalized Kudryashov technique [3, 6],
the ¢°-model expansion scheme [7, 8], the modified F-expansion method [9], the Riccati equation
approach [10], and the improved modified extended tanh [11]. By understanding these solutions, we
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harness the power of mathematics to better navigate and shape the world around us, highlighting the
indispensable role of PDEs in both science and everyday life.

The modified Korteweg-de Vries (mKdV) equation is an important mathematical model used to
analyze waves in various physical settings, particularly in shallow water. It is an extended version
of the classical KdV equation, which originally described the propagation of solitary waves in fluid
dynamics. One key feature of the mKdV equation is its ability to handle different types of wave
profiles, including those that arise in real-world situations, such as in certain ocean waves or in plasma
physics. Additionally, the mKdV model is employed in other areas like fluid dynamics, nonlinear
optics, and even in some areas of quantum physics, illustrating its versatility and significance across
different disciplines [12—15].

One interesting aspect of the mKdV equation is how it behaves with random fluctuations. In simple
terms, random fluctuations refer to unexpected changes or disturbances that can occur in a system,
and studying how these fluctuations impact solutions to the mKdV equation helps us understand real-
world phenomena better. When we examine waves governed by the mKdV equation, we often find
that they can form stable structures called solitons. These solitons are wave packets that maintain
their shape while traveling at constant speeds. However, when random fluctuations are introduced into
the system, they can disrupt these soliton solutions. For instance, in a water wave setup, changes in
wind or additional waves can lead to unexpected variations in height or speed. Researchers study these
random fluctuations to assess how robust soliton solutions are to disturbances and how the overall wave
behavior is influenced by randomness. More information in this direction can be found in the following
papers [16,17].

The following SmKdV equation perturbed by advection noise is taken into consideration in this
work:

dy + [’)/lyzyx + 72~yxxx]dt = 8«yxd(Wa (11)

where Y denotes the wave’s amplitude; y,Y2Y, represents the wave’s self-interaction; y,Y ., is the
dispersive term; y; and y, are non-zero real constants; “W(t) is the standard Wiener process and, it
depends only on t; € is the intensity of noise.

The significance of the mKdV equation has led numerous authors to obtain the exact solutions for
it by utilizing various methods, including the tanh method [18], the first integral method [19], the
exp-function method [20], the (G’/G)-expansion [21], the tanh method [22], the bifurcation [23], the
hyperbolic function approach [24], and the Sardar-subequation method [25]. Mohammed et al. [26]
used the mapping method to derive the exact solutions of SmKdV Eq (1.1) perturbed by multiplicative
noise in the Stratonovich sense in the form &Y o ‘W,, while, Mohammed and Al-Askar [27] used
two different methods, such as the generalizing Riccati equation mapping and Jacobi elliptic functions
methods, to acquired the exact solutions of Eq (1.1) with multiplicative noise in the Itd sense in the form
eYW,. Furthermore, the exact solutions of the Wick-type stochastic mKdV equation were obtained
by Liu [28] and Dai et al. [29] using the modified mapping approach and the exp-function method,
respectively. While Yuan et al. [16] used the Darboux transformation method to find the stochastic
soliton solutions of Eq (1.1) with stochastic term in the form W(t)+12Y Y, fot Wi(s)ds.

The main motivation of this work is to obtain the exact solutions to the SmKdV Eq (1.1) with
advection noise in the form £Y,'W,. In order to accomplish this, the SmKdV equation is divided
into two equations. The stochastic ordinary differential equation (SODE) is the first equation, and the
deterministic mKdV (DmKdV) equation is the second one that is derived from the SmKdV equation
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using It6 calculus and suitable transformation techniques. By using the exp(—y/(n))-expansion method
and the extended tanh function method, we acquire the solutions of the DmKdV equation. After
that, by combining the results that we obtained with a solution of the SODE, we obtain the solutions
of the SmKdV Eq (1.1). One significant reason for studying the mKdV equation with advection
noise is its ability to help scientists understand how irregularities and random influences can impact
wave formations. For example, in the ocean, waves do not always travel smoothly due to changing
conditions. The mKdV model can demonstrate how noise, which is essentially a collection of random
forces, can cause phenomena like rogue waves exceptionally large and dangerous waves that appear
unexpectedly. Therefore, we present some graphics created using MATLAB tools to demonstrate the
impact of the stochastic term.

The outline of this paper is as follows: In the following section, we present a lemma for breaking
down the SmKdV Eq (1.1) into a SODE and DmKdV equation with an additional diffusion term. In
Section 3, the solutions for the DmKdV equation are found. In Section 4, the solutions of the SmKdV
Eq (1.1) are obtained. In Section 5, we present the physical meaning and the effect of the stochastic
term on the obtained solutions. Finally, the results of the article are presented.

2. Preliminaries

The Wiener process {W(t), t > 0} is a fundamental concept in probability theory and mathematical
finance [30]. It is a continuous-time stochastic process that describes the random movement of particles
suspended in a fluid, which was first observed by the botanist Robert Brown in the 19th century. In
mathematical terms, a Wiener process “W() is characterized by several key properties. Firstly, it starts
at zero, meaning (‘W(0) = 0). Secondly, its paths are continuous. Moreover, the increments of the
process are independent, which implies that the movement during one time interval does not affect
the movement during another. Another important feature of the Wiener process is that its increments
are normally distributed. Specifically, for any two time points s and ¢ where s < ¢, the increment
W(t) — W(s) follows a normal distribution with a mean of zero and variance equal to 7 — s.

The next lemma (see for more detail [31]) demonstrates that the exact solutions of the SmKdV
Eq (1.1) can be acquired by solving deterministic counterparts of the mKdV equation with an extra
diffusion term and merging the result with the solution of SODE: X;(¢) = x + eW(¢).

Lemma 2.1. The SmKdV Eq (1.1) has the solution Y(t, x)= U(t,X,) for t € [0,T], where U is the
solution of the DmKdV equation:
2

U+ UU, + 7 U, + %ﬂm =0, (2.1)
where X, is the solution of the following SODE:
dX, = edW, (2.2)
with initial values
Xo = x.

Proof. By applying the following It6 formula to the solution X; of Eq (2.2) with the transformation
U(t, X,) where U(t, x) is the solutions of the deterministic (2.1) (see [32]):
ou ou 10*U 10*U

x)= Do Max + 2
AU X)) = Zrdi+ ZodXi+ 5755 20

’U

dX,)?
X"+ oo

(dt)* +

drdX,.
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Using (2.1), and (2.2), we get

2 2
dULX) = [yUss - UU, - %(lex]dt + U dW + %(lexdt
= [-Uu — i UUdL + U AW,
where we used (df)? = dtdW = 0 and (dW)? = dt. Since Y = U, then we obtain Eq (1.1). o

3. Wave equation of DmKdV equation
To derive the wave equation for DmKdV Eq (2.1), we apply the next transform:
U(t,x) =Z(n), n = kx + At, 3.1
where Z is a deterministic function. We see that
U, =kZ', Uy =kKZ", U =K°Z", U = 2Z'. (3.2)
Plugging Eqs (3.1) and (3.2) into Eq (2.1), we have
AZ + k22 +EnZ” + %2/82' =0. (3.3)

Integrating Eq (3.3) once and putting the constant of integration to be zero, we get

Z'+H,Z + H,Z+H,Z> =0, (3.4)
where )
& A Y1
Hy=—— H =— and H, = ——.
0= 2kyy’ N T I3y, MO T 30,

4. Solutions of DmKdV equation

In this section, we acquire the solutions of the DmKdV Eq (2.1) by applying the exp(—y(n))-
expansion method and the extended tanh function method. These two methods were chosen due to their
effectiveness in handling nonlinear dispersive wave equations. The exp(—(n))-expansion method is
capable of producing a wide variety of solitary wave and exponential solutions, while the extended tanh
function method is straightforward to apply and suitable for equations with polynomial nonlinearities
and it is a generalized version of the classical tanh method. Due to the existence of the term Z’ in
Eq (3.4), we can not apply some methods such as the mapping method, the Sarder method, and the
¢®-expansion scheme.

4.1. The exp(—y/(n))-expansion method

Consider the exp(—y/(n7))-expansion method that is stated in [33,34]. Assuming the solutions of
Eq (3.4) as

Zm) = Z Lee™ ™ such that £y # 0, 4.1)

k=0
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where the constants £y, {; ..., {y are to be computed later, and ¥ = y(n) satisfies:

W' = b+ aexp(y) + exp(—y), 4.2)

where a and b are constants. Utilizing the homogeneous balance rule, we equate the highest power of
Z3 with the highest power of Z” in (3.4) as:

3m=m+2 = m=1.

Hence, Eq (4.1) with m = 1 becomes

Z) = Lo + tilexp(=y(m)]. (4.3)
Substituting Eqgs (4.2) and (4.3) into Eq (3.4), we attain

(251 + Hzf?)€_3w + (3b€1 -kt + 3H2€0€%)€_2¢' + (2(151 + bzfl - bH()fl

+0 Hy + 3H,050)e™ + (ably — aHoly + H by + Hy () = 0.
Putting the coefficients of exp(—«y) equal to zero, for k = 3, 2, 1, and 0, we obtain
20, + Hyl = 0,
3bl, — kt) + 3Hybot; = 0,

2al, + b*t; — bHyt, + €, H, + 3H, (36, = 0,

and
abl, — aHyt, + H\ty + H,6 = 0. (4.4)

Solving these equations, we get

/—Hl /—2 3H,; 1
lo=++[—, i =+x]—,a=—, b==-Hy+ \2H,. 4.5
0 H, 1 H, a ) 3 0 1 4.5)

Substituting the values of £, and ¢; into Eq (4.3), we have

—-H -2
Zap = i( Vi - ‘/E xp(-u() (4.6)

Equation (4.2) has many solutions based on the values of a and b as follows:
Case I: If Q = b* — 4a > 0 and a # 0, then Eq (4.2) has the solutions:

\/ﬁtanh(@(n + 8)) +b
—-2a ’

Y(n) = In 4.7)

and
VO coth(*/Tﬁ(n + 8)) +b

—2a ’

W) = 1n( (4.8)
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where & is the integration constant.
Now, the solutions of DmKdV Eq (2.1), by substituting Eqs (4.7) and (4.8) into Eq (4.6) and
utilizing Eq (3.1), are

o, [ 2a
U, x) = 2| | =+ ] — ; (4.9)
( e Ve D anh( Lekx+ 204 8) + b)
—H1 -2 2a
Ut x) = +( | =2 + /= . (4.10)
( e Ve \Qcoh( Likx+ 21+ 8) + b)

Case II: If Q < 0 and a # 0, then Eq (4.2) has the solutions:

and

V-Q tan(\/%(n + 8)) -
Y(n) = ln( 5 ) 4.11)
a
and
-V-Q cot(@(n + 8)) -
Y(n) = 1n( 3 ) 4.12)
a
Thus, the solutions of DmKdV Eq (2.1), by plugging Eqs (4.11) and (4.12) into (4.6) and utilizing
Eq (3.1), are
-H -2 2
U0 =+ = [+ a ) (4.13)
2 2 mtan(@(n+8))—b
and

-H,
Ut x) = + 1/ + 22 (4.14)
H; H =g Qcot V=0 (n+8))+b)

CaseIIl: If a = 0 (i.e H; = 0) and b # 0, then the Eq (4.2) has the solution:

-b

—_1 ( ) 4.15
o = =0 + 58) (4.15)

Hence, the solution of DmKdV Eq (2.1), by plugging Eq (4.15) into Eq (4.6) and utilizing Eq (3.1), is

-2 -b
UG, = =] ) 4.16
0 = £\ I\ T expiokr + 58) (4.16)
Case IV: If Q =0, a # 0 and b # 0, hence the solutions of Eq (4.2) is
4+ 2b(n+E)

-1 (_—) 417
Y(@) = In{—— W+E) (4.17)

Therefore, the solution of DmKdV Eq (2.1), by plugging Eq (4.17) into Eq (4.6) and utilizing Eq (3.1),

is
_ —H, -2 bPkx+ AU+ 8E)
(u(t’x)‘i(\lﬁ_ \/E4+2b(kx+m+8)))' (4.18)
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4.2. Extended tanh function method

Now, we use the extended tanh function method [35] to get the solutions of DmKdV Eq (2.1).

Supposing the solutions of Eq (3.4), with N = 1, are as follows:
Zm = ao + a1 F,

where ¥ solves
F'=F+w.
Substituting Eq (4.19) into Eq (3.4), we have
Qay + Har)F> + (a1 Hy + 3ot H))F* + Qoa,

+a1Hy + 3agalH2)77+(wa1H0 + aoH, + 0/(3)H2) =0.
Putting the coeflicients of F  equal to zero, for J = 3, 2, 1, and 0, we get
2a; + Hzoz? =0,
a Hy + 3a/ocﬁH2 =0,
2wa; + a H + 3a§a1H2 =0,

and
wa Hy + agH, + CL’?)HZ =0.

By solving these equations, we have

+ Hy . H 2 and ! H?
Qp=t+t————, @] = F{[—, = w = —-—H?>.
T 3v=2E, HY ' 90 3610

Since @w < 0, hence the solutions of Eq (4.20) are
F () = - V- tanh ( V=am),
F () = — V=w coth ( V=am),
F (1) = ~V=w( coth(V=4wn) + csch(V=4an)),

and

Fn) = _71 \/5( tanh(% V-a@n) + coth(% ﬁn)),

(4.19)

(4.20)

(4.21)

(4.22)
(4.23)

(4.24)

Now, the solutions of DmKdV Eq (2.1), by plugging Eqs (4.21)—(4.24) into (4.19) and using Eq (3.1),

are

H H
UL, x) = iﬁ(l + tanh (?O(kx + /U))),

H, H
U(t, x) = 13_—\/‘;_}12(1 + coth (Fo(kx + /lt))),

Ho (1 + coth (?(kx + /lt)) + csch(%(kx + 1)),

3v-2H,

Hy

6 V-2H,

Ut x) ==

and
U, x) =+

(2 + tanh (%(kx + /lt)) + coth (%(kx + /lt))).

(4.25)

(4.26)

(4.27)

(4.28)
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5. Exact solutions of SmKdV equation

To acquire the exact solutions of the SmKdV Eq (1.1), let us integrate Eq (2.2) from O to ¢:
X, =x+eW(). (5.1

Now, using Lemma 2.1 and the previous section to obtain the solutions of the SmKdV Eq (1.1) as
follows:

5.1. The exp(—y/(n))-expansion method
Case I: If Q = b* — 4a > 0 and a # 0, then the solutions of the SmKdV Eq (1.1) are

Y0 =+ [l 24 ) (5.2)
e V2 VG tanh( Dk + ke W) + A1+ ) + b

Y(t,x) = i(\/_—Hl N b 2 ) (5.3)
e VI \Qcoth( Lk + sk W) + A1+ ) + b

Case II: If Q < 0 and a # 0, then the solutions of the SmKdV Eq (1.1) are

—H] _2 261
Yiim = s \/:_ |=2 , (5.4)
( H, H; \/Etan(v%ﬁ(kx + ekW(t) + 8)) - b)
H, —2a
Y(t,x)=+ \/7 \/7 . >
H, H V=Q cot m(kx + ek W(t) + 8)) )

Case III: If b # 0 and a = 0, then the solution of the SmKdV Eq (1.1) is

and

and

-2 b
O , 5.6
S, x) =+ Hz(exp(b(kx T kWD) 1 E)) - 1) (5:6)
CaseIV: If Q =0, a # 0, and b # 0, then the solution of the SmKdV Eq (1.1) is
—-H, -2 bkx+ kW) + At +E) )
,x) ==+ —_— = L= . 5.7
Y@ » +( VH, VN H, 4+ 2b(ks+ ek WD) + A1+ E)) -7)

5.2. Extended tanh function method
Using Eqs (4.25)—(4.28), the solutions of the SmKdV Eq (1.1) are

H,
Yt x) =+ 3 \/THz(l + tanh (—(kx + ek W(t) + /lt))) (5.8)
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H H
Y(t, x) = 13_—(;}12(1 + coth (?O(kx + ek W(t) + /lt))), (5.9)
Y, x) = iw%(l + coth (%(kx + ek W() + m))
icsch(%(kx + ek W(t) + /lt))), (5.10)
and
Y, x) = iw%(Z + tanh (%(kx + keW() + m))

+ coth (%(kx + keW(t) + /lt))). (5.11)

Remark 5.1. The solutions (5.8)—(5.11) that are obtained by the extended tanh function method,
depend on the noise intensity €. If we let € =0, then all these solutions equal zero. While the
solutions (5.2)—(5.7) that are obtained by the exp(—y/(n))-expansion method do not depend on €. So,
the solutions (5.2)—(5.7) are more acceptable than the solutions (5.8)—(5.11).

6. Physical meaning and noise impacts

Physical meaning: In this paper, we obtained the stochastic solutions for SmKdV Eq (1.1). The
solution Y(t, x) reported in Eq (5.2) represents a stochastic traveling solitary wave (soliton-like), whose
position fluctuates randomly over time due to the presence of a Wiener process term “W(¢). The wave
maintains its shape but exhibits random motion, typical of noise-driven solitons in nonlinear dispersive
media. The solution Y(z, x) reported in Eq (5.3) represents a stochastic traveling singular wave. Its
profile includes a sharp front or potential singularity near the wave center (due to the behavior of
coth near zero), with the wave decaying to constant values at spatial infinity. The solution Y(z, x)
reported in Eq (5.4) represents a periodic singular traveling wave with sharp oscillations and blow-up
behavior at regular spatial intervals. It is not localized but periodically structured, and its center moves
stochastically due to the presence of the Wiener process. The solution Y(¢, x) reported in Eq (5.5)
represents a periodic singular traveling wave that repeats at regular spatial intervals with sharp spikes
or blow-up points, due to the cotangent structure. The stochastic term eW(f) causes the wave to
randomly shift in space over time, without changing its shape. This behavior is typical of nonlinear
periodic wave trains under the influence of random noise, seen in systems like nonlinear optics, plasma
waves, and turbulent fluid interfaces. The solution Y(z, x) reported in Eq (5.6) represents a stochastic
singular traveling wave, exhibiting a sharp blow-up (singularity) at a moving location determined by the
stochastic term W (r). The solution Y(¢, x) reported in Eq (5.7) describes a nonlinear traveling wave
with a potentially singular or sharply peaked structure. Its form is governed by a rational function that
approaches a finite constant at infinity but may exhibit a blow-up at a specific point. The solution Y(z, x)
stated in Eq (5.8) represents a smooth, monotonic traveling wave front. It models a transition between
two stable states (from 0 to a constant value +3 Ij‘; Hz) and moves through space with deterministic drift
(due to A) and stochastic fluctuation (due to the Wiener process ‘W(r)). The solution Y(¢, x) stated
in Eq (5.9) represents a singular traveling wave front, where the wave profile sharply transitions from
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0 to +3 fl‘; = but with a vertical asymptote (blow-up) at the center- due to the behavior of the coth

function. This indicates a discontinuity or infinite gradient at that point. The wave moves forward
with deterministic speed A, and its position is randomly perturbed by noise (via W(z)). The solution
Y(t, x) stated in Eq (5.10) describes a stochastic singular wave front, sharply transition from one state
to another. The coth + csch combination produces a wave with a sharp rise (or dip) and a singular peak
at its center. As time progresses, the wave moves deterministically (via 1) and wanders randomly (due
to the Wiener process “W(?)).

Effect of noise: Let us simulate some solutions such as the solutions stated in Eqgs (5.2), (5.6)—(5.8),
to demonstrate how advection noise affects them as follows:

7. Conclusions

The stochastic modified KdV equation (SmKdV) Eq (1.1) driven by multiplicative noise was
examined in this study. We broke down the SmKdV equation into a SODE and a deterministic mKdV
(DmKdV) equation by utilizing transformation techniques and It6 calculus. We acquired the solutions
of the DmKdV equation by using two various methods, such as the exp(—y/(n))-expansion method and
the extended tanh function method. After that, we obtained the solutions of the SmKdV Eq (1.1) by
combining the results that we acquired with the solution of a SODE. Moreover, by simulating specific
solutions, we evaluated the impact of advective noise on the obtained solutions. We concluded from
Figures 14 that the stochastic term e W(¢) introduces randomness in the wave’s position and timing,
causing early-time jitter or fluctuations, especially at higher noise levels. However, the wave shape and
final value remain stable, showing that the system is robust to noise in the long run but sensitive to it
during propagation.
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(a—e) show 3D-profile for the amplitude solution Y(t, x) reported in Eq (5.2)

withy; =6, v, =-1,k=a=1,b=+VY51=-2, C=0, x, t € [0,3] and with
various &, (f) shows 2D-profile for this solution with various €. With these parameters, we

get Hy = ==

=2

H, =2; H, = -2 and Q = 1. The stochastic term £W(¢) causes visible spatial

fluctuations in the wave front. With larger &, the wave front becomes less smooth in time and
space. It appears slightly randomly shifted.
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Solution "Y(t,x)"
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Figure 2. (a—e) show 3D-profile for the amplitude solution Y(z, x) reported in Eq (5.6) with
vi=6,v,=-1,k=b=1, C=0, x, t € [0,3], and with various ¢, (f) shows 2D-profile
for this solutions with various &. With these parameters, we get H, = —2. In the first plot, at
& = 0, the surface appears smooth and evolves in a predictable manner over time. In contrast,
the other plots illustrate the impact of randomness: the surfaces become increasingly rough,
and there are fluctuations in amplitude.
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Figure 3. (a—e) show 3D-profile for the amplitude solution Y(z, x) reported in Eq (5.7) with
v =6,v=-1,b=2,C=0,A=k=a=1, x, t €[0,3], and with various &, (f) shows
2D-profile for this solutions with various &. With these parameters, we get Hy = %; H =1;
H, = =2 and Q = 0. In the first plot, at £ = 0, the surface appears smooth, and there are
no local oscillations or irregularities. In other plots and for higher &, the solution becomes
rougher and less predictable, though the global (expected) trend remains the same.

AIMS Mathematics Volume 10, Issue 11, 26334-26350.



26347

%10

83336

8.3334
c
i)
5 8.3332
=l
@
8.333
8.3328
4
2
Space "x" 0 o Time "t
0.023
0.022
_5 0.021
E
o
& 002
0.019
0.018
4
Space "x" 0 90 Time "t*
012
0.1
<
2
5 008
]
@

o
=
&

0.04
4

Space "x" 0 o0 Time "t*

e)e=1

Solution

2

Space "x" 0 o Time "t*

Solution

Space "x" 0 o Time "t*
0.06
—=01
=03
0.05 =05
— 7
—
0.04
<
2
5003
[=]
@
0.02
0.01
0
0 1 2 3 4 5 8 7 8
Time "t"

(He=0,03,05, 07,1

Figure 4. (a—e) show 3D-profile for the solution Y(z, x) reported in Eq (5.8) with y; =

6, y» =

-1, k=1,4=-2,t € [0,3], x € [0,4], and with various &, (f) shows 2D-

profile for this solutions with various £. With these parameters, we get Hy = _7‘92; H =2
H, = -2. We conclude that when the stochastic term increases, the solutions deviate more

from the deterministic profile.
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