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Abstract: This paper focused on a class of three-dimensional incompressible viscoelastic rate-type
fluids with stress diffusion. To simplify the analysis, we considered a model where the elastic stress was
spherical. It is worth noting that while the existence of solutions for such fluids has been studied, their
stability properties remain largely unexplored. So inspired by [1], this paper employed the bootstrap
argument, the Schonbek’s method, and repeated use of Besov space properties to prove, for the first
time, stability of the solution under some additional conditions on the initial data — but without further
smallness restrictions. Our results showed that the velocity decays faster than the typical algebraic rate,
while the spherical component of the elastic strain tensor exhibited global exponential decay. Finally,
using the decay rates, we derived the stability result for any given globally smooth solution—namely,
that a sufficiently small perturbation yielded a unique globally smooth solution which stayed close to
the original reference solution. We thereby extended the analysis of [1] on inhomogeneous Navier-
Stokes equations to a viscoelastic fluid with stress diffusion.
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1. Introduction

Viscoelastic fluids are ubiquitous in industrial settings (e.g., petroleum, food, and rubber industries)
and in nature (e.g., animal blood, natural bitumen), characterized by their combined viscous and
elastic behaviors. In modeling, rate-type fluid models incorporating a stress diffusion term are
widely employed to describe complex flow behaviors such as shear banding and vorticity banding
(see reviews in [2–4]), which give rise to visually striking phenomena like the rod-climbing effect.
These macroscopic manifestations originate from the microscopic deformation and reorganization of
embedded microstructures, such as polymer chains. To facilitate reader comprehension of such fluid,
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we illustrate the physical configuration below (see Figure 1).

Equilibrium State

No Shear Flow

Random Microstructure

Shear Flow
direction of flow

gradient of velociety

Aligned Microstructure

Elastic-Dominated Flow
(Rod-Climbing)

Highly Stretched Microstructure

Figure 1. Physical configurations of viscoelastic fluids under different flow conditions.

For analytical simplicity, the model herein simplifies the elastic response by capturing elastic
deformation effects through a spherical strain (i.e., the scalar multiplier of the identity tensor).
Apparently, reducing the elastic stress to a spherical tensor weakens the model’s memory effects
and directional characteristics. Consequently, the findings may only apply to a highly restricted,
idealized class of fluids, which limits their practical relevance. Nevertheless, the methodology and
results presented in this work offer valuable insights for future studies on more comprehensive and
physically realistic models. For clarity, we will study the model (3.1) and main results are presented in
Section 3, preceded by a brief overview of the equation structure and existing research developments.

When the parameter σ = 0, the system (3.1) decouples into two independent physical problems: a
damped transport equation governing the scalar strain field, and the classical Navier-Stokes equations
describing fluid motion. The Navier-Stokes equations have been extensively studied. For instance,
Abidi et al. [1] analyzed the decay and stability of solutions for the three-dimensional incompressible
case with constant viscosity; He et al. [5] established the global-in-time stability of large solutions
for the three-dimensional compressible case in the whole space; Gui and Zhang [6] proved the global
stability of the three-dimensional Navier-Stokes system under anisotropic perturbations to the initial
data of a reference solution; and Dong et al. [7] further examined the stability and exponential decay
of the two-dimensional anisotropic Navier-Stokes equations with horizontal dissipation.

When the parameter σ > 0, the system displays two critical characteristics. First, a Korteweg
stress term σdiv (∇b ⊗ ∇b − 1

2 |∇b|2I) emerges in the Cauchy stress constitutive relation within the
momentum equation. It originates the system’s elasticity, enabling the generation of normal stress
differences responsible for purely elastic phenomena such as the rod-climbing (Weissenberg) effect
and tubeless siphoning. Second, a diffusion term σ∆b is incorporated into the evolution equation of
the mean normal elastic stress. As an irreversible dissipative process, the stress diffusion contends with
elastic relaxation during flow decay. Even under strong elastic effects, this mechanism ensures the total
system energy decays continuously through viscous dissipation, ultimately restoring the system to a
static equilibrium state—a key basis for mathematically proving flow decay. Simultaneously, the stress
diffusion term provides essential regularization in the mathematical formulation: as a higher-order
differential term, it exerts a natural smoothing effect that suppresses non-physical singularities, thereby
guaranteeing the existence and smoothness of solutions under reasonable conditions. The coupling
mechanism between elastic stress and microstructure in the model provides a theoretical foundation
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for understanding complex nonlinear phenomena such as shear banding and elastic turbulence. For
the model’s derivation, we refer readers to [8], which provided a rigorous derivation of the model
for homogeneous compressible fluids, laying a vital theoretical groundwork for comprehending the
dynamics of such complex fluids. Moreover, it demonstrated the existence of global weak solutions
for this model under compressible and variable density conditions, taking into account arbitrary finite-
energy initial data. The specific model studied here is obtained by imposing a divergence-free condition
within the framework established in that reference.

Currently, although research on the specific model is limited, studies of other viscoelastic fluid
models can provide references for this work. Ai et al. [9] established the existence of global solutions
and decay estimates for a class of homogeneous incompressible rate-type viscoelastic fluids; Wang and
Wen [10] investigated the global well-posedness of strong solutions near equilibrium and their temporal
decay properties in Sobolev spaces for the compressible Oldroyd-B model; and Wang et al. [11]
obtained precise decay estimates for the incompressible Oldroyd-B model with only fractional stress
tensor diffusion in both two and three dimensions. Moatimid and Mohamed [12] investigated the
nonlinear stability of two electrified viscoelastic cylindrical fluids embedded in a porous medium under
an axial electric field; and they also analyze the stability of a two-layer electrified fluid system within a
porous medium under a tilted electric field in [13], which systematically clarifies the effects of various
physical parameters on stability under different orientations of the electric field.

Moreover, global existence results are available for related classes of diffusive rate-type viscoelastic
models. Bulı́ček et al. [14] proved the large-data, long-time existence of weak solutions for
a two-dimensional Giesekus-type viscoelastic fluid; Bulı́ček et al. [15] established the long-time
existence of large-data weak solutions for incompressible rate-type viscoelastic fluids with stress
diffusion. The problem complexity increases signicantly when considering thermal effects: Bulı́ček
et al. [16] presented the first rigorous analysis of thermally coupled cases (assuming only spherical
stress dependence), while Bulı́ček and Woźnicki [17] developed a large-data, long-time theory for
incompressible viscoelastic heat-conducting fluids, specifically addressing the planar case.

In fact, studying the decay and stability properties of these fluids is of significant importance. Decay
properties concern how the energy or disturbances within a system diminish to zero after the removal
of external drivers, such as initial perturbations or applied forces. Stability, on the other hand, examines
whether a fluid system will return to its equilibrium state or exhibit uncontrolled, amplified changes
when subjected to minor disturbances. In practical industrial applications, understanding and utilizing
these two fluid characteristics enables accurate prediction of flow dynamics, helping to prevent product
defects, equipment damage, and production disruptions caused by flow instabilities. All in all, decay
and stability are complementary and synergistic, collectively determining whether viscoelastic fluids
can be predicted, controlled, and effectively utilized in both engineering and natural environments.

Finally, we conclude this section by reiterating the novel contributions of this work. It extends
the analysis of Abidi et al. [1] on inhomogeneous Navier-Stokes equations to a viscoelastic fluid with
stress diffusion, and complements recent studies on diffusive rate-type models (e.g., Bulı́ček et al. [8])
by focusing on decay and stability properties rather than existence theory.
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2. Preliminary

Before presenting the definition of Besov spaces, we briefly review the fundamental constructs from
Littlewood-Paley theory (see [18] for details).

Let S(R3) denote Schwarz space, and C the annulus {ξ ∈ R3
∣∣∣3
4 ≤ |ξ| ≤

8
3 }. We consider radial

functions ϕ, χ : R3 → [0, 1] satisfying

S uppϕ ⊂ {ξ ∈ R3
∣∣∣3
4
≤ |ξ| ≤

8
3
}, S upp χ ⊂ {ξ ∈ R3

∣∣∣|ξ| ≤ 4
3
},

∀ ξ ∈ R3, χ(ξ) +

∞∑
j=0

ϕ(2− jξ) = 1, ∀ ξ ∈ R3 \ {0},
∑
j∈Z

ϕ(2− jξ) = 1.

The set C̃ , B(0, 2/3) + C is an annulus satisfying | j − j′| ≥ 5 =⇒ 2 j′C̃ ∩ 2 jC = ∅.

In the homogeneous case, the dyadic blocks ∆̇ j and low-frequency cut-off operators Ṡ j are
defined by

∀ j ∈ Z, ∆̇ j f (x) , ϕ(2− jD) f (x) = 23 j
∫
R3
F −1ϕ(2 jy) f (x − y)dy,

Ṡ j f (x) ,
∑

p≤ j−1

∆̇p f (x) = χ(2− jD) f (x) = 23 j
∫
R3
F −1χ(2 jy) f (x − y)dy,

where F −1 denotes the inverse Fourier transform operator. The homogeneous Littlewood-Paley
decomposition thus reads

∀ f ∈ S′(R3) \ P(R3), f (x) =
∑
j∈Z

∆̇ j f (x),

with P denoting the space of polynomials.

Definition 2.1. (Homogeneous Bony’s decomposition [19]) For f , g ∈ S′(R3), the Bony’s
decomposition is given by f g = Ṫ f g + Ṙ( f , g) = Ṫ f g + Ṫg f + Ṙ( f , g), where the paraproduct and
remainder terms are defined as

Ṫ f g ,
∑
j∈Z

Ṡ j−1 f ∆̇ jg, Ṙ( f , g) ,
∑
j∈Z

∆̇ j f Ṡ j+2g, Ṙ( f , g) ,
∑
j∈Z

∆̇ j f ˜̇∆ jg, ˜̇∆ jg ,
∑
| j′− j|≤1

∆̇ j′g.

We now recall the definition of homogeneous Besov spaces from [20]:

Definition 2.2. Let 1 ≤ p ≤ ∞, s ∈ R, and f ∈ S′(R3). For 1 ≤ r < ∞, we define the homogeneous
space Ḃs

p,r as

f ∈ Ḃs
p,r ⇔ [

∑
j≥−1

(2 js‖∆̇ j f ‖Lp)r]
1
r < ∞.

For r = ∞, it is defined by

f ∈ Ḃs
p,∞ ⇔ sup

j≥−1
2 js‖∆̇ j f ‖Lp < ∞.
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Remark 2.1. (1) Let k be a nonnegative integer. If s ∈ [ 3
p + k, 3

p + k + 1) (or r = 1 and s = 3
p + k + 1),

then the homogeneous Besov space Ḃs
p,r(R

3) consists of distributions f ∈ S′(R3) such that all
partial derivatives ∂β f (with |β| = k) belong to Ḃs−k

p,r .
(2) For any positive real number s, the inclusion Ḃs

p,r ∩ Lp = Bs
p,r holds, with the equivalent norm

‖ f ‖Bs
p,r ≈ ‖ f ‖Ḃs

p,r
+ ‖ f ‖Lp .

Definition 2.3. (Chemin-Lerner type space [21]) For s ∈ [−∞, 3
p ], 1 ≤ r, λ, p ≤ ∞, and 0 < t ≤ ∞.

The space L̃λt (Ḃs
p,r(R

3)) is the completion of C(0, t;S(R3)) under the norm

‖ f ‖L̃λt (Ḃs
p,r) , (

∑
j∈Z

2 jrs(
∫ t

0
‖∆̇ j f (τ)‖λLpdτ)

r
λ )

1
r < ∞, (2.1)

with the standard modification for r = ∞. For p = r = 2, we denote this space by L̃λt (Ḣ s). The local
space L̃λloc(Ḣ

s) is the intersection of L̃λt (Ḣ s) over all t > 0; while for t = ∞, we concisely denote the
space as L̃λ(Ḣ s) by omitting the subscript t.

Lemma 2.1. (Bernstein’s inequality [22]) Let C be an annulus and B be a ball of R3. There exists a
constant C > 0 such that for any λ ∈ R+, k ∈ N, and 1 ≤ a1 ≤ a2 ≤ ∞, the following hold

S upp f̂ ⊂ λB ⇒ sup
|θ|=k
‖∂θ f ‖La2 ≤ Ck+1λ

k+3( 1
a1
− 1

a2
)
‖ f ‖La1 ,

S upp f̂ ⊂ λC ⇒ Ck+1λk‖ f ‖La1 ≤ sup
|θ|=k
‖∂θ f ‖La1 ≤ C−k−1λk‖ f ‖La1 .

(2.2)

Lemma 2.2. (Interpolation inequality [21]) For 0 ≤ γ ≤ 1, it holds that

‖ f ‖L̃λt (Ḃs
p,r) ≤ ‖ f ‖

γ

L̃λ1
t (Ḃs1

p,r)
‖ f ‖1−γ

L̃λ2
t (Ḃs2

p,r)
,

where the exponents satisfy

1
λ

=
γ

λ1
+

1 − γ
λ2

and s = γs1 + (1 − γ)s2.

Furthermore, the Chemin-Lerner type spaces relate to classical Besov spaces via the Minkowski’s
inequality

i f λ ≤ r, ‖ f ‖L̃λt (Ḃs
p,r) ≤ ‖ f ‖Lλt (Ḃs

p,r);

i f r ≤ λ, ‖ f ‖Lλt (Ḃs
p,r) ≤ ‖ f ‖L̃λt (Ḃs

p,r).

Lemma 2.3 ( [18]). Let s > 0 and f ∈ H s(R3) ∩ L∞(R3). If F : R → R is a smooth function with
F(0) = 0, then

‖F( f )‖Hs ≤ C(1 + ‖ f ‖L∞)bsc+1‖ f ‖Hs . (2.3)

Lemma 2.4. (Aubin-Lions lemma [23]) Assume that X ↪→↪→ Y ↪→ Z, where X,Z are reflexible spaces,
and X is dense in Z. Let W , { f ∈ Lp0(0,T ; X), ft ∈ Lp1(0,T ; X), 1 < p0, p1 ≤ ∞}, then there holds
that W ↪→↪→ Lp0(0,T ; Y).
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Lemma 2.5 ( [1]). Let 1 ≤ r ≤ ∞, f ∈ Ḃs
2,r(R

3), and u ∈ Ḃ
5
2
2,1(R3) with div u = 0. Thus,

(1) For s ∈ (−5
2 ,

5
2 ) (or r = 1 with s = 5

2 ), ‖[∆̇ j,u · ∇] f ‖L2 ≤ C2−s j‖u‖
Ḃ

5
2
2,1

‖ f ‖Ḃs
2,r

; (2) For s ∈ (−5
2 ,∞) with

∇ f ∈ L∞(R3), u ∈ Ḃs
2,r(R

3), ‖[∆̇ j,u · ∇] f ‖L2 ≤ C2−s j(‖ f ‖Ḃs
2,r
‖u‖

Ḃ
5
2
2,1

+ ‖∇ f ‖L∞‖u‖Ḃs
2,r

); (3) For s ∈ (−1,∞),

‖[∆̇ j,u · ∇]u‖L2 ≤ C2−s j‖u‖Ḃs
2,r
‖∇u‖L∞ .

We shall prove the following commutator estimates, which will be used in the next sections.

Lemma 2.6. Let
∇b ∈ L∞t (Ḃ

3
2
2,1(R3)) ∩ L1

t (Ḃ
5
2
2,1(R3)).

Then, there holds the following:

‖[∆̇ j,w′′(b)]∇b‖L1(T1,t;L2) ≤ C2−
5
2 j‖b‖

L1(T1,t;Ḃ
7
2
2,1)

(
‖b‖

L∞(T1,t;Ḃ
3
2
2,1)

+ ‖b‖3
L∞(T1,t;Ḃ

3
2
2,1)

)
.

Proof. Denote w′′1 (b) , w′′(b)−w′′(0), and it’s obvious that [∆̇ j,w′′(b)]∇b = [∆̇ j,w′′1 (b)]∇b. Therefore,
our focus will be on calculating ‖[∆̇ j,w′′1 (b)]∇b‖L1(T1,t;L2).

By Definition 2.1, the following identities hold:

∆̇ j(w′′1 (b)∇b) = ∆̇ j(Ṫw′′1 (b)∇b) + ∆̇ j(Ṫ∇bw′′1 (b)) + ∆̇ jṘ(w′′1 (b),∇b),

w′′1 (b)∆̇ j∇b = Ṫw′′1 (b)∆̇ j∇b + Ṙ(w′′1 (b), ∆̇ j∇b).

Consequently, we have

[∆̇ j,w′′1 (b)]∇b = [∆̇ j, Ṫw′′1 (b)]∇b + ∆̇ j(Ṫ∇bw′′1 (b)) + ∆̇ jṘ(w′′1 (b),∇b) − Ṙ(w′′1 (b), ∆̇ j∇b). (2.4)

The second term on the righthand side of (2.4) is rewritten as

∆̇ j(Ṫ∇bw′′1 (b)) =
∑
| j− j′ |≤4

∆̇ j(Ṡ j−1∇b∆̇ j′w′′1 (b)),

then there holds

‖∆̇ j(Ṫ∇bw′′1 (b))‖L1(T1,t;L2) ≤ C
∑
| j− j′ |≤4

‖Ṡ j−1∇b‖L1(T1,t;L∞)‖∆̇ j′w′′1 (b)‖L∞(T1,t;L2)

≤ C2−
5
2 j‖b‖

L1(T1,t;Ḃ
7
2
2,1)
‖w′′1 (b)‖

L∞(T1,t;Ḃ
3
2
2,1)
,

where Lemma 2.1 is used, so that

‖Ṡ j−1∇b‖L1(T1,t;L∞) ≤ C
∑

k≤ j−2

2k‖∆̇kb‖L1(T1,t;L∞) ≤ C
∑

k≤ j−2

2k2
3
2 k‖∆̇kb‖L1(T1,t;L2) ≤ C2− j‖b‖

L1(T1,t;Ḃ
7
2
2,1)
.

For the third term in (2.4), by Lemma 2.1, we get

‖∆̇ jṘ(w′′1 (b),∇b)‖L1(T1,t;L2) ≤ C
∑

j′≥ j−3

2−
5
2 j′‖w′′1 (b)‖

L∞(T1,t;Ḃ
3
2
2,1)
‖b‖

L1(T1,t;Ḃ
7
2
2,1)

≤ C2−
5
2 j‖w′′1 (b)‖

L∞(T1,t;Ḃ
3
2
2,1)
‖b‖

L1(T1,t;Ḃ
7
2
2,1)
.
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The definition of Ṙ(w′′1 (b), ∆̇ j∇b) and Lemma 2.1 give that

‖Ṙ(w′′1 (b), ∆̇ j∇b)‖L1(T1,t;L2) ≤ C
∑

j′≥ j−2

2 j‖∆̇ jb‖L1(T1,t;L∞)‖∆̇ j′w′′1 (b)‖L∞(T1,t;L2)

≤ C2
5
2 j‖∆̇ jb‖L1(T1,t;L2)

∑
j′≥ j−2

‖∆̇ j′w′′1 (b)‖L∞(T1,t;L2)

≤ C2−
5
2 j‖b‖

L1(T1,t;Ḃ
7
2
2,1)
‖w′′1 (b)‖

L∞(T1,t;Ḃ
3
2
2,1)
.

We now estimate the first term [∆̇ j,Tw′′1 (b)]∇b. By the definition of ∆̇ j, we have

∆̇ j, Ṫw′′1 (b)t∇b =
∑
| j− j′ |≤4

[∆̇ j, Ṡ j′−1w′′1 (b)]∇∆̇ j′b

=
∑
| j− j′ |≤4

23 j
∫
R3

F −1ϕ(2 j(x − y))
(
Ṡ j′−1w′′1 (b(x)) − Ṡ j′−1w′′1 (b(y))

)
∇∆̇ j′b(y) dy

=
∑
| j′− j|≤4

24 j
∫
R3

[ 1∫
0

y · ∇Ṡ j′−1w′′1 (b(x − τy)) dτ
]
· ∇F −1ϕ(2 jy)∆̇ jb(x − y) dy

+
∑
| j′− j|≤4

23 j
∫
R3

F −1ϕ(2 j(x − y))∇Ṡ j′−1w′′1 (b(y))∆̇ jb(y) dy,

which combined with the Minkowski inequality yields that

‖[∆̇ j, Ṫw′′1 (b)]∇b‖L1(T1,t;L2) ≤ C
∑
| j′− j|≤4

‖∆̇ jb‖L1(T1,t;L2)‖∇Ṡ j′−1w′′1 (b)‖L∞(T1,t;L∞)

≤ C2−
5
2 j‖b‖

L1(T1,t;Ḃ
7
2
2,1)
‖w′′1 (b)‖

L∞(T1,t;Ḃ
3
2
2,1)
.

Combining the above estimates, we directly obtain

‖[∆̇ j,w′′1 (b)]∇b‖L1(T1,t;L2) ≤ C2−
5
2 j‖b‖

L1(T1,t;Ḃ
7
2
2,1)
‖w′′1 (b)‖

L∞(T1,t;Ḃ
3
2
2,1)

≤ C2−
5
2 j‖b‖

L1(T1,t;Ḃ
7
2
2,1)

(
‖b‖

L∞(T1,t;Ḃ
3
2
2,1)

+ ‖b‖3
L∞(T1,t;Ḃ

3
2
2,1)

)
,

(2.5)

where we used Lemma 2.3 so that

‖w′′1 (b)‖
L∞(T1,t;Ḃ

3
2
2,1)
≤ C(1 + ‖b‖L∞(T1,t;L∞))2‖b‖

L∞(T1,t;Ḃ
3
2
2,1)
≤ C(1 + ‖b‖

L∞(T1,t;Ḃ
3
2
2,1)

)2‖b‖
L∞(T1,t;Ḃ

3
2
2,1)
.

�

Remark 2.2. Compared to the previous lemma, the commutator here involves only the interaction
between the multiplication operator w′′(b) and the function ∇b. Its essence is to quantify the
commutation error between the “pointwise multiplication” operation and the “localized filtering”
process. In sharp contrast, the commutator [∆̇ j,u · ∇] treated in Lemma 2.5 is associated with the
first-order differential operator u · ∇, and therefore measures the commutation error between the
“differentiation” operation and the “localized filtering” process.
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Lemma 2.7 ( [1]). Let u be a divergence-free vector field with ∇u ∈ L1
T (Ḃ

3
2
2,1). For −5

2 < s ≤ 5
2 , if

f0 ∈ Ḃs
2,1 and g ∈ L1

T (Ḃs
2,1), the transport equation∂t f + u · ∇ f = g, (x, t) ∈ R3 × R+,

f (0, x) = f0(x),

admits a unique solution f ∈ C(0,T ; Ḃs
2,1). For 0 ≤ t ≤ T,

‖ f ‖L̃∞t (Ḃs
2,1) ≤ ‖ f0‖Ḃs

2,1
+ C

∫ t

0
‖ f (τ)‖Ḃs

2,1
‖u(τ)‖

Ḃ
5
2
2,1

dτ + C‖g‖L1
t (Ḃs

2,1). (2.6)

By Grönwall’s inequality:

‖ f ‖L̃∞t (Ḃs
2,1) ≤ exp{C‖u‖

L1
t (Ḃ

5
2
2,1)
}(‖ f0‖Ḃs

2,1
+ C‖g‖L1

t (Ḃs
2,1)). (2.7)

This lemma will serve as a fundamental tool in our subsequent derivation of energy estimates for the
density equation within the Besov space framework.

Lemma 2.8 ( [1]). Let u be a divergence-free vector field with u ∈ L1
T (Ḃ

5
2
2,1), g ∈ L̃1

T (Ḃs
2,r), and a ∈

L∞T (Ḣ2) ∩ L∞T (Ḣ s+ 3
2 ) with 1 + a ≥ c > 0. For −3

2 < s < 1, r = 1, or 2, if f0 ∈ Ḃs
2,r and ( f , P) ∈

L1
T (Ḃs+ 3

2
2,1 ) ∩ L1

T (Ḣ1) solves
∂t f + u · ∇ f − (1 + a)(∆ f − ∇P) = g, (x, t) ∈ R3 × R+,

div f = 0,
f (0, x) = f0(x),

(2.8)

then we get that for all 0 ≤ t ≤ T,

‖ f ‖L̃∞t (Ḃs
2,r) + ‖ f ‖L̃1

t (Ḃs+2
2,r ) + ‖∇P‖L̃1

t (Ḃs
2,r) ≤ ‖ f0‖Ḃs

2,r
+ C

∫ t

0
‖ f (τ)‖Ḃs

2,1
‖u(τ)‖

Ḃ
5
2
2,1

dτ

+C‖g‖L̃1
t (Ḃs

2,r) + C‖a‖
L∞t (Ḣs+ 3

2 )
‖∇P‖L1

t (L2) + C‖a‖L∞t (Ḣ2)‖ f ‖
L1

t (Ḃ
s+ 3

2
2,r )

.
(2.9)

Consequently, we arrive at the following result:

‖ f ‖L̃∞t (Ḃs
2,r) + ‖ f ‖L̃1

t (Ḃs+2
2,r ) + ‖∇P‖L̃1

t (Ḃs
2,r) ≤ C exp{C‖u‖

L1
t (Ḃ

5
2
2,1)
}

×
(
‖ f0‖Ḃs

2,r
+ ‖g‖L̃1

t (Ḃs
2,r) + ‖a‖

L∞t (Ḣs+ 3
2 )
‖∇P‖L1

t (L2) + ‖a‖L∞t (Ḣ2)‖ f ‖
L1

t (Ḃ
s+ 3

2
2,r )

)
.

(2.10)

This lemma will serve as a fundamental tool in our subsequent derivation of energy estimates for the
momentum equation within the Besov space framework.

Remark 2.3. If −1 < s < 1 and u = f in Eq (2.8), there holds that

‖ f ‖L̃∞t (Ḃs
2,r) + ‖ f ‖L̃1

t (Ḃs+2
2,r ) + ‖∇P‖L̃1

t (Ḃs
2,r) ≤ C exp{C‖∇ f ‖L1

t (L∞)}

×
(
‖ f0‖Ḃs

2,r
+ ‖g‖L1

t (Ḃs
2,r) + ‖a‖

L∞t (Ḣs+ 3
2 )
‖∇P‖L1

t (L2) + ‖a‖L∞t (Ḣ2)‖ f ‖
L1

t (Ḃ
s+ 3

2
2,r )

)
.

(2.11)
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Corollary 2.1. Let u be a divergence-free vector field with u ∈ L1
T (Ḃ

5
2
2,1). For −5

2 < s < 5
2 , r = 1, 2, (or

r = 1 with s = 5
2 ), if f0 ∈ Ḃs+1

2,r , g ∈ L̃1
T (Ḃs+1

2,1 ), and f ∈ L1
T (Ḃs+1

2,r ) solves∂t f + u · ∇ f − ∆ f = g, (x, t) ∈ R3 × R+,

f (0, x) = f0(x),
(2.12)

then for 0 ≤ t ≤ T,

‖ f ‖L̃∞t (Ḃs
2,r) + ‖ f ‖L̃1

t (Ḃs+2
2,r ) ≤ ‖ f0‖Ḃs

2,r
+ C

∫ t

0
‖ f (τ)‖Ḃs

2,r
‖u(τ)‖

Ḃ
5
2
2,1

dτ + C‖g‖L̃1
t (Ḃs

2,r), (2.13)

which implies that

‖ f ‖L̃∞t (Ḃs
2,r) + ‖ f ‖L̃1

t (Ḃs+2
2,r ) ≤ exp{C‖u‖

L1
t (Ḃ

5
2
2,1)
}
(
‖ f0‖Ḃs

2,r
+ C‖g‖L̃1

t (Ḃs
2,r)

)
. (2.14)

This corollary will serve as a fundamental tool in our subsequent derivation of energy estimates for
the elasticity equation within the Besov space framework.

Proof. This follows directly from Lemma 2.8 with a = 0 and P = 0. �

When addressing the regularity issues of nonlinear diffusion equations, Besov spaces and
Chemin–Lerner type spaces offer significant advantages over the traditional Sobolev space framework.
By leveraging the frequency decomposition based on Littlewood–Paley theory, Besov spaces enable a
more refined characterization of function smoothness and achieve sharp estimates for nonlinear terms
via Bony’s paraproduct decomposition, thereby facilitating the treatment of large initial data problems.
Meanwhile, Chemin–Lerner spaces optimize the order of defining space–time norms, ensuring perfect
compatibility with heat semigroup estimates, and providing an indispensable analytical framework for
establishing local or global well-posedness in critical spaces.

3. Problem formulation and main results

Prior to introducing our model, we first provide a complete list of all mathematical notations used
throughout this paper for the reader’s reference (see Table 1).

The primary model studied in this paper is given by the following equations:

%t + v · ∇% = 0, (x, t) ∈ R3 × R+,

%(vt + v · ∇v) − ∆v + ∇P + σdiv (∇b ⊗ ∇b − 1
2 |∇b|2I) = 0,

bt + v · ∇b + 1
ν
(w′(b) − σ∆b) = 0,

div v = 0,
(%, v, b)(x, t)|t=0 = (%0, v0, b0)(x).

(3.1)

The unknowns % = %(x, t), v = (v1(x, t), v2(x, t), v3(x, t)), and b = b(x, t) denote the density, fluid
velocity field, and spherical component of the elastic strain tensor, respectively. The scalar pressure
function is denoted by P = P(x, t). Additionally, w(·) is assumed to be a smooth strictly convex function
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of b, with its second and third derivatives denoted w′′(b) and w′′′(b) being bounded, specifically, m−1
0 ≤

w′′(b) ≤ m0 and |w′′′(b)| ≤ m1 for constants m0 > 0 and m1 ≥ 0. The coefficients ν and σ are positive
constants. Since their exact values do not play an essential role in our subsequent analysis, we set
ν = σ = 1 for simplicity. This is achieved through a standard nondimensionalization procedure, which
simplifies the governing equations without loss of physical generality.

Table 1. Notation.

Symbol Description
C Generic positive constant independent of t
x . y x ≤ Cy for some C > 0
C(I; X) Continuous functions from I to Banach space X
Cb(I; X) Bounded continuous functions in C(I; X)
Lq(R3) Lebesgue spare of p-integrable functions on R3

Lq Shorthand for Lq(R3) (unless otherwise specified)
Lp

t (X) Shorthand for Lp(0, t; X)
S(R3) Schwartz space of rapidly decreasing smooth functions on R3

S′(R3) The space of tempered distributions, dual of S(R3)
P The space of polynomials on R3

H s(R3) Sobolev space of order s on R3

[P,Q] Commutator: PQ − QP
v̂, F v Fourier transform of v
v̌, F −1v Inverse Fourier transform operator of v

This system of equations describes a class of incompressible yet density-inhomogeneous complex
fluids, whose physical essence is highly relevant to systems such as nematic liquid crystals and other
viscoelastic fluids. Here, the density % acts as a flow-transported quantity that marks the fluid’s inherent
inhomogeneity. Central to the system’s physics is the introduction of an elastic strain b and its strong
coupling with the flow: the evolution equation for b, which combines advection, relaxation (driven
by the function w(b)), and diffusion (representing the system’s tendency to homogenize its internal
structure), collectively models the dynamics of microscopic configurations in this class of fluids, such
as the orientation of liquid crystal molecules or the conformation of polymer chains. Changes in this
microstructure directly influence the macroscopic momentum balance through a mechanism effected
by the stress tensor σdiv (∇b⊗∇b− 1

2 |∇b|2I) in the momentum equation; this nonlinear term, originating
from spatial gradients of the internal variable, is the fundamental source of non-Newtonian behaviors,
such as normal stress differences, and leads to characteristic phenomena like the Weissenberg effect
(rod-climbing). Simultaneously, the viscous dissipation term −∆v provides the primary mechanism
for momentum diffusion, smoothing the velocity field and dissipating kinetic energy into heat, while
the elastic diffusion term −σ∆b in the b-equation governs the relaxation of the internal microstructure.
Consequently, the model fully captures several hallmark features of viscoelastic or complex fluids:
upon cessation of flow, the internal variable b relaxes toward the minima of its potential via the
relaxation term, causing the associated elastic stress to decay—a manifestation of stress relaxation.
In summary, this system of equations provides a rigorous mathematical framework for analyzing the
dynamics of a class of incompressible complex fluids with orientational elasticity (notably nematic
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liquid crystals), clearly elucidating their fundamental viscoelastic physical nature. Meanwhile, to
facilitate the reader’s understanding of the coupling relationships between the fluid velocity, stress
diffusion, and elastic strain, we present a schematic diagram as Figure 2.

Velocity Field
v

Elastic Strain
b

Stress Diffusion
∇b∆b

Convect
ive Tran

sport

Stress
C

onstructionMomentum Forcing

Relaxation + Diffusion

Figure 2. Coupling relationships between velocity, stress diffusion, and elastic strain in
viscoelastic fluids.

In what follows, we shall investigate the large-time decay and stability of any given smooth solution
to (3.1) with a constant viscosity coefficient. Let a = 1

%
− 1, and base on the identity div (∇b ⊗ ∇b −

1
2 |∇b|2I) = ∇b∆b, then model (3.1) can be rewritten as

at + v · ∇a = 0, (x, t) ∈ R3 × R+,

vt + v · ∇v + (1 + a)(∇P − ∆v) + (1 + a)∇b∆b = 0,
bt + v · ∇b + w′(b) − ∆b = 0,
div v = 0,
(a, v, b)(x, t)|t=0 = (a0, v0, b0)(x).

(3.2)

Our first result establishes the global stability for the solutions to (3.2) with initial density %0 near a
positive constant. This extends the inhomogeneous Navier-Stokes system’s stability result in [1].

Theorem 3.1. Let (a, v, b) be a given global solution of the system (3.2) with initial data

(a0, v0, b0) ∈ B
5
2
2,1(R3) × B

3
2
2,1(R3) × B

5
2
2,1(R3), div v0 = 0,

m ≤ 1 + a0 ≤ M, for some m,M > 0. (3.3)

Suppose the solution possesses the following regularity:

a ∈ C(0,∞; B
5
2
2,1), v ∈ C(0,∞; B

3
2
2,1) ∩ L1

loc(0,∞; Ḃ
7
2
2,1),

b ∈ C(0,∞; B
5
2
2,1) ∩ L1

loc(0,∞; Ḃ
9
2
2,1).

Then, there exist positive constants c1, c2, c3, and a sufficiently large T1 , T1(a0, v0, b0) such that if

‖a0‖
Ḃ

3
2
2,1

exp{c2

∫ T1

0
‖∇v‖

Ḃ
3
2
2,1

dt} ≤ c1, (3.4)
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then for any initial perturbation (ã0, ṽ0, b̃0) satisfying

‖ã0‖
B

3
2
2,1

+ ‖ṽ0‖
B

1
2
2,1

+ ‖b̃0‖
B

3
2
2,1

≤ c3, (3.5)

the perturbed initial data (a0, v0, b0) = (a0 + ã0, v0 + ṽ0, b0 + b̃0) also admits a unique global solution
(a, v, b) to system (3.2), which satisfies the regularity:

a ∈ Cb(0,∞; B
5
2
2,1), v ∈ Cb(0,∞; B

3
2
2,1) ∩ L1(0,∞; Ḃ

7
2
2,1),

b ∈ Cb(0,∞; B
5
2
2,1) ∩ L1(0,∞; Ḃ

9
2
2,1).

(3.6)

Next, to study the global stability of general smooth solutions to (3.2), we first require global-in-
time estimation frameworks (e.g., (3.6)) for the reference system. Inspired by [1], we note that two
key challenges necessitate a revised approach: first, the intrinsic hyperbolic nature of the continuity
equation in (3.2); second, the analytical complexity in quantifying the pressure term in the momentum
equation. We therefore focus on analyzing the large-time decay behavior of these reference solutions,
and from which the desired result follows.

Theorem 3.2. Let (a, v, b) be a global solution to (3.2) with initial data (a0, v0, b0), satisfying

a ∈ C(0,∞; B
5
2
2,1), v ∈ C(0,∞; B

3
2
2,1) ∩ L1

loc(0,∞; Ḃ
7
2
2,1),

b ∈ C(0,∞; B
5
2
2,1) ∩ L1

loc(0,∞; Ḃ
9
2
2,1),

where a0 satisfies (3.3), a0 ∈ B
5
2
2,1(R3), b0 ∈ B

5
2
2,1(R3), and v0 ∈ B

3
2
2,1(R3) ∩ Lq(R3) (1 < q < 6

5 ) with
div v0 = 0. Define δ(q) , 3

4 (2
q − 1). Then, there exists a time t2 > 0 such that for all t > t2,

‖v(t)‖L2 ≤ C1(1 + t)−δ(q), ‖∇v(t)‖L2 ≤ C1(1 + t)−
1+2δ(q)

2 , ‖∇b(t)‖L2 ≤ C1e−m−1
0 t,

‖∇2b(t)‖L2 ≤ C1e−
1
2 m−1

0 t,

∫ ∞

t2
em−1

0 τ(‖∇bτ‖2L2 + ‖∇3b‖2L2)dτ ≤ C1,∫ ∞

t2
(1 + τ)l(‖vτ‖2L2 + ‖∆v‖2L2 + ‖∇P‖2L2)dτ ≤ C1

(
0 < l < 1 + 2δ(q)

)
,

(3.7)

and ∫ ∞

t2
(‖b‖L∞ + ‖∇b‖L∞ + ‖∇2b‖L∞ + ‖v‖L∞ + ‖∇v‖L∞)(τ)dτ ≤ C1, (3.8)

where C1 depends only on m0, m1 (from w(b)), m, M (given in (3.3)), ‖a0‖L2 , ‖b0‖H2 , ‖v0‖Lq , and ‖v0‖H1 .

Remark 3.1. The decay rates we obtained—algebraic decay for the velocity field v and exponential
decay for the elastic variable b — accurately characterize two distinct yet coexisting energy dissipation
mechanisms in viscoelastic fluids: viscous dissipation and elastic relaxation. The algebraic decay of
the velocity field v is a typical feature of momentum diffusion in classical Newtonian fluids. This
process is inherently nonlocal and gradual, with its decay rate depending on the spatial distribution
scale of the initial disturbance, reflecting the persistence and gradual dissipation of macroscopic
inertial effects in the fluid. In contrast, the exponential decay of the elastic variable b reflects the
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rapid relaxation of memory effects of microstructural memory effects following flow disturbances.
Governed by an intrinsic relaxation timescale in the system, once initiated, the stored elastic energy
is irreversibly converted into thermal energy in a determinate and rapid manner, yielding strong
exponential decay. The coexistence of exponential and algebraic decay directly manifests the dual
characteristics of “viscosity” and “elasticity” in the long-term dynamic behavior of viscoelastic fluids.
Moreover, the exponential decay of ∇b signifies the rapid release of internal elastic stress generated by
microstructural inhomogeneities. This explains why viscoelastic fluids, such as polymer solutions, can
quickly “relax” and exhibit a rapid decline in their resistance to deformation once agitation ceases. In
other words, driven by the principle of increasing entropy, the system evolves rapidly and irreversibly
toward a state where ∇b → 0, that is, toward a spatially uniform and more disordered equilibrium
state.

By leveraging Theorem 3.2 and the proof technique developed in [1], we establish the global
stability result for the general smooth solutions of (3.2) as follows.

Theorem 3.3. Assume that a0 ∈ B
5
2
2,1(R3) satisfies (3.3), b0 ∈ B

5
2
2,1(R3), and v0 ∈ B

3
2
2,1(R3) ∩ Lq(R3) for

some 1 < q < 6
5 with div v0 = 0. Let (a, v, b) be a global solution of system (3.2) with initial data

(a0, v0, b0) satisfying the following regularity conditions:

a ∈ C(0,∞; B
5
2
2,1), v ∈ C(0,∞; B

3
2
2,1) ∩ L1

loc(0,∞; Ḃ
7
2
2,1), b ∈ C(0,∞; B

5
2
2,1) ∩ L1

loc(0,∞; Ḃ
9
2
2,1).

Then, there exists a positive constant c4 such that for any

(ã0, ṽ0, b̃0) ∈ B
5
2
2,1(R3) × (B

3
2
2,1(R3) ∩ Lq(R3)) × B

5
2
2,1(R3),

with G0 , ‖ã0‖
B

3
2
2,1

+ ‖ṽ0‖H1 + ‖ṽ0‖Lp + ‖b̃0‖H2 ≤ c4,

the system (3.2) with initial data (a0, v0, b0) = (a0 + ã0, v0 + ṽ0, b0 + b̃0) admits a unique global smooth
solution (a, v, b) satisfying the regularity

a ∈ Cb(0,∞; B
5
2
2,1), v ∈ Cb(0,∞; B

3
2
2,1 ∩ Lq) ∩ L1

loc(0,∞; Ḃ
7
2
2,1),

b ∈ Cb(0,∞; B
5
2
2,1) ∩ L1

loc(0,∞; Ḃ
9
2
2,1).

(3.9)

Moreover, for any s ∈ [ 1
2 ,

3
2 ], the solution (a, v, b) satisfies the stability estimates

‖a − a‖L̃∞(0,∞;Bs+1
2,1 ) + ‖v − v‖L̃∞(0,∞;Lp) + ‖v − v‖L̃∞(0,∞;Bs

2,1)

+ ‖v − v‖L1(0,∞;Ḃs+2
2,1 ) + ‖b − b‖L̃∞(0,∞;Bs+1

2,1 ) + ‖b − b‖L1(0,∞;Ḃs+3
2,1 ) ≤ CG

3−2s
2

0 .
(3.10)

In summary, Theorem 3.1 establishes the stability of a given solution to the model. Theorem 3.3
then generalizes this result to the case of arbitrary solutions. Owing to the challenges posed by
the hyperbolic nature of the continuity equation in (3.2) and the estimation of the pressure term in
the momentum equation, we therefore first study the large-time decay of the reference solutions in
Theorem 3.2. The rest of this paper is structured as follows. In Section 4, we establish the global
stability of a specific solution to system (3.2), as formulated in Theorem 3.1. Section 5 focuses on
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analyzing the temporal decay rate of global solutions, which corresponds to Theorem 3.2. Section 6
is dedicated to proving Theorem 3.3, where the stability results are generalized to arbitrary smooth
solutions of (3.2). Finally, in Section 7, we not only provide a synthesis of the principal findings
but also critically examine the limitations inherent in our model, while simultaneously delineating
prospective avenues for future research and presenting the strategic roadmap for our subsequent
investigative work.

4. Proof of Theorem 3.1

This section is devoted to proving the global stability of a given solution to system (3.2) under
the assumption of bounded density, as stated in Theorem 3.1. We begin by establishing the uniform
boundedness of the reference solution via energy estimates in Besov spaces and a bootstrap argument.
Following this, the system for the perturbations, derived from the difference between the perturbed and
reference equations, is shown to be bounded using the same technique. The global regularity of the
solution to the perturbed system is thereby established. The detailed proof proceeds as follows.

First, to establish the global well-posedness of the reference solution (a, v, b) to system (3.2) with
initial data (a0, v0, b0), we derive uniform-in-time estimates for (a, v, b). We define the density variable
% , 1

1+a , and perform classical energy analysis on (3.2).
A direct consequence of the continuity Eq (3.1)1 is the invariance property: for any 1 ≤ p ≤ ∞,

‖% − 1‖Lp = ‖%0 − 1‖Lp . (4.1)

Next, multiplying the momentum Eq (3.1)2 by the velocity field v and integrating over R3 yields:

1
2

d
dt
‖
√
% v(t)‖2L2 + ‖∇v‖2L2 +

∫
R3
∇b∆b · vdx = 0. (4.2)

Taking the L2 inner product of (3.1)3 with w′(b) and −∆b, respectively, and integrating by parts, we
derive the following equations:

d
dt
‖w(b)‖L1 + ‖w′(b)‖2L2 +

∫
R3

w′′(b)|∇b|2dx = 0,

and
1
2

d
dt
‖∇b(t)‖2L2 + ‖∆b‖2L2 −

∫
R3

v · ∇b∆bdx +

∫
R3

w′′(b)|∇b|2dx = 0. (4.3)

Summing the above equations and integrating over (0, t), the condition w′′(b) > m−1
0 yields: for all

t > 0,
‖(

√
% v(t),∇b)‖2L∞(0,t;L2) + ‖w(b)‖L∞(0,t;L1) + ‖(∇v,∇b,∆b,w′(b))‖2L2(0,t;L2)

≤ C(‖
√
%0 v0‖

2
L2 + ‖∇b0‖

2
L2 + ‖w(b0)‖L1),

(4.4)

which, together with the interpolation theorem, implies that∫ t

0
‖v‖4

Ḃ
1
2
2,1

dt′ ≤ C
∫ t

0
‖v‖2L2‖∇v‖2L2dt′ ≤ C(‖v0‖

4
L2 + ‖∇b0‖

4
L2 + ‖w(b0)‖2L1),∫ t

0
‖∇b‖4

Ḃ
1
2
2,1

dt′ ≤ C
∫ t

0
‖∇b‖2L2‖∇

2b‖2L2dt′ ≤ C(‖v0‖
4
L2 + ‖∇b0‖

4
L2 + ‖w(b0)‖2L1).
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Thus, for any ε > 0, there exists T1(ε) > 0 (simplified as T1 hereafter) such that

‖v(T1)‖
Ḃ

1
2
2,1

+ ‖∇b(T1)‖
Ḃ

1
2
2,1

< ε. (4.5)

On the other hand, applying (2.7) to Eq (3.2)1 over (0,T1) gives

‖a‖
L̃∞T1

(Ḃ
3
2
2,1)
≤ ‖a0‖

Ḃ
3
2
2,1

exp{c2

∫ T1

0
‖∇v‖

Ḃ
3
2
2,1

dτ}. (4.6)

For t > T1, from (2.6), we deduce that

‖a(t)‖
L̃∞(T1,t;Ḃ

3
2
2,1)
≤ ‖a(T1)‖

Ḃ
3
2
2,1

+ C‖a‖
L∞(T1,t;Ḃ

3
2
2,1)
‖v‖

L1(T1,t;Ḃ
5
2
2,1)
. (4.7)

For the momentum equation, by Lemma 2.8 and the product laws in Besov spaces, it follows that

‖v‖
L̃∞(T1,t;Ḃ

1
2
2,1)

+ ‖v‖
L1(T1,t;Ḃ

5
2
2,1)

+ ‖∇P‖
L1(T1,t;Ḃ

1
2
2,1)

≤ ‖v(T1)‖
Ḃ

1
2
2,1

+ C‖v‖
L∞(T1,t;Ḃ

1
2
2,1)
‖v‖

L1(T1,t;Ḃ
5
2
2,1)

+ C‖b‖
L∞(T1,t;Ḃ

3
2
2,1)
‖b‖

L1(T1,t;Ḃ
7
2
2,1)

+ C‖a‖
L∞(T1,t;Ḃ

3
2
2,1)
‖b‖

L∞(T1,t;Ḃ
3
2
2,1)
‖b‖

L1(T1,t;Ḃ
7
2
2,1)

+ C‖a‖
L∞(T1,t;Ḃ

3
2
2,1)

(‖∇P‖
L1(T1,t;Ḃ

1
2
2,1)

+ ‖v‖
L1(T1,t;Ḃ

5
2
2,1)

).

(4.8)

Next, we analyze the b equation. Applying the block operator ∆̇ j to (3.1)3 and then the gradient operator
∇ yields

∂t∆̇ j∇b − ∆̇ j∇∆b + w′′(b)∆̇ j∇b = −∇([∆̇ j, v · ∇]b) − ∇(v · ∆̇ j∇b) − [∆̇ j,w′′(b)]∇b. (4.9)

Taking the L2 inner product of (4.9) with ∆̇ j∇b gives the fundamental energy inequality directly:

1
2

d
dt
‖∆̇ j∇b‖2L2 + m22 j‖∆̇ j∇b‖2L2 + m−1

0 ‖∆̇ j∇b‖2L2 ≤ C2 j‖[∆̇ j, v · ∇]b‖L2‖∆̇ j∇b‖L2

+
∣∣∣∣ ∫
R3
∇(v · ∆̇ j∇b) · ∆̇ j∇bdx

∣∣∣∣ + ‖[∆̇ j,w′′(b)]∇b‖L2‖∆̇ j∇b‖L2 .
(4.10)

Applying Lemmas 2.1 and 2.5 to the first term on the righthand side of the inequality (4.10) gives that

2 j‖[∆̇ j, v · ∇]b‖L2‖∆̇ j∇b‖L2 ≤ C2−
1
2 j‖v‖

Ḃ
5
2
2,1

‖∇b‖
Ḃ

1
2
2,r

‖∆̇ j∇b‖L2 .

The second term vanishes after integrating by parts together with div v̄ = 0:∫
R3
∇(v · ∆̇ j∇b) · ∆̇ j∇bdx = −

∫
R3

v · ∆̇ j∇b∇(∆̇ j∇b)dx = −
1
2

∫
R3

v · ∇(∆̇ j∇b)2dx = 0.

Integrating (4.10) over (T1, t) and combining the above estimates, the following is obtained:

‖∆̇ j∇b‖L∞(T1,t;L2) + m22 j‖∆̇ j∇b‖L1(T1,t;L2) + m−1
0 ‖∆̇ j∇b‖L1(T1,t;L2)

. ‖∆̇ j∇b(T1)‖L2 + C2−
1
2 j‖v‖

L1(T1,t;Ḃ
5
2
2,1)
‖∇b‖

L∞(T1,t;Ḃ
1
2
2,1)

+ ‖[∆̇ j,w′′(b)]∇b‖L1(T1,t;L2).
(4.11)
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Plugging the commutator operator (2.5) into (4.11) and utilizing the definition of Besov spaces, we
arrive at

‖b‖
L̃∞(T1,t;Ḃ

3
2
2,1)

+ ‖b‖
L1(T1,t;Ḃ

7
2
2,1)

+ ‖b‖
L1(T1,t;Ḃ

3
2
2,1)

≤ ‖b(T1)‖
Ḃ

3
2
2,1

+ C‖v‖
L1(T1,t;Ḃ

5
2
2,1)
‖b(t)‖

L∞(T1,t;Ḃ
3
2
2,1)

+ C‖b‖
L∞(T1,t;Ḃ

3
2
2,1)
‖b‖

L1(T1,t;Ḃ
7
2
2,1)

+ C‖b‖3
L∞(T1,t;Ḃ

3
2
2,1)
‖b‖

L1(T1,t;Ḃ
7
2
2,1)
.

(4.12)

On the other hand, define the function Z(t) as

Z(t) ,‖a‖
L̃∞(T1,t;Ḃ

3
2
2,1)

+ ‖v‖
L̃∞(T1,t;Ḃ

1
2
2,1)

+ ‖v‖
L1(T1,t;Ḃ

5
2
2,1)

+ ‖∇P‖
L1(T1,t;Ḃ

1
2
2,1)

+ ‖b‖
L̃∞(T1,t;Ḃ

3
2
2,1)

+ ‖b‖
L1(T1,t;Ḃ

7
2
2,1)
. (4.13)

This, together with the inequalities (4.7), (4.8), and (4.12), yields

Z(t) ≤ ‖a(T1)‖
Ḃ

3
2
2,1

+ ‖v(T1)‖
Ḃ

1
2
2,1

+ ‖b(T1)‖
Ḃ

3
2
2,1

+ C2(Z
2

+ Z
3

+ Z
4
). (4.14)

We subsequently define a time T ′ as follows:

T ′ , sup
t>T1

{t : Z ≤ 3(‖a(T1)‖
Ḃ

3
2
2,1

+ ‖v(T1)‖
Ḃ

1
2
2,1

+ ‖b(T1)‖
Ḃ

3
2
2,1

)} < ∞. (4.15)

Assuming c1 (introduced in (3.4)) and ε (introduced in (4.5)) are chosen sufficiently small, it follows
directly from (4.6) and (4.14) that for all T1 ≤ t ≤ T ′,

Z(t) ≤ (‖a(T1)‖
Ḃ

3
2
2,1

+ ‖v(T1)‖
Ḃ

1
2
2,1

+ ‖b(T1)‖
Ḃ

3
2
2,1

)(1 + 9C2Z).

Furthermore, choose c1 ≤
1

54C2
and ε ≤ 1

54C2
, while ensuring that both c1 and ε are sufficiently small,

then we get
Z(t) ≤ 2(‖a(T1)‖

Ḃ
3
2
2,1

+ ‖v(T1)‖
Ḃ

1
2
2,1

+ ‖b(T1)‖
Ḃ

3
2
2,1

),

which contracts with the assumption (4.15). Thus, one can deduce that T ′ = ∞ and Z(t) remains
bounded over R+, namely,

‖v‖
L̃∞(0,+∞;Ḃ

1
2
2,1)

+ ‖v‖
L1(0,+∞;Ḃ

5
2
2,1)

+ ‖∇P‖
L1(0,+∞;Ḃ

1
2
2,1)

+ ‖a‖
L̃∞(0,+∞;Ḃ

3
2
2,1)

+ ‖b‖
L̃∞(0,+∞;Ḃ

3
2
2,1)

+ ‖b‖
L1(0,+∞;Ḃ

7
2
2,1)
≤ C. (4.16)

What’s more, we have

‖a‖
L̃∞(0,+∞;Ḃ

3
2
2,1)
≤ 2(‖a0‖

Ḃ
3
2
2,1

exp{c2

∫ T1

0
‖∇v‖

Ḃ
3
2
2,1

dτ} + ε) ≤ 2(c1 + ε). (4.17)

Building on these estimates, we proceed to investigate the global well-posedness of system (3.2) with
initial data (a0, v0, b0). The initial data is decomposed as (a0, v0, b0) = (a0 + ã0, v0 + ṽ0, b0 + b̃0), where
(ã0, ṽ0, b̃0) are sufficiently small perturbations. With ṽ , v − v and b̃ , b − b defined, the variables
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(a, ṽ, b̃) satisfy

at + (v + ṽ) · ∇a = 0, (t, x) ∈ R+ × R3,

ṽt − ∆ṽ + ∇P̃ = −(v + ṽ)∇ṽ − ṽ · ∇v − (1 + a)(∇b∆b̃ + ∇b̃∆b + ∇b̃∆b̃)
+(a − a)(∆v − ∇P − ∇b∆b) + a(∆ṽ − ∇P̃),

b̃t + v · ∇b̃ − ∆b̃ = −ṽ · ∇b̃ − ṽ · ∇b − w′′(b)b̃ − o(|b̃|2),
div ṽ = 0,
(a, ṽ, b̃)(x, t)|t=0 = (a0, ṽ0, b̃0)(x).

(4.18)

Perturbations of the single-frequency term generate the higher-order nonlinear term o(|b̃|2), but it barely
affects the stability and decay estimates of the equation, thus it can be neglected. For computational
convenience, we will remove it in the subsequent energy estimates.

An application of Lemma 2.7 to the density Eq (4.18)1 yields

‖a‖
L̃∞t (Ḃ

3
2
2,1)
≤ ‖a0‖

Ḃ
3
2
2,1

+ C
∫ t

0
‖v‖

Ḃ
5
2
2,1

‖a‖
Ḃ

3
2
2,1

dτ + C‖a‖
L∞t (Ḃ

3
2
2,1)
‖ṽ‖

L1
t (Ḃ

5
2
2,1)
.

Then, from (4.16), one further derives

‖a‖
L̃∞t (Ḃ

3
2
2,1)
≤ C

(
‖a0‖

Ḃ
3
2
2,1

+ ‖a‖
L∞t (Ḃ

3
2
2,1)
‖ṽ‖

L1
t (Ḃ

5
2
2,1)

)
. (4.19)

Adopting the method of (4.8) provides the estimate for the velocity field ṽ as follows:

‖ṽ‖
L̃∞t (Ḃ

1
2
2,1)

+ ‖ṽ‖
L1

t (Ḃ
5
2
2,1)

+ ‖∇P̃‖
L1

t (Ḃ
1
2
2,1)
≤ ‖ṽ0‖

Ḃ
1
2
2,1

+ C
∫ t

0
‖v‖

Ḃ
5
2
2,1

‖ṽ‖
Ḃ

1
2
2,1

dτ

+ C‖ṽ‖
L∞t (Ḃ

1
2
2,1)
‖ṽ‖

L1
t (Ḃ

5
2
2,1)

+ C
∫ t

0
‖b‖

Ḃ
7
2
2,1

‖b̃‖
Ḃ

3
2
2,1

dτ + C‖b̃‖
L∞t (Ḃ

3
2
2,1)
‖b̃‖

L1
t (Ḃ

7
2
2,1)

+ C‖a‖
L∞t (Ḃ

3
2
2,1)

(
‖b‖

L∞t (Ḃ
3
2
2,1)
‖b̃‖

L1
t (Ḃ

7
2
2,1)

+ ‖b̃‖
L∞t (Ḃ

3
2
2,1)
‖b̃‖

L1
t (Ḃ

7
2
2,1)

)
+ C

(
‖a‖

L∞t (Ḃ
3
2
2,1)

+ ‖a‖
L∞t (Ḃ

3
2
2,1)

)(
‖v‖

L1
t (Ḃ

5
2
2,1)

+ ‖∇P‖
L1

t (Ḃ
1
2
2,1)

+ ‖b‖
L∞t (Ḃ

3
2
2,1)
‖b‖

L1
t (Ḃ

7
2
2,1)

)
+ C‖a‖

L∞t (Ḃ
3
2
2,1)

(
‖ṽ‖

L1
t (Ḃ

5
2
2,1)

+ ‖∇P̃‖
L1

t (Ḃ
1
2
2,1)

)
.

Similarly, the b̃ equation implies that

‖b̃‖
L̃∞t (Ḃ

3
2
2,1)

+ ‖b̃‖
L1

t (Ḃ
7
2
2,1)
≤ ‖b̃0‖

Ḃ
3
2
2,1

+ C
∫ t

0

(
‖v‖

Ḃ
5
2
2,1

‖b̃‖
Ḃ

3
2
2,1

+ ‖b‖
Ḃ

7
2
2,1

‖ṽ‖
Ḃ

1
2
2,1

)
dτ

+

∫ t

0

(
1 + ‖b‖

Ḃ
3
2
2,1

)2
‖b‖

Ḃ
3
2
2,1

‖b̃‖
Ḃ

3
2
2,1

dτ + C‖b̃‖
L∞t (Ḃ

3
2
2,1)
‖ṽ‖

L1
t (Ḃ

5
2
2,1)
,

where we used the fact that

‖w′′(b)‖
Ḃ

3
2
2,1

≤ C
(
1 + ‖b‖L∞

)2
‖b‖

Ḃ
3
2
2,1

≤ C
(
1 + ‖b‖

Ḃ
3
2
2,1

)2
‖b‖

Ḃ
3
2
2,1

.
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Summing the two inequalities above, it follows from (4.16) that

‖ṽ‖
L̃∞t (Ḃ

1
2
2,1)

+ ‖ṽ‖
L1

t (Ḃ
5
2
2,1)

+ ‖∇P̃‖
L1

t (Ḃ
1
2
2,1)

+ ‖b̃‖
L̃∞t (Ḃ

3
2
2,1)

+ ‖b̃‖
L1

t (Ḃ
7
2
2,1)

.‖ṽ0‖
Ḃ

1
2
2,1

+ ‖b̃0‖
Ḃ

3
2
2,1

+ ‖b̃‖
L∞t (Ḃ

3
2
2,1)
‖ṽ‖

L1
t (Ḃ

5
2
2,1)

+ ‖ṽ‖
L∞t (Ḃ

1
2
2,1)
‖ṽ‖

L1
t (Ḃ

5
2
2,1)

+ ‖b̃‖
L∞t (Ḃ

3
2
2,1)
‖b̃‖

L1
t (Ḃ

7
2
2,1)

+ ‖a‖
L∞t (Ḃ

3
2
2,1)
‖b̃‖

L1
t (Ḃ

7
2
2,1)

+ ‖a‖
L∞t (Ḃ

3
2
2,1)
‖b̃‖

L∞t (Ḃ
3
2
2,1)
‖b̃‖

L1
t (Ḃ

7
2
2,1)

+ m′2(‖a‖
L∞t (Ḃ

3
2
2,1)

+ ‖a‖
L∞t (Ḃ

3
2
2,1)

) + ‖a‖
L∞t (Ḃ

3
2
2,1)

(‖ṽ‖
L1

t (Ḃ
5
2
2,1)

+ ‖∇P̃‖
L1

t (Ḃ
1
2
2,1)

).

(4.20)

Let

Z̃(t) ,‖a‖
L̃∞t (Ḃ

3
2
2,1)

+ ‖ṽ‖
L̃∞t (Ḃ

1
2
2,1)

+ ‖ṽ‖
L1

t (Ḃ
5
2
2,1)

+ ‖∇P̃‖
L1

t (Ḃ
1
2
2,1)

+ ‖b̃‖
L̃∞t (Ḃ

3
2
2,1)

+ ‖b̃‖
L1

t (Ḃ
7
2
2,1)
. (4.21)

By multiplying (4.19) with a suitable coefficient (e.g., m′2 + 1), we can eliminate the ‖a‖
L∞t (Ḃ

3
2
2,1)

term

from the righthand side of (4.20). Subsequent addition of the resulting equation to (4.20) yields

Z̃(t) ≤ m2

(
‖ã0‖

Ḃ
3
2
2,1

+ ‖ṽ0‖
Ḃ

1
2
2,1

+ ‖b̃0‖
Ḃ

3
2
2,1

+ ‖a‖
L∞t (Ḃ

3
2
2,1)

+ Z̃2(t) + Z̃3(t)
)
.

Along the same line of Z(t) and by invoking (4.17), we conclude that if ‖ã0‖
Ḃ

3
2
2,1

+ ‖ṽ0‖
Ḃ

1
2
2,1

+ ‖b̃0‖
Ḃ

3
2
2,1

+

2c1 + 2ε is sufficiently small, then for all t > 0, the following holds:

‖a‖
L̃∞t (Ḃ

3
2
2,1)

+ ‖ṽ‖
L̃∞t (Ḃ

1
2
2,1)

+ ‖ṽ‖
L1

t (Ḃ
5
2
2,1)

+ ‖∇P̃‖
L1

t (Ḃ
1
2
2,1)

+ ‖b̃‖
L̃∞t (Ḃ

3
2
2,1)

+ ‖b̃‖
L1

t (Ḃ
7
2
2,1)
≤ 3m2(‖ã0‖

Ḃ
3
2
2,1

+ ‖a0‖
Ḃ

3
2
2,1

+ ‖ṽ0‖
Ḃ

1
2
2,1

+ ‖b̃0‖
Ḃ

3
2
2,1

).
(4.22)

Next, we turn to enhancing the regularity propagation for smoother initial data. Upon applying
Lemmas 2.7 and 2.8 and Corollary 2.1 to the equations for a and b in system (3.2), it follows that

‖a‖
L̃∞t (Ḃ

5
2
2,1)
. ‖a0‖

Ḃ
5
2
2,1

exp
{ ∫ t

0
(‖v‖

Ḃ
5
2
2,1

+ ‖ṽ‖
Ḃ

5
2
2,1

)dτ
}
. ‖a0‖

Ḃ
5
2
2,1

,

and by using the estimates (4.16) and (4.22),

‖b‖
L̃∞t (Ḃ

5
2
2,1)

+ ‖b‖
L1

t (Ḃ
9
2
2,1)
. (‖b0‖

Ḃ
5
2
2,1

+ ‖w′(b)‖
L1

t (Ḃ
5
2
2,1)

) exp
{ ∫ t

0
(‖v‖

Ḃ
5
2
2,1

+ ‖ṽ‖
Ḃ

5
2
2,1

)dτ
}

. ‖b0‖
Ḃ

5
2
2,1

+
(
1 + ‖b‖

L∞t (Ḃ
3
2
2,1)

)3
‖b‖

L1
t (Ḃ

5
2
2,1)
≤ C.

With regard to the velocity field v, a standard energy estimate applied to the solution of (3.1)3 leads to

‖v‖
L̃∞t (Ḃ

3
2
2,1)

+ ‖v‖
L1

t (Ḃ
7
2
2,1)

+ ‖∇P‖
L1

t (Ḃ
3
2
2,1)

. ‖v0‖
Ḃ

3
2
2,1

+

∫ t

0
‖v‖

Ḃ
5
2
2,1

‖v‖
Ḃ

3
2
2,1

dτ + ‖a‖
L∞t (Ḃ

5
2
2,1)

(
‖v‖

L1
t (Ḃ

5
2
2,1)

+ ‖∇P‖
L1

t (Ḃ
1
2
2,1)

)
+ ‖b‖

L∞t (Ḃ
5
2
2,1)
‖b‖

L1
t (Ḃ

7
2
2,1)

+ ‖a‖
L∞t (Ḃ

3
2
2,1)
‖b‖

L∞t (Ḃ
5
2
2,1)
‖b‖

L1
t (Ḃ

7
2
2,1)
.

(4.23)
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Using (4.16), (4.22), and (4.23), and adopting the same proof method as in (2.7), we deduce

‖v‖
L̃∞t (Ḃ

3
2
2,1)

+ ‖v‖
L1

t (Ḃ
7
2
2,1)

+ ‖∇P‖
L1

t (Ḃ
3
2
2,1)
≤ C. (4.24)

Finally, following the approach of [1], these a priori bounds combined with a classical regularity
argument establish the following improved regularity result:

a ∈ Cb(0,∞; B
5
2
2,1), v ∈ Cb(0,∞; B

3
2
2,1) ∩ L1(0,∞; Ḃ

7
2
2,1), b ∈ Cb(0,∞; B

5
2
2,1) ∩ L1(0,∞; Ḃ

9
2
2,1).

Hence, Theorem 3.1 is now established.

5. Proof of Theorem 3.2

As noted in Section 3, the reference system’s global estimate (3.16) relies on small initial data. To
overcome this limitation, we use Schonbek’s approach (systematically developed in [24]) to address
it here. This section focuses on proving the large-time decay of global solution to system (3.2)
(Theorem 3.2), with the proof structured into five propositions for clarity.

Proposition 5.1. Under the conditions of Theorem 3.2, there exist a time t2 > 0 and some positive
constants c′i (i = 1, 2, 3, 4) such that for all t > t2, the following inequality holds

d
dt
‖
(√
%v,∇v,∇b,∇2b

)
‖2L2 + c′1‖

√
%vt‖

2
L2 + c′2‖∇bt‖

2
L2 + c′3‖∇

2v‖2L2 + c′4‖∇
3b‖2L2 ≤ 0, (5.1)

or, consequently,

sup
t≥t2
‖
(√
%v(t),∇v(t),∇b(t),∇2b(t)

)
‖2L2 +

∫ ∞

t2

(
c′1‖
√
%vτ‖2L2 + c′2‖∇bτ‖2L2

+ c′3‖∇
2v‖2L2 + c′4‖∇

3b‖2L2

)
dτ . ‖

(√
%v,∇v,∇b,∇2b

)
(t2)‖2L2 .

(5.2)

Proof. Motivated by the method in [24], we multiply (3.1)2 by −1
%
∆v and integrate over R3, obtaining

1
2

d
dt
‖∇v‖2L2 + m‖∆v‖2L2 .

∫
R3

∣∣∣(v · ∇)v · ∆v +
1
%
∇P · ∆v +

1
%
∇b∆b · ∆v

∣∣∣dx

. ‖v‖L3‖∇v‖L6‖∆v‖L2 + ‖1 + a‖L∞(‖∇P‖L2‖∆v‖L2 + ‖∇b‖L3‖∆b‖L6‖∆v‖L2).
(5.3)

Regarding the pressure gradient term ‖∇P‖2L2 , elliptic regularity estimates in conjunction with the
divergence-free constraint lead to

‖∇P‖2L2 . ‖%vt + %v · ∇v + ∇b∆b‖2L2

. ‖
√
%vt‖

2
L2 + ‖v‖L2‖∇v‖L2‖∇2v‖2L2 + ‖∇b‖L2‖∇2b‖L2‖∇3b‖2L2 .

(5.4)

Then, substituting (5.4) into (5.3) shows

1
2

d
dt
‖∇v‖2L2 +

m
2
‖∆v‖2L2 .‖v‖

1
2
L2‖∇v‖

1
2
L2‖∇

2v‖2L2 + ‖v‖L2‖∇v‖L2‖∇2v‖2L2

+ ‖
√
%vt‖

2
L2 + ‖∇b‖L2‖∇2b‖L2‖∇3b‖2L2 .

(5.5)
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On the other hand, testing (3.1)2 with vt and integrating by parts gives rise to

1
2

d
dt
‖∇v‖2L2 + ‖

√
%vt‖

2
L2 .

∫
R3
|%v · ∇v · vt + ∇b∆b · vt|dx

. ‖
√
%‖L∞‖v‖L3‖∇v‖L6‖

√
%vt‖L2 + ‖∇b‖L3‖∇2b‖L6‖

√
%vt‖L2

.
1
2
‖
√
%vt‖

2
L2 + ‖v‖L2‖∇v‖L2‖∇2v‖2L2 + ‖∇b‖L2‖∇2b‖L2‖∇3b‖2L2 .

(5.6)

Subsequently, by applying the gradient operator ∇ to Eq (3.1)3, we obtain

∇bt + ∇v∇b + v∇2b + w′′(b)∇b − ∇3b = 0. (5.7)

Taking the L2 inner product of (5.7) with −∇3b and using the bounds m−1
0 ≤ w′′(b) ≤ m0, |w′′′(b)| ≤ m1

leads to
1
2

d
dt
‖∇2b‖2L2 + ‖∇3b‖2L2

.

∫
R3

∣∣∣∇v · ∇b∇3b + v∇2b∇3b + w′′(b)|∇2b|2 + w′′′(b)|∇b|2∇2b
∣∣∣dx

. ‖∇v‖L6‖∇b‖L3‖∇3b‖L2 + ‖v‖L3‖∇2b‖L6‖∇3b‖L2 + ‖∇b‖L2‖∇b‖L6‖∇2b‖L3

≤
1
2
‖∇3b‖2L2 + C‖∇2v‖2L2‖∇b‖L2‖∇2b‖L2 + C‖v‖L2‖∇v‖L2‖∇3b‖2L2

+ C‖∇b‖
4
3

L2‖∇
2b‖2L2 + C1‖∇

2b‖2L2 .

(5.8)

Additionally, taking the L2 inner product of with −∆bt and integrating by parts yields

1
2

d
dt
‖∇2b‖2L2 +

1
2

w′′(b)
d
dt
‖∇b‖2L2 + ‖∇bt‖

2
L2

. ‖∇v‖L6‖∇b‖L3‖∇bt‖L2 + ‖v‖L3‖∇2b‖L6‖∇bt‖L2

≤
1
2
‖∇bt‖

2
L2 + C

(
‖∇b‖L2‖∇2b‖L2‖∇2v‖2L2 + ‖v‖L2‖∇v‖L2‖∇3b‖2L2

)
.

(5.9)

To eliminate the last term in (5.8), we sum Eqs (4.2) and (4.3) and multiply the result by constant C1,
yielding

C1

2
d
dt

(
‖
√
%v‖2L2 + ‖∇b‖2L2

)
+ C1‖∇

2b‖2L2 ≤ 0. (5.10)

Multiplying (5.9) by a sufficiently small ε > 0 and using m−1
0 ≤ w′′(b) ≤ m0, we combine this modified

equation with (5.5), (5.6), (5.8), and (5.10). This yields suitable constants c′′1 , ..., c
′′
4 > 0 such that

d
dt

(
‖
√
%v‖2L2 + ‖∇v‖2L2 + ‖∇b‖2L2 + ‖∇2b‖2L2

)
+ c′′1 ‖

√
%vt‖

2
L2 + c′′2 ‖∇bt‖

2
L2

+ (c′′3 − ‖v‖
1
2
L2‖∇v‖

1
2
L2 − ‖v‖L2‖∇v‖L2 − ‖∇b‖L2‖∇2b‖L2)‖∇2v‖2L2

+ (c′′4 − ‖v‖
1
2
L2‖∇v‖

1
2
L2 − ‖v‖L2‖∇v‖L2 − ‖∇b‖L2‖∇2b‖L2)‖∇3b‖2L2 ≤ 0.

(5.11)

Moreover, estimate (4.4) ensures that for any γ > 0, there exists a time t2(γ) > 0 such that

‖∇v(t2)‖L2 + ‖∇2b(t2)‖L2 ≤ γ. (5.12)
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We choose γ sufficiently small, so that

‖v0‖
1
2
L2γ

1
2 + ‖v0‖L2γ + ‖∇b0‖L2γ ≤ min{

c′′3
2
,

c′′4
2
}, (5.13)

and define

T ′′ , sup
t≥t2
{‖∇v(t)‖2L2 + ‖∇2b(t)‖2L2 ≤ 4‖(

√
%v,∇b)(t2)‖2L2 + 4γ2}. (5.14)

The objective is now to prove that T ′′ = ∞. If T ′′ < ∞, for any t ≥ t2, (5.11) and (5.13) can be recast as

d
dt
‖
(√
%v,∇v,∇b,∇2b

)
‖2L2 + c′1‖

√
%vt‖

2
L2 + c′2‖∇bt‖

2
L2 + c′3‖∇

2v‖2L2 + c′4‖∇
3b‖2L2 ≤ 0, (5.15)

which implies

‖(
√
%v,∇v,∇b,∇2b)(T ′′)‖2L2 +

∫ T ′′

t2

(
c′1‖
√
%vt‖

2
L2 + c′2‖∇bt‖

2
L2 + c′3‖∇

2v‖2L2 + c′4‖∇
3b‖2L2

)
dt

≤ ‖(
√
%v,∇b)(t2)‖2L2 + ‖∇v(t2)‖2L2 + ‖∇2b(t2)‖2L2 ≤ ‖(

√
%v,∇b)(t2)‖2L2 + γ2,

contradicting the definition of T ′′ in (5.14). Thus, T ′′ = ∞, and (5.2) is established. Moreover, (5.2)
and (5.4) directly give ∫ ∞

t2
‖∇P(τ)‖2L2dτ ≤ C. (5.16)

�

Proposition 5.2. Under the conditions of Theorem 3.2, for any q ∈ (1, 6
5 ), we have v(t) ∈ C(0,∞; Lq).

Proof. Multiplying the component equations of the velocity field by |v j|q−1sign(v j) and integrating by
parts, we obtain

d
dt
‖%

1
q v j‖

q
Lq +

4(q − 1)
q

∫
R3
|∇|v j|

q
2 |2dx = −q

∫
R3

(∇P + ∇b∆b)|v j|q−1sign(v j)dx

≤ C(‖∇P‖Lq + ‖∇b∆b‖Lq)‖v j‖
q−1
Lq .

Simplifying and integrating over time yields

‖v(t)‖L∞(0,t;Lq) ≤ C(‖v0‖Lq + ‖∇P‖L1(0,t;Lq) + ‖∇b∆b‖L1(0,t;Lq)). (5.17)

To estimate the pressure gradient term, we take the divergence of (3.2)2 and use div v = 0, leading to

∆P = div
[
− v · ∇v − a(∇P − ∆v) − (1 + a)∇b∆b

]
. (5.18)

For 1 < q < 6
5 , using the embedding L2(R3) ∩ L3(R3) ↪→ L

2q
2−q (R3) and standard elliptic estimates,

we get
‖∇P‖Lq . ‖v · ∇v‖Lq + ‖a(∇P − ∆v)‖Lq + ‖∇b∆b‖Lq + ‖a∇b∆b‖Lq

. ‖v‖
L

2q
2−q
‖∇v‖L2 + ‖a‖

L
2q

2−q
‖∇P − ∆v‖L2 + ‖∇b‖

L
2q

2−q
‖∇2b‖L2

+ ‖a‖
L

2q
2−q
‖∇b‖

1
2
L2‖∇

2b‖
1
2
L2‖∇

3b‖L2

. ‖v‖L2∩L3‖∇v‖L2 + ‖a‖L2∩L3‖∇P − ∆v‖L2 + ‖∇b‖L2∩L3‖∇2b‖L2

+ ‖a‖2L2∩L3‖∇b‖L2‖∇2b‖L2 + ‖∇3b‖2L2 .

(5.19)
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Moreover, using the Sobolev embedding H1(R3) ↪→ L2(R3) ∩ L3(R3), and estimates (5.2), we find

‖∇P‖L1
t (Lq) ≤C

(
‖v‖L2

t (H1)‖∇v‖L2
t (L2) + ‖∇P − ∆v‖L1

t (L2)

+ ‖∇b‖L2
t (H1)‖∇

2b‖L2
t (L2) + ‖∇3b‖2L2

t (L2)

)
≤C(t) + C(t)(‖

√
%vt‖L2

t (L2) + ‖%v · ∇v‖L2
t (L2) + ‖∇b∆b‖L2

t (L2))

≤C(t) + ‖
√
%v‖L∞t (L3)‖∇v‖L2

t (L6) + ‖∇b‖L∞t (L3)‖∇
2b‖L2

t (L6)) ≤ C(t).

(5.20)

As for the last term in (5.17), similar arguments lead to

‖∇b∆b‖L1(0,t;Lq) ≤ C
∫ t

0
‖∇b‖

L
2q

2−q
‖∇2b‖L2dτ ≤ C‖∇b‖L2

t (H1)‖∇
2b‖L2

t (L2) ≤ C. (5.21)

Substituting these two estimates into (5.17) gives

‖v‖L∞(0,t;Lq) ≤ C(t). (5.22)

By applying the Aubin-Lions lemma to (5.21) and using the estimate ‖vt‖L2(0,t;L2) ≤ C from (5.2), we
immediately conclude that v ∈ C(0,∞; Lq). �

Proposition 5.3. Under the conditions of Theorem 3.2, (3.7) and (3.8) hold.

Proof. To enhance readability, the proof is structured into four steps.
Step 1: Decay rates of ‖∇b‖L2 and ‖∇2b‖L2 . First, we analyze the decay rate of ‖∇b‖L2 . Taking the L2

inner product of Eq (3.1)3 with −∆b and using the bound m−1
0 ≤ w′′(b) ≤ m0, we derive the energy

inequality:

d
dt
‖∇b‖2L2 + 2m−1

0 ‖∇b‖2L2 + 2‖∆b‖2L2 ≤ 2
∫
R3
|v∇b∆b|dx ≤ 2‖∇v‖L2‖∇b‖

1
2
L2‖∆b‖

3
2
L2 .

Then multiplication by e2m−1
0 t gives

d
dt
‖em−1

0 t∇b‖2L2 + 2e2m−1
0 t‖∆b‖2L2 ≤ 2‖∇v‖L2‖em−1

0 t∇b‖
1
2
L2 · e

3
2 m−1

0 t‖∆b‖
3
2
L2

≤ e2m−1
0 t‖∆b‖2L2 + C‖∇v‖4L2‖em−1

0 t∇b‖2L2 .

Using the a priori bound (5.2), we get by integrating over the interval [t2, t] (with t2 from
Proposition 5.1) that

‖em−1
0 t∇b(t)‖2L2 +

∫ t

t2
e2m−1

0 τ‖∆b‖2L2dτ ≤ Cem−1
0 t2‖∇b(t2)‖2L2 exp

{
C

∫ t

t2
‖∇v‖4L2dτ

}
.

Thus, for any t ≥ t2, the exponential decay results are derived as follows:

‖∇b(t)‖L2 . e−m−1
0 t,

∫ t

t2
e2m−1

0 τ‖∆b(τ)‖2L2dτ ≤ C. (5.23)
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Similarly, taking the L2 inner product of (3.1)3 with −∆bt, combined with integration by parts, leads to

d
dt
‖∇2b‖2L2 + ‖∇bt‖

2
L2 .

∫
R3
|w′′(b)∇b · ∇bt + (∇v · ∇)b · ∇bt + (v · ∇2)b · ∇bt|dx

. ‖∇b‖L2‖∇bt‖L2 + ‖∇v‖L6‖∇b‖L3‖∇bt‖L2 + ‖v‖L∞‖∇2b‖L2‖∇bt‖L2

≤
1
2
‖∇bt‖

2
L2 + C

(
‖∇b‖2L2 + ‖∇2v‖2L2‖∇b‖2L2 + ‖∇2v‖2L2‖∇

2b‖2L2 + ‖∇v‖2L2‖∇
2b‖2L2

)
.

Multiplying the above by em−1
0 t yields

d
dt
‖e

1
2 m−1

0 t∇2b‖2L2 + em−1
0 t‖∇bt‖

2
L2 . em−1

0 t‖∇2b‖2L2 + em−1
0 t‖∇b‖2L2 + em−1

0 t‖∇2v‖2L2‖∇b‖2L2

+
(
‖∇2v‖2L2 + ‖∇v‖2L2

)
‖e

1
2 m−1

0 t∇2b‖2L2 .

Utilizing the a priori estimates (5.2) and (5.23), we easily obtain

‖e
1
2 m−1

0 t∇2b(t)‖2L2 +

∫ t

t2
em−1

0 τ‖∇bτ‖2L2dτ .
(
‖e

1
2 m−1

0 t2∇2b(t2)‖2L2 +

∫ t

t2
em−1

0 τ‖∇2b‖2L2dτ

+

∫ t

t2
e−m−1

0 τdτ +

∫ t

t2
e−m−1

0 τ‖∇2v‖2L2dτ
)

exp
{
C

∫ t

t2

(
‖∇2v‖2L2 + ‖∇v‖2L2

)
dτ

}
≤ C.

Thus, for t > t2, the following holds:

‖∇2b(t)‖L2 . e−
1
2 m−1

0 t,

∫ t

t2
em−1

0 τ‖∇bτ(τ)‖2L2dτ ≤ C. (5.24)

To estimate ‖∇3b‖L2 , the gradient operator is applied to (3.1)3, producing

‖∇3b‖2L2 . ‖∇bt‖
2
L2 + ‖∇v · ∇b‖2L2 + ‖v · ∇2b‖2L2 + ‖∇w′(b)‖2L2 . (5.25)

The righthand side terms admit the following bounds:

‖∇v · ∇b‖2L2 . ‖∇v‖2L6∇b‖2L3 . ‖∇
2v‖2L2‖∇b‖L2‖∇2b‖L2 ,

‖v · ∇2b‖2L2 . ‖∇v‖2L2‖∇
2b‖L2‖∇3b‖L2 ≤

1
2
‖∇3b‖2L2 + ‖∇v‖4L2‖∇

2b‖2L2 ,

‖∇w′(b)‖2L2 . ‖w′′(b)∇b‖2L2 . ‖∇b‖2L2 .

Combining these estimates gives

‖∇3b‖2L2 . ‖∇bt‖
2
L2 + ‖∇v‖4L2‖∇

2b‖2L2 + ‖∇2v‖2L2‖∇b‖L2‖∇2b‖L2 + ‖∇b‖2L2 .

Multiplying by em−1
0 t and integrating over (t2, t), using (5.2), (5.23), and (5.24), we get∫ t

t2
em−1

0 τ‖∇3b‖2L2dτ ≤ C. (5.26)

Step 2: Decay rate of ‖v‖L2 . Following [2], we decompose R3 into two time-dependent regions:

A1(t) , {ζ | |ζ | ≤
√
%sh(t)}, Ac

1(t) , R3\A1(t),
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where h(t) ≤ C(1 + t)−
1
2 and

%s , sup
x∈R3, t∈R+

%(x, t) = sup
x∈R3

%0(x).

Using Fourier transform properties, we split ‖∇v‖L2 into low and high-frequency components:

‖∇v(t)‖2L2 =

∫
A1(t)
|ζ |2|v̂(ζ, t)|2dζ +

∫
Ac

1(t)
|ζ |2|v̂(ζ, t)|2dζ. (5.27)

Thus, (4.2) becomes

d
dt
‖
√
%v(t)‖2L2 + 2h2(t)‖

√
%v(t)‖2L2 ≤ 2%sh2

∫
A1(t)
|v̂(ζ, t)|2dζ + 2‖v‖

1
2
L2‖∇v‖

1
2
L2‖∇

2b‖2L2 . (5.28)

For the second righthand term, using (5.2) and (5.24) gives, for all t > t2,

‖v‖
1
2
L2‖∇v‖

1
2
L2‖∇

2b‖2L2(t) ≤ Ce−m−1
0 t.

Next, we analyze the first righthand term in (5.28) (the low-frequency component of v(x, t)). Let
P denote the Leray projection operator; applying heat kernel theory to (3.2)1 and using t2 from
Proposition 5.1, we express v(x, t) as

v(x, t) = e(t−t2)∆v(x, t2) +

∫ t

t2
e(t−τ)∆P

[
∇ · (−v ⊗ v) + a(∆v − ∇P) + (1 + a)∇b∆b

]
dτ. (5.29)

Fourier transforming in x yields

|v̂(ζ, t)| ≤e−(t−t2)|ζ |2 |v̂(ζ, t2)| +
∫ t

t2
e−(t−τ)|ζ |2

(
|ζ ||F (v ⊗ v)|

+ |F
(
a(∆v − ∇P)

)
| + |F (∇b∆b)| + |F (a∇b∆b)|

)
dτ. (5.30)

Integrating over A1(t) gives∫
A1(t)
|v̂(ζ, t)|2dζ ≤

∫
A1(t)

e−2(t−t2)|ζ |2 |v̂(ζ, t2)|2dζ

+ Ch5
( ∫ t

t2
‖F (v ⊗ v)‖L∞ζ dτ

)2
+ Ch3

( ∫ t

t2
‖F (a(∆v − ∇P))‖L∞ζ dτ

)2

+ Ch3
( ∫ t

t2
‖F (∇b∆b)‖L∞ζ dτ

)2
+ Ch3

( ∫ t

t2
‖F (a∇b∆b)‖L∞ζ dτ

)2
.

(5.31)

For the first term of (5.31), introduce p and p′, with 1
p + 1

q = 1 and 1
p′ ,

4
3δ(q) = 2

q − 1. By
Proposition 5.2, v(t2) ∈ Lq(R3) for q ∈ (1, 6

5 ), combined with the Hausdorff-Young inequality, we obtain∫
A1(t)

e−2(t−t2)|ζ |2 |v̂(ζ, t2)|2dζ .
∫

A1(t)
e−2p′(t−t2)|ζ |2dζ)

1
p′ ‖v̂(t2, ζ)‖2Lp . (1 + t)−

3
2p′ ‖v(t2)‖2Lq . (5.32)
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For the remaining terms, from (5.2) and (5.16),

h5
( ∫ t

t2
‖F (v ⊗ v)‖L∞ζ dτ

)2
. h5

( ∫ t

t2
‖v(τ)‖2L2dτ

)2
. (t − t2)−

1
2 ,

h3
( ∫ t

t2
‖F

(
a(∆v − ∇P)

)
‖L∞ζ dτ

)2 . h3
[ ∫ t

t2
‖a‖L2‖(∆v,∇P)‖L2dτ

]2
. (t − t2)−

1
2 ,

h3
( ∫ t

t2
‖F (a∇b∆b)‖L∞ζ dτ

)2
. h3

( ∫ t

t2
‖a‖L2‖∇b‖

1
2
L2‖∇

2b‖
1
2
L2‖∇

3b‖L2dτ
)2

. h3
( ∫ t

t2
‖∇b‖L2‖∇2b‖L2dτ

)( ∫ t

t2
‖∇3b‖2L2dτ

)
. h3

∫ t

t2
e−

3
2 m−1

0 τdτ . (1 + t)−
3
2 ,

h3(
∫ t

t2
‖F (∇b∆b)‖L∞ζ dτ)2 . (1 + t)−

3
2 .

Substituting these into (5.31) and using 1 < q < 6
5 (implying 1 < 2δ(q) < 3

2 ) gives, for all t > t2,∫
A1(t)
|v̂(ζ, t)|2dζ . (1 + t)−2δ(q) + (1 + t)−

1
2 . (1 + t)−

1
2 . (5.33)

Thus, (5.28) simplifies to

d
dt
‖
√
%v(t)‖2L2 + h2(t)‖

√
%v(t)‖2L2 . (1 + t)−

3
2 + e−m−1

0 t . (1 + t)−
3
2 .

Integrating over time yields

e
∫ t

t2
h2(τ)dτ

‖
√
%v(t)‖2L2 . ‖

√
%v(t2)‖2L2 +

∫ t

t2
e
∫ τ

t2
h2(t′)dt′(1 + τ)−

3
2 dτ.

Due to h(t) ,
√
θ(1 + t)−

1
2 with θ > 1

2 , substituting it into the above gives

‖
√
%v(t)‖2L2(1 + t)θ . 1 +

∫ t

t2
(1 + τ)θ−

3
2 dτ . 1 + (1 + t)θ−

1
2 .

Hence, taking θ = 2, for example,

‖v(t)‖L2 ≤ C(1 + t)−
1
4 . (5.34)

Step 3: Decay rate of ‖∇v‖L2 . First, adding energy inequalities (5.5) and (5.6) and applying (5.13)
gives

d
dt
‖∇v‖2L2 + m3‖

√
%vt‖

2
L2 + m4‖∇

2v‖2L2 . ‖∇b‖L2‖∇2b‖L2‖∇3b‖2L2 . e−
3
2 m−1

0 t‖∇3b‖2L2 . (5.35)

Using the same method as above, split the phase space into two time-dependent regions:

A2(t) , {ζ
∣∣∣|ζ | ≤ √

1
m4

h(t)}, Ac
2(t) , R3\A2(t),
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where h(t) ≤ C(1 + t)−
1
2 (explicit form specified later). Decompose ‖∇2v‖2L2 as:

‖∇2v‖2L2 =

∫
A2(t)
|ζ |4|v̂(ζ, t)|2dζ +

∫
Ac

2(t)
|ζ |2|∇̂v(ζ, t)|2dζ. (5.36)

Substituting into (5.35) gives:

d
dt
‖∇v(t)‖2L2 + h2(t)‖∇v‖2L2 + m3‖

√
%vt‖

2
L2 . h4

∫
A2(t)
|v̂|2dζ + e−

3
2 m−1

0 t‖∇3b‖2L2 . (5.37)

Integrating over (t2, t) and using (5.34) yields

e
∫ t

t2
h2(τ)dτ

‖∇v(t)‖2L2 + m3

∫ t

t2
e
∫ τ

t2
h2(t′)dt′

‖
√
%vτ‖2L2dτ . ‖∇v(t2)‖2L2 +

∫ t

t2
e
∫ τ

t2
h2(t′)dt′[(1 + τ)−

5
2 + e−

3
2 m−1

0 τ‖∇3b‖2L2

]
dτ.

Let h(t) ,
√
θ(1 + t)−

1
2 with θ > 3

2 . By (5.26),

‖∇v‖2L2(1 + t)θ + m3

∫ t

t2
(1 + τ)θ‖

√
%vτ‖2L2dτ . 1 +

∫ t

t2
(1 + τ)θ−

5
2 dτ . (1 + t)θ−

3
2 .

This gives the rough decay estimate

‖∇v(t)‖L2 ≤ C(1 + t)−
3
4 , (5.38)

and for all 0 ≤ l ≤ 3
2 : ∫ t

t2
(1 + τ)l‖

√
%vτ‖2L2dτ ≤ C. (5.39)

Step 4: Improved decay rate for ‖v‖L2 and ‖∇v‖L2 . To improve the decay rate of ‖v‖L2 , we refine the
estimate for (5.31) by sharpening the bounds on its second and third righthand terms. Utilizing (5.34),
we get ∫ t

t2
‖F (v ⊗ v)‖L∞ζ dτ .

∫ t

t2
‖v(τ)‖2L2dτ .

∫ t

t2
(1 + τ)−

1
2 dτ . (1 + t)

1
2 . (5.40)

Meanwhile, it is straightforward that∫ t

t2
‖F (a(∆v − ∇P))‖L∞ζ dτ .

∫ t

t2
‖∆v − ∇P‖L2dτ‖a‖L∞(L2

ζ )

.

∫ t

t2
‖
√
%vτ‖L2dτ +

∫ t

t2
‖%v · ∇v(τ)‖L2dτ +

∫ t

t2
‖∇b∆b‖L2dτ.

(5.41)

For the first righthand term in the above inequality, using (5.39) yields( ∫ t

t2
‖
√
%vτ‖L2dτ

)2
=

( ∫ t

t2
(1 + τ)−

5
8 (1 + τ)

5
8 ‖
√
%vτ‖L2dτ

)2
.

∫ t

t2
(1 + τ)−

5
4 dτ

∫ t

t2
(1 + τ)

5
4 ‖
√
%vτ‖2L2dτ ≤ C.

Using the previously derived decay estimates, the remaining terms in (5.41) are bounded as follows,( ∫ t

t2
‖%v · ∇v(τ)‖L2dτ

)2
.

( ∫ t

t2
‖∇v‖

3
2
L2‖∇

2v‖
1
2
L2dτ

)2
.

( ∫ t

t2
(1 + τ)−

9
8 ‖∇2v‖

1
2
L2dτ

)2

. (1 + t)−
3
4 ‖∇2v‖L2(t2,t;L2) ≤ C,
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t2
‖∇b∆b‖L2dτ

)2
.

( ∫ t

t2
‖∇2b‖

3
2
L2‖∇

3b‖
1
2
L2dτ

)2
. ‖∇2b‖3L2(t2,t;L2)‖∇

3b‖L2(t2,t;L2) ≤ C.

Thus, (5.41) is uniformly bounded:∫ t

t2
‖F

(
a(∆v − ∇P)

)
‖L∞ζ dτ ≤ C. (5.42)

Substituting (5.32), (5.40)–(5.42) into (5.31) gives∫
A2(t)
|v̂(ζ, t)|2dζ . (1 + t)−2δ(q) + (1 + t)−

3
2 . (1 + t)−2δ(q). (5.43)

Substituting this result into (5.28) yields

d
dt
‖
√
%v(t)‖2L2 + 2h2(t)‖

√
%v(t)‖2L2 . (1 + t)−1−2δ(q) + e−m−1

0 t . (1 + t)−1−2δ(q).

Multiplying both sides by e
∫ t

t2
2h2(τ)dτ leads to

d
dt

(
e
∫ t

t2
2h2(τ)dτ

‖
√
%v(t)‖2L2

)
. e

∫ t
t2

2h2(τ)dτ(1 + t)−1−2δ(q).

Let h(t) ,
√
θ(1 + t)−

1
2 with θ > 2δ(q). Integrating over (t2, t) gives the key energy estimate

‖
√
%v(t)‖2L2(1 + t)θ . ‖

√
%v(t2)‖2L2 + (1 + t)θ−2δ(q), (5.44)

from which the decay rate follows:

‖v(t)‖L2 ≤ C(1 + t)−δ(q). (5.45)

On the other hand, substituting (5.43) into (5.37) gives

d
dt
‖∇v‖2L2 + h2(t)‖∇v‖2L2 + m3‖

√
%vt‖

2
L2 . (1 + t)−2δ(q)−2 + e−

3
2 m−1

0 t‖∇3b‖2L2 .

Multiplying by e
∫ t

t2
h2(τ)dτ and integrating over time yields

e
∫ t

t2
h2(τ)dτ

‖∇v(t)‖2L2 + m3

∫ t

t2
e
∫ τ

t2
h2(t′)dt′

‖
√
%vτ‖2L2dτ

.‖∇v(t2)‖2L2 +

∫ t

t2
e
∫ τ

t2
h2(τ)dτ[(1 + τ)−2δ(q)−2 + e−

3
2 m−1

0 τ‖∇3b‖2L2

]
dτ.

Taking h(t) ,
√
θ(1 + t)−

1
2 with θ > 1 + 2δ(q) gives

‖∇v‖2L2(1 + t)θ + m3

∫ t

t2
(1 + τ)θ‖

√
%vτ‖2L2dτ .1 +

∫ t

t2
(1 + τ)θ−2−2δ(q)dτ . (1 + t)θ−1−2δ(q),
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leading to

‖∇v‖L2 ≤ C(1 + t)−
1+2δ(q)

2 . (5.46)

Moreover, with the choice 0 ≤ θ < 1 + 2δ(q), one obtains∫ t

t2
(1 + τ)θ‖

√
%vτ‖2L2dτ ≤ C,

which implies that for any 0 ≤ l ≤ 1 + 2δ(q),∫ t

t2
(1 + τ)l‖

√
%vτ‖2L2dτ ≤ C. (5.47)

On the other hand, for any 0 ≤ l < 1 + 2δ(q), there holds∫ t

t2
(1 + τ)l(‖∆v‖2L2 + ‖∇P‖2L2

)
dτ .

∫ t

t2
(1 + τ)l

(
‖
√
%vτ‖2L2 + ‖%v · ∇v‖2L2 + ‖∇b∆b‖2L2

)
dτ.

A direct application of (5.47) bounds the first righthand term; while the improved decay rates of ‖v‖L2

and ‖∇v‖L2 provide estimates for the other terms:∫ t

t2
(1 + τ)l‖%v · ∇v‖2L2dτ .

∫ t

t2
(1 + τ)l‖∇v‖3L2‖∇

2v‖L2dτ .
∫ t

t2
(1 + τ)−

1+2δ
2 ‖∇2v‖L2dτ

.
[ ∫ t

t2
(1 + τ)−(1+2δ(q))dτ

] 1
2
‖∇2v‖L2(t2,t;L2) ≤ C;∫ t

t2
(1 + τ)l‖‖∇b∆b‖2L2‖

2
L2dτ .

∫ t

t2
(1 + τ)l‖∇b‖L2‖∇2b‖L2‖∇3b‖2L2dτ

.

∫ t

t2
(1 + τ)1+2δ(q)e−

3
2 m1τ‖∇3b‖2L2dτ . ‖∇3b‖2L2(t2,t;L2) ≤ C.

Substitution of these estimates into the above inequality yields the final result∫ t

t2
(1 + τ)l(‖∆v‖2L2 + ‖∇P‖2L2

)
dτ ≤ C. (5.48)

�

Remark 5.1. By (5.48), using the same method as in [1], for any l ∈ (1 + 2δ, 2 + 6δ), we have∫ ∞

0
(1 + τ)l(‖∆v‖2L2 + ‖∇P‖2L2

)
dτ . (1 + t)l−1−2δ. (5.49)

Proposition 5.4. Under the conditions of Theorem 3.2, for any 2
3 ≤ α ≤ 2,∫ ∞

0

(
‖∆v‖αL2 + ‖∇P‖αL2 + ‖∇3b‖αL2

)
dt ≤ C. (5.50)
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Proof. Step 1: Estimates for ‖vt‖L2 , ‖∇vt‖L2 , ‖∇bt‖L2 , ‖∇2bt‖L2 , ‖∇2v‖L2 , and ‖∇3b‖L2 . First, we estimate
‖vt‖L2 and ‖∇vt‖L2 . Differentiating (3.1)1 with respect to t and taking the L2 inner product with vt gives

d
dt
‖
√
%vt‖

2
L2 + 2‖∇vt‖

2
L2 = −

∫
R3
%t|vt|

2dx − 2
∫
R3
%tv · ∇v · vtdx − 2

∫
R3
%|vt|

2∇vdx

− 2
∫
R3
%v · vt · ∇vtdx − 2

∫
R3
∇bt∆b · vtdx − 2

∫
R3
∇b∆bt · vtdx

,
6∑

j=1

I j.

(5.51)

Using the continuity equation %t = −div(%v) and integration by parts, the second term I2 is rewritten as

I2 = −2
∫
R3
%v · ∇(v · ∇v · vt)dx = −2

∫
R3

(%v|∇v|2 · vt + %|v|2∇2v · vt + %|v|2∇v∇ · vt)dx.

The Gagliardo–Nirenberg inequality then yields the estimate for I2:

|I2| .‖v‖L∞‖∇v‖L3‖∇v‖L2‖vt‖L6 + ‖v‖2L6‖∇
2v‖L2‖vt‖L6 + ‖v‖2L6‖∇v‖L6‖∇vt‖L2 ≤

1
6
‖∇vt‖

2
L2 + C‖∇2v‖2L2‖∇v‖4L2 .

Similarly, the remaining terms are bounded as

|I1| .

∫
R3

∣∣∣%v · ∇|vt|
2
∣∣∣dx . ‖v‖L6‖vt‖L3‖∇vt‖L2

.‖∇v‖L2‖
√
%vt‖

1
2
L2‖∇vt‖

3
2
L2 ≤

1
6
‖∇vt‖

2
L2 + C‖

√
%vt‖

2
L2‖∇v‖4L2 ,

|I3| + |I4| .

∫
R3
%|vt|

2|∇v|dx +

∫
R3
|%v · vt · ∇vt|dx

.‖vt‖L3‖vt‖L6‖∇v‖L2 + ‖v‖L6‖vt‖L3‖∇vt‖L2 ≤
1
3
‖∇vt‖

2
L2 + C‖

√
%vt‖

2
L2‖∇v‖4L2 ,

and

|I5| + |I6| .‖∇bt‖L6‖∆b‖L3‖vt‖L2 + ‖∇b‖L6‖∆bt‖L2‖vt‖L3

≤
1
2
‖∇2bt‖

2
L2 +

1
6
‖∇vt‖

2
L2 + C‖

√
%vt‖

2
L2‖∇

2b‖2L2 + C‖
√
%vt‖

2
L2‖∇

3b‖2L2 + C‖
√
%vt‖

2
L2‖∇

2b‖4L2 .

Substituting the bounds for I1 to I6 into the original equation yields

d
dt
‖
√
%vt‖

2
L2 +

7
6
‖∇vt‖

2
L2 ≤

1
2
‖∇2bt‖

2
L2 + C‖∇v‖4L2‖∇

2v‖2L2

+ C‖
√
%vt‖

2
L2(‖∇v‖4L2 + ‖∇2b‖2L2 + ‖∇3b‖2L2 + ‖∇2b‖4L2).

(5.52)

On the other hand, differentiating (3.1)3 with respect to time t, taking the L2 inner product with −∆bt,
and using |w′′′(b)| ≤ m1, we obtain

d
dt
‖∇bt‖

2
L2 + 2‖∇2bt‖

2
L2 + 2m−1

0 ‖∇bt‖
2
L2 .

∫
R3
|vt · ∇b · ∆bt + (v · ∇)bt · ∆bt + w′′′(b)bt∇b · ∇bt|dx.
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Estimates for the righthand side terms proceed as

|

∫
R3

vt · ∇b · ∆btdx| . ‖vt‖L3‖∇b‖L6‖∇2bt‖L2 ≤
1
6
‖∇2bt‖

2
L2 +

1
6
‖∇vt‖

2
L2 + ‖∇2b‖4L2‖

√
%vt‖

2
L2 ,

|

∫
R3

(v · ∇)bt · ∆btdx| . ‖v‖L6‖∇bt‖L3‖∇2bt‖L2 ≤
1
6
‖∇2bt‖

2
L2 + ‖∇v‖4L2‖∇bt‖

2
L2 ,

|

∫
R3

w′′′(b)bt∇b · ∇btdx| . ‖bt‖L∞‖∇b‖L2‖∇bt‖L2 ≤
1
6
‖∇2bt‖

2
L2 + ‖∇b‖

4
3

L2‖∇bt‖
2
L2 ,

which leads to

d
dt
‖∇bt‖

2
L2 +

3
2
‖∇2bt‖

2
L2 + 2m−1

0 ‖∇bt‖
2
L2 (5.53)

≤
1
6
‖∇vt‖

2
L2 + C(‖∇2b‖4L2‖

√
%vt‖

2
L2 + ‖∇v‖4L2‖∇bt‖

2
L2 + ‖∇b‖

4
3

L2‖∇bt‖
2
L2).

Summing these two inequalities gives

d
dt
‖(
√
%vt,∇bt)‖2L2 + ‖(∇vt,∇

2bt)‖2L2 . ‖(
√
%vt,∇bt)‖2L2

(
‖(∇v,∇2b)‖4L2

+ ‖∇2b‖2L2 + ‖∇3b‖2L2 + ‖∇b‖
4
3

L2

)
+ ‖∇v‖4L2‖∇

2v‖2L2 . (5.54)

Using (5.2), (5.23), and combined with some routine calculations, we find

sup
t≥t2
‖(
√
%vt,∇bt)‖2L2 +

∫ t

t2
‖(∇vτ,∇2bτ)‖2L2dτ .

(
‖(
√
%vt,∇bt)(t2)‖2L2

+

∫ t

t2
‖∇v‖4L2‖∇

2v‖2L2dτ
)

exp
{ ∫ t

t2

(
‖(∇v,∇2b)‖4L2 + ‖(∇2b,∇3b)‖2L2 + ‖∇b‖

4
3

L2

)
dτ

}
≤ C.

Thus, it holds that

√
%vt ∈ L∞(t2, t; L2), ∇bt ∈ L∞(t2, t; L2),
∇vt ∈ L2(t2, t; L2), ∇2bt ∈ L2(t2, t; L2). (5.55)

Finally, using these estimates, we analyze the regularity of ∇2v, ∇P, and ∇3b. An application of elliptic
regularity to (3.1)2, with the condition div v = 0, yields

‖∇2v‖L2 + ‖∇P‖L2 . ‖
√
%vt‖L2 + ‖%v · ∇v‖L2 + ‖∇b∆b‖L2

. ‖
√
%vt‖L2 + ‖%v‖L6‖∇v‖L3 + ‖∇b‖L6‖∇2b‖L3

≤
1
4

(‖∇3b‖L2 + ‖∇2v‖L2) + C
(
‖
√
%vt‖L2 + ‖∇v‖3L2 + ‖∇2b‖3L2

)
.

For the elastic variable b, applying the gradient operator ∇ to (3.1)3, gives

‖∇3b‖L2 . ‖∇bt‖L2 + ‖∇v∇b‖L2 + ‖v · ∇2b‖L2 + ‖∇w′(b)‖L2

. ‖∇bt‖L2 + ‖∇v‖L2‖∇2b‖
1
2
L2‖∇

3b‖
1
2
L2 + ‖∇v‖

1
2
L2‖∇

2v‖
1
2
L2‖∇

2b‖L2 + C‖∇b‖L2
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≤
1
4
‖(∇3b,∇2v)‖L2 + C(‖∇bt‖L2 + ‖∇v‖2L2‖∇

2b‖L2) + C(‖∇v‖L2‖∇2b‖2L2 + ‖∇b‖L2).

Summing these and using (5.2) and (5.55), we obtain

sup
t≥t2

{
‖∇2v(t)‖L2 + ‖∇P(t)‖L2 + ‖∇3b(t)‖L2

}
≤ C. (5.56)

Step 2: Estimates for ‖∆v‖
L

2
3 (t2,t;L2)

, ‖∇P‖
L

2
3 (t2,t;L2)

, and ‖∇3b‖
L

2
3 (t2,t;L2)

. Setting l = 3
2 + δ(q) in (5.48)

yields ∫ t

t2

(
‖∆v(τ)‖

2
3

L2 + ‖∇P(τ)‖
2
3

L2

)
dτ

.

∫ t

t2
(1 + τ)−

(
1
2 + 1

3 δ(q)
)
(1 + τ)

1
2 + 1

3 δ(q)(‖∆v(τ)‖
2
3

L2 + ‖∇P(τ)‖
2
3

L2

)
dτ

.
[ ∫ t

t2
(1 + τ)−( 3

4 + 1
2 δ(q))dτ

] 2
3
[ ∫ t

t2
(1 + τ)

3
2 +δ(q)(‖∆v(τ)‖2L2 + ‖∇P(τ)‖2L2)dτ

] 1
3 ≤ C,

(5.57)

where 1
2 < δ < 3

4 ensures 3
2 + δ(q) < 1 + 2δ(q) and 3

4 + 1
2δ(q) > 1 (guaranteeing integral convergence).

A direct consequence of (5.26) is∫ t

t2
‖∇3b‖

2
3

L2dτ ≤
∫ t

t2
e−

1
3 m−1

0 τe
1
3 m−1

0 τ‖∇3b‖
2
3

L2dτ

.
( ∫ t

t2
e−

1
2 m−1

0 τdτ
) 2

3
( ∫ t

t2
em−1

0 τ‖∇3b‖2L2dτ
) 1

3 ≤ C.
(5.58)

The combination of (5.2) and (5.16) gives∫ t

t2

(
‖∆v‖2L2 + ‖∇P‖2L2 + ‖∇3b‖2L2

)
(τ)dτ ≤ C. (5.59)

Interpolating (5.57)–(5.59) directly yields (5.50), proving Proposition 5.4. �

Proposition 5.5. Under the conditions of Theorem 3.2, there holds∫ ∞

t2
‖(b,∇b,∇2b)(τ)‖L∞ + ‖∇b(τ)‖2L∞ + ‖(v,∇v)(τ)‖L∞dτ ≤ C. (5.60)

Proof. The previous decay estimates, combined with (5.2) and (5.50), implies these bounds:∫ t

t2
‖b(τ)‖L∞dτ .

∫ t

t2
‖∇b(τ)‖

1
2
L2‖∇

2b(τ)‖
1
2
L2dτ .

∫ ∞

t2
e−

1
2 m−1

0 τe−
1
4 m−1

0 τdτ ≤ C;∫ t

t2
‖∇b(τ)‖L∞dτ .

∫ t

t2
‖∇2b(τ)‖

1
2
L2‖∇

3b‖
1
2
L2dτ .

( ∫ t

t2
‖∇2b‖L2dτ

) 1
2 ‖∇3b‖

1
2
L1(t2,t;L2) .

∫ t

t2
e−

1
2 m−1

0 τdτ)
1
2 ≤ C;∫ t

t2
‖∇b(τ)‖2L∞dτ .

∫ t

t2
‖∇2b(τ)‖L2‖∇3b(τ)‖L2dτ .

∫ t

t2
e−

1
2 m−1

0 τ‖∇3b‖L2dτ ≤ C.

Similar to the proof process for b, we obtain the estimate for v as follows:∫ t

t2
‖v(τ)‖L∞dτ +

∫ t

t2
‖v(τ)‖2L∞dτ ≤ C. (5.61)
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Next, we estimate
∫ t

t2
‖∇2b(τ)‖L∞dτ. It follows from (5.7) that∫ t

t2
‖∇3b‖2L6dτ ≤

∫ t

t2

(
‖∇bτ‖2L6 + ‖∇v · ∇b‖2L6 + ‖v · ∇2b‖2L6 + ‖w′′(b)∇b‖2L6

)
dτ. (5.62)

Thanks to (5.55), the first righthand term satisfies∫ t

t2
‖∇bτ‖2L6dτ ≤

∫ t

t2
‖∇2bτ‖2L2dτ ≤ C.

Applying the Gagliardo-Nirenberg inequality, (5.24), and (5.56) to the second term gives∫ t

t2
‖∇v · ∇b‖2L6dτ .

∫ t

t2
(‖∇v · ∇2b‖2L2 + ‖∇2v · ∇b‖2L2)dτ

.

∫ t

t2

(
‖∇v‖2L6‖∇

2b‖2L3 + ‖∇2v‖2L2‖∇b‖2L∞
)
dτ

.

∫ t

t2
‖∇2v‖2L2‖∇

2b‖L2‖∇3b‖L2dτ ≤ C.

Likewise, the remaining terms are estimated as follows:∫ t

t2
‖v · ∇2b‖2L6dτ .

∫ t

t2
‖∇v‖2L6‖∇

2b‖2L3 + ‖v‖L∞‖∇3b‖2L2dτ

.

∫ t

t2
(‖∇2v‖2L2‖∇

2b‖L2‖∇3b‖L2 + ‖∇v‖L2‖∇2v‖L2‖∇3b‖2L2)dτ ≤ C,∫ t

t2
‖w′′(b)∇b‖2L6dτ .

∫ t

t2
(‖w′′(b)∇2b‖2L2 + ‖w′′′(b)∇b · ∇b‖2L2)dτ

.

∫ t

t2
(‖∇2b‖2L2 + ‖∇b‖L2‖∇2b‖3L2)dτ ≤ C,

where the boundedness of w′′(b) and w′′′(b) is used. As a consequence, we deduce

‖∇3b‖L2(t2,t;L6) ≤ C, (5.63)

which combined with (5.58) yields∫ t

t2
‖∇2b(τ)‖L∞dτ .

∫ t

t2
‖∇3b‖

1
2
L2‖∇

3b‖
1
2

L6dτ . ‖∇
3b‖

1
2

L
2
3 (t2,t;L2)

‖∇3b‖
1
2

L2(t2,t;L6)
≤ C. (5.64)

To estimate
∫ t

t2
‖∇v(τ)‖L∞dτ, the momentum Eq (3.1)2 takes the form

−∆v + ∇P = −%vt − %v · ∇v − ∇b∆b.

By the divergence-free condition, we have

∇P = ∇(−∆)−1div
(
%vt + %v · ∇v + ∇b∆b

)
, (5.65)
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which implies that∫ t

t2

(
‖∆v‖2L6 + ‖∇P‖2L6

)
dτ .

∫ t

t2

(
‖%vτ‖2L6 + ‖%v · ∇v‖2L6 + ‖∇b∆b‖2L6

)
dτ.

It follows from (5.55) that ∫ t

t2
‖%vτ‖2L6dτ ≤ C

∫ t

t2
‖∇vτ‖2L2dτ ≤ C.

Moreover, the Gagliardo-Nirenberg inequality and (5.56) show that∫ t

t2
‖%v · ∇v‖2L6dτ .

∫ t

t2
(‖∇v · ∇v‖2L2 + ‖v · ∇2v‖2L2)dτ

.

∫ t

t2
(‖∇v‖2L6‖∇v‖2L3 + ‖v‖2L∞‖∇

2v‖2L2)dτ

.

∫ t

t2
‖∇v‖L2‖∇2v‖3L2dτ ≤ C,

A similar argument gives ∫ t

t2
‖∇b∆b‖2L6dτ ≤ C.

Therefore, we arrive at ∫ t

t2

(
‖∆v‖2L6 + ‖∇P‖2L6

)
dτ ≤ C. (5.66)

which together with (5.50) implies that∫ t

t2
‖∇v(τ)‖L∞dτ . ‖∇2v‖

1
2

L
2
3 (t2,t;L2)

‖∇2v‖
1
2

L2(t2,t;L6)
≤ C. (5.67)

This completes the proof of Theorem 3.2. �

These decay estimates not only reveal the dynamic evolution rate of system perturbations but also
provide a crucial quantitative tool for rigorously proving the asymptotic stability of the equilibrium
state. Indeed, the decay of ṽ and ∇b̃ in the L2-norm directly ensures the integrability and convergence
to zero of the energy functional. Based on this, we will complete the stability proof in the next section.

6. Proof of Theorem 3.3

This section investigates the global stability of system (3.2) under small initial perturbations.
Specifically, we prove that for slightly perturbed initial data (ã0, ṽ0, b̃0), the system admits a unique
global smooth solution that remains close to the reference solution. For clarity, the section is divided
into two parts:

• We first rigorously derive global-in-time estimates for the reference solution, ensuring its
regularity and boundedness.
• Using the above results, we prove the regularity of the perturbed components (ã, ṽ, b̃) and establish

global existence via a bootstrap argument. Notably, the L2 decay rates of ṽ and ∇b̃ are required,
so we also analyze their decay behaviors to complete the stability proof.
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6.1. The global-in-time estimate for reference solutions

This part is devoted to establishing global-in-time estimates for the reference solutions of
system (3.2), analogous to inequality (4.16).

Proposition 6.1. Under the assumptions of Theorem 3.3, we have

‖v‖
L̃∞(R+;Ḃ

1
2
2,1)

+ ‖b‖
L̃∞(R+;Ḃ

5
2
2,1)

+ ‖v‖
L1(R+;Ḃ

5
2
2,1)

+ ‖∇P‖
L1(R+;Ḃ

1
2
2,1)

+ ‖b‖
L1(R+;Ḃ

9
2
2,1)
≤ C, (6.1)

‖a‖
L̃∞(R+;Ḃ

5
2
2,1)
≤ C. (6.2)

Proof. Applying the gradient operator ∇ to (3.2), then taking the L2 inner product with ∇a, and using
div v = 0, we derive

d
dt
‖∇a‖2L2 .

∫
R3
|∇v||∇a|2dx . ‖∇v‖L∞‖∇a‖2L2 ,

for any t < ∞, where integrating over (0, t) and using (5.67) yields

‖∇a(t)‖L2 . ‖∇a0‖L2 exp{
∫ t

0
‖∇v‖L∞dτ} . ‖∇a0‖L2 . (6.3)

Next, applying the Laplace operator ∆ to (3.2)1 and taking the L2 inner product with ∇2a, we obtain

d
dt
‖∇2a‖2L2 .

∫
R3

(
|∇2v · ∇a∇2a| + |∇v| · |∇2a|2

)
dx

. ‖∇2v‖L3‖∇a‖L6‖∇2a‖L2 + ‖∇v‖L∞‖∇2a‖2L2 .

Integrating this over time and employing (5.57) and (5.66) then gives

‖∇2a(t)‖L2 . ‖∇2a0‖L2 exp
{ ∫ t

0
(‖∇2v‖L3 + ‖∇v‖L∞)dτ

}
. ‖∇2a0‖L2 exp{(‖∇2v‖

L
2
3
t (L2)

+ ‖∇2v‖L2
t (L6))

}
. ‖∇2a0‖L2 .

(6.4)

We now analyze the equation for v in system (3.2). Using Remark 2.3 and the interpolation inequalities:

‖v‖L1
t (Ḃ2

2,1) ≤ ‖v‖
1
3

L1
t (H1)
‖v‖

2
3

L1
t (Ḃ

5
2
2,1)
,

combined with estimates (3.7), (3.8), (5.50), and (6.4), we derive

‖v‖
L̃∞t (Ḃ

1
2
2,1)

+ ‖v‖
L1

t (Ḃ
5
2
2,1)

+ ‖∇P‖
L1

t (Ḃ
1
2
2,1)

.e
∫ t

0 ‖∇v‖L∞dτ
[
‖v0‖

Ḃ
1
2
2,1

+ ‖∇b‖
L∞t (Ḃ

1
2
2,1)
‖∆b‖L1

t (L∞) + ‖a‖L∞t (H2)‖∇b‖L∞t (L2)‖∆b‖L1
t (L∞)

+ ‖a‖L∞t (H2)
(
‖∇P‖L1

t (L2) + ‖v‖L1
t (Ḃ2

2,1)
)]

.1 + ‖v‖
1
3

L1
t (H1)
‖v‖

2
3

L1
t (Ḃ

5
2
2,1)
≤

1
2
‖v‖

L1
t (Ḃ

5
2
2,1)

+ C,
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yielding

‖v‖
L̃∞t (Ḃ

1
2
2,1)

+ ‖v‖
L1

t (Ḃ
5
2
2,1)

+ ‖∇P‖
L1

t (Ḃ
1
2
2,1)
≤ C. (6.5)

From this result, we improve the regularity of a by applying Lemma 2.7 to its equation

‖a‖
L̃∞t (Ḃ

5
2
2,1)
≤ ‖a0‖

Ḃ
5
2
2,1

exp{C‖v‖
L1

t (Ḃ
5
2
2,1)
} ≤ C. (6.6)

For the b equation in (3.2), (6.5) and Corollary 2.1 imply that

‖b‖
L̃∞t (Ḃ

5
2
2,1)

+ ‖b‖
L1

t (Ḃ
9
2
2,1)
≤ C exp{C‖v‖

L1
t (Ḃ

5
2
2,1)
}(‖b0‖

Ḃ
5
2
2,1

+ ‖w′(b)‖
L1

t (Ḃ
5
2
2,1)

).

The last term is bounded by applying Lemma 2.3 to ‖w′(b)‖
L1

t (Ḃ
5
2
2,1)

. Using interpolation inequalities and

the decay rates of ‖∇b‖L2 , ‖∇2b‖L2 , we obtain

‖w′(b)‖
L1

t (Ḃ
5
2
2,1)
.(1 + ‖b‖L∞t (L∞))3‖b‖

L1
t (Ḃ

5
2
2,1)
. (1 + ‖∇b‖

3
2
L∞t (L2)‖∇

2b‖
3
2
L∞t (L2))‖b‖

1
2

L1
t (Ḣ2)
‖b‖

1
2

L1
t (Ḣ3)
≤ C.

Thus, the desired estimate is established that

‖b‖
L̃∞t (Ḃ

5
2
2,1)

+ ‖b‖
L1

t (Ḃ
9
2
2,1)
≤ C. (6.7)

�

Proposition 6.2. Under the assumptions of Theorem 3.3, the following holds:

‖v‖L∞(0,∞;Lq) + ‖v‖
L̃∞(0,∞;Ḃ

3
2
2,1)

+ ‖v‖
L1(0,∞;Ḃ

7
2
2,1)

+ ‖∇P‖
L1(0,∞;Ḃ

3
2
2,1)
≤ C. (6.8)

Proof. The Lq-estimate for v is first established. Combining inequalities (5.17)–(5.21) and using the
decay rates in (3.7), we derive

‖v‖L̃∞t (Lq) . ‖v0‖Lq +

∫ t

0
(‖v‖H1‖∇v‖L2 + ‖a‖H1‖∇P − ∆v‖L2 + ‖∇b‖H1‖∇2b‖L2

+ ‖a‖2H1‖∇b‖L2‖∇2b‖L2)dτ + 1

.
[
‖v‖L∞t (H1)‖∇v‖L1

t (L2) + ‖a‖L∞t (H1)(‖∇P‖L1
t (L2) + ‖∆v‖L1

t (L2))

+ ‖∇b‖L1
t (H1)‖∇

2b‖L∞t (L2) + ‖a‖2L∞t (H1)‖∇b‖L2
t (L2)‖∇

2b‖L2
t (L2) + 1

]
≤ C.

Next, it follows from differentiating the v equation in (3.2) with respect to xi that

∂t∂iv + v · ∇∂iv − (1 + a)(∆∂iv − ∂i∇P) = −∂iv · ∇v + ∂ia(∆v − ∇P) − (1 + a)∂i(∇b∆b) − ∂ia∇b∆b. (6.9)
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Applying Lemma 2.8 gives the following estimate:

‖∂iv‖
L̃∞t (Ḃ

1
2
2,1)

+ ‖∂iv‖
L1

t (Ḃ
5
2
2,1)

+ ‖∇∂iP‖
L1

t (Ḃ
1
2
2,1)

. ‖∇v0‖
Ḃ

1
2
2,1

+

∫ t

0
‖∂iv‖

Ḃ
1
2
2,1

‖v‖
Ḃ

5
2
2,1

dτ + ‖∂ia(∆v − ∇P)‖
L1

t (Ḃ
1
2
2,1)

+ ‖(1 + a)∂i(∇b∆b)‖
L1

t (Ḃ
1
2
2,1)

+ ‖∂ia∇b∆b‖
L1

t (Ḃ
1
2
2,1)

+ ‖a‖L∞t (H2)‖∇∂iP‖L1
t (L2) + ‖a‖L∞t (H2)‖∂iv‖L1

t (H2).

(6.10)

Using product laws in Besov spaces, (6.4), and Proposition 6.1, each term on the righthand side is
estimated as follows:

‖∂ia(∆v − ∇P)‖
L1

t (Ḃ
1
2
2,1)
. ‖a‖

L̃∞t (Ḃ
5
2
2,1)

(
‖v‖

L1
t (Ḃ

5
2
2,1)

+ ‖∇P‖
L1

t (Ḃ
1
2
2,1)

)
;

‖(1 + a)∂i(∇b∆b)‖
L1

t (Ḃ
1
2
2,1)

+ ‖∂ia∇b∆b‖
L1

t (Ḃ
1
2
2,1)
. ‖a‖

L̃∞t (Ḃ
5
2
2,1)
‖b‖

L̃∞t (Ḃ
5
2
2,1)
‖b‖

L1
t (Ḃ

5
2
2,1)

;

‖a‖L∞t (H2)‖∇∂iP‖L1
t (L2) . ‖∇P‖

1
2

L1
t (Ḃ

1
2
2,1)
‖∇P‖

1
2

L1
t (Ḃ

3
2
2,1)
≤

1
2
‖∇P‖

L1
t (Ḃ

3
2
2,1)

+ C‖∇P‖
L1

t (Ḃ
1
2
2,1)

;

‖a‖L∞t (H2)‖∂iv‖L1
t (H2) . ‖v‖

1
2

L1
t (Ḃ

5
2
2,1)
‖v‖

1
2

L1
t (Ḃ

7
2
2,1)
.

1
2
‖v‖

L1
t (Ḃ

7
2
2,1)

+ C‖v‖
L1

t (Ḃ
5
2
2,1)
.

Plugging all these estimates into (6.10), we get by some elementary derivation that

‖v‖
L̃∞t (Ḃ

3
2
2,1)

+ ‖v‖
L1

t (Ḃ
7
2
2,1)

+ ‖∇P‖
L1

t (Ḃ
3
2
2,1)
≤ C. (6.11)

�

6.2. Stability of the global large solutions

The global of this section is to prove Theorem 3.3. Let (ã, ṽ, b̃) , (a− a, v− v, b− b). Then, (ã, ṽ, b̃)
satisfies the following system:

ãt + (v + ṽ) · ∇ã = −ṽ · ∇a,

ṽt + (v + ṽ)∇ṽ + ṽ · ∇v − (1 + a + ã)(∆ṽ − ∇P̃ − ∇b̃∆(b + b̃) − ∇b∆b̃)
= ã(∆v − ∇P − ∇b∆b),

b̃t + (v + ṽ) · ∇b̃ + w′′(b)b̃ + o(|b̃|2) − ∆b̃ = −ṽ · ∇b,

div ṽ = 0,
(ã, ṽ, b̃)(x, t)|t=0 = (ã0, ṽ0, b̃0)(x).

(6.12)

Thus, the stability analysis of system (3.2) reduces to establishing the global well-posedness of
the perturbation system (6.12). Following the methodology from [25] and employing the coupled
parabolic-hyperbolic theory, there exists a time T > 0 such that the Cauchy problem for system (3.2)
with initial data (a0, v0, b0) has a unique solution (a, v, b) satisfying

a ∈ C(0,T ; B
5
2
2,1), v ∈ C(0,T ; B

3
2
2,1) ∩ L1

loc(0,T ; Ḃ
7
2
2,1), b ∈ C(0,T ; B

5
2
2,1) ∩ L1

loc(0,T ; Ḃ
9
2
2,1).
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Consequently, (ã, ṽ, b̃) satisfies

ã ∈ C(0,T ; B
5
2
2,1), ṽ ∈ C(0,T ; B

3
2
2,1) ∩ L1

loc(0,T ; Ḃ
7
2
2,1), b̃ ∈ C(0,T ; B

5
2
2,1) ∩ L1

loc(0,T ; Ḃ
9
2
2,1).

Let T be the maximal existence time of (a, v, b). This section aims to show that (ã, ṽ, b̃) remains small
for all t > 0 and T = ∞. From the equation for ã in (6.12), controlling ã requires

∫ ∞
0
‖∇v‖L∞dt to

be small. This, in turn, necessitates decay estimates for ‖v‖L2 and ‖∇v‖L2 , which are obtained through
energy estimates and phase space analysis.

Proposition 6.3. Define U(t) , 2
∫ t

0
‖∇v‖L∞dτ. Under the hypotheses of Theorem 3.3, for any t < T,

there holds
d
dt

[
e−U(t)‖

√
%ṽ‖2L2

]
+ h2e−U(t)‖

√
%ṽ‖2L2

.e−U(t)
{
h2

∫
A1(t)

e−2t|ζ |2 |̂ṽ0|
2dζ + h7(‖ṽ‖4L2

t (L2) + ‖ṽ‖2L2
t (L2)

)
+ h5(‖∆ṽ‖2L1

t (L2) + ‖∇P̃‖2L1
t (L2) + ‖∇b̃‖L2

t (L2)‖∇
2b̃‖L2

t (L2)

+ ‖∇b̃‖L2
t (L2)‖∇

2b̃‖L2
t (L2)‖∇

3b̃‖2L2
t (L2) + ‖∇3b̃‖2L2

t (L2) + ‖%̃‖2L∞t (L2)

)
+ ‖∇b̃‖L2‖∇2b̃‖L2‖∆b‖2L2 + ‖∇b̃‖L2‖∇2b̃‖3L2 + ‖∇b‖L2‖∇2b‖L2‖∆b̃‖2L2

+ ‖%̃‖2L3‖∆v − ∇P − ∇b∆b‖2L2

}
,

(6.13)

where the time-dependent phase space region A1(t) is given in the above section. In what follows, we
denote % , (1 + a + ã)−1, %̃ , (1 + ã)−1, and % , % − %̃.

Proof. Substituting % and %̃ into (6.12), (%, ṽ, b̃) satisfies

%t + div [%(v + ṽ)] = 0,
%ṽt + %(v + ṽ) · ∇ṽ + %ṽ · ∇v − ∆ṽ + ∇P̃ + ∇b̃∆(b + b̃) + ∇b∆b̃ = −

%̃

%
(∆v − ∇P − ∇b∆b),

b̃t + (v + ṽ) · ∇b̃ + w′′(b)b̃ + o(|b̃|2) − ∆b̃ = −ṽ · ∇b,

div ṽ = 0,
(%, ṽ, b̃)(x, t)|t=0 = (%0, ṽ0, b̃0)(x).

(6.14)

The higher-order term o(|b̃|2) is omitted for simplicity, as it has negligible effects on stability and decay.
From the multiplication of (6.14)2 by ṽ and subsequent spatial integration, it follows that

1
2

d
dt
‖
√
%ṽ‖2L2 + ‖∇ṽ‖2L2 =

∫
R3
%ṽ · ∇v · ṽ + ∇b̃∆b · ṽ + ∇b̃∆b̃ · ṽ + ∇b∆b̃ · ṽ +

%̃

%

(
∆v − ∇P − ∇b∆b

)
· ṽdx.

The terms on the righthand side can be estimated similarly, with the first two serving as representative
cases:

|

∫
R3
%ṽ · ∇v · ṽdx| ≤ ‖∇v‖L∞‖

√
%ṽ‖2L2;

|

∫
R3
∇b̃∆b · ṽdx| ≤ ‖∇b̃‖

1
2
L2‖∇

2b̃‖
1
2
L2‖∆b‖L2‖∇ṽ‖L2 ≤

1
6
‖∇ṽ‖2L2 + ‖∇b̃‖L2‖∇2b̃‖L2‖∆b‖2L2 .
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Consequently, one has

d
dt
‖
√
%ṽ‖2L2 + ‖∇ṽ‖2L2 . ‖∇v‖L∞‖

√
%ṽ‖2L2 + ‖∇b̃‖L2‖∇2b̃‖L2‖∆b‖2L2 + ‖∇b̃‖L2‖∇2b̃‖3L2

+ ‖∇b‖L2‖∇2b‖L2‖∆b̃‖2L2 + ‖%̃‖2L3‖∆v − ∇P − ∇b∆b‖2L2 ,

which further simplifies to

d
dt

(
e−U(t)‖

√
%ṽ‖2L2

)
+ e−U(t)‖∇ṽ‖2L2 .e−U(t)

(
‖∇b̃‖L2‖∇2b̃‖L2‖∆b‖2L2 + ‖∇b̃‖L2‖∇2b̃‖3L2

+ ‖∇b‖L2‖∇2b‖L2‖∆b̃‖2L2 + ‖%̃‖2L3‖∆v − ∇P − ∇b∆b‖2L2

)
.

(6.15)

Following the derivation of Eq (5.28), Eq (6.15) becomes

d
dt

(
e−U(t)‖

√
%ṽ‖2L2

)
+ e−U(t)h2‖ṽ‖2L2

.e−U(t)
(
h2

∫
A1(t)
|̂ṽ|2dζ + ‖∇b̃‖L2‖∇2b̃‖L2‖∆b‖2L2 + ‖∇b̃‖L2‖∇2b̃‖3L2

+ ‖∇b‖L2‖∇2b‖L2‖∆b̃‖2L2 + ‖%̃‖2L3‖∆v − ∇P − ∇b∆b‖2L2

)
.

(6.16)

The handling of the low-frequency component
∫

A1(t)
| ˆ̃v|2dζ proceeds by applying heat kernel theory

to (6.14)2, which gives

ṽ(t) = et∆ṽ0 +

∫ t

0
e(t−τ)∆P

{
∇ ·

(
v ⊗ ṽ + ṽ ⊗ ṽ + ṽ ⊗ v

)
+ (1 −

1
%

)
(
− ∆ṽ + ∇P̃)

−
1
%

(∇b̃∆b + ∇b̃∆b̃ + ∇b∆b̃
)
−
%̃

%%

(
∆v − ∇P − ∇b∆b

)}
dτ.

(6.17)

After Fourier transformation and integration over A1(t), we obtain∫
A1(t)
|̂ṽ|2dζ .

∫
A1(t)

e−2t|ζ |2 |̂ṽ0|
2dζ + h5

( ∫ t

0
(‖F (v ⊗ ṽ)‖L∞ζ + ‖F (ṽ ⊗ ṽ)‖L∞ζ )dτ

)2

+ h3
( ∫ t

0

(
‖F [(1 −

1
%

)∆ṽ]‖L∞ζ + ‖F [(1 −
1
%

)∇P̃]‖L∞ζ + ‖F (
1
%
∇b̃∆b)‖L∞ζ

)
dτ

+

∫ t

0

(
‖F (

1
%
∇b̃∆b̃)‖L∞ζ + ‖F (

1
%
∇b∆b̃)‖L∞ζ + ‖F [

%̃

%%
(∆v − ∇P − ∇b∆b)]‖L∞ζ

)
dτ

)2
.

(6.18)

By applying the Gagliardo-Nirenberg inequality and (3.7), three representative terms are estimated,
with the remainder following similarly:∫ t

0
‖F (v ⊗ ṽ)‖L∞ζ dτ .

∫ t

0
‖v‖L2‖ṽ‖L2dτ,∫ t

0
‖F (

1
%
∇b̃∆b̃)‖L∞ζ dτ .

∫ t

0
‖∇b̃∆b̃‖L2dτ .

∫ t

0
‖∇b̃‖

1
2
L2‖∇

2b̃‖
1
2
L2‖∇

3b̃‖L2dτ

. ‖∇b̃‖
1
2

L2
t (L2)
‖∇2b̃‖

1
2

L2
t (L2)
‖∇3b̃‖L2

t (L2),
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0
‖F [

%̃

%%
(∆v − ∇P − ∇b∆b)]‖L∞ζ dτ .

∫ t

0
‖%̃‖L2

(
‖∆v‖L2 + ‖∇P‖L2

+ ‖∇b‖
1
2
L2‖∇

2b‖
1
2
L2‖∇

3b‖L2

)
dτ . ‖%̃‖L∞t (L2).

As a consequence, (6.18) can be rewritten as∫
A1(t)
|̂ṽ|2dζ .

∫
A1(t)

e−2t|ζ |2 |̂ṽ0|
2dζ + h5(‖ṽ‖4L2

t (L2) + ‖ṽ‖2L2
t (L2)

)
+ h3

(
‖∆ṽ‖2L1

t (L2) + ‖∇P̃‖2L1
t (L2) + ‖∇b̃‖L2

t (L2)‖∇
2b̃‖L2

t (L2)

+ ‖∇b̃‖L2
t (L2)‖∇

2b̃‖L2
t (L2)‖∇

3b̃‖2L2
t (L2) + ‖∇3b̃‖2L2

t (L2) + ‖%̃‖2L∞t (L2)

)
.

(6.19)

Substituting (6.19) into (6.16) yields the desired estimate (6.13), completing the proof of
Proposition 6.3. �

Proposition 6.4. Define V(t) , C
∫ t

0
‖∇v‖L2‖∇2v‖L2dτ. Under the hypotheses of Theorem 3.3, suppose

that there exist a time t3 ≤ T and a sufficiently small constant c5 > 0 such that

sup
t∈[0,t3)

(‖ṽ‖L2‖∇ṽ‖L2 + ‖∇b̃‖L2‖∇2b̃‖L2) ≤ c5, (6.20)

Then, there holds

d
dt

(‖∇ṽ‖2L2 + ‖∇2b̃‖2L2) + ‖
√
%ṽt‖

2
L2 + ‖∇b̃t‖

2
L2 + m4(‖∆ṽ‖2L2 + ‖∇3b̃‖2L2)

.
(
‖∇v‖L2‖∇2v‖L2 + ‖∇2b‖L2‖∇3b‖L2

)(
‖∇ṽ‖2L2 + ‖∇2b̃‖2L2

)
+ ‖%̃‖2L∞‖∆v − ∇P − ∇b∆b‖2L2 + ‖∇b‖L2‖∇2b‖L2‖∇b̃‖2L2 + ‖∇2b‖4L2‖∇b̃‖2L2 .

(6.21)

In addition, we have

d
dt

(
e−V(t)‖∇ṽ‖2L2

)
+ e−V(t)(‖

√
%ṽt‖

2
L2 + h2‖∇ṽ‖2L2)

.e−V(t)
[
h4

∫
A2(t)

e−2t|ζ |2 |̂ṽ0|
2dζ + h9(‖ṽ‖4L2

t (L2) + ‖ṽ‖2L2
t (L2)

)
+ h7(‖∆ṽ‖2L1

t (L2) + ‖∇P̃‖2L1
t (L2) + ‖∇b̃‖L2

t (L2)‖∇
2b̃‖L2

t (L2)

+ ‖∇b̃‖L2
t (L2)‖∇

2b̃‖L2
t (L2)‖∇

3b̃‖2L2
t (L2) + ‖∇3b̃‖2L2

t (L2) + ‖%̃‖2L∞t (L2)

)
+ |∇2b‖L2‖∇3b‖L2‖∇2b̃‖2L2 + ‖∇b̃‖L2‖∇2b̃‖L2‖∇3b̃‖2L2

+ ‖%̃‖2L∞‖∆v − ∇P − ∇b∆b‖2L2

]
.

(6.22)

Proof. Taking the L2 inner product of Eq (6.14)2 with ṽt, we get

1
2

d
dt
‖∇ṽ‖2L2 + ‖

√
%ṽt‖

2
L2 ≤ C‖

√
%ṽt‖L2

(
‖v · ∇ṽ‖L2 + ‖ṽ · ∇ṽ‖L2 + ‖ṽ · ∇v‖L2

+ ‖∇b̃∆b‖L2 + ‖∇b̃∆b̃‖L2 + ‖∇b∆b̃‖L2 + ‖
%̃

%
√
%
‖L∞‖∆v − ∇P − ∇b∆b‖L2

)
≤

1
2
‖
√
%ṽt‖

2
L2 + C

(
‖v · ∇ṽ‖2L2 + ‖ṽ · ∇ṽ‖2L2 + ‖ṽ · ∇v‖2L2 + ‖∇b̃∆b‖2L2

+ ‖∇b̃∆b̃‖2L2 + ‖∇b∆b̃‖2L2 + ‖%̃‖2L∞‖∆v − ∇P − ∇b∆b‖2L2

)
.

(6.23)
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Similarly, multiplying by −∆ṽ and integrating over R3 yields

d
dt
‖∇ṽ‖2L2 + ‖%‖−1

L∞‖∆ṽ‖2L2 .
1
2
‖%‖−1

L∞‖∆ṽ‖2L2 + ‖v · ∇ṽ‖2L2 + ‖ṽ · ∇ṽ‖2L2

+ ‖ṽ · ∇v‖2L2 + ‖∇P̃‖2L2 + ‖∇b̃∆b‖2L2 + ‖∇b̃∆b̃‖2L2

+ ‖∇b∆b̃‖2L2 + ‖%̃‖2L∞‖∆v − ∇P − ∇b∆b‖2L2 .

(6.24)

Using the divergence-free condition and standard elliptic estimates to (6.14)2, we obtain

‖∇P̃‖L2 + ‖∆ṽ‖L2 . ‖
√
%ṽt‖L2 + ‖v · ∇ṽ‖L2 + ‖ṽ · ∇ṽ‖L2 + ‖ṽ · ∇v‖L2

+ ‖∇b̃∆b‖L2 + ‖∇b̃∆b̃‖L2 + ‖∇b∆b̃‖L2 + ‖%̃‖L∞‖∆v − ∇P − ∇b∆b‖L2 .
(6.25)

Then substituting (6.25) into (6.24) yields

d
dt
‖∇ṽ‖2L2 + m′5‖∆ṽ‖2L2 . ‖v · ∇ṽ‖2L2 + ‖ṽ · ∇ṽ‖2L2 + ‖ṽ · ∇v‖2L2 + ‖

√
%ṽt‖

2
L2

+ ‖∇b̃∆b‖2L2 + ‖∇b̃∆b̃‖2L2 + ‖∇b∆b̃‖2L2 + ‖%̃‖2L∞‖∆v − ∇P − ∇b∆b‖2L2 . (6.26)

Summing (6.23) and (6.26), and applying the Gagliardo-Nirenberg inequality, we derive

d
dt
‖∇ṽ‖2L2 + ‖

√
%ṽt‖

2
L2 + m′5‖∆ṽ‖2L2 . ‖v · ∇ṽ‖2L2 + ‖ṽ · ∇ṽ‖2L2 + ‖ṽ · ∇v‖2L2

+ ‖∇b̃∆b‖2L2 + ‖∇b̃∆b̃‖2L2 + ‖∇b∆b̃‖2L2 + ‖%̃‖2L∞‖∆v − ∇P − ∇b∆b‖2L2

. ‖∇v‖L2‖∇2v‖L2‖∇ṽ‖2L2 + ‖ṽ‖L2‖∇ṽ‖L2‖∇2ṽ‖2L2 + ‖∇2b‖L2‖∇3b‖L2‖∇2b̃‖2L2

+ ‖∇b̃‖L2‖∇2b̃‖L2‖∇3b̃‖2L2 + ‖%̃‖2L∞‖∆v − ∇P − ∇b∆b‖2L2 .

(6.27)

Then, by taking the L2 inner product of (6.14)3 with −∆b̃t and ∇4b̃, respectively, summing the results,
and applying the Gagliardo-Nirenberg inequality, it is obtained that

d
dt
‖∇2b̃‖2L2 + ‖∇b̃t‖

2
L2 + ‖∇3b̃‖2L2 . ‖∇v‖L2‖∇2v‖L2‖∇2b̃‖2L2

+ ‖∇2ṽ‖2L2‖∇b̃‖L2‖∇2b̃‖L2 + ‖ṽ‖L2‖∇ṽ‖L2‖∇3b̃‖2L2

+ ‖∇b‖L2‖∇2b‖L2‖∇b̃‖2L2 + ‖∇b̃‖2L2 + ‖∇ṽ‖2L2‖∇
2b‖L2‖∇3b‖L2 .

(6.28)

Hence, the combination of (6.27) and (6.28) gives

d
dt

(‖∇ṽ‖2L2 + ‖∇2b̃‖2L2) + ‖
√
%ṽt‖

2
L2 + ‖∇b̃t‖

2
L2

+
(
m′5 −C‖ṽ‖L2‖∇ṽ‖L2 −C‖∇b̃‖L2‖∇2b̃‖L2

)(
‖∆ṽ‖2L2 + ‖∇3b̃‖2L2

)
≤ C

(
‖∇v‖L2‖∇2v‖L2 + ‖∇2b‖L2‖∇3b‖L2

)(
‖∇ṽ‖2L2 + ‖∇2b̃‖2L2

)
+ C

(
‖%̃‖2L∞‖∆v − ∇P − ∇b∆b‖2L2 + ‖∇b‖L2‖∇2b‖L2‖∇b̃‖2L2 + ‖∇b̃‖2L2

)
.

(6.29)

Assuming c5 in (6.20) is sufficiently small such that c5 ≤
m′5
2C , we establish (6.21). On the other hand,

using (6.20), we rewrite (6.27) as follows:

d
dt
‖∇ṽ‖2L2 + ‖

√
%ṽt‖

2
L2 + m5‖∆ṽ‖2L2 . ‖∇v‖L2‖∇2v‖L2‖∇ṽ‖2L2

+ ‖∇2b‖L2‖∇3b‖L2‖∇2b̃‖2L2 + ‖∇b̃‖L2‖∇2b̃‖L2‖∇3b̃‖2L2 + ‖%̃‖2L∞‖∆v − ∇P − ∇b∆b‖2L2 ,
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where m5 denotes any positive constant satisfying m′5 − c5. Multiplying by e−V(t), we obtain

d
dt

(
e−V(t)‖∇ṽ‖2L2

)
+ e−V(t)(‖ √%ṽt‖

2
L2 + m5‖∆ṽ‖2L2

)
≤ Ce−V(t)

(
‖∇2b‖L2‖∇3b‖L2‖∇2b̃‖2L2 + ‖∇b̃‖L2‖∇2b̃‖L2‖∇3b̃‖2L2 + ‖%̃‖2L∞‖∆v − ∇P − ∇b∆b‖2L2

)
.

Then, application of (5.36) and definition of the frequency domain A2(t) , ζ : |ζ | ≤
√

1
m5

h(t) lead to

d
dt

(
e−V(t)‖∇ṽ‖2L2

)
+ e−V(t)(‖ √%ṽt‖

2
L2 + h2‖∇ṽ‖2L2

)
≤ Ce−V(t)

(
h4

∫
A2(t)
|̂ṽ|2dζ + ‖∇2b‖L2‖∇3b‖L2‖∇2b̃‖2L2 + ‖∇b̃‖L2‖∇2b̃‖L2‖∇3b̃‖2L2

+ ‖%̃‖2L∞‖∆v − ∇P − ∇b∆b‖2L2

)
.

Substituting (6.19) completes the proof of (6.22). �

Proposition 6.5. Under the hypotheses of Theorem 3.3, there exist positive constants C and c4 such
that if

β0 , ‖ṽ0‖H1 + ‖ṽ0‖Lq + ‖b̃0‖H2 + ‖%̃0‖L2 + ‖%̃0‖L∞ < c4, (6.30)

then, for all t ≤ T, we have

‖ṽ(t)‖L2 ≤ Cβ0(1 + t)−δ, ‖∇ṽ(t)‖L2 ≤ Cβ0(1 + t)−
1
2 (1+2δ),

‖∇b̃(t)‖L2 ≤ Cβ0em−1
0 t, ‖∇2b̃(t)‖L2 ≤ Cβ0e−

1
2 m−1

0 t,∫ T

0
(‖∇P̃‖L2 + ‖∆ṽ‖L2 + ‖∇3b̃‖L2)dt ≤ Cβ0,

∫ T

0
(‖ṽ‖L∞ + ‖∇b̃‖L∞)dt ≤ Cβ0.

(6.31)

Moreover, for any l ∈ [0, 1 + 2δ), there holds∫ T

0
(1 + t)l(‖∂tṽ‖2L2 + ‖∇P̃‖2L2 + ‖∆ṽ‖2L2)dt ≤ Cβ0. (6.32)

Proof. Step 1: Preparatory estimates. Define

η(t) , sup
t′∈[0,t]

(‖%̃‖L2 + ‖%̃‖L3 + ‖%̃‖L∞)(t′). (6.33)

Then, taking the L2 inner product of (6.14)2 and (6.14)3 with ṽ and −∆b̃, respectively; summing the
two results yields

d
dt

(‖
√
%ṽ‖2L2 + ‖∇b̃‖2L2) + ‖∇ṽ‖2L2 + ‖∇2b̃‖2L2 + ‖∇b̃‖2L2

.
(
‖∇v‖L∞ + ‖∇2b‖L∞ + ‖∇v‖4L2 + ‖∇b‖

1
2
L2‖∇

2b‖
1
2
L2

)(
‖
√
%ṽ‖2L2 + ‖∇b̃‖2L2

)
+ ‖%̃‖2L3‖∆v − ∇P − ∇b∆b‖2L2 .
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By utilizing Theorem 3.2 and the definitions of β0, η, ensures

‖
√
%ṽ‖L∞t (L2) + ‖∇b̃‖L∞t (L2) + ‖∇ṽ‖L2

t (L2) + ‖∇2b̃‖L2
t (L2) + ‖∇b̃‖2L2

t (L2) ≤ C(β0 + η). (6.34)

Furthermore, we get by integrating (6.21) over [0, t3] that

‖(∇ṽ,∇2b̃)‖L∞t3 (L2) + ‖(
√
%ṽt,∇b̃t,∇

2ṽ,∇3b̃)‖L2
t3

(L2) ≤ C(β0 + η). (6.35)

Step 2: Decay rates for ‖∇b̃‖L2 and ‖∇2b̃‖L2 .
The exponential decay of ‖∇b̃‖L2 and ‖∇2b̃‖L2 in (6.31) follows directly by applying the methodology

from Proposition 5.3 for ‖∇b‖L2 and ‖∇2b‖L2 .
Step 3: Rough decay rates for ‖ṽ‖L2 and ‖∇ṽ‖L2 .

We once again employ Schonbek’s approach. Multiplying both sides of (6.13) by e
∫ t

0 h2dτ, integrating
over time, and leveraging (5.32) and (6.34) gives, for all t ≤ t3,

e
∫ t

0 h2dτe−U(t)‖
√
%ṽ(t)‖2L2 . ‖

√
%0ṽ0‖

2
L2 +

∫ t

0
e
∫ t′

0 h2dτe−U(t′)
{
h2β2

0(1 + t′)−2δ(q)

+ h7(β0 + η)2(1 + t′)2 + h5(β0 + η)2(1 + t′) + e−m−1
0 t′(β0 + η)2

+ η2‖∆v − ∇P − ∇b∆b‖2L2

}
dt′.

(6.36)

Define h(t) ,
√
θ(1 + t)−

1
2 with 1

2 < θ < 1 + 2δ. Then, utilizing (3.7) and (3.8), we get∫ t

0
(1 + t′)θ‖∆v − ∇P − ∇b∆b‖2L2dt′ ≤ C. (6.37)

Consequently, inequality (6.36) simplifies to

(1 + t)θ‖
√
%ṽ(t)‖2L2 .β

2
0 +

∫ t

0

[
(1 + t′)θ−1−2δ(q)β2

0 + (1 + t′)θ−
3
2 (β0 + η)2

+ (1 + t′)θe−m−1
0 t′(β0 + η)2

]
dt′ + η2

.(β0 + η)2(1 + t)θ−
1
2 ,

which shows that

‖ṽ(t)‖L∞t (L2) ≤ C(β0 + η)(1 + t)−
1
4 . (6.38)

Similarly, the decay rate of ‖∇ṽ‖L2 is computed. Multiplying both sides of (6.22) by e
∫ t

0 h2dτ and
integrating over time, then taking h(t) ,

√
θ(1 + t)−

1
2 with 3

2 < θ < 1 + 2δ(q), and using (6.37),
we obtain

‖∇ṽ‖2L2(1 + t)θ +

∫ t

0
(1 + τ)θ‖∂τṽ‖2L2dτ ≤ C(β0 + η)2(1 + t)θ−

3
2 .

Hence,

‖∇ṽ‖L∞t (L2) ≤ (β0 + η)(1 + t)−
3
4 . (6.39)
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Evidently, if 1 ≤ θ ≤ 3
2 , then for any l ∈ [0, 3

2 ), it holds that∫ t

0
(1 + τ)l‖∂τṽ‖2L2dτ ≤ (β0 + η)2.

Moreover, this estimate implies∫ t

0
‖∂τṽ‖L2dτ ≤

∫ t

0
(1 + τ)−

5
8 (1 + τ)

5
8 ‖∂τṽ‖L2dτ

≤ (
∫ t

0
(1 + τ)−

5
4 dτ)

1
2 (
∫ t

0
(1 + τ)

5
4 ‖∂τṽ‖2L2dτ)

1
2

≤ C(β0 + η)2.

Step 4: Improving the decay rates of ‖ṽ‖L2 and ‖∇ṽ‖L2 .
First, an application of the Gagliardo-Nirenberg inequality and (6.20) to (6.25) yields

‖∇P̃‖L2 + ‖∆ṽ‖L2 . ‖
√
%ṽt‖L2 + ‖∇v‖

1
2
L2‖∇

2v‖
1
2
L2‖∇ṽ‖L2

+ ‖∇2b‖
1
2
L2‖∇

3b‖
1
2
L2‖∇

2b̃‖L2 + ‖∇b̃‖
1
2
L2‖∇

2b̃‖
1
2
L2‖∇

3b̃‖L2

+ ‖%̃‖L∞
(
‖∆v‖L2 + ‖∇P‖L2 + ‖∇b‖

1
2
L2‖∇

2b‖
1
2
L2‖∇

3b‖L2
)
.

(6.40)

Next, we get by integrating over time and using the decay estimates (3.7), (6.38), and (6.39) to (6.40)
that ∫ t

0
(‖∆ṽ‖L2 + ‖∇P̃‖L2)dτ ≤ C(β0 + η)2 ln

1
2 (1 + t). (6.41)

For the term ‖ṽ‖2
L2

t (L2)
in (6.22), by virtue of (6.38), we have

‖ṽ‖2L2
t (L2) =

∫ t

0
‖ṽ‖2L2dτ ≤ C(β0 + η)2(1 + t)

1
2 . (6.42)

Substitution of (6.41) and (6.42) into (6.22), followed by multiplication by e
∫ t

0 h2dτ, leads directly to

d
dt

(
e−V(t)e

∫ t
0 h2dτ‖∇ṽ‖2L2) + e−V(t)e

∫ t
0 h2dτ‖

√
%ṽt‖

2
L2

≤ Ce
∫ t

0 h2dτ
[
h4β2

0(1 + t)−2δ(q) + h9(β0 + η)2(1 + t) + h7(β0 + η)2 ln(1 + t)

+ e−m−1
0 t(β0 + η)2(‖∇3b‖L2 + ‖∇3b̃‖2L2) + η2‖∆v − ∇P − ∇b∆b‖2L2

]
.

(6.43)

Let h(t) ,
√
θ(1 + t)−

1
2 with 1 + 2δ(q) < θ < 2 + 6δ(q). Integrating over time and applying (5.49) yields

(1 + t)θ‖∇ṽ‖2L2 +

∫ t

0
(1 + τ)θ‖∂τṽ‖2L2dτ

≤ ‖∇ṽ0‖
2
L2 + C(β0 + η)2

∫ t

0

[
(1 + τ)θ−2−2δ(q) + (1 + τ)θ−

7
2 ln (1 + τ)

]
dτ

≤ C(β0 + η)2(1 + t)θ−1−2δ(q),

(6.44)
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which implies that for all t ≤ t3,

‖∇ṽ(t)‖L2 ≤ C(β0 + η)(1 + t)−
1
2 (1+2δ(q)). (6.45)

Moreover, by setting 0 < θ < 1 + 2δ(q) for h(t), it follows that for any l ∈ (0, 1 + 2δ(q)),∫ t

0
(1 + τ)l‖∂τṽ‖2L2dτ ≤ C(β0 + η)2. (6.46)

Repeating the proof steps of ‖ṽ‖L2 , multiplying both sides of the Eq (6.13) by e
∫ t

0 h2dτ, we obtain

d
dt

(
e−U(t)e

∫ t
0 h2dτ‖ṽ‖2L2

)
≤ Ce−U(t)e

∫ t
0 h2dτ

{
h2β2

0(1 + t)−2δ(q) + h7(β0 + η)2(1 + t)

+ h5(β0 + η)2 ln(1 + t) + (β0 + η)2e−
5
2 m−1

0 t + η2‖∆v − ∇P − ∇b∆b‖2L2

}
.

Let h(t) ,
√
θ(1 + t)−

1
2 , where 1 + 2δ(q) < θ < 2 + 6δ(q). Integration then shows that for all t ≤ t3,

‖ṽ(t)‖L2 ≤ C(β0 + η)(1 + t)−δ(q). (6.47)

Step 5: Estimates for
∫ t

0
‖∇P̃‖L2dτ and

∫ t

0
‖∆ṽ‖L2dτ. For any 0 < l < 1 + 2δ(q), it follows from (6.40)

that ∫ t

0

(
‖∇P̃‖2L2 + ‖∆ṽ‖2L2

)
(1 + τ)ldτ

.

∫ t

0
(1 + τ)l‖∂τṽ‖2L2dτ + (β0 + η)2

∫ t

0

[
(1 + τ)−

3
2 (1+2δ)+l‖∆v‖L2

+ e−
3
2 m−1

0 τ(1 + τ)l‖∇3b‖L2 + e−
3
2 m−1

0 τ(1 + τ)l‖∇3b̃‖2L2

]
dτ

+ η2
∫ t

0
(1 + τ)l(‖∆v‖2L2 + ‖∇P‖2L2 + e−

3
2 m−1

0 τ‖∇3b‖2L2)dτ ≤ C(β0 + η)2.

Therefore, Hölder’s inequality gives that∫ t

0
(‖∇P̃‖L2 + ‖∆ṽ‖L2)dτ ≤ C[

∫ t

0
(1 + τ)−1−δ(q)dτ]

1
2 [
∫ t

0
(1 + τ)1+δ(q)(‖∇P̃‖2L2 + ‖∆ṽ‖2L2)dτ]

1
2

≤ C(β0 + η). (6.48)

Step 6: Estimates for
∫ t

0
‖ṽ‖L∞dτ and

∫ t

0
‖∇b̃‖L∞dτ. First, the density equation in (6.12) implies

∂t%̃ + (v + ṽ) · ∇%̃ = −ṽ · ∇%. (6.49)

Applying Lp energy estimates and utilizing the divergence-free condition yield, for any 2 ≤ p ≤ ∞,

‖%̃‖L∞t (Lp) ≤ ‖%̃0‖Lp + ‖∇%‖L∞t (Lp)‖ṽ‖L1
t (L∞).

Furthermore, in view of the definitions of η, β0 and estimate (6.2), this inequality becomes

η(t) ≤ β0 + C‖ṽ‖L1
t (L∞), (6.50)
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which, combined with (6.48), yields∫ t

0
‖ṽ‖L∞dτ ≤

∫ t

0
‖∇ṽ‖

1
2
L2‖∇

2ṽ‖
1
2
L2dτ ≤ ε‖∆ṽ‖L1

t (L2) + C‖∇ṽ‖L1
t (L2)

≤ Cε(β0 + η) + C
∫ t

0
(β0 + η(τ))(1 + τ)−

1
2 (1+2δ(q))dτ

≤ Cβ0 + Cε‖ṽ‖L1
t (L∞) + C

∫ t

0
‖ṽ‖L1

τ(L∞)(1 + τ)−
1
2 (1+2δ(q))dτ,

where ε is an arbitrarily small positive constant. By taking ε = 1
2C , it follows that

‖ṽ‖L1
t (L∞) ≤ Cβ0 + C

∫ t

0
‖ṽ‖L1

τ(L∞)(1 + τ)−
1
2 (1+2δ(q))dτ, (6.51)

this, in turn, implies that ‖ṽ‖L1
t (L∞) ≤ Cβ0. Consequently, substituting it into (6.50) leads to

η(t) ≤ Cβ0. (6.52)

Finally, we estimate ‖∇b̃‖L1
t (L∞). A direct application of (6.52) gives∫ t

0
‖∇b̃‖L∞dτ ≤

∫ t

0
‖∇2b̃‖

1
2
L2‖∇

3b̃‖
1
2
L2dτ ≤ (

∫ t

0
‖∇2b̃‖L2dτ)

1
2 (
∫ t

0
‖∇3b̃‖L2dτ)

1
2 ≤ C(β0 + η) ≤ Cβ0. (6.53)

Step 7: Proof of Proposition 6.5.
By virtue of (6.34), (6.35), and (6.52), we establish for all t ≤ t3:

‖ṽ(t)‖L∞t (L2) + ‖∇ṽ(t)‖L∞t (L2) + ‖∇b̃(t)‖L∞t (L2) + ‖∇2b̃(t)‖L∞t (L2) ≤ Cβ0. (6.54)

Given that the constant c5 in (6.20) is sufficiently small, we select β0 small enough such that for all
t ≤ t3,

‖ṽ(t)‖L2‖∇ṽ(t)‖L2 + ‖∇b̃(t)‖L2‖∇2b̃(t)‖L2 ≤ Cβ2
0 ≤

c5

4
, (6.55)

implying that t3 can be extended to T . Thus, Proposition 6.5 is proved. �

Proposition 6.6. Under the assumptions of Theorem 3.3, if there exists a positive constant c4 such that

G0 , ‖ṽ0‖H1 + ‖ṽ0‖Lq + ‖b̃0‖H2 + ‖ã0‖
Ḃ

3
2
2,1

≤ c4, (6.56)

then for all t < T, there holds that

‖ã‖
L̃∞t (Ḃ

3
2
2,1)

+ ‖ṽ‖
L1

t (Ḃ
5
2
2,1)

+ ‖ṽ‖
L̃∞t (Ḃ

1
2
2,1)

+ ‖ṽ‖L̃∞t (Lq) + ‖b̃‖
L1

t (Ḃ
7
2
2,1)

+ ‖b̃‖
L̃∞t (Ḃ

3
2
2,1)
≤ CG0. (6.57)

Proof. Note that β0 ≤ CG0. Applying Lemma 2.7 to Eqs (3.2)1 and (6.12)1 separately and using (6.1)
and (6.31), we deduce

‖a‖L̃∞t (Ḣ2) . ‖a0‖H2 exp{‖ṽ‖
L1

t (Ḃ
5
2
2,1)

+ ‖v‖
L1

t (Ḃ
5
2
2,1)
} . ‖a0‖H2 exp{C‖ṽ‖

L1
t (Ḃ

5
2
2,1)
} (6.58)

AIMS Mathematics Volume 10, Issue 11, 26187–26236.



26232

and
‖ã‖

L̃∞t (B
3
2
2,1)
.
(
‖ã0‖

B
3
2
2,1

+ ‖ṽ‖
L1

t (Ḃ
3
2
2,1)
‖∇a‖

L̃∞t (Ḃ
3
2
2,1)

)
exp{‖ṽ‖

L1
t (Ḃ

5
2
2,1)

+ ‖v‖
L1

t (Ḃ
5
2
2,1)
}

.(G0 + ‖ṽ‖
1
2

L1
t (H1)
‖ṽ‖

1
2

L1
t (H2)

) exp{C‖ṽ‖
L1

t (Ḃ
5
2
2,1)
} . G0 exp{C‖ṽ‖

L1
t (Ḃ

5
2
2,1)
}.

(6.59)

Next, applying Corollary 2.1 to (6.12)3 yields

‖b̃‖
L̃∞t (Ḃ

3
2
2,1)

+ ‖b̃‖
L1

t (Ḃ
7
2
2,1)
.
(
‖b̃0‖

Ḃ
3
2
2,1

+ ‖w′′(b)b̃‖
L̃1

t (Ḃ
3
2
2,1)

+ ‖ṽ · ∇b‖
L̃1

t (Ḃ
3
2
2,1)

)
exp{‖v‖

L1
t (Ḃ

5
2
2,1)

+ ‖ṽ‖
L1

t (Ḃ
5
2
2,1)
}

.
(
‖b̃0‖

Ḃ
3
2
2,1

+ ‖w′′(b)‖
L̃∞t (Ḃ

3
2
2,1)
‖b̃‖

L̃1
t (Ḃ

3
2
2,1)

+ ‖ṽ‖L̃1
t (Ḣ2)‖b‖L̃∞t (Ḣ2)

)
exp{‖ṽ‖

L1
t (Ḃ

5
2
2,1)
}

.G0 exp{‖ṽ‖
L1

t (Ḃ
5
2
2,1)
},

(6.60)

where we used the fact that

‖w′′(b)‖
L̃∞t (Ḃ

3
2
2,1)
≤ C(1 + ‖b‖L∞t (L∞))2‖b‖

L∞t (Ḃ
3
2
2,1)
≤ C. (6.61)

Similarly, employing the same approach to Eq (6.12)2 via Lemma 2.8, we arrive at

‖ṽ‖
L̃∞t (Ḃ

1
2
2,1)

+ ‖ṽ‖
L1

t (Ḃ
5
2
2,1)
. exp{‖v‖

L1
t (Ḃ

5
2
2,1)
}
(
‖ṽ0‖

Ḃ
1
2
2,1

+ ‖ṽ · ∇ṽ‖
L1

t (Ḃ
1
2
2,1)

+ ‖ṽ · ∇v‖
L1

t (Ḃ
1
2
2,1)

+ ‖∇b̃∆b‖
L1

t (Ḃ
1
2
2,1)

+ ‖a∇b̃∆b‖
L1

t (Ḃ
1
2
2,1)

+ ‖∇b̃∆b̃‖
L1

t (Ḃ
1
2
2,1)

+ ‖a∇b̃∆b̃‖
L1

t (Ḃ
1
2
2,1)

+ ‖∇b∆b̃‖
L1

t (Ḃ
1
2
2,1)

+ ‖a∇b∆b̃‖
L1

t (Ḃ
1
2
2,1)

+ ‖ã(∆v − ∇P − ∇b∆b)‖
L1

t (Ḃ
1
2
2,1)

+ ‖a‖L∞t (H2)‖∇P̃‖L1
t (L2) + ‖a‖L∞t (H2)‖ṽ‖L1

t (Ḃ2
2,1)

)
.

For conciseness, we estimate three arbitrarily chosen terms on the righthand side as follows:

‖ṽ · ∇ṽ‖
L1

t (Ḃ
1
2
2,1)
. ‖ṽ‖

L∞t (Ḃ
1
2
2,1)
‖ṽ‖

L1
t (Ḃ

5
2
2,1)
. G0‖ṽ‖

L1
t (Ḃ

5
2
2,1)
,

‖a∇b̃∆b̃‖
L1

t (Ḃ
1
2
2,1)
. ‖a‖

L∞t (Ḃ
3
2
2,1)
‖∇b̃‖L∞t (Ḣ1)‖∇

2b̃‖L1
t (Ḣ1) . G0 exp{C‖ṽ‖

L1
t (Ḃ

5
2
2,1)
},

‖a‖L∞t (H2)‖ṽ‖L1
t (Ḃ2

2,1) . ‖a‖L∞t (H2)‖ṽ‖
1
3

L1
t (Ḣ1)
‖ṽ‖

2
3

L1
t (Ḃ

5
2
2,1)
≤

1
2
‖ṽ‖

L1
t (Ḃ

5
2
2,1)

+ CG0 exp{C‖ṽ‖
L1

t (Ḃ
5
2
2,1)
}.

Consequently,

‖ṽ‖
L̃∞t (Ḃ

1
2
2,1)

+ (
1
2
−CG0)‖ṽ‖

L1
t (Ḃ

5
2
2,1)
. G0 exp{C‖ṽ‖

L1
t (Ḃ

5
2
2,1)
}. (6.62)

If G0 and c4 are sufficiently small with G0 ≤ c4, we sum (6.59)–(6.62) and apply the bootstrap method
to deduce

‖ã‖
L̃∞t (Ḃ

3
2
2,1)

+ ‖b̃‖
L̃∞t (Ḃ

3
2
2,1)

+ ‖b̃‖
L1

t (Ḃ
7
2
2,1)

+ ‖ṽ‖
L̃∞t (Ḃ

1
2
2,1)

+ ‖ṽ‖
L1

t (Ḃ
5
2
2,1)
≤ CG0. (6.63)
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Finally, in order to estimate ‖ṽ‖Lq , the divergence operator is applied to both sides of (6.12)2, which
yields

∆P̃ =div
[
− v · ∇ṽ − ṽ · ∇ṽ − ṽ · ∇v + (a + ã)(∆ṽ − ∇P̃) − (1 + a + ã)(∇b̃∆b

+ ∇b̃∆b̃ + ∇b∆b̃) + ã(∆v − ∇P − ∇b∆b)
]
. (6.64)

Classical elliptic estimates then give

‖∇P̃‖Lq . ‖v · ∇ṽ‖Lq + ‖ṽ · ∇ṽ‖Lq + ‖ṽ · ∇v‖Lq + ‖(a + ã)(∆ṽ − ∇P̃)‖Lq

+ ‖(1 + a + ã)(∇b̃∆b + ∇b̃∆b̃ + ∇b∆b̃)‖Lq + ‖ã(∆v − ∇P − ∇b∆b)‖Lq .
(6.65)

Taking the L2 inner product of Eq (6.12)2 with |v j|q−1sgn(v j) ( j = 1, 2, 3) gives rise to

d
dt
‖ṽ‖qLq ≤ ‖ṽ‖q−1

Lq

(
‖v · ∇ṽ‖Lq + ‖ṽ · ∇ṽ‖Lq + ‖ṽ · ∇v‖Lq + ‖(a + ã)(∆ṽ − ∇P̃)‖Lq

+ ‖∇P̃‖Lq + ‖(1 + a + ã)(∇b̃∆b + ∇b̃∆b̃ + ∇b∆b̃)‖Lq + ‖ã(∆v − ∇P − ∇b∆b)‖Lq

)
.

Substituting (6.65) into the above inequality and integrating over time leads to

‖ṽ‖L∞t (Lq) ≤ ‖ṽ0‖Lq + ‖v · ∇ṽ‖L1
t (Lq) + ‖ṽ · ∇ṽ‖L1

t (Lq) + ‖ṽ · ∇v‖L1
t (Lq)

+ ‖(a + ã)(∆ṽ − ∇P̃)‖L1
t (Lq) + ‖∇b̃∆b + ∇b̃∆b̃ + ∇b∆b̃‖L1

t (Lq)

+ ‖(a + ã)(∇b̃∆b + ∇b̃∆b̃ + ∇b∆b̃)‖L1
t (Lq) + ‖ã(∆v − ∇P − ∇b∆b)‖L1

t (Lq).

(6.66)

For 1 < q < 6
5 , applying the Sobolev embedding inequality along with (3.7), (6.53), and (6.63) yields

‖(a + ã)(∇b̃∆b + ∇b̃∆b̃ + ∇b∆b̃)‖L1
t (Lq)

. (‖a‖
L∞t (H

1
2 )

+ ‖ã‖
L∞t (H

1
2 )

)(‖∇b̃∆b‖L1
t (L2) + ‖∇b̃∆b̃‖L1

t (L2) + ‖∇b∆b̃‖L1
t (L2))

. (1 + G0)(‖∇b̃‖L1
t (L∞)‖∇

2b‖L∞t (L2) + ‖∇b̃‖L1
t (L∞)‖∇

2b̃‖L∞t (L2)

+ ‖∇b‖
1
2
L∞t (L2)‖∇

2b‖
1
2
L∞t (L2)‖∇

3b̃‖L1
t (L2)) . G0.

Similarly, the remaining terms on the righthand side of (6.66) can also be bounded by CG0. Therefore,
we have

‖ṽ(t)‖L∞t (Lq) ≤ CG0, (6.67)

which completes the proof of Proposition 6.6. �

Proof of Theorem 3.3. By applying Theorem 3.2 together with Propositions 6.5 and 6.6, we adopt a
strategy similar to that outlined in Subsection 6.1 and, using a bootstrap argument, establish that the
time T is unbounded. As a result, solutions can be extended to T = ∞, thereby obtaining (3.9).
Subsequently, the application of classical interpolation techniques to (3.9) and (6.57) rigorously yields
the critical estimate (3.10), thus completing the proof of Theorem 3.3. �
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7. Conclusions

This study investigates a simplified viscoelastic fluid model with stress diffusion and establishes
the stability of the equation for any globally smooth solution when the initial density is close to one.
In the course of the proof, the velocity field v is shown to decay faster than (1 + t)−3/4, while ∇b(t)
decays exponentially. This represents a finding of considerable physical significance. The exponential
decay of ∇b(t) explains why some viscoelastic fluids can rapidly “relax” after the cessation of external
disturbances and exhibit a sharp decline in their resistance to deformation. These decay properties
confirm the presence of irreversible dissipative mechanisms—such as viscosity, elastic relaxation, and
thermal diffusion—that continuously transform ordered mechanical energy into disordered thermal
energy.

Nevertheless, our work has several limitations. First, although considering only the case of
spherical elastic stress has helped us gain insight into more complex models, this simplification
essentially reduces the system to a toy model, suitable only for studying idealized fluids. Second,
the regularity assumptions imposed on the initial data may not be optimal, and the feasibility of
relaxing these conditions remains to be thoroughly investigated. Third, the stability results established
in this work rely on the assumption of “sufficiently small initial perturbations”. While this serves
as a common foundation for rigorous mathematical analysis and reveals key features of the local
dynamics near equilibrium, it may fail to capture the full range of behaviors in far-from-equilibrium
flows—such as those dominated by large elastic stresses. Therefore, the present model leaves ample
room for further exploration. What’s more, future studies could also examine solution properties
under temperature-dependent or variable viscosity coefficients. Finally, it should be emphasized that
numerical simulations can offer a more concrete illustration of the decay and stability phenomena. We
are currently conducting numerical experiments based on this model, and the detailed procedures and
results will be presented in a forthcoming article.
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16. M. Bulı́ček, J. Málek, V. Pruša, E. Süli, On incompressible heat-conducting viscoelastic rate-type
fluids with stress-diffusion and purely spherical elastic response, SIAM J. Math. Anal., 53 (2021),
3985–4030. https://doi.org/10.1137/20M1384452
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