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1. Introduction

We consider the set of matrices with entries that belong to the quaternion skew field determined
by H = {tg + i + ,j + sk | i = j> = k*> = ijk = —1, ty,1,,5,t; € R}. For an arbitrary quaternion
t =ty + i + 1j + 3k € H, its conjugate quaternion is defined by 7 = #, — £;i — 1,j — ;K. As usual,
C and R stand for the complex and real number fields, respectively. For any A € H™", the matrix
A* € H™™ indicates the conjugate transpose of A. The matrix A € H™" is called Hermitian when
A* = A, and it is anti-Hermitian when A* = —A. Sometimes, instead of referring to “anti-Hermitian”,
the term “skew-Hermitian” is used, especially when describing quaternion matrices. Note that for any
A € H™" the half of the sum of it and its conjugate transpose A := %(A + A*) is Hermitian, and the
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half of their difference
N 1 o
A= E(A —A") = -A", (1.1)

yields its corresponding skew-Hermitian matrix, and A = A + A holds. Both symbols r(A) and rank (A)
denote the rank of A. The identity matrix of order n is denoted by I,.

Definition 1.1. For a given matrix A € H™", the Moore-Penrose (MP-) inverse of A, denoted by
AT € H™_is the unique matrix satisfying the Penrose conditions:

(DAATA=A, 2)ATAA" = AT, (3) (AAT)" = AAT, (4) (ATA)" = ATA.
Matrices satisfying the condition (2) are called generalized inverses of A.

The MP-inverse produces projectors, Ly = I, — ATA and R, = I,, — AAT, that satisfy the following
conditions:

La=(La)" = (La)* =L, Ra=Ra)*=(Ra)" =R, Ly- =Ry, Ry = Ly.

The introduction of quaternionic analysis has significantly expanded the scope of applied
mathematical fields [13, 15,40]. Quaternions are fundamental in the description of three-dimensional
rotations and find widespread application in computer graphics, robotics, navigation, quantum physics,
mechanics, and signal processing, as extensively documented in [1, 18]. The growing application of
quaternions in various practical fields has motivated extensive research into anti-Hermitian solutions
for quaternion systems of matrix equations. Furthermore, the determination of skew-Hermitian
solutions for matrix equations under symmetry constraints is of critical importance in quantum
mechanics [27], control theory [3], and Lie algebra [29]. Numerous problems in various engineering
disciplines, including linear descriptor systems, system design, singular system control [7, 9, 38],
perturbation theory [23], feedback control [39], and color image data transmission [16], necessitate
the solution of Sylvester-type matrix equations. For instance, Bai [4] investigated iterative methods for
solving the Sylvester equation A; X + XA, = B. Roth [37] later provided the consistency conditions
governing the solvability of its generalized form A; X + YA, = B, while subsequent work in [5] derived
its general solution structure.

In [42], Wang and He explored the general solution to the system

AIX+YB, =C,, Ay Z+YB, =C,. (12)

Lee and Vu [22] studied some solvability conditions for simultaneous solutions of (1.2). Lin and
Wei [24] evaluated the condition number of (1.2). The constraint solutions to (1.2) are explored by
Wang et al. in [43]. Some practical, necessary, and sufficient conditions for

A]X] +ZlB] = Cl, AzZ] +X232 = Cz,

to have a general solution are presented by Wang and He in [17].
The generalized Sylvester matrix equation

AXB +CYD =E, (1.3)
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has been extensively researched. Baksalari and Kala [6] provided a comprehensive solution to the
complex equation (1.3) employing the MP-inverse. This result was later extended and developed into
quaternion equations by Wang [41,44].

Liu [26] evaluated the Hermitian solution to the Sylvester-type equation

AXA* + BYB =C (1.4)

over C and expressed it in terms of generalized inverses. A nonlinear Hermitian expression was
also explored in [30]. Building on the explicit solution representation using generalized inverses,
the authors in [19] developed Cramer’s rules for obtaining Hermitian solutions to Eq (1.4) in the
quaternion skew field H, employing row-column noncommutative determinant techniques. One can
argue that a direct method for solving matrix equations can be provided by using generalized inverses.
Another established strategy involves the application of various iterative methods. Using iterative
approaches, [10] investigated Eq (1.4) in its findings. In [14], Hajarian developed an algorithm for
determining the solution to the system

A]XBl +C,YD, = E;,
ArZBy + C2YD, = E».

Alternative iterative approaches for solving coupled matrix equations have been extensively
investigated, as documented in [11, 12]. Some of the latest developments in solving Sylvester-type
matrix equations and quaternion matrix theory can be found in [31, 32, 35,36]. In [33], researchers
investigated the system
A UA+B, VB = Cy, C, = -C;
A2WA;+B2VB; =C,, C = —C;,

while determining the necessary and sufficient conditions governing its consistency.

Motivated by the aforementioned research and the wide-ranging applications of generalized
Sylvester matrix equations in various applied fields, this paper focuses on investigating the constrained
anti-Hermitian solutions to Sylvester-type matrix equations:

(1.5)

AsX = C3,XB; = Cy, X' = X,

AsY =Cs,YBy=Cg, Y* = -,

AsZ = Cy,ZBs = Cs, Z* = -Z, (1.6)
A XA +BYB: =Cy, C, = —C!

AyZAL+B,YB, = Cy, Cy = —C,

over the quaternion skew field H. The principal aim of this work is to derive the complete general
solution for Eq (1.6) under solvable conditions. The general solution to the equation

AyX — (A4X)* + B4YBZ + C4ZCZ =Dy, Dy = —DZ, Y= —Y*, Z = —Z*, (17)

plays a fundamental role in deriving the main findings of this paper over H with anti-Hermitian
properties.

The structure of this article is outlined as follows. We devote Section 2 to revisiting several
definitions, fundamental properties, and lemmas that serve as the foundation for our subsequent

AIMS Mathematics Volume 10, Issue 11, 26237-26259.



26240

analysis. Section 3 establishes the general solution of (1.6), including a special case. Section 4 presents
an algorithm and a numerical example for the anti-Hermitian solution of (1.6). Finally, Section 5
provides a conclusion to this research.

2. Main results

This section presents fundamental lemmas, key properties, and essential mathematical tools that
will underpin both the proof of our main theorem and the construction of illustrative examples.

Lemma 2.1 ([28]). Let K € H™" P e H"™ Q € H*". Then

r[ g]—r(l():r(QLK), r[ K P ]—V(P):”(RPK)’

. K P
0 0
Lemma 2.2 ( [25]). Let A,, By, Cs, and D, be given with conformable sizes over H. Set

| A | G
e=| 5 | =[5
The system A,Y = C,,YB, = D, has the skew-Hermitian solution if and only if RgF = 0 and EF* =
—FE*. Under these terms, its general skew-Hermitian solution is

] —r(P) = r(Q) = r(RpKLyp).

Y=E'F-(E'F)"+ E'E(E'F)" + LgVL},
where V = =V* is a free matrix over H with conformable size.

Lemma 2.3 ( [34]). Let A4, By, C4, and Dy = —Dj, be coefficient matrices in (1.7) over H with
agreeable sizes. Assume that

A= RA4B4, B= RA4C4, C = RA4D4RA4, M = RAB, S = BLM

The following conditions are equivalent:

(1) The system (1.7) has a solution (X, Y,Z), where Y and Z are anti-Hermitian matrices.
(2) RMRAC =0and RACRB =0.

(3)
[ Dy Ay By C4|
las 0 0 o ]—r[A4 B, Cy |+r(Ay),
(D, A, B,
rlA; 0 0 |=r[As By]+r[ A G
¢ 0 0

Under these conditions, X, Y* = =Y, and Z* = —Z are given below
X =Al[Ds - B,YB;, — C42C}] - EAZ[D4 — B,YB;, - C.ZC; (AN A} — Us(AD A -
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— AlULAG + Ly, U,

Y=-Y"=ATCA") - %(ATBMT CII + (BN S* (A" — AT[I + SB'1IC(M"Y* B*(AT)")-
—~ATSUS* (A" + LyUy — ULy,

Z=-7"= %MTC(BT)*[I + (STS)*]—%(I +STSYB'C(M™)* + Ly UsLy+
+ UsLg — LpU5 + Ly LsUs — (LyLs Us)",

where Uy, --- ,Us, and Us = —U¢ are free matrices with acceptable sizes.

Lemma 2.3 expresses the system solution (1.7) in terms of the MP-inverses and inducted projectors.
While this representation offers a method for finding a solution, it necessitates a procedure for
computing the MP-inverse, which possesses properties distinct from those of an ordinary inverse.
The ordinary matrix inverse has a well-known determinantal (D)-representation using the cofactor
matrix. A similar representation is desirable for generalized inverses. But, defining the determinant of
a quaternion matrix itself presents significant difficulties (see e.g., [2,8] for details). Recent progress in
addressing this problem has been made possible by the theory of column-row determinants developed
in [21].

For A = (a;;) € H™", we produce n row (R-)determinants and n column (€-)determinants similar to
usual, but stating a certain order of factors in each term.

o The i-th R-determinant of A, for arow index i € I, = {1,...,n}, is given by

rdet,-A = Z (_l)n—r (al-l-kl aikl el o aik1+11 ,') e (al'krier e aikr+[rikr')’

o€es,

whereat S, is the symmetric group on [,. The permutation o is a product of mutually disjoint
cycles ordered from the left to right by the rules

o= (l ikl ik1+1 ce ik1+11) (ikzik2+1 ce ik2+12) ce (ik,ik,+1 ce ikr+1r) R
ik, < ik,+s’ ik2 < ik3 <. < ik,, Yi=2,....,r, s=1,...,1.

e For an arbitrary column index j € I, the j-th C-determinant of A is defined as follows

cdet;A = Z(—l)"_r(ajk,jkﬁ,, ) @y Ay Qi

T€S,

while a permutation 7 is ordered from right to left in the following way:

7= (s, Jord)  Ukosty = ot Jie) Ukt = ka1 Ji J) »
T < Jrss Tk < Jks <+ < Jk-

In general, all R- and €-determinants are different. However, for any Hermitian matrix A € H™",
the following equalities ensure the existence of a unique determinant

rdet;A = --- = rdet,A = cdetjA = - -- = cdet,A =: det A € R.
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For more details on quaternion column-row determinants, see [21].

The following notations are used. Let A, (b) and A j(c) stand for matrices obtained by replacing the
i-th row and j-th column of A with the row vector b € H"™" and the column vector ¢ € H™, respectively.
Leta :={ay,...,a,}C{l,...,m}and B :={B4,...,B,} € {1,...,n}. Then, the notationAg stands for a
submatrix of A € H™", with rows and columns indexed by @ and 3, respectively. Furthermore, A% and
|A[ represent principal submatrices and principal minors of A when A is Hermitian. Denote

Ly =la: 1< <---<a <m}, J,={:1<p<---<B,<nj,
Loijy i =lael,:jea), Jali}:={€ i€}

Lemma 2.4 ( [21]). Suppose that A € H™" and rank (A) = r. Then for any s < r, we have

DAl = > IAAY € R,

Q'EI:,m ,BEJS,n
Now, we provide a method for D-representing the quaternion MP-inverse.

Lemma 2.5. [20, Theorem 4.5] Let A € H™" with rank (A) = r. Then, the MP-inverse AT = (ajj) €
H™™ has the following two D-representations:

a, :% > odet;((4°4), (a)); :é D" rdet; ((4A%),(@))’,

BeJnli} a€lymij}
where
6= ) WAL= ) AT,
IBEJNI ae]r,m

and a’; and a; are the j-th column and the i-th row of A, respectively.

Lemma 2.5 presents novel D-representations of the MP-inverse for any complex matrix by
substituting ordinary determinants for row-column noncommutative determinants.

Note that another direct method of calculating the MP-inverse is based on the use of Quaternion
Singular Value Decomposition (QSVD), which can be computed in several ways by converting the
quaternion matrix into a complex matrix (using symplectic decomposition) and computing the SVD
in complex arithmetic, or using specialized algorithms for quaternion matrices, such as those based
on quaternion Householder transformations and quaternion QR decomposition. But, in both cases, it
works reliably for small- to medium-sized matrices.

3. General solution and solvability condition of (1.6)

This section presents the main theorem of the paper.

Theorem 3.1. Let A; € H™", B; € H™4 foralli = 1,...,5, C; € H™* foralli = 3,...,8, and
Ci = —-C: e H™" for i = 1,2. Assign the following

A3 C3 A4
~B; C; -B;
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Cs As Cy
CIOZ[ *:|9A8:|: *:|acll:|: *:|9
c: B! c

Ag = ALy, By = B1Ly,,C1p = Cy — A1 X01A] — B1 Y01 B,

Xo1 = A{Co = (A{Co)" + A{AG(A[Co)", Yo = AJC1 = (ASC10)" + AJA(AIC1o)",
My = RyyBy, S1 = BoLy,, Ajg = AyLsg, Bio = ByLy,,

Ci3 = Ca — AvZy A — B.Yo By, Zoy = A{C1i — (AsCr)" + A{As(AfC)',

M2 = RA]()BlOa SZ = BIOLMza El = LMpFl = LMZ,

Dy =| LuLs, -Ls, —Lu,Ls, Lg, |

1 oS 1 L
Gi = Voo = Voi, Voo = =MJCi5(B) (I, + §382)=5Un + S1S)BI Cis(M)),

2
1 , 1 .
Vor = EMICQ(B;) (I, +S}S D=5 + STSHBICL(M}),
Dy =Rp E\,E, =Rp F1,Gy =Rp,G\Rp,, M3 = Rp,E>,S3 = EsLy,. 3.1

The following statements are equivalent:

(1) System (1.5) has at least one solution.
(2) The following relations hold true:

RA,Co = 0,A6Cy = —CoAg,
R4, Cio = 0,A7C) = —CoA7,
RA,C11 = 0,A3CT, = —C1Ag,

(3.2)
R4y Ci12Rp, =0, Ry R4,Cr2 =0,
Ry, ,C13Rp,, =0, Ry,R4,,C13 =0,
RDZC;QR]_)2 = 0, RM3RD2G2 = 0
(3) The following equalities hold for the ranks:
| € ] = 1(Ag), A6Cyy = —CoAL,
- A6
[ CIO ] _ * *
r A7 = I"(A7),A7C10 = —C10A7, (33)
- c i * )
||yl ) = r(As). AsCly = —Cd;,
- 8 B
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A] Blclo A
1
0 h ]:r([A Joof
As O 6
Bl Al Al Bl—
A, 0O ]:r[ 0 A, ]
0 As As O |
A, BZCTOJ 4,
0 AZ :r([A]+r(
As 0 8
32 A2 A2 BQ—
A7 0 ]:r[ Ag 0 ],
0 As 0 A
B, 0 B 0 00 A5 0
O BB BB 0 00 0 A
0 0 B B, 0O 0 0
B, 0 0 000 O0 0
0 0 0 000 O0 O
0 0 0 000 O0 O
0 0 0 000 0 0
0 0 0 000 0 O
-B, 0 0
0 0 O [ B, B
0 0 0 B, 0
B, A O 0 B,
0 0 A ||, || 0 0
0 0 0 A; 0
0 0 0 0 A
A, 0 0 0 0
0 As O 0 0
0 0 As|

B oo
=

cocococo
oo oo

0 0 |

0 0
A, O
0 A
0 O
0 O

0 Ag |

S O O

(3.4)

(3.5)
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0 0O By B, 0 0 0 A7 O ]
0 0O B 0 B, 0O 0 0 A
-B, B, 0 0 O A, O O O
B 0 0 O O O A 0 O
r 0O B 0 0 O O O O0 O
A; 0 0O O O O O O O
0O A4 0O O O O O o0 O
0 0O 0 O 0O A O 0 O
0 0O 0 0 0O 0 A O 0 |
B, 0 0 A, O [ 0 B, 0 0 |
0 By 0 0 A By 0 0 O
B, B B 0 0 0 B, 0 O
0O 0 B 0 O 0 0 A O
=r{l 47 0 O O O +rfl B, 0 0 A,
0 A, 0 0 O A; 0 0 O
0 0 A4 0 O 0 A, 0 O
0 0 0 A O 0 0 A O
L O 0 0 0 A | | 0 0 0 Ag |

With these assumptions, the general solution to (1.5) takes the form:

X =A[Cy — (A]Co)" + A{A6(A]Co)" + Ly,UL;, ,
Y =AIC1o — (AIC10)" + ATA;(ATC )" + Ly, VL,
Z =A{C1i — (A]C1)" + AfAS(ALC1)" + Ly WL,

where

« 1 Tk o * Fy*
U :A;CIZ(A;) - EA;B9MIC12[Im + (Bg) Sl](Ag)
1 - EX
+§A}[lm + 81 BI1CI,(M)) By(Ad)" — AlS U S (A)) + Loy Uy — Us Ly,

% 1 * Ok T o\*
W =AT Cis(A] )" - QAIOBIOM;chm +(B!)"S31AT)

1 1 F % Tk ToN% T % * %
+§Af0[1m +8,B]JC1s M5B} (Al ) = Al S2WiSHAT )" + La,,Wa — Wi La,,

and the matrix V can be found in two different ways

1. . . 1 _ _ .
1% :EM] Cia(BY) (I, + S8 1)—5(1,,, +STSDBIC (M) + Ly, U Ly,

+LM1 L51V1 - VikLSILM1 + VzLB9 - ngvg,
1 * 1 *
V =3 MyC13(Blo) (I + S 38 2) =5 (U + 838 2)B1,Cis(My)" + Las, Wi Ly,
+LM2L52V3 - V;LSZLMZ + V4L310 - LBIOVZ.

(3.6)

(3.7)

(3.8)

(3.9
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Here, the matrices Uy, and W are determined by
T * 1 ? * * % *
U, =D}G»(D})" - §D2E2M§G2(Im +(EDS3)(D))

1 T * ok Ty* T * *
+§D;(Im + S3ENGL(M) E5(DL)* — DiS3Us(DIS3)" + Lp,Uy — UsLp,,

0 L ; (3.10)
T> == Wi = SM;Go(E)) (I + S 3S3) H=3 (I + SISHEIG,(M))" + Ly, UsLy,
+Ly,Ls, Ty — T3 Ls, Ly, + TyLg, — Lg, T},
and the matrices Vy, V,, V3, V4 are m X m-blocks of the matrix
Ty =|Vi Vo Vi Vi|emmen,
where .
T, =D{(G, - E\U,E; - F\T,F}) - EDI(G1 - E\U\E; - F\T,F;) D}y D} @3.11)

~DIT,D} = T;(D))*D; + Lp, Ts.
While Uy, W5, T3, T4, and Te = —T¢ are any matrices of admissible sizes over H.
Proof. We write the equations in (1.6) as follows:
A3X =C5,XB; = Cy, X" = X,
A4Y = C5, YB4 = C6, Y* = —Y, (312)
A1 XA{+BYB| =C,, C, = -C]

and
A4Y = C5,YB4 = C6, Y* = —Y,

A5Z = C7,ZB5 = Cg, Z* = —Z, (313)
A2ZA3+32YB; =C,, C = —C;
By Lemma 2.2, the general solution to A3 X = C3,XB; = C4, X* = -X,and A4Y = Cs5,YBy = Cg, Y* =
—Y is given by

X =A[Cy — (A]Co)" + A{A6(A[Co)" + Ly, UL}, (3.14)
Y =AIC1o — (AIC10)" + ATA7(AIC10)" + Ly, VL, (3.15)

respectively. Using (3.14) and (3.15) in the last equation of (3.12) and making some calculations, we
obtain

AgUA; + BQVB; =Cys. (316)
A solution to Eq (3.16) exists precisely when
RA9C12R39 = O, RM]RA9C12 = O

Then, the general solution of (3.16) takes the form:
* 1 * * *
U = AiCia(Ag) = 5AgBoMCrally + (B)"S{1(Ay)
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- EA;[lm +S1BJ1C1o(M)) By(AD)" — ALS 1 UL\S[(AD)" + La,Us = U La,,

1 . 1 )
V= 5Mjclz(Bg) (I, +S1S)) + E(lm +STSHBiCIL(M)

+ Ly, U Ly, + Ly, Ls, Vi — V{Lg, Ly, + VoLg, — Lg, V5. (3.17)
Applying Lemma 2.2 to the system AsZ = C;,ZBs = Cg, Y* = =Y gives
Z =A{Cyi — (A{C1)" + A{As(A]C1)" + LagWL},. (3.18)
Using (3.15) and (3.18) in the last equation of (3.13) and making some calculations, we gain
A WA}, + B,)VBj, = Cis. (3.19)
Equation (3.19) is solvable if and only if
R4,,Ci3Rp,, =0, Ry,R4,,Ci3=0.

Combining Lemma 2.3 with Eq (1.1), we deduce that the general solution to (3.19) has the
representation:

* 1 * Ok *
W= Al,Cis(A])" - EATOBmMJCB[Im +(Bl,)'S;31(AT)

T

1 * Tk
+§AIO[Im + SZBIO]CIB(MzBZ(AI

o) = Al S WiS5AT ) + Ly Wa — Wi Ly,

v—1 "CiBI )Y, + SIS L STS)HB! Ci3(MD)*
—E 2 13( 10)(m+ 2 2)_§(m+ 2 2) 10 13( 2)

+ LM2W1LM2 + LM2L52V3 — V;LSZLMZ + V4L310 — LBIOVZ’ (320)

where W, is a free matrix of adequate shapes over H. The matrices U, W, Vi, V,, V3, V, are determined
as follows.

Denote T; = | Vi Vo V; Vi|. Ey = Ly, Fi = Ly, To = Wi, Gy = Vo = Vou.
Equating (3.17) and (3.20), we obtain

DT, —(DlTl)*'i'Evllle‘l*'|‘F‘1T2F‘]k = Gi. (321)

Lemma 2.3 establishes that Eq (3.21) admits a solution precisely when the equalities in (3.2) are
satisfied, with the general solution then taking the form (3.7)—(3.11).
(2) © (3) : Lemma 2.3 implies the following rank equalities.

r(Ri,Co) =0 o r([ Co Ag |) = r(Ag), AeCy = ~CoA;,
r(Ry,Cr0) =0 & r([ Cio A7 |) = (A7), A1C}, = —Ci0A3,

rRi,Ci) =0 & r([ Cu As |) = r(4s), AsC}y = —CuiA;,

Cin A

I"(RA()Clng) =0 r([ B; 0 ]) = F(Ag) + T(Bg)

AIMS Mathematics Volume 10, Issue 11, 26237-26259.
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C - A]XO]AT - B]Y()]BT
LA7B>;

g

ALy,

0 ]) = 1r(AiLy) + r(La, BY),

[ C, - A Xp AT - BiYu B, A 0 4 2
% * 1 1
, B 0 A ([A )+( ) ])
0 As O 6 7
r B1 0 A7 =r A +7r A ,
| CoAT Ag O : 7

F(RyRayC12) = 0 & r([Ra,Crz

r([Ce By As])=r(|as B)
& r([ €1 - AiXoA] - BiYy By

M) = r(My) & r([Ra,Cia RayBo]) = r(Ra,By),

% BiLy, ALy, ]) = ”([ BiLy, AiLa ])

[ C, —A1X01AT - B Yy Bix By A B, A
=3 0 A; O =r|| A; O
0 0 Ag 0 Ag
Ci By A B, A
(=4 C10 A7 0 =r A7 0 s
| CoA] 0 Ag | 0 Ag
[ C13 A
r(Ra,,C13B19) =0 & r( BiS 60 ]) = r(Ajo) + r(Bio)
| 210
Sr C2—AZoudy . BaYouBy Acka, ) r(AsLag) + r(La, B5)
| LA7Bz 0
[ C, — AyZy A — BYy By Ay, O A B
or 5, 0 A :r([A ])H(A ])
0 Ag 0 5 ’
Ao B A B,
or B2 O A7 =r A +r A s
| CnAT Az 0 ; 7

F(Ry,Ra10C13) = 0 & r(| RaCiz My |) = r(My)
< r([ R4,,C13 RaBio ]) = r(R4,,B10)
o r([ Ciz Bio Ao ]) = r([ Ay B ])

& r([ Cy = AyZoiA; - B, Yo B;

[ C, — AyZy A — B,Yy, B;
Sr 0
0
C, B, A
o r CloB; A7 0 ] = I’[
| CiAS 0 Ay

AIMS Mathematics

BoLy, ALy 1)=r([ BaLa, AsLa, |)

B, A, ] Ay B
. ][ v ]
0 Ag | 0 A
Ay B

Ag 0 |f,

0 A,
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G, D,

RDZGZR*DZ =0 }"([ D0
2

]) = 1(Dy) + r(E),

R R:, Rp E
r([ nGiR, Rp, 1]):r(RD1E1)+r(R01F1)

FiRp, 0
G, E, D

erl|F; 0 0 [|=r(D E|)+r(| D Fi ).
D0 0

| Voo—Vor Lwm, LwmLs, —Lg, —LmLs, Lg, |
Ly, 0 0 0 0 0
Ls,Ly, O 0 0 0 0
"W -, o o 0 0 0
Ls,Ly, O 0 0 0 0
Lz, 0 0 0 0 0

= I’([LM1 LMILS] —LBQ _LMZLSZ LBm]) + i"([LM2 LSlLMI —LB9 LSZLMZ LBIO])

Voo—=Vor Ly, -Lp, —Lum,Ls, Lp,
Lu, 0 0 0 0

or|| LsLy, 0 0 0 0
Ly, O 0O 0 0
Lg, 0 0 0 0
-1 -Ly, I I Ly, -1 I I
B, 0 0 0 S; 0 0 0
=l o S5 o o ||+r]l 0 B 0 o0
0 0 Byg 0 0 0 By 0
o 0 0 M 0 0 0 M
Voo-Veo I -1 =Ly, I 0 0 0 0
I 00 0 0 M 0 0 0
erll L, 0 0 0 0 0 S 0 0
-1 0 0 0 0 0 0 B 0
1 00 0 0 0 0 0 By
I -Ly, I I Ly, -1 1 I
By 0 0 0 BoLy, 0 0 0
=r|| 0 BiLy, 0 0 ||+r]| 0O B 0 0
0 0 Boy O 0 0 By 0
0 0 0 RuBo 0 0 0 RuBo
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O 0 B, O B 0 0 0]
O 0 0 B B 0 0 0
O 0 0 0 By B, 0 0
erll 0o 0o B, 0 0 0 0 0
o 0 B, 0O 0 0 0 0
By 0 -Cs 0 0 0 Ag 0
0O -By 0 -C;, 0 0 0 A

By —-By By O 0
By By 0 0
Bio 0 0 O 0
By O 0 0
=r 0 By 0 O 0 +r >
0 By Ap O
0 0 By Ay O
0 0 0 Ay
Bio 0 0 0 Ao
0 0 B, 0 B 0 00 A 0 0 O
0 0 0 B Bf 0 0 0 O A; 0 O
0 0 0 0 7B, 00 0 0 A} O
0 0O B, 0 0 0 00O O O 0 A
’
B 0 o 0 0O O OO0 O O o0 O
O -By 0 0 0 O OO0 O o o0 O
A7 0 o 0 0O O OO0 O O o0 O
0O A, O O O O OO0 O O o0 o0
B, -B, -B; 0 0 |
B 0 0 0O O B, B 0 0
0 B, 0 0O O B, 0 O
0 0 B] A] 0 0 BZ A2 0
0 0 0 0 A, 0 0 0 A
=r +r ,
A7 0 0 0O O A; 0 0 O
0 Ay 0 0 O 0 A; 0 O
0 0 A7 0 O 0 0 A3 O
0 0 0 A¢ O | 0 0 0 Ag |
0 0 0 0 Ag

r(Ru,Rp,G21 =0 & (| Rp,Gy M3 |) = r(M3) & r(| Rp,Gy Rp,Es |) = r(My)
or( G E D |)=r( D E ]
& r(| RoGiRy RpFi RpEi |)=r( Fi D E; |)+rDy.

Voo-Vouo Ly, Lm, LmLs, —-Lp, —Lu,Ls, Lp,

Ls,Ly, 0 0 0 0 0 0

Al -Ls, 0 0 0 0 0 0
~Ls,Ly, 0 0 0 0 0 0

Lg, 0 0 0 0 0

= }”([LM2 LM1 LM] le —L39 —LM2L52 LBIO]) + r([LMl L51 —L)_!;9 —LM2L52 LBIU])
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[ Veo-Vor L. I, ~I, Ly, I, 0 0 0 0

Ly, 0 0 0 0 0 Sy 0 0 0

~I 0 0 0 0 0 0 B, 0 0

Ly, 0 0 0 0 0 0 0 S: 0

o, L, 0 0 0 0 0 0 0 0 B
0 M, 0 0 0O 0 0 0 0 0

0 0 M 0 0O 0 0 0 0 0

0 0 0 B O 0 0 0 0 0

0 o 0 0 S 0 0 0 0 O

0 0 0 0 0O By 0 0 0 0

= r([LM2 LM, —LB9 LB}()]) + r([LMl LS] —L39 —LM2L52 LBIO])

[ Voo -V In L ~I, ~Ly, I, 0 0 0 0
Ly, 0 0 0 0 0 LwB, 0 0 0
—1, 0 0 0 0 0 0 B 0 0
L, 0 0 0 0 0 0 0 LwBj, O
o, I, 0 0 0 0 0 0 0 0 B,
0 Ry,Bio O 0 0 0 0 0 0 0
0 0 Ry,By 0O 0 0 0 0 0 0
0 0 0 By 0 0 0 0 0 0
0 0 0 0 ByLy, O 0 0 0 0
0 0 0 0 0 By O 0 0 0
[ 1, I, -I, I, Ly, —In -Ly, I,
M, 0 0 0 S, 0 0 0
=r My 0 0 |[|+r|]| 0 B 0 0
0 B 0 0 0 S, O
0 0 0 By 0 0 0 B

Expanding the above equations and using
AgUp1Ag + BoVy By = C,
AgWo1Aly + BioVoe By = Cis,
and doing some simplifications in it, we have

0O 0 -B, B, 0 0 0
O 0 -B, 0 B, 0 0

r _BIO Bl(] 0 0 0 A]() 0
By 0 0 0 0 0 Ay
0 By 0 0 0 0 0
0 By 0 O
310 0 0 A10 0
By 0 0 O
0 Bg 0 0 A9
=r +r 0 By O 0
By By By 0 0
0 0 Ay O

0 0 By O 0
By 0 0 Ap
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0 0 -LyB, LuB, 0 0 0
0 0 =-LyB. 0 LuB, O 0
or|| =B B 0 0 0 ALy, O
LB 0 0 0 0 0 AL,
0 LB 0 0 0 0 0
0 BiLy, 0 0
BoLy, 0 0 ALy 0
0 BL, O 0 Ao Bily, O 0 0
N BiLy, BiLa BL. o o |[T7|]] O B O 0
0 0 AiLAg O
0 0 By 0 0
BoLy, 0 0 Asla,
0 0 B B, 0 0 0 A 0]
0 0 B 0 B, 0 0 0 A
B, B, 0 0 0 A, 0 0 0
Bb O 0 0 0 0 A 0 0
erll 0 BL 0 0 0 0 0 0 0
A7 0 0 0O 0 0 0 0 0
0 4 0 0 0 0 0 0 0
0 0 0 0 0 A 0 0 0
0 0 0 0 0 0 A O 0 |
B, 0 0 A 0] 0 B 0 0]
O Bl 0 0 Al B[ 0 0 0
Bl B B, 0 0 0 B, 0 0
0 0 B, 0 0 0 0 A 0
=|l a4 0 0 0 o |[+r]| B 0 0 4
0 A7 0 0 0 A7 0 0 0
0 0 A, 0 0 0 A7 0 0
0 0 0 As 0 0 0 Ag O
L0 0 0 0 A | 0 0 0 As|

Now we discuss a particular case of our system.
If A;, Bi, (i = 3,4,5),and C}, (j = 3,...,8), are all equal to zero in Theorem 3.1, then the following

consequence holds.

Corollary 3.2. Let A, € C™" A, € C™4, B; € C"™* and C; = —C; e C™™ fori=1,2. Assign

M, = Rs,B1, S1 = BiLy,, My = Rs,B>, So = ByLy,, Ay = Ra,Ly,, Ba = Ra,Ly,,
As=| Ly ~Ls, LwuLs, —LuLs, |. My =Ry Ba, S5=BiLu,
1 T * 1 T\
Cs = Voo = Vor, Vip = EMZCZ(BD (I, + Sisz>—5(1m +S1S)BiC,(MY),
V, —1M*c BHYU,+S'S —11 STSOBIC, (M), C; = Ry.C5R
o =35M, 1(B)) (L +§,81) 2(m+ S BCi(M))", Cy = Ra,C3R,,.

Then the following statements are equivalent:
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C
| B
)
| B,

. ; 1 . . . .
X =AlC,(A]) - EA{BIMJCI[I,” +(B))'S1(AT)*

(3) The ranks obey the equalities:

A,
Ay
0

0

0

0

B
-B,
0

0
B,
B,

0

0
0
0
0
B,
0
B,
B,
0

(1) The consistency of system (1.5) holds.
(2) The system yields these equalities:

RA1C1RBI = O, RMIRAlCl = O,

RA2C2R32 = O, RMZRA2C2 = O,
RA4C4RB4 = O, RM3RA4C4 = O

0 B
0 -B
0 0
0 -G,
32 0
0 A

-B, A

0 O
0 O

B, O

-B: B

~B;

~B;
0
0
0

oo oo ol

-B, A

0 O
0 O

B, 0

{

With these assumptions, the general solution of (1.5) takes the form:

B,
0

0
0
0
0

0

B,
_B2
0
0

0
0

B,
0

G
0

B,
B,
0

cocoo>coco

0
0
0
A
Az
0

0
0
B,

0
B,
B,

0

0 ]):r(A1)+r(Bl), r[C B A|)=r( A

): MA) +r(By), ([ C2 By Ay |)=r(] A

]+ I"(B]).

= elNoNoNeNe

B ).
B, )

0 A

0
0 B

B, 0

1 * * T # T 5
+§A{[lm + 81 BI1C, (M) Bj(AT) = AlS U S (A]) + La, Vi = Vi La,,

Z =AlCy(A))" - EA;BZM;CZ[Im +(B))"S31(A])

1 * % * T %0 A T\ *
+§A§[1,,, + S2BIC(M)) By (AL = ALS,US5(AD) + Ly, Vo — V; La,,

AIMS Mathematics

Volume 10, Issue 11, 26237-26259.



26254

1. L . 1 . . -
Y :EMQCI(B{) I, + S}Sl)—i(lm +STs)BiC, (M)
-f‘LM1 U]LM1 + LM1L51U2 — U;LS]LMI + U3L31 — LB| U;,

or
Y—lMTc B, + S!S L S1S)BIC(M))*
—5 2 2( 2)(m+ ) 2)_§(m+ 2 2) 2 2( 2)
+LM2U4LM2 + LMzLSZUS_U;LSZLMZ + IJGLB2 — LBnga
with
U:=[L 0 0 0]z
Ui;=[0 I, 0 0]z
U,=[0 0 I, 0]z
Us=[0 0 0 I 1z
where
1
Z =Al(C3 = Ly, ULy, = L, UsLag,) — EAg(c3 — Ly, U1 Ly, — Lay, UsLyg)A3AT
~AlUsA; - U*A3AT + L, Us,
U, =AJCy(A))" - A IByMICy(I, + (B S 5)(AD)
1 .
—A*(l + S3B)Cy(MD) By (AL = AlS3U(AIS 3)" + La,Uro — UsoLa,,
1 + % T\ *
U, :§M3C4(BZ) (I, + S§S3)—§(1m +S1S)BICM])" + Ly, U1i Ly,
+LM3LS3U12 — UTZLSSLM3 + U13LB4 — LB4Uik3.
Here Vi, V,, Uy,..., U3, Uy = =Ug, Uy = =Uj, are any matrices of admissible sizes over H.

4. An algorithm and an example

We derive an explicit solution algorithm for system (1.5) based on the foundations established in
Theorem 3.1. This algorithm implements the D-representations of the MP-inverse to construct general
solutions, thus realizing theoretical principles in the final computation of concrete examples.

Algorithm 1 (H). 1) Input the matrices A;, B;, (i = 1,...,5), and C;, (j = 1,...,8). Ensure they
have conformable sizes over H, and some of them are skew-Hermitian.
2) Compute the requisite matrices as prescribed in (3.1).
3) Evaluate the consistency of the system using either the matrix equations stated in (3.2) or rank
conditions (3.3)—(3.6). If they do not hold, return “inconsistent”.
4) Given satisfied consistency conditions:

(a) Evaluate Ty, T,, U;, U, W, and V from (3.8)-(3.11).

AIMS Mathematics Volume 10, Issue 11, 26237-26259.
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(b) Derive the solution X, Y, Z through (3.7).

To validate the efficacy and practical utility of Algorithm 1, we provide the following numerical
demonstration. The matrices defined below are employed to find a solution to the equations in (1.5).

[3+3i 3j+3k 3i-3 3 3§ 3k . ) )
. . i . -1+i 1+i -1-i
A =|3j-3k 3i-3 -3j-3k|,A2=|-3 3k -3j|,As= . . .|
. X j . . -1-i —-1+1i 1-i
|-3i+3 3j-3k 3i+3 -3j 3 3
. ) . l+k -1+k 1-k 1 i Kk
-1+j 1+j X .
A4= . . ,A5= 2k -2 2 ,B] =|-k 1 ,B2: -k 1],
-1-j —-1+j . .
. -1+k -1-k 1+k i k j -1
[—1-i —2i 1-i . . —i+j -2 -i-j
. 1-j -1-j - .
Bi=|1-i 2 1+i ,B4=1 - .},Bg= i+j 2 -i+j|,
+ p—
14i -2 —1-i o Sioj -2 i-j
[ i -1+i 1-j] k -1+j 1-k “1+i -2 -1-i
Ci=|1+i j k [.Co=| 1+j i k |,Ci=|-1-i =2i 1-i],
-1-j Kk kK | -1-k k j 1+i 20 —1+i
[ 1+i 1-i —1+i 1+j 1-j “1—j —1+j
ci=| T T e = T e T T
-1+i 1+i —1-Iif -1+j 1+j 1-j -1-j
[1-k 1+k -1-k i+j 2§ i-j
Cr=| 2 2k 2k |, Cs=|i-j 2i i+j
[1+k -1+k 1-k —i+j -2 —i-j

Using these matrices, we implement the procedure established in Theorem 3.1 to compute the solution
of system (1.5).

e [Step 1] Using Lemma 2.5, calculate the MP-inverses of the given matrices. As an illustration,
we obtain:
o -1-i -1+i 1+i 2i —-1+i
Aé:% I-i -1-i -1+i -2 -1-ij|
-1+i 1+i 1-i 2 1+i
In particular, after computing the MP-inverses and considering the specific structure of our
system, we find that the matrices S;, (i = 1,2,3), D,, E,, Ty, T», and U, turn out to be zero
matrices. We also consider zero matrices as arbitrary matrices U,, W, T3, T4, and Tg = —T¢.

e [Step 2] Verify the given matrices by checking their compliance with the representation in (3.2)
and the rank conditions (3.3)—(3.6) to ensure system consistency.

e [Step 3] The next step is to calculate the matrices U, W, and V. These matrices are used to
construct the general solution to our system. Their calculation relies on values computed earlier
and is integral to finalizing the solution according to our algorithm.

e [Step 5] With all necessary matrices computed, we are now in a position to present the
solution (3.7) to the system defined in (1.5).

—1731i - 430j + k 6 + 2j + 860k 1731 + j + 430k

—-6+2j+860k —3468i+ 1720j —4k —6i + 860j — 2k |,

X=——
36| 1731 +j+430k  —6i+860j— 2k —1731i+430j — k
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1 [4i-47j+9k —49 —9i + 4k

Y= 56149 - 0i+ak —4i—47j- k|’
| [ -45i+1981-2543k 1994 15i—36j— 27k -2375 + 183i + 9 — 27k
Z= 5> |-1994 - 15i-36) - 27k 45i+174) - 2561k 27+ 9+ 189] + 2357k |.

2375+ 183i+9j — 27k  —27 + 9i + 189j + 2357k 18i + 6j — 2180k

Note that we provide exact numerical values, rather than approximations, because we utilize the
direct method for solving the quaternion matrix system (1.5).

5. Conclusions

This work investigates a constrained system of anti-Hermitian Sylvester matrix equations. We
establish necessary and sufficient conditions for the existence of solutions, presented in two equivalent
forms:

(i) algebraic characterization: Via relations involving the Moore—Penrose (MP-) inverse and induced
projectors of the coeflicient matrices;
(i1) rank-based criteria: Expressed through rank conditions on the system’s coefficients.

Additionally, we derive an explicit anti-Hermitian solution constructed from the MP-inverse and
its associated projectors. The main theorem not only proves solvability but also yields a
computational algorithm, which we demonstrate via a numerical example. This example employs
innovative techniques for D-representations of the MP-inverse, leveraging the theory of row-column
noncommutative determinants. All computations are implemented in Maple 2024 using the Clifford
package, showcasing the method’s practical applicability.
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