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Abstract: In a supply chain system, the price of the goods should satisfy some requirements of
the consumer. These requirements have been exactly characterized by a group of min-product fuzzy
relation inequalities (FRIs). Correspondingly, any feasible pricing scheme is characterized by a
solution of the min-product FRIs system. For a given pricing scheme, or say a given solution in the
min-product FRIs, the flexibility is reflected by the maximum amplitude, or equivalently the maximum
amplitude interval solution (MAIS). Motivated by such an application background, this work attempts
to study the MAIS in min-product FRIs. An efficient algorithm is discovered for computing the MAIS
of a solution within the given min-product system. The MAIS will help the system manager be aware
of the flexibility of a given pricing scheme and produce better decision-making.

Keywords: min-product composition; fuzzy relation inequality; pricing scheme; supply chain;
stability
Mathematics Subject Classification: 90C70, 90C90

1. Introduction

The fuzzy relation equation (FRE) or fuzzy relation inequality (FRI) has been widely investigated
and explored in these few decades. The common composition employed in the systems of FREs or FRIs
is the max-t-norm (max-triangular-norm), including the famous max-min and max-product composed
operations. The max and min operators are denoted by V and A, respectively, where

a VB =max(a,B), aApB=min(a,p),
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for any a,f € [0, 1]. In such types of FREs or FRIs, when the systems are consistent, they have only
one maximum solution but finitely many minimal solutions. In the past few decades, some scholars
focused on exploring the resolution methods for various kinds of FREs and FRIs. Since the maximum
solution is unique and can be directly solved by the specific formula, solving the FREs and FRIs turns
out to be solving its minimal solution set. Searching for all minimal solutions has been formally proved
to be highly related to some covering problems, belonging to NP-hard problems.

Addition-min is another interesting composition operation. It was first introduced to the FRIs in
2012 by J.-X. Li et al. [1] to characterize constraints in P2P network systems. As the same, for the
addition-min systems, their solution sets depend on the minimal solutions [2]. Note that a max-min
system (either the equation system or the inequality system) always has a finite number of minimal
solutions [3,4]. However, a consistent addition-min system has an infinite number of minimal solutions
in most cases [2]. Moreover, the solution set of a max-min system is non-convex if there are at least two
minimal solutions. But in an addition-min system, its solution set should be convex [5]. Due to these
two different features, the method for dealing with the addition-min system is distinct from that for
solving the max-min (or max-t-norm) system [6]. It is usually not easy to find out all minimal solutions
in an addition-min system. In [2,7, 8], an interesting method has been discovered for searching some
specific minimal solutions, but not all the whole minimal solutions.

The FRIs with min-product composition, i.e.,

/\ainiji, = 1, ,m,
= (1.1)

bi .
< S A j=10m,

=

]

were constructed by H. Guo et al. [9] in 2018 for the first time. In [9], a simple method was proposed
to examine the consistency of system (1.1). The authors also studied some properties of system (1.1).
Based on these properties, the structure of the whole solution set to (1.1) was discovered. It was
found that for the consistent system (1.1), there should be a unique minimum solution, i.e., x*, and
a finite number of maximal solutions. All these solutions jointly determined the whole solution set.
In [11], X. Yang further distinguished the general solution and the strong solution to a system of
min-product FRIs. Two effective algorithms were designed for solving the solution set and the strong
solution set, respectively. In fact, it is not always necessary to obtain the complete solution set of the
min-product FRIs. As a consequence, X.-G. Zhou et al. [10] devoted themselves to the lexicographic
maximum solution in system (1.1). A resolution algorithm was proposed in [10] based on m auxiliary
vectors. Each auxiliary vector should be checked in the above system (1.1) for its feasibility. To
reduce the repeated inspection procedures in the algorithm presented in [10], Y. Wu et al. [12] further
developed an improved algorithm for searching the lexicographic maximum solution in system (1.1).
Some interesting properties were investigated for system (1.1), which contributed significantly to the
resolution algorithm. The lexicographic maximum solution was employed to embody the optimal
pricing with a fixed priority in a supply chain system [10, 12]. However, if all the suppliers were
treated equally, then the corresponding optimal pricing was indeed the optimal solution of the maximin
optimization problem subject to the min-product FRIs, i.e., system (1.1) [13].

The FRIs, or FREs, have been introduced to model several real-world systems. For example, the
above-mentioned addition-min FRIs were applied in the P2P network system, and the min-product
FRIs were applied in the supply chain system. In [14], the max-product FRIs were adopted to
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characterize the wireless server-to-client (S2C) network system. The concept of (maximum) deviation
of a given solution, which reflected the stability of a feasible scheme in the corresponding S2C
network system, was defined and investigated for the first time [14]. The author designed an effective
algorithm to find the maximum deviation with polynomial computational complexity. The maximum
deviation/amplitude was also introduced to the addition-min FRIs [15]. The maximum amplitude of
any solution in the addition-min FRIs system could also be obtained within a polynomial time. [18]
further improved the method for finding the maximum-interval solution of a given solution in the
addition-min FRIs system.

Motivated by the idea presented in [14, 15], Y. Chen et al. first defined and studied the interval
solution of a known solution in a max-min FRIs system [16]. M. Chen et al. [17] distinguished
different types of interval solutions, i.e., the lower interval solution, the upper, and the including
ones. Furthermore, the widest interval solution, meaning the solution having the maximum width, was
defined and investigated in a max-min FRIs system [18]. In fact, the widest interval solution embodied
the most stable feasible scheme in the instructional resource allocation system [18]. L. Zhang [20]
introduced the so-called optimal symmetric interval solution to the max-min FRIs system, considering
the symmetry to the interval solution. In such an optimal symmetric interval solution, the fluctuations
among its components might not be identical.

As mentioned above, the min-product FRIs have been applied to model the supply chain system.
The feasible schemes in the supply chain system are represented by the solutions of the min-product
FRIs. In this work, considering the stability of the feasible schemes, we aim to introduce the concept
of maximum amplitude interval solution of the solutions in the min-product FRIs, i.e., system (2.3).

In what follows: Section 2 will provide the foundation for our studied system (2.3), with min-
product composition. Section 3 is the application background and research motivation of this work.
Section 4 displays the definition and property of MAIS. In Section 5, we discuss the resolution of the
MALIS in two cases. Detailed resolution procedures and algorithms, together with some illustrative
examples, are arranged in Section 6. Section 7 briefly summarizes this work.

2. Application background and research motivation

2.1. Application background

As mentioned in the previous section, the min-product FRIs system was introduced in [9]. Here,
we further review its application background. In [9], the authors attempted to model a supply chain
system, having m retailers and n suppliers (see Figure 1).
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Figure 1. Supply chain system with n suppliers and m retailers.

A kind of goods will be supplied by the suppliers to the retailers. To ensure the goods are salable at
the ith retailer, the acceptable price of the goods for the ith retailer should be less than or equal to b;.
Here, b; > 0 and

iel={1,2,---,m}. 2.1

On the other hand, to avoid the suppliers in a state of loss, the supply price of the jth supplier, denoted
by x;, must satisfy x; > xJL.. Here, x]L. > 0 and

jel={1,2,---,nh (2.2)

When the goods are transported from the suppliers to the retailers, there will be transportation fees
and cargo damage fees, etc. These fees will push up the price of the goods received by the retailers.
Adding these fees, suppose the price of the goods received by the ith retailer and supplied by the jth
supplier is a;;x;. It is obvious that a;;x; > x;, i.e., a;; > 1. To ensure the goods sales at the ith retailer
R;, there is at least one supplier satisfying the requirement of R;, i.e.,

anxi A apxy A\ -+ A appx, < b;.

On the other hand, for each supplier, it is also requested to satisfy at least one retailer. That is to say,
for each j € J, in the following m inequalities:

aijx; < b, i=12,---,m,

there is at least one inequality that holds. It is equivalent to

bi .
x]‘S\/a—ij, V]EJ

All the above constraints in the supply chain system could be formulated as

aipx; Napxy A+ Nappx, < bi,

i=1,2,--,m, (2.3)
xb<x <Y,
where x = (x1,- -+, x,), xY = (xV, -, xY) with
b
U _ i
W=\/ - (2.4)
iel Y
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and x* = (xk,---,x%) is a known vector with x* < xY. After unitization on the parameters and

variables, we always stipulate that a,-j,xj,bi,xJL.,xV € (0,1], for any i € I, j € J. Represent the

J
coeflicient matrix and the right-hand vector of system (2.3) by

A b,
A= A:2 and b’ = b2
A by
with A; = (a1, -+ ,a;). Let A®xT =[A; @ xT,--- ,A,, ® x]", where
Ai®x" = (an, -, aw) ® (x1,-++ , x)" = anx; Aapxy A+ A dyx,.
Then system (2.3) could be written as
Ax" <b", ¥ <x<aU (2.5)

2.2. Research motivation

As mentioned above, applying the min-product FRIs, i.e., system (2.3), to model the supply chain
system, x; represents the price of the goods supplied by the jth supplier § ;. As a result, each solution
x in system (2.3) indeed means a feasible pricing scheme of the goods. Accordingly, a given solution
corresponds to a preset pricing scheme provided by the system manager. Considering the sales volume
and profit, the suppliers might change the preset pricing scheme, i.e., the given solution. Therefore, for
a given solution, we focus on how much the components of it can withstand changes within a certain
range, ensuring it is still a solution.

Given a solution x% = (x¥,--- , x"), let

G

F“xa=(01f

ta, - X" ta).
where « reflects the change occurring in the ith component xf. If o is the maximum value of a,
ensuring both x¢ + @ and x© — « are still solutions of (2.3), then we call @ the maximum amplitude. Of
course, if a solution has a bigger maximum amplitude, then it is considered to be more flexible, because
it can bear a bigger change occurring in its components. In other words, the maximum amplitude of a
solution embodies its flexibility.

The purpose of this work is to find the maximum amplitude, or equivalently the maximum amplitude
interval solution, for a given solution in (2.3).
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Table 1. Main notations used in this work.

I Index set defined by (2.1)

J Index set defined by (2.2)

A Coefficient matrix of system (2.3)

b Right-hand vector of system (2.3)

X Decision variable vector of system (2.3)
xk Lower bound of the vector x

xY Upper bound of the vector x

X(A, b, x", xY) Solution set of system (2.3)

x Maximal solution of (2.3)

X Minimum solution of (2.3)

X(A, b, xL, xY) Maximal solution set of system (2.3)

x¢ A given solution in (2.3)

[x% - aY, x0 + aY] The MALIS of x¢ in system (2.3)

at Defined by (4.1)

v Index set defined by (5.2)

av Defined by (5.3) when IY = 0, and by (5.9) when IV # 0

3. Foundation on the min-product system (2.3)

In what follows, we denote the set of all solutions for system (2.3) by
XA, b, x5, 3 ={x e xY1 AT <bT).

As a consequence, X(A, b, xt, xY) # 0 means that system (2.3) is consistent or, say, solvable. On the
contrary, if X(A, b, x', xV) # 0, system (2.3) is said to be inconsistent. The maximal and minimum
solutions of (2.3) are defined in Definition 1 below.

Definition 1. A solution £ € X(A, b, xL, xV) is named maximal solution, if for any x € X(A, b, xL, xV),
x > % always implies x = £. A solution ¥ € X(A, b, xt, xV) is named minimum solution, if for any
x € X(A, b, xt, xY), it always holds X < x.

The following Theorem 1 could be used for checking whether system (2.3) is consistent.

Theorem 1. [9-13] System (2.3) is consistent iff x* € X(A,b,xt, xY). Moreover, when (2.3) is
consistent, x* is its minimum solution.

Proposition 1. [9-13] If x', x* € X(A, b, x*, xV) with x' < x*, then there is [x', x*] € X(A, b, x", xY).

In a consistent system (2.3), there might exist a minimum solution and some maximal solutions.
Moreover, for a consistent system (2.3), the whole solution set could be constructed by its minimum
solution and all maximal solutions. The structure to characterize the solution set is shown in Theorem
2 below.
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Theorem 2. [9—13] Assume that system (2.3) is consistent with the minimum solution x*. The solution
set can be written as
X(A, b, x", xV) = U [xF, 2]. (3.1)

£2eX(A,b,xL xU)

Here, the set X(A, b, x*, x) contains all the maximal solutions for (2.3).

In [11], the author has designed a detailed approach for obtaining the above solution set
X(A, b, xt, xY). In fact, it is equivalent to deriving all the maximal solutions. Moreover, the number
of maximal solutions should be finite. That is to say, )A((A,b,xL,xU) is actually a finite set, i.e.,
IX(A, b, x*, xY)| < .

4. Definition and brief property of the maximum amplitude interval solution

Given the solution x“ of system (2.3), i.e., x¢ € X(A, b, x%, xY).

Definition 2. (Maximum amplitude interval solution & Maximum amplitude) Let a© € [0, 1] be a real
number. The interval solution [x¢ —a?, x6 +a] is called maximum amplitude interval solution (MAIS)
of x© in system (2.3), if it fulfills:

() [x° — %, x% + %] C X(A, b, x*, xY);

(i) [x° — @, xY + a] € X(A, b, x*, xV) for arbitrary real number @ with @ > a°.
Correspondingly, a is called the maximum amplitude.

Next, we try to illustrate the existence and uniqueness of the MAIS. First, denote

L _ : G L
a” = r?elj}l{xj - x;h 4.1)

The following Proposition 2 shows the simple property of the above-denoted number .

Proposition 2. Let a* be defined as (4.1). Then the following statements hold.:

(i) " € [0,1];
(i) x¢ — ot € X(A, b, x", xY);
(iii) if @ > @*, then it holds x® — a ¢ X(A, b, x*, xY).
Proof 1. (i) Since x” is the minimum solution, while x® a general one, we have x* < x%, i.e.,

X —x;20, Vjel. 4.2)

Thus by (4.1), ot = mijn{xf — xk} > 0. Moreover,
JE

" <xf-xh<af <1, Vjel (4.3)

Hence, o € [0, 1].
(i) Since at > 0, by (4.3) we also have

xi<x§—at<x9, Vjel, (4.4)

G L L

ie., xf < x% — ol < x° According to Proposition 1, x£, x6 € X(A, b, xt, xV) implies x¢ — «a
X(A, b, xE, xY).

€
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G

(iii) According to (4.1), there is j* € J such that o = X =

xf If @ > of, then we have
xJL.* > xﬁ - a. 4.5)

Since x* the minimum solution, we know x¢ — o ¢ X(A, b, x*, xV). (Otherwise, there should be
xF < x6 — @, which conflicts with (4.5)) o

Proposition 3. Let o', @” be two real numbers satisfying the following four points:

Q) a,a” €[0,1];
(i) x¢ — o/, x% + @” € X(A, b, x*, xY);
(iii) if @ > ', then it holds x° — @ ¢ X(A, b, xL, xY).
(iv) if @ > @”, then it holds x° + @ ¢ X(A, b, x", xV).
Then, [x¢ —a’ A a”,x° + &’ A @] is the MAIS of x© in system (2.3).

Proof 2. Denote a® = o’ A @”. By (i), &, a” € [0, 1] implies a° = o’ A a” € [0, 1].

Since o/,a” € [0, 1], it is obvious that xX¢ — @’ < x% + . Considering x¢ — o/, x% + o” €
X(A, b, x£, xY) in (ii), we follow from Proposition 1 that [x°—a’, x° +a"’] € X(A, b, x*, xV). Considering
0<al=a Aa” <a,a”, we have

— < —a’ <x+a® <x"+a".

Thus, [x° — a%, x% + %] C [x¢ — &/, x° + @] € X(A, b, x*, xY).
Assume that « is an arbitrary number in [0, 1] with @ > ®. Since a® = a’ A o, it holds either

G G = o”. That is to say, either @ > @’ or @ > &” holds. If @ > «’, then by (iii), it holds

a” =da or
X —a ¢ XA, b, xt XY,

and
[x° — @, x% + a] € X(A, b, x, xY).

If @ > @”, then by (iv), it holds
X +aé¢ XA, Db, xt XY,

and
[x° — a,x° + a] Z X(A, Db, Xk, xU).

According to Definition 2, we know [x¢ —a%,x% + a®] = [xY —a’ Aa”, x° + @’ A @”] is the MAIS
of xY in system (2.3). o

Theorem 3. (Existence and uniqueness of the MAIS) If system (2.3) is consistent and x° is one of its
solutions, then MAIS of x° always exists. Moreover, when the MAIS of x© exists, it should be unique.

Proof 3. (Existence) It is previously pointed out |X(4, b, x*, xV)| < co. Denote
X = {2 e X(A,b, x5, xY) | x% < 3. (4.6)
Since x¢ € X(A, b, x*, xV), by Theorem 2, we know that there is £ € X(A, b, x, xV), with

X% e ¥t 3], ie, xE <Y < 1
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This indicates X # 0. As a subset of X(A, b, x£, xV), X€ is also a finite set. Assume that

O = (&2, (4.7)
where s is a positive integer. Denote
o =min{f) - x§}, I=1,--- s, (4.8)
jel
and
@V = max o' 4.9)

1<i<s
It could be directly checked that 0 < oV < 1.
We now prove that x¢ + oV € X(A, b, x£, xY). By (4.8) and (4.9), there exists [* € {1,---, s} such
that

@V = o' = min{®" — x%).
jel J
This indicates
v Sfc? —x?, Vjel,

i.e.,
x+a¥ <3, vjel

As aresult, x¢ < x% + aV < &', Following Proposition 1, we know x% + a¥ € X(A, b, x-, xY).
Next, we aim to prove, by contradiction, that for any @ > aV, there is x° + a ¢ X(A, b, x*, xY).
Otherwise, if x¢ + a € X(A, b, x*, xV), then by Theorem 2, we can find

e X(A, b, xt, xY),

so that x¢ + a € [xL, 2%], i.e.,

<l +a< i (4.10)

Since @ > a¥ > 0, it is clear x¢ < x + a < #*. Following (4.6), we find ¥ € X¢. Observing (4.7),
there exists # € {1, --- , s} such that £* = %’. Inequality (4.10) becomes x¢ + a < #* = &'. Thus,

X +as<i, Vjel (4.11)

Considering o' < max ' = oV < a, we further have
1<i<s

F-xfza>a, Vjel (4.12)

Besides, since o' = mijn{fc;. - xf}, there is jo € J, with
JE

— % G
a' =& -7 (4.13)
This is in contradiction with Inequality (4.12).

Until now, we have proved that the number defined by (4.8) and (4.9) fulfills:

(4.14)

(@) @Y €[0,1], x° +a¥ € X(A, b, x", xY),
(i) if @ > @Y, then x° + a ¢ X(A, b, x~, xY).
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On the other hand, it has been shown in Proposition 2 that number oL fulfills:

(4.15)

(iii) o% € [0,1], x° —al € X(A, b, x*, xY),
(iv) if @ > aF, then x° — a ¢ X(A, b, x", xY).

It follows from Proposition 3 that [x% — ol A @, xC + ol A %] is the MAIS of x© in system (2.3).
(Uniqueness) Suppose there are two MAISes of x° in system (2.3), denoted by [x¢ — o', xC + a©1]
and [x¢ — a2, x¢ + a©]. Then by (i) in Definition 2, we know

[x° — %, x% +a“'] C X(A, b, x5, xY),

and
[x% — a%, 1% + @°?] € X(A, b, x5, xY). (4.16)

We assert that %' = a©2. Otherwise, without loss of generality, we assume that a%' < a“2. Since %

is the MAIS of x%, by (ii) in Definition 2, we know
[x% — a?,x% + a“?] € X(A, b, x5, xY).

This is contradictory with the inclusion indicated in (4.16). As a consequence, there is %! = a2, i.e.,

[xC — a9, x0 + a“'] = [x% - a©?,x° + a©?], meaning the MAIS of the identical given solution x is

unique. O
5. Resolution of the maximum amplitude interval solution of a given solution

Previously, we have defined the concept of MAIS of x. Immediately following, we will try to
exploit the method for solving the MAIS of x“. Here, x“ is given as a preset solution of system (2.3).
Based on the upper bound vector xY, define

IV ={jellayx <b), i€l (5.1)
Moreover, based on these index sets, denote
IV ={iel|IY =0} (5.2)

In fact, it is easy to check IV # I. The index set IV helps us to classify the situations in solving the
MALIS of x©.

Theorem 4. For the upper bound xV, there is xV € X(A, b, xt, xV) & IV = 0.

Proof 4. Considering x* < xV < xY, there is
g

Ve XA, b, it Y o aﬂx? A a,-zxg Ao A a,-,,xf,] <b;, Viel
& for every i € [, there is j; € J, fulfilling al-j,.xg < b;
&IV #0, Viel
o1V =0.

The proof is complete. O
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5.1. In the case that 1V = 0

This subsection provides the MAIS of the given solution x© in the case that IV = . In such a case,
denote
U_ o (U_ G
a’ = rg_leljn{xj —x/} (5.3)

Proposition 4. The above-defined oV satisfies the following statements:

() o €[0,1];
(i) x° + a¥ € X(A, b, x£, xY);
(iii) if @ > @Y, then it holds x° + a ¢ X(A, b, xX, xY).

Proof 5. (i) Given the solution x%, there is x* < x¢ < xV. Thus,

@V = min{x¥ - 1%} > 0.
jer J

On the other hand, x*, xV € [0, 1]" indicates x© € [0, 1]". Thus,

U = i U — G < i U <
a r?eljn{xj X; 1 < rIjng}l{xl } < 1.
As a consequence, there is oV € [0, 1].
(i1) According to (5.3),
oV = r?eijn{xy —x0 < =49, vjel, (5.4)
i.e.,
X +a¥ <xf, Vjel (5.5)

This indicates x® + oV < xV. Since x* < x¢ < xY, we have
< x@ <xC+a¥ <AV (5.6)
On the other hand, since IV = 0, by Theorem 4, we find
xY € X(A, b, x*, xY).

Besides, by Theorem 1, we find
xb e X(A, b, x5, xY).

Considering (5.6) and Proposition 1, it holds x° + oV € X(A, b, x*, xY).

(iii) Since aV = mijn{xy —xJG} by (5.3), there is j° € J such that oV = x% —xJGO. Ifa>a? = x% —x¢
je

o
then xjf) +a> x%. That is to say, x° + & < xY doesn’t hold. Thus, x° + a ¢ X(A, b, x*, xY). O

Theorem 5. When IV = 0, the MAIS of the given solution x° is [x° —a®, x° +a%], where a® = a* AV,
ol and oY are as defined by (4.1) and (5.3).

Proof 6. The results in the theorem could be directly deduced from Propositions 2—4. O

AIMS Mathematics Volume 10, Issue 11, 26132-26152.



26143

5.2. Incase that1lV £ 0 and1V #1
In order to find the MAIS of x© in case that IV # @ and IV # I, we further define

bi
IW={jellxf<—=), Viel’,

Cl,‘j
and b
o =max{— -7}, Viel’.
jEJ al]
Moreover, let
U G
a” = min{min min x7 1)
{ldU{ 7, ]GJ{J i

Proposition 5. The above-defined oV satisfies the following statements:

@) a? €[0,1];
(i) x¢ + oV € X(A, b, x*, xY);
(iii) if @ > @Y, then it holds x¢ + & ¢ X(A, b, x*, xY).

Proof 7. (i) By (5.7), we know that

b;
?Sa—, V]EJG iell,
1.e.,
bi G U
——x >0, Vjel’,iel”.
a;j
So, we have
b;
aU_max{——x }>0, Viel.
JEJ aij
Thus,

min{a?} > 0.
ielv

Besides, x¢ < xV indicates xfj - qu > 0. Thus,

mm{x —X; a1,
jel

Inequalities (5.13) and (5.14) contribute to

a¥ = min{min{a"}, min{xY X; xJG}} > 0.

ielV jel
On the other hand,

U

ielv Jjed jev

Combining (5.15) and (5.16), we obtain ¥ € [0, 1].

«” = min{min{q; }mm{xj —xj}}<m1n{ 7 j}SxY—leSxfsl.

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)
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(ii) Since x* < x° < x¥ and @V € [0, 1], we have

xLSxGSxG+aU.

On the other hand, according to (5.9), it holds

@Y = min{min{e
ielv

U

i

: U G : U G
},rrjleljn{xj - X/ < %“{xf - X7}

As aresult, aV < xJL.’ - x?, Viel ie.,
G, U_ U \y:
xX;+a <xj, Vjel.

That is x° + @V < xY. Considering (5.17), we have x < x% + oV < xY.
Take arbitrarily i’ € 1.

Case 1. If i/ € 1Y, then by (5.2), JY = 0. Considering (5.8), there is j/ € J%, such that «

Thus,
av = min{min{aiu}, min{xj./ - x?}} < min{ozf/} <a, = b—l - x4,
ielV Jjed ielV ay jr
1.e.,
a,-:j/(x? +a¥) < by.

This implies that
ai(x; +a@”Y A+ A apn(x, +a¥) < a,vj/(x? +a") < by

Case 2. If i’ ¢ IV, then by (5.2), J7 # 0. Take arbitrarily j’ € J7. By (5.1), we have
a,vj/x? < bif.

Since
ol = min{min{af’
iell jer jel

.U .G .U G U_ G
Lomin{x; — X7} < minfx; —x/} < x; - x;.

We have x4 + @ < x{. Considering Inequality (5.22), there is

G U U
a,-/j/(xj, + ) < Airjp X < by.

This implies that

an(x; + @D A apmGon+a¥) A Aapn(x, + a@Y) < ai/j/(x? +a¥) < b,

Combining Inequalities (5.21) and (5.25), there is
an(x; + @D A - Aapa(x, +aY) < a,-/j/(xif +a¥) < by, Vi el

As aresult, xX¢ + oV € X(A, b, x*, xY).

(iii) Suppose a > aV = min{migl{a/f]}, mijn{xf.] — xf}}. Then either
i€l JE
a > min{a”},
ielV

(5.17)

(5.18)

(5.19)

= br _ 4G,
a,-rj/ J

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)
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or
.U _ .G
« > min{x? — x5
jel { J ]}
holds.
Casel. If a > migl{a/f/}, then there is i’ € IV such that
i€l
a > minfa?} = oY (5.27)
ielv

bﬂ

ayj

According to (5.8), @7 = max({

— x%). There is j* € IS such that
JjeI§ /

b'/ b'/ b'/
a =max{— —x¥} = — - x5 > — - x¥, Vkelf. (5.28)
el . J . J . i
Jel; ayj ap j Aajrk

It follows from (5.27) and (5.28) that

by
a>al >— -y, Vkelf,
Airk

1.e.,
ai (X +a) > by, VkelS. (5.29)

On the other hand, according to (5.7), we have

by
x> —, VkelS.
Apk

Note that @ > @V > 0. There is

by
x,f+a>ka>—’, Vk ¢ IS,

Airk
i.e.,
a0 +a) > by, Yk ¢S (5.30)
Inequalities (5.29) and (5.30) contribute to
ai(x¢ +a) > by, Vk¢l. (5.31)

Thus,
G G G
ap(x{ + @) Aap (x5 + @) A Aapy(x,] + @) > by.

This indicates x° + a ¢ X(A, b, x*, xY).
Case 2. If & > min{x{ — x%}, then there is j* € J such that & > min{x¥ — x%} = x¥ — x¢, i.e.,
jer J jer -/ J J J

G U
;xj/ +a > ,Xj/-

It is directly seen that the inequality x° + @ < xV doesn’t hold. As a consequence, x° + a ¢

X(A, b, xt, xY). m]

Theorem 6. When 1V # 0 and 1V # 1, the MAIS of the given solution x© is [x° — a®, xC + ©), and the
maximum amplitude is a® = o~ A oY, where o and aV are as defined by (4.1) and (5.9).

AIMS Mathematics Volume 10, Issue 11, 26132-26152.



26146

Proof 8. The results in the theorem could be directly deduced from Propositions 2, 3, and 5. O

Theorem 7. There is a one-to-one correspondence between X(A, b, x, xV) and the set of all maximum
amplitude interval solutions in system (2.3).

Proof 9. Take arbitrarily x!, x> € X(A, b, x*, xV). Suppose the MAIS of x! is [x' — a', x! + a'] while
that of x% is [x*> — @2, x> + @?].

(i) If x! = x2, then by Theorem 3, there is [x' — a!, x' + a'] = [x* — a?, x> + a?].

(i) If [x' — @', x' + @'] = [x* — @2, x* + @?], then

- =x-a% ' +a =+

As aresult, x' — x* = a! — @? = o — @'. This indicates o' = @® and x! = x°.

The above points (i) and (ii) show that the correspondence between the set X(A, b, x-, xV) and the
set of all maximum amplitude interval solutions is one-to-one. O

6. Resolution algorithm and illustrative example

Following the idea provided in the previous section, a resolution algorithm is designed to derive the
MALIS in this section. Moreover, some detailed examples will be provided to illustrate the efficiency of
the resolution algorithm.

Algorithm: for obtaining the MAIS of the given solution x°

Step 1. Compute value of o by (4.1).

Step 2. Construct the index sets {IV | i € I}, by (5.1).

Step 3. Construct the index set IV by (5.2). Check whether IV = 0. If IV = 0, turn to Step 4. While if
IV # 0 turn to Step 6.

Step 4. Compute value of « by (5.3).

Step 5. Compute a® = al A aV. As presented in Theorem 5, when IV = 0, the MAIS of x¢ in system
(2.3)is [x° — a“, x° + a“]. Terminate!

Step 6. Construct the index sets {J? |i eIV}, by (5.7).

Step 7. Compute value of ", for each i € IV, by (5.8).

Step 8. Compute value of aV by (5.9).

Step 9. Compute a’ = al A aV. As presented in Theorem 6, when IV # 0, the MAIS of x¢ in system
(2.3)is [x° — @Y, x° + a“]. Terminate!

Computational complexity

In our proposed algorithm, Steps 1-3 take 2n, 2mn, and m + 1 operations, respectively. After Step
3, there are two possible ways to continue the algorithm, i.e., go to Steps 4 and 5 or go to Steps 6-9.
Running Steps 4 and 5, these two steps cost 2n and 1 + 2n operations, respectively. While running
Steps 6-9, these four steps cost 2mn, 3mn, m + 2n, and 1 + 2n operations, respectively. Note that

2n+1+2n=4n+1<2mn+3mn+m+2n+1+2n=5S5mn+m+4n+ 1.
As a result, in the worst case, all the steps in the above algorithm cost
2n+2mn+m+1+5Smn+m+4n+1=Tmn+2m+6n+2

operations. Hence, the computational complexity is O(mn).
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Example 1. Given a supply chain, which has been reduced into the following FRIs with min-product:

0.8x; A 0.75x5 A 0.85x3 A 0.6x4 A 0.7x5 A 0.8x5 A 0.75x7 A 0.9x5 < 0.6,

0.75x1 A0.9x5 A 0.8x3 A 0.7x4 A0.9x5 A 0.75x6 A 0.7x7 A 0.8x5 < 0.64,

0.7x; A 0.8x; A 0.6x3 A 0.9x4 A 0.8x5 A 0.75x¢ A 0.87x7 A 0.72x5 < 0.56, 6.1)
0.81x; A 0.78x; A 0.75x3 A 0.88x4 A 0.65x5 A 0.7x6 A 0.8x7 A 0.9x5 < 0.6,

x> xk,

where x = (x,---,xg) and x* = (0.5,0.45,0.48,0.51,0.49,0.52,0.43,0.4). According to Eq. (2.4),
we can directly compute the upper bound of system (6.1) as

x¥ = (0.8533,0.8,0.9333, 1,0.9230,0.8571,0.9142, 0.8).
Applying our proposed algorithm, try to compute the MAIS of the provided solution
x“ =(0.67,0.63,0.7,0.75,0.7,0.68,0.65, 0.6)

in system (6.1).

Solution:
Step 1. Compute o’ by (4.1) as follows. Since

x% — xt =(0.67,0.63,0.7,0.75,0.7,0.68,0.65,0.6) — (0.5,0.45,0.48,0.51,0.49,0.52,0.43,0.4)
=(0.17,0.18,0.22,0.24,0.21,0.16,0.22,0.2),

we have
at = min{qu - x?} =1{0.17,0.18,0.22,0.24,0.21,0.16,0.22,0.2} = 0.16.

1<j<8

Step 2. Construct the index sets {JZ.U | 1 <i<4},by(5.1), as follows:

J? ={l<j< 8|a1jX§-] < b} =1{2,4},
I ={1<j<8layxy <b}={1,7,8},
I ={1<j<8lasjxy < b3} ={3),

T) ={1 < j<8|ayx¥ < by} =1{5,6)

Step 3. Obviously, for i = 1,2,3,4, it always holds JV # 0. According to (5.2), there is IV = 0. Thus,
we turn to Step 4.
Step 4. Compute value of @V by (5.3):

Q’U

=min{0.8533 - 0.67,0.8 — 0.63,0.9333 - 0.7,1 - 0.75,

0.923 - 0.7,0.8571 - 0.68,0.9142 - 0.65,0.8 — 0.6}
=min{0.1833,0.17,0.2333,0.25,0.223,0.1771, 0.2642, 0.2}
=0.17.
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Step 5. Based on the above-obtained values of oF and ¥, we gain a® = ol Aa¥ = 0.16 A0.17 = 0.16.
Since IV = 0, it follows from Theorem 5 that the MAIS of x© in system (6.1) is

[x¢ - a®, x° + a®] = ([0.51,0.83],[0.47,0.79],[0.54, 0.86], [0.59, 0.91],

6.2
[0.54,0.86],[0.52,0.84],[0.49,0.81], [0.44,0.76]). 62

Example 2. Given a supply chain, which has been reduced into the following FRIs with min-product:

0.8x1 A 0.75x5 A 0.85x3 A 0.6x4 A 0.7x5 A 0.8xg A 0.75x7 A 0.9x5 < 0.6,
0.75x1 A 0.9x3 A 0.8x3 A 0.7x4 A 0.9x5 A 0.75x6 A 0.7x7 A 0.8xg < 0.64,
0.7x; A 0.8x3 A 0.6x3 A 0.9x4 A 0.8x5 A 0.75x6 A 0.87x7 A 0.72x5 < 0.56,
0.81x; A 0.78xy A 0.75x3 A 0.88x4 A 0.65x5 A 0.7x6 A 0.8x7 A 0.9x5 < 0.6,
0.8x1 A 0.75x5 A 0.85x3 A 0.78x4 A 0.9x5 A 0.7x6 A 0.82x7 A 0.65x53 < 0.6,
0.9x; A0.7x5 A0.8x3 A 0.8x4 A 0.75x5 A 0.85x5 A 0.85x7 A 0.75x53 < 0.62,
0.78x; A 0.85x; A 0.75x3 A 0.65x4 A 0.85x5 A 0.8x6 A 0.7x7 A 0.85xg < 0.58,

x> xk,

(6.3)

where x = (x1,---,xg) and x* = (0.5,0.45,0.48,0.51,0.49,0.52,0.43,0.4). According to Eq. (2.4),
we can directly compute the upper bound of system (6.1) as

x¥ =(0.8533,0.8,0.9333, 1,0.9230,0.8571,0.9142, 0.8).
Applying our proposed algorithm, try to compute the MAIS of the provided solution
x% =(0.7,0.6,0.8,0.8,0.7,0.65,0.75,0.55)

in system (6.3).
Solution:
Step 1. Compute o’ by (4.1) as follows. Since
x% — x£ =(0.7,0.6,0.8,0.8,0.7,0.65,0.75,0.55) — (0.5, 0.45,0.48,0.51,0.49, 0.52, 0.43, 0.4)
=(0.2,0.15,0.32,0.39,0.21,0.13,0.32,0.15),

we have
at = min{xf - ij»} =1{0.2,0.15,0.32,0.39,0.21,0.13,0.32,0.15} = 0.13.

1<j<8

Step 2. Construct the index sets {Jf] |1 <i<T7},by(5.1)

W =Al SjSSIaljx;]Sb]} ={2,4},
Jg ={l1<j< 8|a2]~x§/ < b} =1{1,7,8},
I ={1<j<8layx? <bs} = {3},
Jf{-{l §j38|a4jx§]$b4}:{5,6},
W=1v=1"=0
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Step 3. According to the results obtained in step 2 and Eq (5.2), there is IV = {5,6,7} # 0. Thus, we

turn to Step 6.
Step 6. Construct the index sets {J¢ | i € IV} = {I¢,1¢,I9}, by (5.7).

J¢ = {1<]<8|x <a5}—{1268}

JTG {1<]<8|x_ —1=1{2,5,6,8},

6

I = {1<]<8|x < 1 =1{1,2,4,6,7,8).

7j

Q
\

Q
Py

Step 7. Compute value of a/f], foreachi =5,6,7, by (5.8).

U b

a —max{—5 - X; !
3 jGJG 615]
06 0.6 06 0.6
= max{—— — 0.7, —— — 0.6, —= — 0.65, —— — 0.
=max{ge - 0.7, 55 = 0.6, 77 — 065, (7es = 0.55)
= max{0.05,0.2,0.2071,0.3730}
~0.373.

In the same way, we find af = 0.2857 and o = 0.1323 after calculation.
Step 8. Compute value of @V by (5.9). Since

=min{0.8533 - 0.7,0.8 — 0.6,0.9333 - 0.8,1 - 0.8,

0.923 -0.7,0.8571 — 0.65,0.9142 — 0.75,0.8 — 0.55}
=min{0.1533,0.2,0.1333,0.2,0.223,0.2071,0.1642, 0.25}
=(.1333.

G
- x5}

U _ i _ .G
by (5.9), we have a” = mln{l£15116n7{ ; vy, 1m<]1<r§{x X; 1}.

Uo_ - . U _ .G

a” = mln{ig}({l7{al 1, 11£1]1<r§{xj X; 1}
= min{0.373,0.2857,0.1323,0.1333}
= 0.1323.

Step 9. Since a® = 0.13 A 0.1323 = 0.13, the MAIS of x© in system (6.3) is [x° — a®, x¢ + a“], where

x% —a“ =(0.57,0.47,0.67,0.67,0.57,0.52,0.62,0.42),
x% + % = (0.83,0.73,0.93,0.93,0.83,0.78,0.88,0.68).

7. Conclusions

In several existing works, min-product FRIs have been defined and adopted to describe the
constraints in a supply chain system. In fact, the constraints mean the requirements of price, which
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should be satisfied. Characterized by the min-product FRIs, represented by system (2.3), any pricing
scheme turns out to be a solution in system (2.3). For a given pricing scheme, or say a solution
in system (2.3), the biggest variability among the components allowed for ensuring its feasibility in
system (2.3) is characterized by the so-called MAIS in this work. If the MAIS is wider, we think the
solution is more stable. The contribution of this work is to develop the resolution algorithm in Section
4. Applying our proposed algorithm, the MAIS of any given solution could be directly computed
step-by-step. Two numerical examples are enumerated to check the feasibility of the algorithm.

In the past few decades, the FRIs or FREs with different kinds of composition have been introduced
to model various real-world systems. All these systems require considering the stability of the feasible
scheme. As a consequence, extending the MAIS to some other kinds of FRIs or FREs becomes an
important research direction. We will develop and compare some different resolution methods for the
MALIS in such kinds of FRIs or FREs.
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