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1. Introduction

We consider the set of matrices with entries that belong to the quaternion skew field determined
by H = {t0 + t1i + t2j + t3k | i2 = j2 = k2 = ijk = −1, t0, t1, t2, t3 ∈ R}. For an arbitrary quaternion
t = t0 + t1i + t2j + t3k ∈ H, its conjugate quaternion is defined by t = t0 − t1i − t2j − t3k. As usual,
C and R stand for the complex and real number fields, respectively. For any A ∈ Hm×n, the matrix
A∗ ∈ Hn×m indicates the conjugate transpose of A. The matrix A ∈ Hn×n is called Hermitian when
A∗ = A, and it is anti-Hermitian when A∗ = −A. Sometimes, instead of referring to “anti-Hermitian”,
the term “skew-Hermitian” is used, especially when describing quaternion matrices. Note that for any
A ∈ Hm×n, the half of the sum of it and its conjugate transpose Ǎ := 1

2 (A + A∗) is Hermitian, and the
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half of their difference

Â :=
1
2

(A − A∗) = −Â∗, (1.1)

yields its corresponding skew-Hermitian matrix, and A = Ǎ+ Â holds. Both symbols r(A) and rank (A)
denote the rank of A. The identity matrix of order n is denoted by In.

Definition 1.1. For a given matrix A ∈ Hm×n, the Moore–Penrose (MP-) inverse of A, denoted by
A† ∈ Hn×m, is the unique matrix satisfying the Penrose conditions:

(1) AA†A = A, (2) A†AA† = A†, (3) (AA†)∗ = AA†, (4) (A†A)∗ = A†A.

Matrices satisfying the condition (2) are called generalized inverses of A.

The MP-inverse produces projectors, LA = In − A†A and RA = Im − AA†, that satisfy the following
conditions:

LA = (LA)∗ = (LA)2 = L†A, RA = (RA)2 = (RA)∗ = R†A, LA∗ = RA, RA∗ = LA.

The introduction of quaternionic analysis has significantly expanded the scope of applied
mathematical fields [13, 15, 40]. Quaternions are fundamental in the description of three-dimensional
rotations and find widespread application in computer graphics, robotics, navigation, quantum physics,
mechanics, and signal processing, as extensively documented in [1, 18]. The growing application of
quaternions in various practical fields has motivated extensive research into anti-Hermitian solutions
for quaternion systems of matrix equations. Furthermore, the determination of skew-Hermitian
solutions for matrix equations under symmetry constraints is of critical importance in quantum
mechanics [27], control theory [3], and Lie algebra [29]. Numerous problems in various engineering
disciplines, including linear descriptor systems, system design, singular system control [7, 9, 38],
perturbation theory [23], feedback control [39], and color image data transmission [16], necessitate
the solution of Sylvester-type matrix equations. For instance, Bai [4] investigated iterative methods for
solving the Sylvester equation A1X + XA2 = B. Roth [37] later provided the consistency conditions
governing the solvability of its generalized form A1X +YA2 = B, while subsequent work in [5] derived
its general solution structure.

In [42], Wang and He explored the general solution to the system

A1X + YB1 = C1, A2Z + YB2 = C2. (1.2)

Lee and Vu [22] studied some solvability conditions for simultaneous solutions of (1.2). Lin and
Wei [24] evaluated the condition number of (1.2). The constraint solutions to (1.2) are explored by
Wang et al. in [43]. Some practical, necessary, and sufficient conditions for

A1X1 + Z1B1 = C1, A2Z1 + X2B2 = C2,

to have a general solution are presented by Wang and He in [17].
The generalized Sylvester matrix equation

AXB +CYD = E, (1.3)
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has been extensively researched. Baksalari and Kala [6] provided a comprehensive solution to the
complex equation (1.3) employing the MP-inverse. This result was later extended and developed into
quaternion equations by Wang [41, 44].

Liu [26] evaluated the Hermitian solution to the Sylvester-type equation

AXA∗ + BYB∗ = C (1.4)

over C and expressed it in terms of generalized inverses. A nonlinear Hermitian expression was
also explored in [30]. Building on the explicit solution representation using generalized inverses,
the authors in [19] developed Cramer’s rules for obtaining Hermitian solutions to Eq (1.4) in the
quaternion skew field H, employing row-column noncommutative determinant techniques. One can
argue that a direct method for solving matrix equations can be provided by using generalized inverses.
Another established strategy involves the application of various iterative methods. Using iterative
approaches, [10] investigated Eq (1.4) in its findings. In [14], Hajarian developed an algorithm for
determining the solution to the system

A1XB1 +C1YD1 = E1,

A2ZB2 +C2YD2 = E2.

Alternative iterative approaches for solving coupled matrix equations have been extensively
investigated, as documented in [11, 12]. Some of the latest developments in solving Sylvester-type
matrix equations and quaternion matrix theory can be found in [31, 32, 35, 36]. In [33], researchers
investigated the system

A1UA∗1+B1VB∗1 = C1, C1 = −C∗1
A2WA∗2+B2VB∗2 = C2, C2 = −C∗2,

(1.5)

while determining the necessary and sufficient conditions governing its consistency.
Motivated by the aforementioned research and the wide-ranging applications of generalized

Sylvester matrix equations in various applied fields, this paper focuses on investigating the constrained
anti-Hermitian solutions to Sylvester-type matrix equations:

A3X = C3, XB3 = C4, X∗ = −X,

A4Y = C5,YB4 = C6, Y∗ = −Y,

A5Z = C7,ZB5 = C8, Z∗ = −Z,

A1XA∗1+B1YB∗1 = C1, C1 = −C∗1
A2ZA∗2+B2YB∗2 = C2, C2 = −C∗2,

(1.6)

over the quaternion skew field H. The principal aim of this work is to derive the complete general
solution for Eq (1.6) under solvable conditions. The general solution to the equation

A4X − (A4X)∗ + B4YB∗4 +C4ZC∗4 = D4, D4 = −D∗4, Y = −Y∗, Z = −Z∗, (1.7)

plays a fundamental role in deriving the main findings of this paper over H with anti-Hermitian
properties.

The structure of this article is outlined as follows. We devote Section 2 to revisiting several
definitions, fundamental properties, and lemmas that serve as the foundation for our subsequent
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analysis. Section 3 establishes the general solution of (1.6), including a special case. Section 4 presents
an algorithm and a numerical example for the anti-Hermitian solution of (1.6). Finally, Section 5
provides a conclusion to this research.

2. Main results

This section presents fundamental lemmas, key properties, and essential mathematical tools that
will underpin both the proof of our main theorem and the construction of illustrative examples.

Lemma 2.1 ( [28]). Let K ∈ Hm×n, P ∈ Hm×t, Q ∈ Hl×n. Then

r
[

K
Q

]
− r(K) = r(QLK), r

[
K P

]
− r(P) = r(RPK),

r
[

K P
Q 0

]
− r(P) − r(Q) = r(RPKLQ).

Lemma 2.2 ( [25]). Let A2, B2,C2, and D2 be given with conformable sizes over H. Set

E =
[

A2

−B∗2

]
, F =

[
C2

D∗2

]
.

The system A2Y = C2,YB2 = D2 has the skew-Hermitian solution if and only if REF = 0 and EF∗ =
−FE∗. Under these terms, its general skew-Hermitian solution is

Y = E†F − (E†F)∗ + E†E(E†F)∗ + LEVL∗E,

where V = −V∗ is a free matrix over H with conformable size.

Lemma 2.3 ( [34]). Let A4, B4, C4, and D4 = −D∗4, be coefficient matrices in (1.7) over H with
agreeable sizes. Assume that

A = RA4 B4, B = RA4C4, C = RA4 D4RA4 , M = RAB, S = BLM.

The following conditions are equivalent:

(1) The system (1.7) has a solution (X,Y,Z), where Y and Z are anti-Hermitian matrices.
(2) RMRAC = 0 and RACRB = 0.
(3)

r
[

D4 A4 B4 C4

A∗4 0 0 0

]
= r

[
A4 B4 C4

]
+ r(A4),

r


D4 A4 B4

A∗4 0 0
C∗4 0 0

 = r
[

A4 B4

]
+ r

[
A4 C4

]
.

Under these conditions, X, Y∗ = −Y, and Z∗ = −Z are given below

X =A†4[D4 − B4YB∗4 −C4ZC∗4] −
1
2

A†4[D4 − B4YB∗4 −C4ZC∗4](A†4)∗A∗4 − U∗2(A†4)∗A∗4−
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− A†4U2A∗4 + LA4U1,

Y = − Y∗ = A†C(A†)∗ −
1
2

(A†BM†C[I + (B†)∗S ∗](A†)∗ − A†[I + S B†]C(M†)∗B∗(A†)∗)−

− A†S U6S ∗(A†)∗ + LAU4 − U∗4LA,

Z = − Z∗ =
1
2

M†C(B†)∗[I + (S †S )∗]−
1
2

(I + S †S )B†C(M†)∗ + LMU6LM+

+ U5LB − LBU∗5 + LMLS U3 − (LMLS U3)∗,

where U1, · · · ,U5, and U6 = −U∗6 are free matrices with acceptable sizes.

Lemma 2.3 expresses the system solution (1.7) in terms of the MP-inverses and inducted projectors.
While this representation offers a method for finding a solution, it necessitates a procedure for
computing the MP-inverse, which possesses properties distinct from those of an ordinary inverse.
The ordinary matrix inverse has a well-known determinantal (D)-representation using the cofactor
matrix. A similar representation is desirable for generalized inverses. But, defining the determinant of
a quaternion matrix itself presents significant difficulties (see e.g., [2,8] for details). Recent progress in
addressing this problem has been made possible by the theory of column-row determinants developed
in [21].

For A = (ai j) ∈ Hn×n, we produce n row (R-)determinants and n column (C-)determinants similar to
usual, but stating a certain order of factors in each term.

• The i-th R-determinant of A, for a row index i ∈ In = {1, . . . , n}, is given by

rdetiA :=
∑
σ∈S n

(−1)n−r (ai ik1
aik1 ik1+1 . . . aik1+l1 i) . . . (aikr ikr+1 . . . aikr+lr ikr

),

whereat S n is the symmetric group on In. The permutation σ is a product of mutually disjoint
cycles ordered from the left to right by the rules

σ =
(
i ik1ik1+1 . . . ik1+l1

) (
ik2ik2+1 . . . ik2+l2

)
. . .

(
ikr ikr+1 . . . ikr+lr

)
,

ikt < ikt+s, ik2 < ik3 < · · · < ikr , ∀ t = 2, . . . , r, s = 1, . . . , lt.

• For an arbitrary column index j ∈ In, the j-th C-determinant of A is defined as follows

cdet jA =
∑
τ∈S n

(−1)n−r(a jkr jkr+lr
· · · a jkr+1 jkr

) · · · (a j jk1+l1
· · · a jk1+1 jk1

a jk1 j),

while a permutation τ is ordered from right to left in the following way:

τ =
(
jkr+lr · · · jkr+1 jkr

)
· · ·

(
jk2+l2 · · · jk2+1 jk2

) (
jk1+l1 · · · jk1+1 jk1 j

)
,

jkt < jkt+s, jk2 < jk3 < · · · < jkr .

In general, all R- and C-determinants are different. However, for any Hermitian matrix A ∈ Hn×n,
the following equalities ensure the existence of a unique determinant

rdet1A = · · · = rdetnA = cdet1A = · · · = cdetnA =: det A ∈ R.
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For more details on quaternion column-row determinants, see [21].
The following notations are used. Let Ai.(b) and A. j(c) stand for matrices obtained by replacing the

i-th row and j-th column of A with the row vector b ∈ H1×n and the column vector c ∈ Hm, respectively.
Let α := {α1, . . . , αr} ⊆ {1, . . . ,m} and β := {β1, . . . , βr} ⊆ {1, . . . , n}. Then, the notation Aαβ stands for a
submatrix of A ∈ Hm×n, with rows and columns indexed by α and β, respectively. Furthermore, Aαα and
|A|αα represent principal submatrices and principal minors of A when A is Hermitian. Denote

Ir,m := {α : 1 ≤ α1 < · · · < αr ≤ m}, Jr,n := {β : 1 ≤ β1 < · · · < βr ≤ n},

Ir,m{ j} := {α ∈ Ir,m : j ∈ α}, Jr,n{i} := {β ∈ Jr,n : i ∈ β}.

Lemma 2.4 ( [21]). Suppose that A ∈ Hn×m and rank (A) = r. Then for any s ≤ r, we have∑
α∈Is,m

|A∗A|αα =
∑
β∈Js,n

|AA∗|ββ ∈ R.

Now, we provide a method forD-representing the quaternion MP-inverse.

Lemma 2.5. [20, Theorem 4.5] Let A ∈ Hm×n with rank (A) = r. Then, the MP-inverse A† = (a†i j) ∈
Hn×m has the following twoD-representations:

a†i j =
1
δ

∑
β∈Jr,n{i}

cdeti

(
(A∗A).i

(
a∗. j

))β
β
=

1
δ

∑
α∈Ir,m{ j}

rdet j

(
(AA∗) j.(a∗i.)

)α
α
,

where
δ =

∑
β∈Jr,n

|A∗A|ββ =
∑
α∈Ir,m

|AA∗|αα,

and a∗. j and a∗i. are the j-th column and the i-th row of A∗, respectively.

Lemma 2.5 presents novel D-representations of the MP-inverse for any complex matrix by
substituting ordinary determinants for row-column noncommutative determinants.

Note that another direct method of calculating the MP-inverse is based on the use of Quaternion
Singular Value Decomposition (QSVD), which can be computed in several ways by converting the
quaternion matrix into a complex matrix (using symplectic decomposition) and computing the SVD
in complex arithmetic, or using specialized algorithms for quaternion matrices, such as those based
on quaternion Householder transformations and quaternion QR decomposition. But, in both cases, it
works reliably for small- to medium-sized matrices.

3. General solution and solvability condition of (1.6)

This section presents the main theorem of the paper.

Theorem 3.1. Let Ai ∈ H
m×n, Bi ∈ H

m×q for all i = 1, . . . , 5, Ci ∈ H
m×k for all i = 3, . . . , 8, and

Ci = −C∗i ∈ H
m×m for i = 1, 2. Assign the following

A6 =

[
A3

−B∗3

]
,C9 =

[
C3

C∗4

]
, A7 =

[
A4

−B∗4

]
,
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C10 =

[
C5

C∗6

]
, A8 =

[
A5

−B∗5

]
,C11 =

[
C7

C∗8

]
,

A9 = A1LA6 , B9 = B1LA7 ,C12 = C1 − A1X01A∗1 − B1Y01B∗1,

X01 = A†6C9 − (A†6C9)∗ + A†6A6(A†6C9)∗, Y01 = A†7C10 − (A†7C10)∗ + A†7A7(A†7C10)∗,
M1 = RA9 B9, S 1 = B9LM1 , A10 = A2LA8 , B10 = B2LA7 ,

C13 = C2 − A2Z01A∗2 − B2Y01B∗2, Z01 = A†8C11 − (A8C11)∗ + A†8A8(A†8C11)∗,
M2 = RA10 B10, S 2 = B10LM2 , E1 = LM1 , F1 = LM2 ,

D1 =
[

LM1 LS 1 −LB9 −LM2 LS 2 LB10

]
,

G1 = V02 − V01, V02 =
1
2

M†2C13(B†10)∗(Im + S †2S 2)−
1
2

(Im + S †2S 2)B†10C13(M†2)∗,

V01 =
1
2

M†1C12(B†9)∗(Im + S †1S 1)−
1
2

(Im + S †1S 1)B†9C12(M†1)∗,

D2 = RD1 E1, E2 = RD1 F1,G2 = RD1G1RD1 ,M3 = RD2 E2, S 3 = E2LM3 . (3.1)

The following statements are equivalent:

(1) System (1.5) has at least one solution.
(2) The following relations hold true:

RA6C9 = 0, A6C∗9 = −C9A∗6,

RA7C10 = 0, A7C∗10 = −C10A∗7,

RA8C11 = 0, A8C∗11 = −C11A∗8,

RA9C12RB9 = 0, RM1RA9C12 = 0,
RA10C13RB10 = 0, RM2RA10C13 = 0,
RD2G2RD2 = 0, RM3RD2G2 = 0.

(3.2)

(3) The following equalities hold for the ranks:

r
([

C9

A6

])
= r(A6), A6C∗9 = −C9A∗6,

r
([

C10

A7

])
= r(A7), A7C∗10 = −C10A∗7,

r
([

C11

A8

])
= r(A8), A8C∗11 = −C11A∗8,

(3.3)
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r




C1 A1 B1C∗10
B∗1 0 A∗7

C9A∗1 A6 0


 = r

([
A1

A6

])
+ r

([
B1

A7

])
,

r




C1 B1 A1

C10B∗1 A7 0
C9A∗1 0 A6


 = r




A1 B1

0 A7

A6 0


 ,

r




C2 A2 B2C∗10
B∗2 0 A∗7

C11A∗2 A8 0


 = r

([
A2

A8

])
+ r

([
B2

A7

])
,

r




C2 B2 A2

C10B∗2 A7 0
C11A∗2 0 A8


 = r




A2 B2

A8 0
0 A7


 ,

(3.4)

r





0 0 B∗2 0 B∗1 0 0 0 A∗7 0 0 0
0 0 0 B∗1 B∗1 0 0 0 0 A∗7 0 0
0 0 0 0 B∗1 B∗2 0 0 0 0 A∗7 0
0 0 B∗2 0 0 0 0 0 0 0 0 A∗7
B2 0 0 0 0 0 0 0 0 0 0 0
0 −B1 0 0 0 0 0 0 0 0 0 0
A7 0 0 0 0 0 0 0 0 0 0 0
0 A7 0 0 0 0 0 0 0 0 0 0





=r





B1 −B1 −B1 0 0
B2 0 0 0 0
0 B2 0 0 0
0 0 B1 A1 0
0 0 0 0 A2

A7 0 0 0 0
0 A7 0 0 0
0 0 A7 0 0
0 0 0 A6 0
0 0 0 0 A8





+ r





B1 B1 0 0
B2 0 0 0
0 B2 A2 0
0 0 0 A1

A7 0 0 0
0 A7 0 0
0 0 A8 0
0 0 0 A6




,

(3.5)
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r





0 0 B∗1 B∗2 0 0 0 A∗7 0
0 0 B∗1 0 B∗2 0 0 0 A∗7
−B2 B2 0 0 0 A2 0 0 0
B1 0 0 0 0 0 A1 0 0
0 B1 0 0 0 0 0 0 0
A7 0 0 0 0 0 0 0 0
0 A7 0 0 0 0 0 0 0
0 0 0 0 0 A8 0 0 0
0 0 0 0 0 0 A6 0 0





=r





B2 0 0 A2 0
0 B1 0 0 A1

B1 B1 B1 0 0
0 0 B2 0 0
A7 0 0 0 0
0 A7 0 0 0
0 0 A7 0 0
0 0 0 A8 0
0 0 0 0 A6





+ r





0 B1 0 0
B1 0 0 0
0 B2 0 0
0 0 A1 0
B2 0 0 A2

A7 0 0 0
0 A7 0 0
0 0 A6 0
0 0 0 A8





.

(3.6)

With these assumptions, the general solution to (1.5) takes the form:

X =A†6C9 − (A†6C9)∗ + A†6A6(A†6C9)∗ + LA6UL∗A6
,

Y =A†7C10 − (A†7C10)∗ + A†7A7(A†7C10)∗ + LA7VL∗A7
,

Z =A†8C11 − (A†8C11)∗ + A†8A8(A†8C11)∗ + LA8WL∗A8
,

(3.7)

where

U =A†9C12(A†9)∗ −
1
2

A†9B9M†1C12[Im + (B†9)∗S ∗1](A†9)∗

+
1
2

A†1[Im + S 1B†9]C12(M†1)∗B∗9(A†9)∗ − A†9S 1U1S ∗1(A†9)∗ + LA9U2 − U∗2LA9 ,

W =A†10C13(A†10)∗ −
1
2

A†10B10M†2C13[Im + (B†10)∗S ∗2](A†10)∗

+
1
2

A†10[Im + S 2B†10]C13M∗2B∗10(A†10)∗ − A†10S 2W1S ∗2(A†10)∗ + LA10W2 −W∗
2 LA10 ,

(3.8)

and the matrix V can be found in two different ways

V =
1
2

M†1C12(B†9)∗(Im + S †1S 1)−
1
2

(Im + S †1S 1)B†9C12(M†1)∗ + LM1U1LM1

+LM1 LS 1V1 − V∗1 LS 1 LM1 + V2LB9 − LB9V
∗
2 ,

V =
1
2

M†2C13(B†10)∗(Im + S †2S 2)−
1
2

(Im + S †2S 2)B†10C13(M†2)∗ + LM2W1LM2

+LM2 LS 2V3 − V∗3 LS 2 LM2 + V4LB10 − LB10V
∗
4 .

(3.9)
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Here, the matrices U1, and W1 are determined by

U1 =D†2G2(D†2)∗ −
1
2

D†2E2M†3G2(Im + (E†2)∗S ∗3)(D†2)∗

+
1
2

D†2(Im + S 3E†2)G2(M†3)∗E∗2(D†2)∗ − D†2S 3U3(D†2S 3)∗ + LD2U4 − U∗4LD2 ,

T2 = −W1 =
1
2

M†3G2(E†2)∗(Im + S †3S 3)H−
1
2

(Im + S †3S 3)E†2G∗2(M†3)∗ + LM3U3LM3

+LM3 LS 3T3 − T ∗3 LS 3 LM3 + T4LE2 − LE2T
∗
4 ,

(3.10)

and the matrices V1, V2, V3, V4 are m × m-blocks of the matrix

T ∗1 =
[
V∗1 V2 V∗3 V4

]
∈ Hm×4m,

where
T1 =D†1(G1 − E1U1E∗1 − F1T2F∗1) −

1
2

D†1(G1 − E1U1E∗1 − F1T2F∗1)(D†1)∗D∗1

−D†1T4D∗1 − T ∗4(D†1)∗D∗1 + LD1T6.
(3.11)

While U2,W2,T3,T4, and T6 = −T ∗6 are any matrices of admissible sizes over H.

Proof. We write the equations in (1.6) as follows:

A3X = C3, XB3 = C4, X∗ = −X,

A4Y = C5,YB4 = C6, Y∗ = −Y,

A1XA∗1+B1YB∗1 = C1, C1 = −C∗1

(3.12)

and
A4Y = C5,YB4 = C6, Y∗ = −Y,

A5Z = C7,ZB5 = C8, Z∗ = −Z,

A2ZA∗2+B2YB∗2 = C2, C2 = −C∗2.

(3.13)

By Lemma 2.2, the general solution to A3X = C3, XB3 = C4, X∗ = −X, and A4Y = C5,YB4 = C6, Y∗ =
−Y is given by

X =A†6C9 − (A†6C9)∗ + A†6A6(A†6C9)∗ + LA6UL∗A6
, (3.14)

Y =A†7C10 − (A†7C10)∗ + A†7A7(A†7C10)∗ + LA7VL∗A7
(3.15)

respectively. Using (3.14) and (3.15) in the last equation of (3.12) and making some calculations, we
obtain

A9UA∗9 + B9VB∗9 = C12. (3.16)

A solution to Eq (3.16) exists precisely when

RA9C12RB9 = 0, RM1RA9C12 = 0.

Then, the general solution of (3.16) takes the form:

U = A†9C12(A†9)∗ −
1
2

A†9B9M†1C12[Im + (B†9)∗S ∗1](A†9)∗
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−
1
2

A†9[Im + S 1B†9]C12(M†1)∗B∗9(A†9)∗ − A†9S 1U1S ∗1(A†9)∗ + LA9U2 − U∗2LA9 ,

V =
1
2

M†1C12(B†9)∗(Im + S †1S 1) +
1
2

(Im + S †1S 1)B†9C12(M†1)∗

+ LM1U1LM1 + LM1 LS 1V1 − V∗1 LS 1 LM1 + V2LB9 − LB9V
∗
2 . (3.17)

Applying Lemma 2.2 to the system A5Z = C7,ZB5 = C8, Y∗ = −Y gives

Z =A†8C11 − (A†8C11)∗ + A†8A8(A†8C11)∗ + LA8WL∗A8
. (3.18)

Using (3.15) and (3.18) in the last equation of (3.13) and making some calculations, we gain

A10WA∗10 + B10VB∗10 = C13. (3.19)

Equation (3.19) is solvable if and only if

RA10C13RB10 = 0, RM2RA10C13 = 0.

Combining Lemma 2.3 with Eq (1.1), we deduce that the general solution to (3.19) has the
representation:

W = A†10C13(A†10)∗ −
1
2

A†10B10M†2C13[Im + (B†10)∗S ∗2](A†10)∗

+
1
2

A†10[Im + S 2B†10]C13(M∗2B∗2(A†10)∗ − A†10S 2W1S ∗2(A†10)∗ + LA10W2 −W∗
2 LA10 ,

V =
1
2

M†2C13(B†10)∗(Im + S †2S 2)−
1
2

(Im + S †2S 2)B†10C13(M†2)∗

+ LM2W1LM2 + LM2 LS 2V3 − V∗3 LS 2 LM2 + V4LB10 − LB10V
∗
4 , (3.20)

where W2 is a free matrix of adequate shapes overH. The matrices U1,W1,V1,V2,V3,V4 are determined
as follows.

Denote T ∗1 =
[

V∗1 V2 V∗3 V4

]
, E1 = LM1 , F1 = LM2 , T2 = −W1, G1 = V02 − V01.

Equating (3.17) and (3.20), we obtain

D1T1 − (D1T1)∗ + E1U1E1
∗ + F1T2F∗1 = G1. (3.21)

Lemma 2.3 establishes that Eq (3.21) admits a solution precisely when the equalities in (3.2) are
satisfied, with the general solution then taking the form (3.7)–(3.11).

(2)⇔ (3) : Lemma 2.3 implies the following rank equalities.

r(RA6C9) = 0⇔ r
([

C9 A6

])
= r(A6), A6C∗9 = −C9A∗6,

r(RA7C10) = 0⇔ r
([

C10 A7

])
= r(A7), A7C∗10 = −C10A∗7,

r(RA8C11) = 0⇔ r
([

C11 A8

])
= r(A8), A8C∗11 = −C11A∗8,

r(RA9C12B9) = 0⇔ r
([

C12 A9

B∗9 0

])
= r(A9) + r(B9)
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⇔ r
([

C1 − A1X01A∗1 − B1Y01B∗1 A1LA6

LA7 B∗1 0

])
= r(A1LA6) + r(LA7 B∗1),

r




C1 − A1X01A∗1 − B1Y01B∗1 A1 0
B∗1 0 A∗7
0 A6 0


 = r

([
A1

A6

])
+ r

([
B1

A7

])
,

r




C1 A1 B1C∗10
B∗1 0 A∗7

C9A∗1 A6 0


 = r

([
A1

A6

])
+ r

([
B1

A7

])
,

r(RM1RA9C12) = 0⇔ r
([

RA9C12 M1

])
= r(M1)⇔ r

([
RA9C12 RA9 B9

])
= r(RA9 B9),

r
([

C12 B9 A9

])
= r

([
A9 B9

])
⇔ r

(
[ C1 − A1X01A∗1 − B1Y01B1∗ B1LA7 A1LA6 ]

)
= r

([
B1LA7 A1LA6

])
⇔ r




C1 − A1X01A∗1 − B1Y01B1∗ B1 A1

0 A7 0
0 0 A6


 = r




B1 A1

A7 0
0 A6




⇔ r




C1 B1 A1

C10 A7 0
C9A∗1 0 A6


 = r




B1 A1

A7 0
0 A6


 ,

r(RA10C13B10) = 0⇔ r
([

C13 A10

B∗10 0

])
= r(A10) + r(B10)

⇔ r
([

C2 − A2Z01A∗2 − B2Y01B∗2 A2LA8

LA7 B∗2 0

])
= r(A2LA8) + r(LA7 B∗2)

⇔ r




C2 − A2Z01A∗2 − B2Y01B∗2 A2 0
B∗2 0 A∗7
0 A8 0


 = r

([
A2

A8

])
+ r

([
B2

A7

])

⇔ r




C2 A2 B2C∗10
B∗2 0 A∗7

C11A∗1 A8 0


 = r

([
A2

A8

])
+ r

([
B2

A7

])
,

r(RM2RA10C13) = 0⇔ r
([

RA10C13 M2

])
= r(M1)

⇔ r
([

RA10C13 RA10 B10

])
= r(RA10 B10)

⇔ r
([

C13 B10 A10

])
= r

([
A10 B10

])
⇔ r

(
[ C2 − A2Z01A∗2 − B2Y01B∗2 B2LA7 A2LA8 ]

)
= r

([
B2LA7 A2LA8

])
⇔ r




C2 − A2Z01A∗2 − B2Y01B∗2 B2 A2

0 A7 0
0 0 A8


 = r




A2 B2

A8 0
0 A7




⇔ r




C2 B2 A2

C10B∗2 A7 0
C11A∗2 0 A8


 = r




A2 B2

A8 0
0 A7


 ,
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RD2G2R∗D2
= 0⇔ r

([
G2 D2

D∗2 0

])
= r(D2) + r(E2),

r
([

RD1G1R∗D1
RD1 E1

F∗1RD1 0

])
= r(RD1 E1) + r(RD1 F1)

⇔ r




G1 E1 D1

F∗1 0 0
D∗1 0 0


 = r

([
D1 E1

])
+ r

([
D1 F1

])
,

r





V02 − V01 LM1 LM1 LS 1 −LB9 −LM2 LS 2 LB10

LM2 0 0 0 0 0
LS 1 LM1 0 0 0 0 0
−LB9 0 0 0 0 0

LS 2 LM2 0 0 0 0 0
LB10 0 0 0 0 0




= r

([
LM1 LM1 LS 1 −LB9 −LM2 LS 2 LB10

])
+ r

([
LM2 LS 1 LM1 −LB9 LS 2 LM2 LB10

])

⇔ r





V02 − V01 LM1 −LB9 −LM2 LS 2 LB10

LM2 0 0 0 0
LS 1 LM1 0 0 0 0
−LB9 0 0 0 0
LB10 0 0 0 0





=r





−I −LM2 I I

B9 0 0 0
0 S 2 0 0
0 0 B10 0
0 0 0 M1




+ r





LM1 −I I I

S 1 0 0 0
0 B9 0 0
0 0 B10 0
0 0 0 M2





⇔ r





V01 − V02 I −I −LM2 I 0 0 0 0
I 0 0 0 0 M∗2 0 0 0

LM1 0 0 0 0 0 S ∗1 0 0
−I 0 0 0 0 0 0 B∗2 0
I 0 0 0 0 0 0 0 B10





=r





−I −LM2 I I

B9 0 0 0
0 B1LM10 0 0
0 0 B10 0
0 0 0 RA9 B9




+ r





LM1 −I I I

B9LM1 0 0 0
0 B9 0 0
0 0 B10 0
0 0 0 RA10 B10




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⇔ r





0 0 B∗10 0 B9 0 0 0
0 0 0 B∗9 B9 0 0 0
0 0 0 0 B9 B∗10 0 0
0 0 B∗10 0 0 0 0 0
0 0 B∗10 0 0 0 0 0

B10 0 −C13 0 0 0 A10 0
0 −B9 0 −C∗12 0 0 0 A9





=r





B9 −B9 B9 0 0
B10 0 0 0 0
0 B10 0 0 0
0 0 B9 A9 0

B10 0 0 0 A10




+ r




B9 B9 0 0
B10 0 0 0
0 B10 A10 0
0 0 0 A9


 ,

r





0 0 B∗2 0 B∗1 0 0 0 A∗7 0 0 0
0 0 0 B∗1 B∗1 0 0 0 0 A∗7 0 0
0 0 0 0 B∗1 B∗2 0 0 0 0 A∗7 0
0 0 B∗2 0 0 0 0 0 0 0 0 A∗7
B2 0 0 0 0 0 0 0 0 0 0 0
0 −B1 0 0 0 0 0 0 0 0 0 0
A7 0 0 0 0 0 0 0 0 0 0 0
0 A7 0 0 0 0 0 0 0 0 0 0





= r





B1 −B1 −B1 0 0
B2 0 0 0 0
0 B2 0 0 0
0 0 B1 A1 0
0 0 0 0 A2

A7 0 0 0 0
0 A7 0 0 0
0 0 A7 0 0
0 0 0 A6 0
0 0 0 0 A8





+ r





B1 B1 0 0
B2 0 0 0
0 B2 A2 0
0 0 0 A1

A7 0 0 0
0 A7 0 0
0 0 A8 0
0 0 0 A6





,

r(RM3 RD2G2] = 0⇔ r
([

RD2G2 M3

])
= r(M3)⇔ r

([
RD2G2 RD2 E2

])
= r(M3)

⇔ r
([

G2 E2 D2

])
= r

([
D2 E2

])
⇔ r

([
RD1G1R∗D1

RD1 F1 RD1 E1

])
= r

([
F1 D1 E1

])
+ r(D1),

r





V02 − V01 LM2 LM1 LM1 LS 1 −LB4 −LM2 LS 2 LB10

LS 1 LM1 0 0 0 0 0 0
−LB9 0 0 0 0 0 0
−LS 2 LM2 0 0 0 0 0 0

LB10 0 0 0 0 0




= r

([
LM2 LM1 LM1 LS 1 −LB9 −LM2 LS 2 LB10

])
+ r

([
LM1 LS 1 −LB9 −LM2 LS 2 LB10

])
AIMS Mathematics Volume 10, Issue 11, 26237–26259.



26251

⇔ r





V02 − V01 Im Im −Im −LM2 Im 0 0 0 0
LM1 0 0 0 0 0 S ∗1 0 0 0
−Im 0 0 0 0 0 0 B∗9 0 0
LM2 0 0 0 0 0 0 0 S ∗2 0
Im 0 0 0 0 0 0 0 0 B∗10

0 M2 0 0 0 0 0 0 0 0
0 0 M1 0 0 0 0 0 0 0
0 0 0 B9 0 0 0 0 0 0
0 0 0 0 S 2 0 0 0 0 0
0 0 0 0 0 B10 0 0 0 0




= r

([
LM2 LM1 −LB9 LB10

])
+ r

([
LM1 LS 1 −LB9 −LM2 LS 2 LB10

])

⇔ r





V02 − V01 Im Im −Im −LM2 Im 0 0 0 0
LM1 0 0 0 0 0 LM1 B∗9 0 0 0
−Im 0 0 0 0 0 0 B∗9 0 0
LM2 0 0 0 0 0 0 0 LM2 B∗10 0
Im 0 0 0 0 0 0 0 0 B∗10

0 RA10 B10 0 0 0 0 0 0 0 0
0 0 RA9 B9 0 0 0 0 0 0 0
0 0 0 B9 0 0 0 0 0 0
0 0 0 0 B10LM2 0 0 0 0 0
0 0 0 0 0 B10 0 0 0 0





= r





Im Im −Im Im

M2 0 0 0
0 M1 0 0
0 0 B9 0
0 0 0 B10




+ r





LM1 −Im −LM2 Im

S 1 0 0 0
0 B9 0 0
0 0 S 2 0
0 0 0 B10




.

Expanding the above equations and using

A9U01A∗9 + B9V01B∗9 = C12,

A10W01A∗10 + B10V02B∗10 = C13,

and doing some simplifications in it, we have

r





0 0 −B∗9 B∗10 0 0 0
0 0 −B∗9 0 B∗10 0 0
−B10 B10 0 0 0 A10 0

B9 0 0 0 0 0 A9

0 B9 0 0 0 0 0





=r




B10 0 0 A10 0
0 B9 0 0 A9

B9 B9 B9 0 0
0 0 B10 0 0


 + r





0 B9 0 0
B9 0 0 0
0 B10 0 0
0 0 A9 0

B10 0 0 A10




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⇔ r





0 0 −LA7 B∗1 LA7 B∗2 0 0 0
0 0 −LA7 B∗1 0 LA7 B∗2 0 0
−B10 B10 0 0 0 A2LA8 0
LA7 B∗1 0 0 0 0 0 A1LA6

0 LA7 B∗1 0 0 0 0 0





=r




B2LA7 0 0 A2LA8 0
0 B1LA7 0 0 A9

B1LA7 B1LA7 B1LA7 0 0
0 0 B2LA7 0 0


 + r





0 B1LA7 0 0
B1LA7 0 0 0

0 B2LA7 0 0
0 0 A1LA6 0

B2LA7 0 0 A2LA8





⇔ r





0 0 B∗1 B∗2 0 0 0 A∗7 0
0 0 B∗1 0 B∗2 0 0 0 A∗7
−B2 B2 0 0 0 A2 0 0 0
B1 0 0 0 0 0 A1 0 0
0 B1 0 0 0 0 0 0 0
A7 0 0 0 0 0 0 0 0
0 A7 0 0 0 0 0 0 0
0 0 0 0 0 A8 0 0 0
0 0 0 0 0 0 A6 0 0





=r





B2 0 0 A2 0
0 B1 0 0 A1

B1 B1 B1 0 0
0 0 B2 0 0
A7 0 0 0 0
0 A7 0 0 0
0 0 A7 0 0
0 0 0 A8 0
0 0 0 0 A6





+ r





0 B1 0 0
B1 0 0 0
0 B2 0 0
0 0 A1 0
B2 0 0 A2

A7 0 0 0
0 A7 0 0
0 0 A6 0
0 0 0 A8





.

□

Now we discuss a particular case of our system.
If Ai, Bi, (i = 3, 4, 5), and C j, ( j = 3, . . . , 8), are all equal to zero in Theorem 3.1, then the following

consequence holds.

Corollary 3.2. Let A1 ∈ C
m×n, A2 ∈ C

m×q, Bi ∈ C
m×k, and Ci = −C∗i ∈ C

m×m for i = 1, 2. Assign

M1 = RA1 B1, S 1 = B1LM1 , M2 = RA2 B2, S 2 = B2LM2 , A4 = RA3 LM1 , B4 = RA3 LM2 ,

A3 =
[

L∗B2
−LB1 LM1 LS 1 −LM2 LS 2

]
, M3 = RA4 B4, S 3 = B4LM3

C3 = V02 − V01, V02 =
1
2

M†2C2(B†2)∗(Im + S †2S 2)−
1
2

(Im + S †2S 2)B†2C2(M†2)∗,

V01 =
1
2

M†1C1(B†1)∗(Im + S †1S 1)−
1
2

(Im + S †1S 1)B†1C1(M†1)∗, C4 = RA3C3RA3 .

Then the following statements are equivalent:
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(1) The consistency of system (1.5) holds.
(2) The system yields these equalities:

RA1C1RB1 = 0, RM1RA1C1 = 0,
RA2C2RB2 = 0, RM2RA2C2 = 0,
RA4C4RB4 = 0, RM3RA4C4 = 0.

(3) The ranks obey the equalities:

r
([

C1 A1

B∗1 0

])
= r(A1) + r(B1), r

([
C1 B1 A1

])
= r

([
A1 B1

])
,

r
([

C2 A2

B∗2 0

])
= r(A2) + r(B2), r

([
C2 B2 A2

])
= r

([
A2 B2

])
,

r





0 0 0 B∗2 B1 0 0
0 0 0 −B∗2 0 B∗1 0
B1 0 0 0 0 C1 A1

0 B2 0 −C2 0 0 0
−B2 −B2 B2 0 0 0 0

0 0 0 A∗2 0 0 0




=r



−B1 0 −B1 A1

B2 B2 0 0
0 B1 0 0
0 0 B2 0


 + r




B2 0 0 A2

−B2 B2 −B2 0
0 B1 0 0
0 0 B1 0


 ,

r





0 0 −B∗1 B∗2 0 0 0 0
0 0 −B∗1 0 B∗1 0 0 0
0 0 −B∗1 0 0 B∗2 0 0
−B∗1 −B∗1 0 0 −C1 0 A1 0
B2 0 0 0 0 C2 A2 0
0 B2 0 0 0 0 0 0




=r



−B1 0 −B1 A1

B2 B2 0 0
0 B1 0 0
0 0 B2 0


 +




B2 0
B1 0
0 B2


 + r(B1).

With these assumptions, the general solution of (1.5) takes the form:

X =A†1C1(A†1)∗ −
1
2

A†1B1M†1C1[Im + (B†1)∗S ∗1](A†1)∗

+
1
2

A†1[Im + S 1B†1]C1(M†1)∗B∗1(A†1)∗ − A†1S 1U1S ∗1(A†1)∗ + LA1V1 − V∗1 LA1 ,

Z =A†2C2(A†2)∗ −
1
2

A†2B2M†2C2[Im + (B†2)∗S ∗2](A†2)∗

+
1
2

A†2[Im + S 2B†2]C2(M†2)∗B∗2(A†2)∗ − A†2S 2U4S ∗2(A†2)∗ + LA2V2 − V∗2 LA2 ,
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Y =
1
2

M†1C1(B†1)∗(Im + S †1S 1)−
1
2

(Im + S †1S 1)B†1C1(M†1)∗

+LM1U1LM1 + LM1 LS 1U2 − U∗2LS 1 LM1 + U3LB1 − LB1U
∗
3,

or

Y =
1
2

M†2C2(B†2)∗(Im + S †2S 2)−
1
2

(Im + S †2S 2)B†2C2(M†2)∗

+LM2U4LM2 + LM2 LS 2U5−U∗5LS 2 LM2 + U6LB2 − LB2U
∗
6,

with

U∗6 = [ Ik 0 0 0 ]Z,

U∗3 = [ 0 Ik 0 0 ]Z,

U2 = [ 0 0 Ik 0 ]Z,

U5 = [ 0 0 0 Ik ]Z,

where

Z =A†3(C3 − LM1U1LM1 − LM2U4LM2) −
1
2

A†3(C3 − LM1U1LM1 − LM2U4LM2)A3A†3

−A†3U7A∗3 − U∗7A3A†3 + LA3U8,

U1 =A†4C4(A†4)∗ −
1
2

A†4B4M†3C4(Im + (B†4)∗S ∗3)(A†4)∗

+
1
2

A†4(Im + S 3B†4)C4(M†3)∗B∗4(A†4)∗ − A†4S 3U9(A†4S 3)∗ + LA4U10 − U∗10LA4 ,

U4 =
1
2

M†3C4(B†4)∗(Im + S †3S 3)−
1
2

(Im + S †3S 3)B†4C4(M†3)∗ + LM3U11LM3

+LM3 LS 3U12 − U∗12LS 3 LM3 + U13LB4 − LB4U
∗
13.

Here V1, V2, U7, . . . ,U13, U9 = −U∗9,U11 = −U∗11 are any matrices of admissible sizes over H.

4. An algorithm and an example

We derive an explicit solution algorithm for system (1.5) based on the foundations established in
Theorem 3.1. This algorithm implements theD-representations of the MP-inverse to construct general
solutions, thus realizing theoretical principles in the final computation of concrete examples.

Algorithm 1 (H). 1) Input the matrices Ai, Bi, (i = 1, . . . , 5), and C j, ( j = 1, . . . , 8). Ensure they
have conformable sizes over H, and some of them are skew-Hermitian.

2) Compute the requisite matrices as prescribed in (3.1).
3) Evaluate the consistency of the system using either the matrix equations stated in (3.2) or rank

conditions (3.3)–(3.6). If they do not hold, return “inconsistent”.
4) Given satisfied consistency conditions:

(a) Evaluate T1, T2, U1, U, W, and V from (3.8)–(3.11).
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(b) Derive the solution X,Y,Z through (3.7).

To validate the efficacy and practical utility of Algorithm 1, we provide the following numerical
demonstration. The matrices defined below are employed to find a solution to the equations in (1.5).

A1 =


3 + 3i 3j + 3k 3i − 3

3j − 3k 3i − 3 −3j − 3k
−3i + 3 3j − 3k 3i + 3

 , A2 =


3i 3j 3k
−3 3k −3j
−3j 3i 3

 , A3 =

−1 + i 1 + i −1 − i
−1 − i −1 + i 1 − i

,

A4 =

−1 + j 1 + j
−1 − j −1 + j

 , A5 =


1 + k −1 + k 1 − k

2k −2 2
−1 + k −1 − k 1 + k

 , B1 =


1 j
−k i
i k

 , B2 =


i k
−k i
j −1

 ,

B3 =


−1 − i −2i 1 − i
1 − i 2 1 + i
−1 + i −2 −1 − i

 , B4 =

1 − j −1 − j
1 + j 1 − j

 , B5 =


−i + j −2i −i − j
i + j 2j −i + j
−i − j −2j i − j

 ,

C1 =


i −1 + i 1 − j

1 + i j k
−1 − j k k

 ,C2 =


k −1 + j 1 − k

1 + j i k
−1 − k k j

 , C4 =


−1 + i −2 −1 − i
−1 − i −2i 1 − i
1 + i 2i −1 + i

 ,
C3 =

 1 + i 1 − i −1 + i
−1 + i 1 + i −1 − i

,C5 =

 1 + j 1 − j
−1 + j 1 + j

 , C6 =

−1 − j −1 + j
1 − j −1 − j

 ,
C7 =


1 − k 1 + k −1 − k

2 2k −2k
1 + k −1 + k 1 − k

 , C8 =


i + j 2j i − j
i − j 2i i + j
−i + j −2i −i − j

 .
Using these matrices, we implement the procedure established in Theorem 3.1 to compute the solution
of system (1.5).

• [Step 1] Using Lemma 2.5, calculate the MP-inverses of the given matrices. As an illustration,
we obtain:

A†6 =
1

36


−1 − i −1 + i 1 + i 2i −1 + i
1 − i −1 − i −1 + i −2 −1 − i
−1 + i 1 + i 1 − i 2 1 + i

.
In particular, after computing the MP-inverses and considering the specific structure of our
system, we find that the matrices S i, (i = 1, 2, 3), D2, E2, T1, T2, and U1 turn out to be zero
matrices. We also consider zero matrices as arbitrary matrices U2,W2,T3,T4, and T6 = −T ∗6.
• [Step 2] Verify the given matrices by checking their compliance with the representation in (3.2)

and the rank conditions (3.3)–(3.6) to ensure system consistency.
• [Step 3] The next step is to calculate the matrices U,W, and V . These matrices are used to

construct the general solution to our system. Their calculation relies on values computed earlier
and is integral to finalizing the solution according to our algorithm.
• [Step 5] With all necessary matrices computed, we are now in a position to present the

solution (3.7) to the system defined in (1.5).

X =
1

3456


−1731i − 430j + k 6 + 2j + 860k 1731 + j + 430k
−6 + 2j + 860k −3468i + 1720j − 4k −6i + 860j − 2k
−1731 + j + 430k −6i + 860j − 2k −1731i + 430j − k

,
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Y =
1

96

[
4i − 47j + 9k −49 − 9i + 4k
49 − 9i + 4k −4i − 47j − 9k

]
,

Z =
1

6912


−45i + 198j − 2543k 1994 − 15i − 36j − 27k −2375 + 183i + 9j − 27k
−1994 − 15i − 36j − 27k 45i + 174j − 2561k 27 + 9i + 189j + 2357k
2375 + 183i + 9j − 27k −27 + 9i + 189j + 2357k 18i + 6j − 2180k

.
Note that we provide exact numerical values, rather than approximations, because we utilize the

direct method for solving the quaternion matrix system (1.5).

5. Conclusions

This work investigates a constrained system of anti-Hermitian Sylvester matrix equations. We
establish necessary and sufficient conditions for the existence of solutions, presented in two equivalent
forms:

(i) algebraic characterization: Via relations involving the Moore–Penrose (MP-) inverse and induced
projectors of the coefficient matrices;

(ii) rank-based criteria: Expressed through rank conditions on the system’s coefficients.

Additionally, we derive an explicit anti-Hermitian solution constructed from the MP-inverse and
its associated projectors. The main theorem not only proves solvability but also yields a
computational algorithm, which we demonstrate via a numerical example. This example employs
innovative techniques for D-representations of the MP-inverse, leveraging the theory of row-column
noncommutative determinants. All computations are implemented in Maple 2024 using the Clifford
package, showcasing the method’s practical applicability.
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