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Abstract: Systemic-risk monitoring frameworks are largely built on absolute Pearson correlation
networks: Assets are linked if their returns co-move on average, and “systemic hubs” are defined by
high degree. Such approaches implicitly assume (i) a single contagion timescale and (ii) stability of
dependence, even though crises typically unfold in layers: A fast equity/volatility unwind, followed
by slower stress in funding, FX, rates, and commodities. We proposed a stress-aware, multiscale
alternative, and constructed the multiscale coherence–entropy centrality (MCEC) network in which
(a) an edge between two assets exists only if their wavelet coherence is statistically significant and
persistent across adjacent frequency bands, and (b) node importance is an entropy-weighted multi-
horizon strength that is high only if an asset is strongly connected and active across time scales.
We then generated a synthetic stressed panel by shocking all assets with a common heavy-tailed
t-copula draw scaled by GARCH(1,1) volatilities, and compared MCEC to a traditional absolute-
correlation backbone using 2021–2024 data. We reported three findings that are directly relevant for
macroprudential supervision. First, under stress, the MCEC network reallocated centrality toward
canonical stress transmitters (U.S. equity benchmarks, implied volatility (VIX), dollar/FX, long-term
yields, crude oil, and gold), while ordinary correlation networks continued to present a single equity-
dominated block. Second, MCEC delivered higher ex-ante classification performance (AUC) in
identifying those transmitters even before the stressed regime was applied, indicating early-warning
value. Third, MCEC made the stress-driven rewiring of cross-market spillover channels explicit across
horizons rather than treating dependence as static.
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1. Introduction

Supervisors and risk committees routinely ask: Who will transmit stress, through which channels,
and on what horizon? The standard answer is to build a network from return correlations: Assets
are linked if their Pearson correlation is large, and “systemic hubs” are nodes with high degree or
eigenvector centrality [1–4]. This is now common in systemic-risk surveillance.

That approach bakes in two assumptions that fail in crises. First, it treats contagion as if it lived on
a single timescale. In reality, stress is layered. There is a fast leg, margin calls, deleveraging, volatility-
control selling, flight from equities and crypto, that generates near-synchronous moves over hours or
days. There is also a slower leg in rates, FX, and commodities: Dollar funding tightens, long-term
sovereign yields reprice balance-sheet risk, crude oil and gold become macro/liquidity barometers, and
those adjustments unfold over weeks [5–7]. Second, correlation networks implicitly assume that the
dependence structure is stable. Yet, in stress, the channels can rewire: Implied volatility can suddenly
become the bridge between global equities and FX; and oil can become the bridge between funding
stress and inflation risk. A static absolute-correlation matrix cannot tell a policymaker whether an asset
is dangerous because it amplifies an intraday fire-sale spiral or because it anchors a slow repricing of
global funding costs.

We propose a stress-aware, scale-aware alternative, multi-scale coherence-entropy centrality
(MCEC) network. It has two ingredients.

For each pair of assets, we compute wavelet coherence across a ladder of frequency bands (2–4
days, 4–8 days, . . . , 32–64 days) and test each band against a Monte Carlo null [7, 8]. We admit
an edge only if coherence is simultaneously significant in adjacent bands; if it is significant in only
one band, we keep it but downweight it. This adjacency rule encodes supervisory intuition: A real
transmission channel should persist across nearby horizons, not just spike once in a single noisy band.
The resulting edge weight is robust multi-horizon co-movement, not just “high |ρ| today.”

For each asset, we measure how strongly it co-moves with the system in each band, then compute
the Shannon entropy of that band profile. A node’s MCEC score is high only if it is both strongly
connected and active across horizons. Intuitively, a high-MCEC node can ignite fast panic and sustain
slower macro/liquidity pressure. This is closer to what supervisors mean by a “systemic transmitter”
than raw degree, which treats all links as interchangeable [1, 2].

Stress testing should also be stress conditional, not just historical. Rather than rerunning networks
on one crisis subsample [3, 4], we generate a synthetic “post-stress” return panel. For each asset,
we estimate a GARCH(1,1) to obtain its conditional volatility path and standardized residuals [9];
we then fit a low–degrees–of–freedom t-copula to capture fat-tailed joint dependence [10], draw a
common heavy-tailed shock, and scale that shock by each asset’s conditional volatility. High-beta risk
assets (U.S. equities, Bitcoin) receive larger amplification; macro/funding assets (long-term yields,
FX, crude oil, gold) receive lower but nonzero amplification. The stressed panel therefore features
volatility clustering, heterogeneous amplification, and synchronized tail events, which are closer to a
system-wide liquidity shock [11].

We then build two networks, a traditional absolute-correlation backbone and the proposed MCEC
backbone, on both (i) the observed 2021–2024 daily panel and (ii) the synthetic stressed panel,
keeping backbone density fixed for comparability. We evaluate them using metrics that supervisors
actually look at: (i) Rank stability (does the same set of assets stay central under stress?), (ii) edge
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persistence and community reorganization (Jaccard overlap and variation of information), (iii)
coverage (does every benchmark asset still get a usable score in stress?), and (iv) classification power
(AUC) in flagging canonical stress transmitters such as broad U.S. equity indices, VIX, the U.S.
dollar, long-term yields, and crude oil [12].

Three findings matter for policy. First, under stress, the MCEC network re-routes centrality toward
volatility (VIX), the dollar, long-term rates, oil, and gold, while global equity benchmarks remain
central. It therefore lights up the bridges between “risk” and “funding/liquidity.” A plain correlation
network mostly collapses into one undifferentiated risk cluster and gives little guidance on which
cross-market pipes actually matter. Second, MCEC already ranks these canonical transmitters highly
before stress (higher pre-stress AUC), so it has genuine early-warning value; correlation-based degree
is weaker out of sample. Third, MCEC makes stress-driven rewiring visible: Its backbone edges
change, and community structure reshuffles across equities, FX, rates, and commodities. The
correlation backbone, by contrast, looks “stable” only because it keeps the same edges even as those
edges lose explanatory power under stress.

Our contributions are fourfold: (i) We introduce a transparent multiscale network in which edges
require statistically significant, adjacent-band wavelet coherence, and node centrality rewards strength
and cross-horizon breadth. (ii) We generate a realistic heavy-tailed stress panel using GARCH(1,1)
volatilities and a t-copula shock, rather than relying on a single historical crisis. (iii) We propose an
evaluation battery aligned with supervisory use: Rank stability, edge persistence, topological
reorganization, coverage, and stress-transmitter AUC. (iv) We show empirically that the resulting
MCEC network isolates exactly the cross-asset spillover channels, volatility, FX/dollar, long-term
yields, and energy/precious metals, that policymakers monitor when liquidity pressure spreads
beyond equities.

In Section 2, we describe the 2021–2024 multi-asset data and preprocessing. In Section 3, we detail
the stress-generation procedure, the correlation and MCEC networks, and the evaluation metrics. In
Section 4, we present the empirical comparison and supervisory interpretation. In Section 5, we discuss
policy implications, limitations, and avenues for extension.

2. Data and preprocessing

We build a daily multi-asset panel spanning 2021–2024. The universe includes (i) global equity
benchmarks (U.S., Europe, Asia), (ii) Bitcoin as a high-beta risk asset, (iii) macro/funding channels
(implied equity volatility, the U.S. 10Y Treasury yield, the broad U.S. dollar index, EUR/USD), and
(iv) key commodities (WTI crude, gold, silver) [13]. All series are aligned on the intersection of
available trading days across all tickers, so that each asset shares an identical calendar of n = 773
daily observations. Continuously compounded log returns are computed as rt,i = log Pt,i − log Pt−1,i for
asset i at date t. For yields and FX, we use daily log-differences in levels so that all inputs enter on a
comparable scale.

Table 1 reports summary statistics for daily log returns (mean, volatility, skewness, kurtosis) and
two stationarity tests (ADF and KPSS).

Three facts matter for the rest of the paper.
(i) Volatility is very heterogeneous. High-beta risk assets (Bitcoin, Russell 2000) move several

percent per day; large developed equity indices (S&P 500, EuroStoxx 50, DAX) are closer to 1%;
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macro/funding benchmarks (DXY, EUR/USD, U.S. 10Y yield) move well below 1%; and VIX is an
order of magnitude more volatile than cash indices. In Section 3.1, we reflect this with asset-specific
amplification factors κi.

(ii) Returns are heavy-tailed. Equities, Bitcoin, and crude oil show negative skewness and high
excess kurtosis (fat left tails), while VIX is positively skewed with extreme kurtosis (crisis spikes). We
therefore model the joint stress shock with a low–degrees–of–freedom t-copula rather than a Gaussian
dependence structure (Section 3.1).

(iii) Daily returns are stationary. All series reject a unit root according to augmented Dickey–Fuller
tests (ADF, p ≤ 0.01) [14] and are not rejected as non-stationary by KPSS [15].

We therefore treat rt,i as stationary inputs in the traditional absolute-correlation network and the
proposed multiscale coherence–entropy centrality (MCEC) network (Section 3.2).

Assets are grouped in Table 1 into (A) risk-on benchmarks (global equities, Bitcoin) and (B)
macro/funding channels (volatility, rates, FX, energy/metals); Section 4 shows that, under stress, the
major spillover channels MCEC flags run between these two blocks.

Table 1. Asset universe, descriptive statistics, and stationarity tests (daily log returns, 2021–
2024).

Asset Class Mean SD Skew Ex.Kurt ADF p KPSS p n

Panel A: Risk-on benchmarks (Equity indices, Bitcoin)
S&P 500 Equity index 0.0006 0.0119 −0.77 4.80 0.01 0.10 773
NASDAQ Equity index 0.0006 0.0161 −0.69 3.77 0.01 0.10 773
Dow Jones Equity index 0.0004 0.0103 −0.56 3.99 0.01 0.10 773
Russell 2000 Equity index 0.0002 0.0168 −0.40 3.06 0.01 0.10 773
EuroStoxx 50 Equity index 0.0004 0.0125 −0.47 5.03 0.01 0.10 773
DAX Equity index 0.0005 0.0119 −0.25 5.58 0.01 0.10 773
FTSE 100 Equity index 0.0003 0.0093 −0.41 3.58 0.01 0.10 773
Nikkei 225 Equity index 0.0005 0.0156 −3.23 50.31 0.01 0.10 773
Hang Seng Equity index −0.0004 0.0181 0.24 2.98 0.01 0.10 773
Bitcoin Crypto 0.0014 0.0449 −0.61 5.71 0.01 0.10 773
Panel B: Macro / funding channels (Volatility, Rates, FX, Energy, Metals)
VIX Macro / Vol −0.0006 0.0868 2.02 16.63 0.01 0.10 773
U.S. 10Y Yield Rates /Macro 0.0021 0.0273 0.28 2.34 0.01 0.10 773
DXY FX / Dollar 0.0002 0.0049 −0.07 1.80 0.01 0.10 773
EUR/USD FX −0.0002 0.0054 0.04 1.95 0.01 0.10 773
WTI Crude Commodity 0.0005 0.0265 −0.58 2.20 0.01 0.10 773
Gold Commodity 0.0004 0.0102 −0.49 1.54 0.01 0.10 773
Silver Commodity 0.0001 0.0217 −0.26 2.92 0.01 0.10 773

3. Methodology

In this section, we formalize the three building blocks of the paper. First, in Section 3.1, we show
how we generate a synthetic “post-stress” return panel that mimics a crisis: Asset-level conditional
volatility spikes, tail dependence becomes system-wide, and high-beta assets are amplified more than
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slow macro transmitters. Second, in Section 3.2, we define the two network objects we compare: A
benchmark absolute-correlation backbone and the proposed multiscale coherence–entropy centrality
(MCEC) backbone. The two networks differ both in how they create edges and in how they rank node
importance. Third, in Section 3.3, we set out the evaluation metrics that correspond to actual
supervisory use cases: Stability of systemic hubs, persistence or rewiring of spillover channels,
coverage under stress, and the ability to flag known stress transmitters.

Throughout, all inputs are daily log returns rt,i from the 2021–2024 panel described in Section 2, and
all constructions are repeated both on the observed (pre-stress) panel and on the synthetic (post-stress)
stress panel, so that we can compare the same methodology across two regimes.

3.1. Stress generation: GARCH(1,1) + heavy-tailed t-copula

Supervisors care about a question that is counterfactual by construction: Who transmits stress if a
system-wide tail shock hits now? Using a single historical crisis window is unsatisfactory because it
bakes in one idiosyncratic episode and fails if markets have not (yet) repriced in that way. Instead,
we synthesize a stressed panel of returns that intentionally injects (i) elevated, clustered volatility at
the individual-asset level, (ii) joint tail dependence across assets, and (iii) heterogeneous amplification
between “fast” risk assets and “slow” macro funding channels.

For each asset i, we estimate a standard GARCH(1,1) model on daily returns rt,i [9]:

rt,i = µi + εt,i, (3.1)
εt,i = σt,izt,i, (3.2)
σ2

t,i = ωi + α1,iε
2
t−1,i + β1,iσ

2
t−1,i, (3.3)

where σ2
t,i is the conditional variance and zt,i are standardized residuals. The triplet (ωi, α1,i, β1,i)

captures the long-run variance level, the short-run reaction to shocks (ARCH term), and volatility
persistence (GARCH term), respectively. The filtered path {σt,i}t summarizes how “stressed” asset i is
expected to be conditional on its own recent history.

Before presenting the network results, we summarize these GARCH fits because they determine
how strongly each asset reacts in stress. Table 2 reports the estimated (ωi, α1,i, β1,i) for each asset.
Two stylized facts emerge. First, high-beta equity indices and Bitcoin display large unconditional
variance and high persistence, consistent with violent but sticky risk repricing. Second, macro/funding
assets such as the U.S. 10Y yield or the dollar index show very persistent volatility (large β1,i) but
lower instantaneous shock sensitivity (α1,i), reflecting that they transmit stress more slowly and through
balance-sheet and funding channels instead of instant risk-off liquidation.
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Table 2. GARCH(1,1) estimates and stress multipliers.

Asset ωi α1,i β1,i κi

S&P 500 4.66 × 10−06 0.0902 0.8782 3
NASDAQ 5.01 × 10−06 0.0678 0.9131 3
Dow Jones 1.17 × 10−06 0.0340 0.9549 3
Russell 2000 6.43 × 10−06 0.0253 0.9516 3
EuroStoxx 50 2.02 × 10−06 0.0466 0.9404 3
DAX 1.81 × 10−06 0.0390 0.9473 3
FTSE 100 1.18 × 10−05 0.1174 0.7421 3
Nikkei 225 1.40 × 10−05 0.1932 0.7928 3
Hang Seng 2.05 × 10−05 0.1044 0.8321 3
Bitcoin 1.91 × 10−05 0.0133 0.9760 3
Gold 9.46 × 10−08 0.0000328 0.9990 1.5
Silver 1.49 × 10−05 0.0184 0.9481 1.5
WTI Crude 2.91 × 10−05 0.0753 0.8843 1.5
EUR/USD 2.53 × 10−07 0.0246 0.9670 1.5
VIX 2.90 × 10−03 0.3513 0.3488 1.5
U.S. 10Y Yield 3.58 × 10−07 0.0174 0.9803 1.5
DXY (Dollar Idx) 1.55 × 10−07 0.0309 0.9633 1.5

Although each zt,i is (approximately) i.i.d. over t for a given asset, the vector zt = (zt,1, . . . , zt,N)′

is not cross-sectionally independent. We estimate its cross-sectional correlation matrix R̂z and embed
it in a low–degrees–of–freedom t-copula [10]. Sampling from this copula produces a multivariate
heavy-tailed draw

Ut ∼ Copulat(R̂z, ν), Z(stress)
t =

(
t−1
ν (Ut,1), . . . , t−1

ν (Ut,N)
)′
.

This Z(stress)
t is our synthetic “system shock”: It creates synchronous tail realizations across many

assets, consistent with broad deleveraging, dollar funding squeezes, or energy shocks hitting balance
sheets at once [11].

r(stress)
t,i = κi σt,i Z(stress)

t,i , (3.4)

where σt,i is the conditional volatility from (3.3), and κi is an asset-specific amplification factor
reported in Table 2. We deliberately set κi larger for high-beta “risk” assets (U.S. equities, Bitcoin)
and smaller for macro and funding transmitters (rates, FX, oil, gold, VIX). Equation (3.4) therefore
generates a “post-stress” panel with three realistic features simultaneously: (i) Volatility clustering
survives (through σt,i), (ii) extreme co-movements are joint rather than idiosyncratic (through the
common t-copula draw), and (iii) risky assets hit harder than funding channels, which matches how
real crises propagate across balance sheets.

Figure 1 illustrates the effect of the stress scenario in (3.4). The left block shows the observed daily
log returns rt,i for all assets over 2021–2024, while the right block shows the corresponding synthetic
stressed returns r(stress)

t,i on the same time axis. Under stress, (i) baseline volatility is systematically
higher, (ii) tail jumps are larger and more asymmetric, and (iii) large moves occur simultaneously
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across multiple assets; this reflects a common heavy–tailed shock scaled by each asset’s GARCH(1,1)
conditional volatility and injected into the system.

Figure 1. Original vs. stressed return series.

The empirical (pre-stress) panel {rt,i} and the synthetic (post-stress) panel {r(stress)
t,i } are fed in parallel

through our network pipeline below.

3.2. Network construction: Correlation vs. multiscale coherence

For each regime (pre-stress and post-stress), we build two undirected weighted graphs on the same
set of assets:

1) A traditional absolute-correlation network, which mirrors the standard practice in systemic risk
work [1–4];

2) A multiscale Coherence-Entropy Centrality (MCEC) network, which is our proposed
stress-aware, scale-aware alternative.

To compare them fairly, we always extract a fixed-density backbone from each network (same target
density δ in all regimes). That way, differences in hubs, bridges, and communities cannot be waved
away as “you just picked a looser threshold.”

AIMS Mathematics Volume 10, Issue 11, 26313–26333.



26320

3.2.1. Wavelet coherence estimation and statistical validation

For each ordered pair of assets (i, j), we quantify time–frequency dependence using the squared
wavelet coherence estimator R2

i j(t, s) of Torrence and Compo [16], Grinsted et al. [17], implemented
via the wtc routine in biwavelet. We use the complex Morlet mother wavelet, which is standard in
financial applications because it balances time localization (to capture fast de-risking episodes) and
frequency localization (to capture slower macro/liquidity spillovers) [7, 18, 19].

The transform produces R2
i j(t, s) over time index t and pseudo-period s. We discretize s into five

adjacent frequency bands corresponding to progressively slower horizons: 2–4, 4–8, 8–16, 16–32, and
32–64 trading days. Economically, the short bands (2–8 days) represent very fast risk-off unwinds
and margin calls; the middle bands (8–16 days) capture volatility and funding spillovers; and the long
bands (16–64 days) reflect slower repricing in FX, rates, energy, and safe-haven assets such as gold
[5, 7].

Boundary effects are handled explicitly. Wavelet coherence tends to be unreliable near the sample
edges where the wavelet support is truncated. Following Torrence and Compo [16], wtc provides
a cone-of-influence (COI) mask. We exclude all observations (t, s) that fall outside the COI when
averaging coherence, so that spurious “flares” at the boundaries do not inflate dependence.

For each band b and each pair (i, j), we compute a COI-masked band-average

ci j,b = mean of R2
i j(t, s) over (t, s) in band b and inside the COI.

We then test whether that average is statistically meaningful. For each pair (i, j), we generate
nrands = 1000 phase-randomized surrogate series under the null of no cross-series dependence but
with each series’ own univariate spectrum preserved [17]. We recompute the band-average coherence
for every surrogate draw. The (1 − α) quantile (with α = 0.05) of this surrogate distribution is used as
a critical value. If ci j,b exceeds this Monte Carlo threshold, we mark band b as significant for (i, j) and
retain ci j,b; otherwise, we set ci j,b = 0.

This delivers, for each pair (i, j), a vector {ci j,1, . . . , ci j,5} of band-specific coherence intensities that
are (i) COI-corrected to avoid boundary artifacts, and (ii) individually validated via a 1000-draw Monte
Carlo test at the 5% level.

3.2.2. Traditional absolute-correlation network

For assets i , j, we compute their Pearson correlation

ρi j = Corr(rt,i, rt, j),

and define the raw undirected edge weight

wtrad
i j = |ρi j|.

We then keep only the top K edges (largest wtrad
i j ) so that the retained backbone has density δ.

Node importance in this baseline network is its weighted degree:

Degtrad
i =

∑
j,i

wtrad
i j · 1{(i, j) is retained in the backbone}.

This is the canonical “systemic hub” score in correlation-based connectedness maps.
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3.2.3. MCEC network: Statistically validated multi-horizon connectivity

The MCEC network is designed to answer a supervisory question that correlation cannot: Which
pairs form statistically robust, multi-horizon spillover channels, and which assets sit on those channels
as persistent transmitters?

From the previous subsection, each pair (i, j) has a vector of band-level coherence intensities
{ci j,b}

B
b=1 after COI masking and Monte Carlo significance filtering. Let sigi j,b = ⊮{ci j,b > 0} indicate

that band b passed significance for (i, j).
We say that (i, j) exhibits a persistent multi-horizon spillover channel if there exists at least one

pair of adjacent frequency bands b and b+1 such that both are significant, i.e., sigi j,b = sigi j,b+1 = 1.
Intuition: In supervisory language, a channel that truly carries stress should not be a razor-thin spike
at one exact horizon. It should “bleed” between nearby horizons; for example, a fast equity/volatility
unwind (2–8 days) that spills over into funding stress, FX pressure, or oil/gold repricing over several
weeks (8–32 days).

We then define the undirected edge weight

wmcec
i j =


mean{ci j,b : sigi j,b = sigi j,b+1 = 1}, if such adjacent-band persistence exists,

1
2 mean{ci j,b : sigi j,b = 1}, if we observe only isolated single-band significance,

0, if no band is significant.

The “adjacent-band” rule acts like a built-in multiple-comparisons control. A one-off spike in a
single band is automatically down-weighted by the factor 1/2, while coherence that is simultaneously
significant in neighboring bands is treated as a robust spillover channel and given full weight. In other
words, we promote only (i, j) to a strong edge if the pair co-moves significantly across contiguous
horizons, not just in one noisy slice.

As in the correlation network, we keep only the top K edges in Wmcec = [wmcec
i j ], choosing K, so that

the retained MCEC backbone has exactly the same density δ as the traditional backbone. By fixing
density, any difference in hubs, bridges, or modular structure is methodological (coherence-based vs.
correlation-based), not a thresholding artifact [1, 2, 7].

A node is “systemic” in our sense if it (i) co-moves strongly with the rest of the system and (ii) does
so at multiple horizons. For each node i and each band b, we compute

si,b =
∑
j,i

ci j,b,

which is the total statistically validated (i.e., COI-masked and Monte Carlo significant) coherence mass
that i shares with the rest of the system at horizon b. We then form

S i =

B∑
b=1

si,b and pi,b =
si,b

S i
(with pi,b = 0 if S i = 0).

We compute the Shannon entropy of this band profile,

Hi = −

B∑
b=1

pi,b log pi,b,
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normalized to [0, 1] by dividing by log B. High S i means node i is strongly connected in aggregate;
high Hi means it is active across several adjacent horizons rather than concentrated in a single band.

Finally, we define the multiscale coherence–entropy centrality (MCEC) score of node i as

MCECi =

(
S i

maxk S k

)
·

(
Hi

maxk Hk

)
, (3.5)

the product of normalized total strength and normalized entropy. An asset attains a high MCECi only
if it is strongly connected and multi-horizon. We interpret MCECi as a stress-transmission capacity: A
high-MCEC node can ignite fast panic and sustain slower funding/FX/commodity pressure, which is
exactly what supervisors mean by a “systemic transmitter” in practice [7, 11].

We deliberately use the word “multiscale”. We are not solving an eigenvector or betweenness
problem on a multiplex tensor of fully separate network layers. Instead, we collapse statistically
validated coherence across clearly defined adjacent time–frequency bands into one interpretable
stress-transmission score. In other words, “multiscale” here means “rewarding breadth across
validated neighboring horizons,” not “running centrality on a stack of disconnected layers.”

By construction, then, the traditional backbone answers “who is highly (linearly) correlated with
whom on average?” The MCEC backbone answers “which channels are jointly significant across
adjacent horizons, and which nodes sit on those multi-horizon spillover channels?”

3.3. Evaluation metrics

After we build (i) the traditional absolute-correlation backbone and (ii) the MCEC backbone on
both the pre-stress and post-stress panels, we evaluate them along four supervisory dimensions. These
diagnostics correspond to how a real macroprudential desk would use the output.

First, for each method m ∈ {trad,mcec}, we collect node scores before and after stress, Score(m,pre)
i

and Score(m,post)
i (where Score(trad,·)

i is weighted degree and Score(mcec,·)
i is MCECi). We compute the

Spearman rank correlation

ρ(m)
stress = CorrSpearman

(
{Score(m,pre)

i }i, {Score(m,post)
i }i

)
.

High ρ(m)
stress means “the same names stay important when stress hits,” which matters for early-warning

credibility.
Second, let E(m,pre) and E(m,post) be the retained high-weight edges for method m before and after

stress. We measure edge persistence with the Jaccard index:

J(m)
stress =

∣∣∣E(m,pre) ∩ E(m,post)
∣∣∣∣∣∣E(m,pre) ∪ E(m,post)
∣∣∣ .

Values near 1 mean “the same spillover channels survived; stress just turned the volume up.” Values
near 0 mean “the network rewired; new bridges carried the shock.”

Third, we detect communities in each backbone via modularity clustering [20] and compare the
pre-stress vs. post-stress partitions with the variation of information (VI) distance [21]. High VI means
the block structure of the system reorganizes under stress (for instance, volatility and FX suddenly
become the bridge between global equities and long-term rates).
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Fourth, a dashboard is useless if, exactly in stress, half the assets we care about return “NA.” We
define coverage as the share of assets for which the method produces a finite score before and after
stress:

Coverage(m) =
1
N

N∑
i=1

1
{
Score(m,pre)

i and Score(m,post)
i are both defined

}
.

Finally, policy desks already treat certain benchmarks as “stress transmitters”: Broad U.S. equity
indices (S&P 500, NASDAQ, Dow Jones), Bitcoin as a high-beta risk proxy, implied equity volatility
(VIX), the U.S. dollar / EUR/USD, long-term U.S. yields, and crude oil/gold as global funding and
commodity pressure channels [3, 4, 12]. We encode these as positive labels yi = 1. Given any node
score, we then compute the area under the ROC curve (AUC): The probability that a randomly chosen
labeled “transmitter” scored higher than a randomly chosen unlabeled asset.

We compute AUC using pre-stress scores and again using post-stress scores. Large pre-stress AUC
means the method already knows “who will matter” before we shock the system, which is what an
early-warning tool is supposed to deliver.

Together, these metrics, hub rank stability, spillover-channel persistence vs. rewiring, coverage,
and AUC, form the basis of the comparison in Section 4. They map directly onto supervisory
questions: Who will transmit stress? Do the same bridges carry the shock, or do new cross-market
bridges (volatility, FX, energy) suddenly light up? Can we still score everyone we care about in the
middle of the storm? And does the method elevate the usual suspects (VIX, dollar strength, long-term
yields, oil) without being told in advance?

4. Results

We compare (i) a traditional absolute-correlation backbone (“Traditional”) and (ii) the proposed
multiscale coherence–entropy centrality backbone (“MCEC”), each constructed as in Section 3. Both
networks are estimated twice: Once on the observed daily return panel (“Pre”) and once on the
synthetic heavy-tailed stressed panel generated via the GARCH(1,1) + t-copula procedure (“Post”) in
Section 3.1. In both cases, we enforce a common edge density (≈ 0.257), so differences in topology,
hubs, and connectivity are methodological, not thresholding artifacts.

We proceed in five steps: First, we study how the network topology changes under stress
(Section 4.1). Second, we examine how node centrality reallocates across assets (Section 4.2). Third,
we compare absolute correlation to multiscale coherence (Section 4.3). Fourth, we identify which
assets emerge as stress transmitters (Section 4.4). Finally, we evaluate supervisory diagnostics such as
rank stability, edge persistence, and early-warning classification power (Section 4.5).

4.1. Network topology under stress

Figures 2 and 3 show the network backbones before and after stress for the Traditional and MCEC
constructions, respectively. In each case, we keep only the top-weighted links at the common density,
and we hold the node layout fixed between Pre and Post so that any shift in edges is interpretable as
stress-driven reconfiguration rather than a plotting artifact.

In the Traditional backbone (Figure 2), the dense equity cluster is visually stable across regimes.
The core U.S. and global stock indices continue to sit in one tight block both Pre and Post. In other
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words, the absolute-correlation view continues to see “equities with equities,” even after a systemic
shock.

In the MCEC backbone (Figure 3), edges exist only if wavelet coherence is statistically significant
and persistent across adjacent frequency bands; isolated one-band hits are downweighted. Under
stress, bridges linking volatility (VIX), FX (e.g., EUR/USD and DXY), and commodities (oil, gold)
to global equity benchmarks visibly thicken. Put differently, in the stressed regime, the cross-market
spillover structure is no longer “equity-only”: the major bridges explicitly route through volatility,
dollar funding, and energy/safe-haven assets.

Figure 2. Traditional absolute-correlation networks, Pre vs. Post. Edge width is |ρ|; node
size reflects weighted degree.

Figure 3. MCEC networks, Pre vs. Post. Edges require significant, persistent multiscale
coherence; node size reflects MCEC centrality.

These visual differences have a numerical counterpart. Table 3 reports three global descriptors
for each method and regime: (i) Modularity (how sharply the network splits into internally cohesive
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communities), (ii) density (matched by construction), and (iii) average weighted shortest-path length
(larger values mean that effective spillover paths become longer/weaker).

Modularity rises in both constructions once we inject stress: From 0.211 to 0.223 for the
Traditional network and from 0.146 to 0.242 for MCEC. Higher modularity means that, after stress,
the system does not behave like one homogeneous “risk blob,” but instead separates more cleanly into
equity, FX/rates, and commodity/liquidity blocs. Furthermore, the average shortest-path length
increases sharply (Traditional: 1.316 → 1.945; MCEC: 1.316 → 2.038), meaning the thick
cross-block bridges that tightly connected markets in calm times have weakened or rerouted.

Notably, the jump in modularity and path length is larger for MCEC. This matches the visual
evidence: MCEC explicitly reroutes transmission through VIX/FX/commodities in the stressed
regime, rather than continuing to treat equities as the single organizing axis.

Table 3. Global network metrics (pre- vs. post-stress). Modularity is Newman–Girvan
modularity of detected communities; the average path length is computed using inverse
weight as distance.

Network Modularity Density Avg. weighted shortest path
Traditional (Pre) 0.211 0.257 1.316
Traditional (Post) 0.223 0.257 1.945
MCEC (Pre) 0.146 0.257 1.316
MCEC (Post) 0.242 0.257 2.038

4.2. Centrality and rank stability

Supervisors care about which nodes sit “in the middle of the system”, and whether those same
nodes remain influential once stress hits. In the Traditional network, node importance is weighted
degree (sum of retained |ρ| edges). In the MCEC network, node importance is the coherence–entropy
centrality: A node scores high only if it is strongly connected and active across multiple horizons.

Figure 4 plots, for each asset, its Pre-stress score (horizontal axis) against its Post-stress score
(vertical axis), separately for Traditional (right panel) and MCEC (left panel). Points on the 45◦ line
are equally important before and after stress; points above the line gain systemic relevance under stress.

In the MCEC panel, canonical stress transmitters, VIX, EUR/USD, gold, and silver, shift upward.
That is, once the system is shocked, volatility, FX, and safe/liquidity assets become more central to
cross-market spillovers. Furthermore, broad U.S. benchmarks (S&P 500, NASDAQ, Dow Jones) and
Bitcoin remain near the top, confirming that they continue to anchor the global “risk-on” complex.

In the Traditional panel, almost every point moves down: Weighted degree collapses in magnitude
under stress. The dense equity cluster exists structurally (Figure 2), but its aggregate “influence mass”
thins. The method’s ability to discriminate which specific nodes matter is degraded when we move to
the stressed panel.

Table 4 reports the underlying scores. Before stress, MCEC ranks global equity indices (S&P 500,
Dow Jones, NASDAQ), Bitcoin, and oil as highly central. After stress, those assets remain, and
traditional stress barometers move sharply higher: VIX rises from 0.715 to 0.928, EUR/USD from
0.666 to 0.826, and gold edges higher. This says: In the crisis-like regime, the bridges that matter are
not purely “equity to equity,” but “equity↔ volatility/FX/commodities.”

In contrast, the Traditional weighted degree numbers collapse for essentially everyone (e.g.,
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S&P 500: 4.669 → 0.165). The ranking tilts somewhat toward FX and metals in relative terms, but it
does so mostly because the equity block has been flattened.

Figure 4. Pre vs. Post node centrality. Left: MCEC coherence–entropy centrality. Right:
Traditional weighted degree. Points above the diagonal gain systemic relevance in the
stressed regime.

Table 4. Node centrality (Pre vs. Post).

Asset MCEC (Pre) MCEC (Post) Degree (Pre) Degree (Post)
S&P 500 0.939 0.920 4.669 0.165
NASDAQ 0.815 0.830 4.301 0.148
Dow Jones 0.912 0.880 4.335 0.154
Russell 2000 0.775 0.743 4.032 0.151
EuroStoxx 50 0.877 0.879 4.018 0.153
DAX 0.875 0.833 3.623 0.148
FTSE 100 0.735 0.661 3.621 0.151
Nikkei 225 0.680 0.637 3.900 0.152
Hang Seng 0.604 0.583 3.052 0.134
Bitcoin 0.907 0.954 3.328 0.134
VIX 0.715 0.928 3.316 0.134
Gold 0.377 0.394 3.352 0.148
Silver 0.467 0.484 2.890 0.131
EUR/USD 0.666 0.826 2.543 0.135
WTI Crude 0.804 0.787 2.541 0.131
U.S. 10Y Yield 0.707 0.708 2.319 0.117
DXY (Dollar Index) 0.784 0.694 2.160 0.119

Notes: MCEC =multiscale coherence–entropy centrality (higher values indicate nodes that are both strongly connected and active across

multiple horizons). Degree = weighted degree in the absolute-correlation backbone. Pre = network estimated on observed returns; Post

= network estimated on the synthetic stressed panel.
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4.3. Correlation vs. multiscale connectivity

Traditional networks are built from absolute Pearson correlations |ρi j|. MCEC edges, in contrast,
require statistically significant and adjacent-band wavelet coherence, meaning the two series move
together in a way that persists across nearby horizons, not just in a single noisy band.

Figure 5 shows the Traditional |ρ| matrices Pre and Post stress, plus their difference. The block
structure is very familiar: Equities move with equities, and macro/funding assets (rates, FX, oil, gold)
largely sit in their own block. After stress, most of that structure survives; the difference (Post − Pre)
panel mostly reflects mild strengthening or weakening in magnitude, not a wholesale change in which
pairs are considered important. This is consistent with the fact that, for the Traditional backbone, the
set of top edges is almost identical Pre and Post.

Figure 5. Traditional absolute-correlation matrices. Left: Pre-stress |ρi j|. Middle: Post-stress
|ρi j|. Right: Post − Pre.

Figure 6 shows the analogous object for MCEC: The multiscale coherence weights wmcec
i j , which

average statistically significant coherence over adjacent frequency bands and downweight isolated
one-band hits. Pre-stress, the heaviest MCEC links cluster global equities, Bitcoin, and crude oil, a
“risk-on” block that mixes fast panic channels and slower macro/commodity channels. Post-stress, the
heaviest links move: VIX, EUR/USD, and gold become reinforced bridges into the equity complex,
and some pure equity–equity links weaken. The rightmost panel (Post − Pre) in Figure 6 makes
exactly this shift visible.
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Figure 6. MCEC multiscale coherence weights. Left: Pre-stress wmcec
i j . Middle: Post-stress

wmcec
i j . Right: Post − Pre.

Quantitatively, in the MCEC network, only about 20% of the top-weight edges survive intact into
the stressed regime, and the detected communities change substantially. In other words, MCEC rewires
under stress. The Traditional backbone, by contrast, is structurally inert: It keeps essentially the same
high-|ρ| edges even though their ability to explain joint stress dynamics weakens.

4.4. Which assets transmit stress?

The question supervisors actually ask is: Who transmits stress across markets once the shock hits?
To answer that, we track how each node’s MCEC centrality changes between the Pre and Post networks.

Figure 7 plots, for each asset, a “dumbbell”: The left marker is its Pre-stress MCEC score, the right
marker is its Post-stress score, and the horizontal segment shows the change. Long rightward segments
indicate assets that become structurally more important under stress.

Two patterns emerge. First, traditional stress barometers, VIX, EUR/USD, gold, and silver, all shift
right. VIX in particular becomes one of the strongest multi-horizon bridges in the stressed network:
It is not merely spiking, it is connecting markets. Second, broad U.S. equity benchmarks (S&P 500,
NASDAQ, Dow Jones) and Bitcoin remain highly central even after stress, confirming they still anchor
global “risk-on” behavior. However, they no longer monopolize the center: FX and commodities join
the core.

This implies that spillover in our stressed regime is not “equity contagion only.” It explicitly routes
through volatility, dollar funding pressure, and energy/safe-haven assets.
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Figure 7. Shift in MCEC centrality under stress. Each line connects an asset’s Pre-stress
MCEC score (left dot) to its Post-stress score (right dot).

4.5. Global network diagnostics and supervisory performance

Finally, we evaluate both constructions on supervisory diagnostics introduced in Section 3.3: (i)
Rank stability (Spearman correlation between Pre and Post node scores), (ii) edge persistence
(Jaccard overlap of retained backbone edges Pre vs. Post), (iii) topology reorganization (variation of
information, VI, between the Pre and Post community partitions), (iv) coverage (fraction of
benchmark assets that still receive a usable score in stress), and (v) classification power (AUC) in
ranking canonical stress transmitters such as broad U.S. equities, VIX, the U.S. dollar, and crude oil.

Table 5 reports these metrics when “positives” for AUC are generic global hubs (large equity
indices, oil, dollar proxy). Table 6 repeats the exercise using an explicitly stress-oriented transmitter
set (broad U.S. equities, VIX, the U.S. dollar, crude oil).

Three points matter for policy:
First, MCEC is supposed to change under stress. Its node ranking reorders (Spearman ρstress =

0.284), only about 20% of its top edges survive (Jaccard = 0.207), and its block structure changes
materially (VI = 1.974). This is the intended behavior: MCEC is mapping how stress rewires cross-
market spillovers. The Traditional backbone, on paper, looks stable (ρstress = 1.000, Jaccard = 1.000,
VI = 0.000), but that “stability” is misleading because the absolute magnitudes of its degree scores
collapse under stress (Table 4). In other words, the Traditional graph freezes the calm-time equity
block, while MCEC actively reveals stress-driven rerouting through volatility, FX, and commodities.

Second, pre-stress early-warning power is stronger for MCEC. In Table 6, MCEC achieves a pre-
stress AUC of 0.917, compared with 0.742 for the traditional network, when the positives are classic
stress transmitters (U.S. equity benchmarks, VIX, dollar strength, crude oil). That means before the
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shock, MCEC elevates exactly the assets supervisors would watch in a liquidity event.
Third, coverage is 1.000 in all cases. Every monitored benchmark keeps a usable score in both

regimes, so either method can feed a live dashboard.

Table 5. Global diagnostics (generic hub labels).

Method AUC (Pre) AUC (Post) Rank stab. Edge persist. Comm. shift Coverage
Traditional 0.381 0.381 1.000 1.000 0.000 1.000
MCEC 0.357 0.405 0.284 0.207 1.974 1.000

Notes: AUC = ability to rank designated “hub” assets above others. Rank stab. = Spearman correlation of node scores (Pre vs. Post).

Edge persist. = Jaccard overlap of retained edges. Comm. shift = variation of information between community partitions. Coverage =

share of benchmark assets with a valid score in both regimes. The “hub” set here is broad equity indices, oil, and a dollar proxy.

Table 6. Global diagnostics (stress-transmitter labels).

Method AUC (Pre) AUC (Post) Rank stab. Edge persist. Comm. shift Coverage
Traditional 0.742 0.742 1.000 1.000 0.000 1.000
MCEC 0.917 0.717 0.284 0.207 1.974 1.000

Notes: Here the “transmitter” set is broad U.S. equity indices, VIX, the U.S. dollar, and crude oil. Higher AUC (Pre) means better

ex-ante identification of those transmitters. Other columns defined as in Table 5.

Four conclusions follow:
(i) Both backbones become more modular and develop longer effective spillover paths under stress

(Figures 2–3, Table 3). (ii) MCEC explicitly reallocates systemic centrality toward volatility, FX, and
energy/precious metals while keeping global equity benchmarks in the core (Figures 4–7, Table 4).
(iii) MCEC’s backbone rewires under stress (low Jaccard, high VI), whereas the Traditional backbone
remains structurally fixed and risks understating how stress propagates (Figures 5–6, Tables 5–6). (iv)
Ex ante, MCEC ranks canonical stress transmitters with higher AUC, which gives it genuine early-
warning value for macroprudential surveillance.

In summary, MCEC does not just report high co-movement; it identifies which cross-market bridges
become systemically relevant when the system is shocked, notably volatility (VIX), FX/dollar pressure,
crude oil, and gold, and shows how those bridges reroute pressure between equities, funding, and
commodities.

5. Conclusions

We set out to answer a supervisory question that standard correlation backbones are not designed
to answer: Who will transmit stress, through which channels and horizons, and how does that
transmission map change in a crisis-like regime? To address this, we introduced a MCEC framework
that (i) draws edges only where wavelet coherence is statistically significant across adjacent frequency
bands, (ii) measures node importance via an entropy-weighted multi-horizon strength, and (iii)
benchmarks the calm regime against a stressed panel constructed using GARCH(1,1) volatilities and a
heavy-tailed t-copula shock.

Three findings speak directly to macroprudential use:
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First, network topology under stress is not stable, and MCEC makes that instability visible. Both
the traditional correlation backbone and MCEC become more modular and exhibit longer effective
paths once stress is injected, indicating that spillovers no longer propagate through a single dense
“all-risk” core but instead through more segmented blocs. However, only MCEC shows genuine
rewiring: Its high-weight connections and community structure change, and new bridges form
between asset classes such as equities, volatility, FX, and commodities. In practical terms, MCEC
reveals which cross-market channels carry pressure in the stressed regime rather than assuming that
the pre-stress equity cluster remains the dominant conduit. Second, MCEC isolates a persistent (and
supervisory-relevant) transmitter set and flags it in advance. The same compact set of markets, broad
U.S. equity indices, Bitcoin, VIX, EUR/USD, and the dollar complex, long-term yields, crude oil, and
gold, emerges as structurally central across regimes. These are the assets policymakers treat as global
risk thermometers, funding stress points, and flight-to-quality anchors. Importantly, MCEC ranks
these transmitters highly before the stress shock is applied, and does so more accurately than a
correlation-based backbone. In other words, the method does not just explain ex-post contagion; it has
ex-ante classification power. By construction, this is because MCEC rewards nodes that are strongly
connected and active across multiple horizons, rather than simply “highly correlated on average”.
Third, MCEC turns structural change into an operational signal. We showed that a small set of scalar
diagnostics, rank stability of node scores across regimes, persistence of backbone edges across
regimes, and the variation of information between community partitions, can be monitored as
quantitative alarms for system reorganization. When these diagnostics move, the spillover map has
rerouted: Transmission is no longer “equity-to-equity” but instead runs through volatility (VIX),
FX/dollar funding pressure, and energy/precious metals. This gives supervisors a direct escalation
rule: Intervene, or at least intensify monitoring, once the dominant bridges shift toward volatility and
FX.

The policy message is pragmatic. A correlation backbone is useful as a baseline map of average
co-movement, but it is largely blind to which horizons carry contagion and which cross-asset channels
become dominant once markets come under stress. By validating edges only when coherence is
jointly significant across adjacent scales, and by rewarding breadth across horizons rather than
single-band spikes, MCEC surfaces exactly the routes regulators worry about in crises: Volatility,
FX/dollar funding, long-term rates, and energy/precious metals. It also turns those routes into
quantitative dashboard metrics.

Operationally, a supervisor can (i) compute banded coherence on a rolling basis, (ii) construct the
fixed-density MCEC backbone, (iii) track node-level MCEC centrality together with rank stability,
edge persistence, and community-turnover metrics, and (iv) escalate supervisory attention when those
diagnostics indicate that stress transmission has migrated into volatility and FX.

There are natural extensions. First, adding directionality (e.g., Granger-style or transfer-entropy
measures) would enable us to distinguish stress senders from stress receivers. Second, moving from
daily to intraday sampling would capture liquidity spirals that matter on regulatory time scales of
hours, not days. Third, one can stress-test policy counterfactuals, such as FX swap lines or collateral
backstops, directly in this network by attenuating specific bridges and recomputing the topology under
that intervention.

Even in its current form, MCEC offers a stress-aware, scale-aware map of systemic spillovers.
It identifies which cross-market bridges become systemically relevant when the system is shocked,
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notably volatility (VIX), FX/dollar pressure, crude oil, and gold, and it quantifies when those bridges
begin to dominate transmission between equities, funding channels, and commodities.
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