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Keywords: escape time algorithms; iterative methods; Jungck-Noor iteration; s-convexity; fractals;
Julia set; Mandelbrot set; computational complexity
Mathematics Subject Classification: 28A10, 31E05, 37F10, 37F46, 47H10

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20251148


26078

1. Introduction

Fractal geometry captivates researchers through its artistic appeal and the complexity of its
structures [1, 2]. Unlike traditional Euclidean geometry, fractal geometry enables the modeling
of problems that would otherwise be analytically intractable [3]. The concept of a “fractal” was
introduced in 1975 by Benoit Mandelbrot, whose most famous contribution, the Mandelbrot set [4],
is celebrated for its intricate boundary, aesthetic richness, and wide-ranging applications. Mandelbrot
also established that the boundary of the Mandelbrot set corresponds to Julia sets, a concept originally
studied by Gaston Julia [5]. Together, the Mandelbrot and Julia sets have become central to the
visualization and analysis of complex dynamical systems (see [6–8], and references therein). A
simple quadratic polynomial of the form f (z) = z2 + a3, where a3 ∈ C, can generate highly intricate
fractals. Early constructions of Mandelbrot and Julia sets relied on the Picard iteration [9] to compute
escape times. Over the years, researchers have introduced advanced iterative schemes such as the
Krasnosel’skii–Mann method [10], Jungck–Ishikawa with s-convexity [11], Ishikawa [12], Jungck–CR
with s-convexity [13], Mann [14], Noor [15], Noor iteration with s-convexity [16], Picard–Mann with
s-convexity [17], Jungck–Mann with s-convexity [18], four-step iteration with s-convexity [19], SP-
iteration with s-convexity [20, 21], and Fibonacci-Mann [22], each revealing new aspects of fractal
dynamics for various polynomial families [23–25]. More recently, studies have extended fractal
dynamics to fractional systems, diffusion-limited aggregation (DLA), highlighting their significance
in physical and applied contexts [26–28]. Building upon this literature, Jolaoso et al. [29] investigated
biomorphs using higher-order polynomials of the form f (z) = zn + a1z2 + a2z + a3.

In the present paper, we refine this polynomial model and employ the Jungck–Noor iteration with
s-convexity to establish a novel escape-time criterion. The s-convexity is used to ensure clarity
and precision, as it plays a crucial role in modifying convergence behavior. The Jungck–Noor and
Jungck–Ishikawa orbits are also formally defined, with explicit expressions for the points Tuk and
Tyk, to eliminate ambiguity. While the Julia and Mandelbrot sets are mathematically invariant under
different iterative schemes, the choice of algorithm influences the numerical approximation, visual
representation, and computational cost. Our approach highlights how polynomial degree n, convexity
parameter s, and iteration parameters α1, α2, and α3 shape the resulting fractals in terms of geometry,
symmetry, and color. To ensure transparency, Section 4.1 provides the rationale for parameter choices
in both Julia and Mandelbrot cases, showing how they produce nonclassical deviations and “mutant”
variants. Our MATLAB-based algorithms generate fractals in under four seconds, supported by
a color-mapping technique for enhanced visualization. Numerical experiments reveal a nonlinear
dependence of generation time on iteration parameters, with s exerting the strongest influence. The
zoomed boundaries of the Mandelbrot set reveal embedded Julia sets, reaffirming their deep structural
interdependence and self-similarity. Interestingly, several generated patterns bear resemblance to
Kachhi thread work, a traditional embroidery art from Gujarat, India, indicating potential applications
in textile design. In addition to aesthetic and computational insights, our theorems and corollaries
provide generalizations and refinements of existing results, addressing gaps in earlier works such as
Nazeer et al. [30]. We also acknowledge the relevance of recent studies on noise-perturbed Julia and
Mandelbrot sets (Andreadis & Karakasidis [31]; Sun et al. [32]), which provide a natural direction for
extending this framework to perturbed and physically inspired systems.

The remainder of the paper is structured as follows: Section 2 introduces preliminary concepts,

AIMS Mathematics Volume 10, Issue 11, 26077–26105.



26079

including a formal definition of s-convexity. Section 3 develops the Jungck–Noor iteration with s-
convexity and derives escape radii. Section 4 presents algorithms and visualizations of Julia and
Mandelbrot mutants. Section 5 analyzes numerical results, including the generation time versus
parameter dependence. Section 6 concludes with key findings, while a concise discussion of
future work highlights possible extensions to noise-perturbed maps, higher-dimensional systems, and
applications in physical modeling.

2. Preliminaries

The filled Julia set [1, 5] of a complex polynomial f : C→ C of degree ≥ 2 is described as

F f = {z ∈ C : {| f k(z)|}∞k=0 is bounded},

where f k(z) is the k-fold composition of f with itself (that is, the kth iteration of the function). The
set F f consists of all complex numbers whose orbits remain bounded and do not reach infinity. The
boundary of F f is the Julia set of f , that is, J f = ∂F f .

The Mandelbrot set M [2, 4] is defined as

M = {a3 ∈ C : Fk
fa3

is connected}.

For the complex-valued polynomial fa3(z) = z2 + a3, the connected Julia set F fa3
represents the set of

all complex-valued parameters. Equivalently, the Mandelbrot set can be expressed as

M =
{
a3 ∈ C : {| f k

a3
(τ)|}∞k=0 ↛ ∞ as k → ∞

}
,

where τ is a critical point of f (z).
The definition of the Mandelbrot set provides a computational method for visualizing it. We

consider a square in the Argand plane and select a mesh of equidistant points within this square as
values of a3. Using a computer, we determine whether the orbit of 0 for each a3-value remains bounded
or escapes to infinity. If the orbit of 0 diverges, we color the corresponding pixel white; otherwise,
we shade it dark. The set of dark-colored points represents the Mandelbrot set. Some points near
the boundary of the Mandelbrot set may exhibit orbits that take a large number of iterations before
escaping. In such cases, we use a finite number of iterations to approximate whether a given a3-value
belongs to the Mandelbrot set.

For Julia sets, z represents a coordinate in the image and acts as a variable, while a3 is a fixed
complex constant. The value of a3 remains unchanged during the visualization of a specific Julia set,
but different values of a3 yield different Julia set images.

Li et al. [33] used the Jungck-Mann iteration, incorporating s-convexity, to generate filled Julia sets
and their boundaries (see also [34]). Nazeer et al. [30] applied Jungck-Mann and Jungck-Ishikawa
fixed-point iterations, also with s-convexity, to generate both Julia and Mandelbrot fractals. If two
maps S ,T : C → C are given such that T has degree ≥ 2, S is one-to-one and we consider sequences
generated by Jungck-type iterations, where the usual convex weights are replaced by s-weighted
weights (1−α)s and αs with s ∈ (0, 1], and then for an initial point z0 ∈ C, parameters α1, α2, α3 ∈ (0, 1),
and k = 1, 2, . . . , the sequence {zk} follows one of the iterative schemes below:
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(i) Jungck-Mann orbit equipped with s-convexity (JMOs) if

S zk : S zk = (1 − α1)sS zk−1 + α1
sTzk−1.

This is a one-step feedback system defined by four parameters: (T, z0, α1, s).
(ii) Jungck-Ishikawa orbit equipped with s-convexity (JIOs) if

S zk : S zk = (1 − α1)sS zk−1 + α1
sTyk−1,

S yk−1 = (1 − α2)sS zk−1 + α2
sTzk−1.

This is a two-step feedback system defined by five parameters: (T, z0, α1, α2, s). Here, Tyk denotes
the image of the point yk under T . The intermediate point yk is the (pre-image) point satisfying
S (yk) = (1 − α2)sS (zk) + αs

2T (zk). When S is invertible (or at least has a suitable right/left inverse
on the relevant range) we recover yk = S −1((1 − α2)sS zk + α

s
2Tzk). If S is not invertible, we work

directly with the S -image sequences S zk and S yk (this is a standard Jungck approach).
(iii) Jungck-Noor orbit equipped with s-convexity (JNOs) [35] if

S zk : S zk = (1 − α1)sS zk−1 + α
s
1Tyk−1,

S yk−1 = (1 − α2)sS zk−1 + α
s
2Tuk−1,

S uk−1 = (1 − α3)sS zk−1 + α
s
3Tzk−1. (2.1)

This is a three-step feedback system defined by six parameters: (T, z0, α1, α2, α3, s). Tuk means T
applied to the point uk . The point uk is determined (uniquely when S is invertible on the relevant
set) by the first equation: uk = S −1((1 − α3)sS zk + α

s
3Tzk). Similarly, yk is determined from the

second equation once uk is known. If S is not invertible, one may equivalently treat the iteration
on the S -image level (i.e., iterate the sequence S zk using the formulas above); this is the usual
Jungck formalism.

Remark 2.1. The Jungck-Noor orbit with s-convexity diminishes to the Jungck-Ishikawa orbit [11]
when α3 = 0, s = 1; Jungck-Maan Orbit [18] when α2 = α3 = 0, s = 1; Picard orbit [9] when
S (z) = z, α1 = 1, α2 = α3 = 0, s = 1; Mann orbit [14] when S (z) = z, α2 = α3 = 0, s = 1; Ishikawa
orbit [12] when S (z) = z, α3 = 0, s = 1; Jungck-Mann orbit with s-convexity when α2 = α3 = 0; and
Jungck-Ishikawa orbit with s-convexity [30] when α3 = 0.

3. Escape time algorithm in Jungck-Noor orbit equipped with s-convexity

In this study, we employ the three-step Jungck–Noor fixed point iteration enhanced with s-
convexity, refining the classical approach for nth order complex polynomials. Given an initial
approximation z0 and a complex polynomial f (z), the iteration generates each next point as a weighted
combination of previous iterates and polynomial evaluations: S zk = (1 − α1)sS zk−1 + α

s
1Tzk−1, k ≥ 1,

where S and T are operators defined by f (z), α1 is the iteration weight, and s ∈ (0, 1] is the s-convexity
parameter. This parameter regulates the contribution of the previous iterate relative to the current
polynomial evaluation and intermediate Jungck step, introducing a nonlinear weighting effect. It
directly influences convergence speed, escape dynamics, fractal geometry, density, brightness, and
boundary detail. Smaller values of s slow convergence but produce finer structural details, while
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larger values accelerate convergence with simpler visual patterns. Thus, s-convexity serves as a tuning
mechanism, enabling systematic generation of fractals ranging from compact, high-brightness patterns
(s ≤ 0.5) to intricate, highly detailed structures (s→ 1).

Equipping the iteration with s-convexity modifies the weighting of successive steps. Instead of
linear convex combinations, the parameter s introduces a nonlinear weighting effect. This adjustment
directly influences the convergence rate (escape or boundedness), the geometry of the fractal structure
(shape, symmetry, and density), and the computational complexity (time per iteration). In particular,
smaller values of s tend to slow convergence but produce finer structural details, whereas larger values
accelerate convergence at the expense of reduced complexity in visual patterns. Thus, s-convexity
serves as a tuning mechanism, allowing the iterative scheme to balance computational efficiency with
the richness of fractal features. We prove the escape criteria and determine threshold escape radii to
explore some mutants of celebrated fractals via Jungck-Noor iteration equipped with s-convexity for a
polynomial f (z) = zn + a1z2 − a2z + a3, where n ≥ 3 and a1, a2, and a3 are complex numbers.

Theorem 3.1. Suppose f (z) = zn + a1z2 − a2z + a3 is a polynomial of degree n, where a1, a2, a3 are
complex parameters. Let |z0| ≥ |a3| >

(
2(1+|a2 |)

sαi |(an−2
3 +a1)|

)
for i = 1, 2, 3 and real constants α1, α2, α3, s in the

interval (0, 1). Let {zi}i∈N be the Jungck Noor-iteration equipped with s-convexity as defined in (iii),
and let S z = a2z and Tz = zn +a1z2 +a3. Then, as k tends to∞, the orbit of z0 tends to∞, i.e., |zk| → ∞

as k → ∞.

Proof. If k = 1

S uk−1 = (1 − α3)sS zk−1 + α
s
3Tzk−1

implies

|S u0| = |(1 − α3)sS z0 + α
s
3Tz0|

= |(1 − α3)sa2z0 + α
s
3(zn

0 + a1z2
0 + a3)| using S (z) = a2z and T (z) = zn + a1z2 + a3

≥ |(1 − α3)sa2z0 + sα3(zn
0 + a1z2

0 + a3)|, αs
3 ≥ sα3, since α3, s ∈ (0, 1]

≥ |sα3(zn
0 + a1z2

0) + (1 − α3)sa2z0| − sα3|a3|

≥ |sα3(zn
0 + a1z2

0) + (1 − α3)sa2z0| − sα3|z0|, |z0| ≥ |a3|

≥ |sα3(zn
0 + a1z2

0)| − |(1 − α3)sa2z0| − sα3|z0|.

Expanding (1 − α3)s up to linear terms of α3, we get

|S u0| ≥ |sα3(zn
0 + a1z2

0)| − |(1 − sα3)a2z0| − sα3|z0|, (For s ∈ (0, 1] and α3 ∈ (0, 1), (1 − α3)s ≤ 1 − sα3)
= sα3|(zn

0 + a1z2
0)| − |a2z0| + |sα3a2z0| − sα3|z0|

≥ sα3|(zn
0 + a1z2

0)| − |a2z0| − sα3|z0|, |sα3a2z0| ≥ 0,

which gives us

|a2u0| ≥ sα3|(zn
0 + a1z2

0)| − |z0| − |a2z0|, sα3 < 1
= sα3|z2

0||(z
n−2
0 + a1)| − |z0|(1 + |a2|)

≥ |z0|
(
sα3|z0||(an−2

3 + a1)| − (1 + |a2|)
)
, using the assumption that |z0| ≥ |a3|

= |z0|(1 + |a2|)
( sα3|z0||(an−2

3 + a1)|
(1 + |a2|)

− 1
)
.
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Thus

|u0| ≥
|a2u0|

(1 + |a2|)
= |z0|

( sα3|z0||(an−2
3 + a1)|

(1 + |a2|)
− 1
)
.

Now

|z0| ≥ |a3| >
2(1+|a2 |)

sα3 |(an−2
3 +a1)| implies that sα3 |z0 ||(an−2

3 +a1)|
(1+|a2 |)

− 1 > 1.

Hence |u0| > |z0|.
Now,

S yk−1 = (1 − α2)sS zk−1 + α
s
2Tuk−1,

which implies

|S y0| = |(1 − α2)sS z0 + α
s
2Tu|

= |(1 − α2)sa2z0 + α
s
2(un

0 + a1u2
0 + a3)|

≥ |(1 − α2)sa2z0 + sα2(un
0 + a1u2

0 + a3)|, αs
2 ≥ sα2, α2, s ∈ (0, 1]

≥ |sα2(un
0 + a1u2

0) + (1 − α2)sa2z0| − sα2|a3|

≥ |sα2(un
0 + a1u2

0) + (1 − α2)sa2z0| − sα2|z0|, |z0| ≥ |a3|

≥ |sα2(un
0 + a1u2

0)| − |(1 − α2)sa2z0| − sα2|z0|.

Expanding (1 − α2)s up to linear terms of α2, we have

|S y0| ≥ |sα2(un
0 + a1u2

0)| − |(1 − sα2)a2z0| − sα2|z0| (For s ∈ (0, 1] and α2 ∈ (0, 1), (1 − α2)s ≤ 1 − sα2)
= sα2|(un

0 + a1u2
0)| − |a2z0| + |sα2a2z0| − sα2|z0|

≥ sα2|(un
0 + a1u2

0)| − |a2z0| − sα2|z0|, |sα2a2z0| ≥ 0

which gives us

|a2y0| ≥ sα2|(un
0 + a1u2

0)| − |z0| − |a2z0|, sα2 < 1
= sα2|u2

0||(u
n−2
0 + a1)| − |z0|(1 + |a2|)

> sα2|z2
0||(z

n−2
0 + a1)| − |z0|(1 + |a2|), |u0| > |z0|

≥ |z0|
(
sα2|z0||(an−2

3 + a1)| − (1 + |a2|)
)

= |z0|(1 + |a2|)
( sα2|z0||(an−2

3 + a1)|
(1 + |a2|)

− 1
)
.

Thus

|y0| ≥
|a2y0|

(1 + |a2|)
= |z0|

( sα2|z0||(an−2
3 + a1)|

(1 + |a2|)
− 1
)
.

Now

|z0| ≥ |a3| >
2(1+|a2 |)

sα2 |(an−2
3 +a1)| implies that sα2 |z0 ||(an−2

3 +a1)|
(1+|a2 |)

− 1 > 1.
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Hence |y0| > |z0|.
Again,

S zk = (1 − α1)sS zk−1 + α
s
1Tyk−1,

which implies

|S z1| = |(1 − α1)sS z0 + α
s
1Ty0|

= |(1 − α1)sa2z0 + α
s
1(yn

0 + a1y2
0 + a3)|

≥ |(1 − α1)sa2z0 + sα1(yn
0 + a1y2

0 + a3)|, αs
1 ≥ sα1, since α1, s ∈ (0, 1]

≥ |sα1(yn
0 + a1y2

0) + (1 − α1)sa2z0| − sα1|a3|

≥ |sα1(yn
0 + a1y2

0) + (1 − α1)sa2z0| − sα1|z0|, |z0| ≥ |a3|

≥ |sα1(yn
0 + a1y2

0)| − |(1 − α1)sa2z0| − sα1|z0|.

Expanding (1 − α1)s up to linear terms of α1, we get

|S z1| ≥ |sα1(yn
0 + a1y2

0)| − |(1 − sα1)a2z0| − sα1|z0| (For s ∈ (0, 1] and α1 ∈ (0, 1), (1 − α1)s ≤ 1 − sα1)
= sα1|(yn

0 + a1y2
0)| − |a2z0| + |sα1a2z0| − sα1|z0|

≥ sα1|(yn
0 + a1y2

0)| − |a2z0| − sα1|z0|, |sα1a2z0| ≥ 0

which gives us

|a2z1| ≥ sα1|(yn
0 + a1y2

0)| − |z0| − |a2z0|, sα1 < 1
= sα1|y2

0||(y
n−2
0 + a1)| − |z0|(1 + |a2|)

> sα1|z2
0||(z

n−2
0 + a1)| − |z0|(1 + |a2|), |y0| > |z0|

≥ |z0|
(
sα1|z0||(an−2

3 + a1)| − (1 + |a2|)
)

= |z0|(1 + |a2|)
( sα1|z0||(an−2

3 + a1)|
(1 + |a2|)

− 1
)
.

Thus

|z1| ≥
|a2z1|

(1 + |a2|)
= |z0|

( sα1|z0||(an−2
3 + a1)|

(1 + |a2|)
− 1
)
.

Since |z0| ≥ |a3| >
2(1+|a2 |)

sα1 |(an−2
3 +a1)| , then sα1 |z0 ||(an−2

3 +a1)|
(1+|a2 |)

− 1 > 1. Hence, there exists a λ > 0 so that
sα1 |z0 ||(an−2

3 +a1)|
(1+|a2 |)

− 1 > 1 + λ > 1. As a result,

|z1| ≥ (1 + λ)|z0|.

So, |z1| > |a3| (|z1| > (1 + λ)|a3| > |a3|, since |z0| > |a3|).
Hence, |z1| > |a3| >

2(1+|a2 |)
(sα1 |a

(
3n−2)+a1 |)

. Also |z1| ≥
2(1+|a2 |)

(sα2 |a
(
3n−2)+a1 |)

and |z1| ≥
2(1+|a2 |)

(sα3 |a
(
3n−2)+a1 |)

. Hence, we can

apply the above arguments for k = 2, and obtain

|z2| ≥ (1 + λ)|z1| ≥ (1 + λ)2|z0|.

In the same way, for all k , we obtain |zk| > (1 + λ)k|z0| (following the above procedure repeatedly).
Hence, |zk| → ∞ as k → ∞. □
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Corollary 3.1. Let |zm| > max
{
|a3|,

2(1+|a2 |)
sα1 |(an−2

3 +a1)| ,
2(1+|a2 |)

sα2 |(an−2
3 +a1)| ,

2(1+|a2 |)
sα3 |(an−2

3 +a1)|

}
, where m ≥ 0. Then |zm+k| >

(1 + λ)k|zk| and the Jungck-Noor orbit equipped with s-convexity for the sequence {zk} tends ∞ as
k → ∞ for an initial point z0 ∈ C.

Remark 3.1. (i) Jolaoso et al. [29] assumed a1 ∈ {0, 1} while considering a2 and a3 to be complex
numbers. However, in our approach, we treat a1, a2, and a3 as complex numbers by replacing
a2 with −a2. This choice of parameters has not been previously studied in the context of the
Jungck-Noor orbit equipped with s-convexity (JNOs).

(ii) Based on Remark 2.1, our conclusions enable the derivation of the escape time algorithm for the
iterative methods such as the Jungck-Mann fixed point iteration [34] and the Jungck-Ishikawa
iteration [36], both endowed with s-convexity, for polynomial f (z) = zn + a1z2 − a2z + a3, where
n ≥ 3, and a1, a2, a3 ∈ C. For a1 = 0, the polynomial reduces to f (z) = zn − a2z + a3, which was
previously studied by Nazeer et al. [30]. However, the inclusion of the term a1z2, where a1 is any
complex number, adds a new fascinating dimension to our conclusions, making them particularly
insightful within the three-step Jungck-Noor iterative procedure equipped with s-convexity.

(iii) Nazeer et al. [30] proved the escape criterion using Jungck-Mann and Jungck-Ishikawa iterations
equipped with s-convexity for the function f (z) = zn − a2z + a3, but they did not explore
the corresponding fractals. The authors claimed to have applied the principle of mathematical
induction to prove Theorem 4.9 (respectively, Theorem 3.9) [30]. First, they used Theorems 4.1
and 4.5 (respectively, Theorems 3.1 and 3.5) to prove the initial step of the theorem. However,
their inductive assumption was not applied in their proof for n+1, meaning that they did not fully
utilize the principle of mathematical induction.

(iv) Other results of Nazeer et al. [30] contain errors due to their use of binomial expansion truncated
at linear terms, which is not valid for the assumed parameters. One may easily check that neither
(1 − α)s ≥ 1 − sα nor (1 − (1 − α))s ≥ 1 − s(1 − α) holds in (0, 1].

(v) Mistakes of the same type can also be observed in papers where the escape criterion is derived for
complex polynomials using different iterations equipped with s-convexity, such as Cho et al. [16],
Gdawiec et al. [37], Kang et al. [35], Kumari et al. [21], Kwun et al. [13], Li et al. [33], Nazeer
et al. [30], Zhang et al. [38], and others. As a result, we have developed a method for obtaining the
escape criterion for more general polynomials using a three-step Jungck-Noor iterative procedure
equipped with s-convexity (see Tomar et al. [34] for Jungck-Mann iteration equipped with s-
convexity and Antal et al. [36] for Jungck-Ishikawa iteration equipped with s-convexity).

(vi) Our theorems and corollaries demonstrate the significance of s-convexity in the Jungck-Noor
iteration for exploring the geometry of complex fractals. Furthermore, if we substitute the
convexity parameter s = 1, we get the comparable results present in the literature.

(vii) Corollary 3.1 provides an algorithm for generating fractals of Ta3 . If |z| ≤ |a3|, we get JNOs of
z. If |zk| lies outside the circle of radius max

{
|a3|,

2(1+|a2 |)
sα1 |(an−2

3 +a1)| ,
2(1+|a2 |)

sα2 |(an−2
3 +a1)| ,

2(1+|a2 |)
sα3 |(an−2

3 +a1)|

}
for n ≥ 3,

then the orbit JNOs escapes. This implies that z does not lie in the interior of the Mandelbrot or
Julia fractals. On the other hand, if |zk| does not go beyond this bound, then by the definitions of
Julia and Mandelbrot fractals, we apply these techniques to explore Mandelbrot and Julia sets in
Section 5.

(viii) It is worth mentioning here that Banach [39] used Picard iteration [9] to approximate a fixed point
of the involved contraction mapping, which does not necessarily converge for slightly weaker
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mapping. As a result, one-step Mann iteration [14], two-step Ishikawa iteration [12], and three-
step Noor iteration [15], among others, have been initiated by distinct researchers to resolve this
issue for various contractions.

4. Julia and Mandelbrot fractals

To generate fractals using the escape time algorithm for the higher-order complex polynomial
via the Jungck-Noor iteration scheme equipped with s-convexity, we first develop algorithms (see
Algorithms 1 and 2). We then implement these algorithms using MATLAB 8.5.0 (R2015a) software,
and apply a color map (see Figure 1) to visualize the results.

Figure 1. Colormap.

We set the maximum number of iterations to K = 50. The resolution of the obtained fractals
is adjusted to 400 × 400 pixels. All simulations are executed on a computer with the following
specifications: Intel(R) Core(TM) i5-8250U CPU (@1.60GHz) processor, 8GB RAM, and Microsoft
Windows 10(64-bit).

Algorithm 1 : Generation of Julia fractals
Input: T (z) = zn + a1z2 + a3, S z = a2z, where a1, a2, a3 ∈ C, a2 , 0; α1, α2, α3, s ∈ (0, 1]-parameters of
the Jungck-Noor fixed point procedure equipped with s-convexity; K-a maximum number of iterations;
A ⊂ C-area; colormap[0..C − 1]-color map with C colors.
Output: Julia set for area A.

1: for z0 ∈ A do

2: R1 =

 2(1 + |a2|)
sα1|an−2

3 + a1|


3: R2 =

 2(1 + |a2|)
sα2|an−2

3 + a1|


4: R3 =

 2(1 + |a2|)
sα3|an−2

3 + a1|


5: R = max [|a3|,R1,R2,R3]
6: n = 0
7: while n ≤ K do
8: un =

(1 − α1)sS zn + α
s
1T (zn)

a2

9: yn =
(1 − α2)sS zn + α

s
2T (un)

a2

10: zn+1 =
(1 − α3)sS zn + α

s
1T (yn)

a2
11: if |zn+1| > R then
12: break
13: end if
14: n = n + 1
15: end while
16: i = ⌊(C − 1) n

K ⌋

17: color z0 with colormap[i]
18: end for
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Algorithm 2 : Generation of Mandelbrot fractals
Input: T (z) = zn + a1z2 + a3, S z = a2z, where a1, a2, a3 ∈ C, a2 , 0; α1, α2, α3, s ∈ (0, 1]-parameters of
the Jungck-Noor fixed point procedure equipped with s-convexity; K-a maximum number of iterations;
A ⊂ C-area; colormap[0..C − 1]-color map with C colors.
Output: Mandelbrot set for area A.

1: for a3 ∈ A do

2: R1 =

 2(1 + |a2|)
tα1|an−2

3 + a1|


3: R2 =

 2(1 + |a2|)
tα2|an−2

3 + a1|


4: R3 =

 2(1 + |a2|)
tα3|an−2

3 + a1|


5: R = max [|a3|,R1,R2,R3]
6: n = 0
7: z0 = 0
8: while n ≤ K do
9: un =

(1 − α1)sS zn + α
s
1T (zn)

a2

10: yn =
(1 − α2)sS zn + α

s
2T (un)

a2

11: zn+1 =
(1 − α3)sS zn + α

s
1T (yn)

a2
12: if |zn+1| > R then
13: break
14: end if
15: n = n + 1
16: end while
17: i = ⌊(C − 1) n

K ⌋

18: color a3 with colormap[i]
19: end for

When presenting Julia and Mandelbrot sets, we make the parameter choices deliberately to
highlight specific dynamical behaviors rather than arbitrarily. We vary parameters such as polynomial
degree, constant coefficients, iteration weights, and convexity systematically to capture effects like
symmetry, boundary transitions, fractal area shrinkage, and computational efficiency. A summary of
representative parameter choices and their rationale is given in Table 1.
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Table 1. Parameter selection and rationale for fractal visualization.

Fractal type Parameter(s) Value(s) chosen Rationale

Julia Sets Degree n 3–20, irrational e To study area shrinkage,
circularity, and petal structures

Julia Sets Constants a1, a2, a3 Positive/negative, To capture symmetry,
conjugates, 1–30 reflections, and partition effects

Julia Sets Iteration parameters 0.9→ 0.01, 0.2–0.05 To test sensitivity,
α1, α2, α3 shape transitions, and efficiency

Julia & Mandelbrot Sets Convexity s 0.1–1 To explore brightness, density,
and computational trade-offs

Mandelbrot Sets Constants a1, a2 Varying ± values To demonstrate symmetry,
rotational effects, and shrinkage

Both Conjugation a1 7→ ā1 To show mirror symmetry

Both Iteration Depth, 200–500 iters, radius = 2 To balance fine details
Escape Radius with computational cost

These choices are tailored to the Jungck–Noor iteration framework to study complex dynamics and
fractal visualization.

4.1. Julia fractals

In Figure 2(a), a beautiful fractal is visible for n = 3. It is akin to the double urn, having a decorative
boundary with limb-like structures, and is symmetrical about the X-axis. Figure 2 represents fractals
for the same parameter values, differing only in the degree of the polynomial n. We observe that the
area occupied by the fractal decreases with the increase in the value of n, and the time taken to generate
each Julia set decreases from 2.101533 to 1.468428 seconds.

The input parameters (Figure 2) are a1 = 0.8 − 0.8i, a2 = 10, a3 = −2.275 − 0.99i, α1 =

0.022165, α2 = 0.022679, α3 = 0.022165, and s = 0.5.

(a) n = 3, A = [−12, 12]2 (b) n = 4, A = [−5.5, 5.5]2

Figure 2. Effect of the degree of the complex-valued polynomial n on the Julia sets.

Figure 3 represents a fractal for n = 20 with the parameter values a1 = 0, a2 = 200, a3 = −2.275 −
0.99i, α1 = 0.022165, α2 = 0.022679, α3 = 0.022165, and s = 0.7, within the domain A = [−2, 2]2.
We observe that as parameter n increases, the fractal shape becomes more circular, which is akin to a
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circular saw. The time taken to generate this fractal is 1.939024 seconds.

Figure 3. Julia set for a higher-order polynomial for n = 20.

Remark 4.1. Figure 4 represents a fractal generated with the parameters a1 = 1, a2 = 40, a3 = −2.275−
0.99i, α1 = 0.022165, α2 = 0.022679, α3 = 0.022165, and s = 0.51. This is a special kind of Julia
fractal, generated when n is an irrational number that occupies a significantly huge area ([−38, 38]2),
compared to all other explored fractals. Almost all the fractals lie in the plane having an area less than
or equal to [23 × 23]2. As a result, we may point out that not only do we get fractals for a complex-
valued polynomial of a higher degree, but also for the complex-valued functions of the type whose
degree is an irrational number. The time taken to generate this fractal is 0.637488 seconds.

Figure 4. Julia set for a function whose degree is an irrational number (e ≈ 2.718).

The input parameters for Figure 5 are as follows:

(1) a1 = 0, a2 = 150, a3 = −2.275 − 0.99i, α1 = 0.022165, α2 = 0.022679, α3 = 0.022165, n = 7, s =
0.351.

(2) a1 = 1, a2 = 2, a3 = −0.45 − 45i, α1 = 0.001498, α2 = 0.0798, α3 = 0.001498, n = 3, s = 0.95.

Clearly, the septic Julia set generated in 1.717499 seconds exhibits symmetry along both axes, while
the cubic Julia set generated in 1.235802 seconds is symmetrical only about the Y-axis.
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(a) n = 7, s = 0.351, A = [−3.5, 3.5]2 (b) n = 3, s = 0.99, A = [−11, 11]2

Figure 5. Some random Julia sets.

The parameters used in Figure 6 are a1 = 1, a2 = 2, a3 = 0.0045 − 70i, α1 = 0.00001, α2 =

0.0098, α3 = 0.00001, and n = 4. It is interesting to note that in Figures 6(a) and 6(b), as the value of
s decreases from 0.99 to 0.7, the area in which fractals lie decreases from [−11, 11]2 to [−7, 7]2, while
the time taken to generate them increases from 1.237418 and 1.390322 seconds.

(a) s = 0.99, A = [−11, 11]2 (b) s = 0.7, A = [−7, 7]2

Figure 6. Effect of convexity parameter s on the quartic Julia sets.

By taking the conjugate of the complex parameter a1, we obtain a mirror image about the initial line
(see Figure 7). The time taken to generate these quintic Julia sets is 1.493986 and 1.532822 seconds.
The parameters used in Figure 7 are as follows: a2 = 4, a3 = 0.7, α1 = 0.00001, α2 = 0.0098, α3 =

0.00001, n = 5, and s = 0.5.

(a) a1 = 19i, A = [−6, 6]2 (b) a1 = −19i, A = [−6, 6]2

Figure 7. Effect of the conjugate of parameter a1 on the quintic Julia sets.

Figure 8 represents Julia fractals of the polynomial for real parameter values: a1 = 1, a2 = 1, a3 =
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−1, s = 0.95, α1 = 0.001498, α2 = 0.0798, α3 = 0.001498 for n = 4 to 6 and n = 9, respectively. These
fractals are very interesting as they appear like Kachhi thread works (Kutch embroidery), a traditional
art form famous in Gujarat (India) and in other symmetries. For n = 4, the amazing triangular form
emerges. Similarly, for n = 5, the pattern takes on a square-like structure, following a general trend
where the fractal shape aligns with one less than the polynomial’s degree.

(a) n = 4, A = [−9, 7] × [−8, 8] (b) n = 5, A = [−4, 4]2

(c) n = 6, A = [−4, 4]2 (d) n = 9, A = [−2.5, 2.5]2

Figure 8. Effect of the degree of the polynomial n on the Julia sets.

Further, we notice that the area acquired by the Julia set and the time taken to generate it decrease
(2.250810 to 1.390145 seconds) with the increase in the degree of the polynomial n.

From Figures 9 and 10, it can be seen that as the parameters a1 and a2 change their sign, the size of
the fractal remains unchanged. However, this results in mirror images in the fractal pattern. The time
taken to generate these images is 1.281162 to 1.306099 seconds. The parameters used in Figures 9
and 10 are as follows: a3 = 0.7, α1 = 0.00001, α2 = 0.0098, α3 = 0.00001, n = 4, and s = 0.55.

(a) a1 = −9i, a2 = 2.9, A = [−13.5, 10.5] × [−12, 12] (b) a1 = 9i, a2 = −2.9, A = [−10.5, 13.5] × [−12, 12]

Figure 9. Effect of the conjugate of the parameter a1 on the quartic Julia sets.
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(a) a1 = 9, a2 = 2.9, A = [−13.5, 10.5] × [−12, 12] (b) a1 = 9, a2 = −2.9, A = [−10.5, 13.5] × [−12, 12]

Figure 10. Effect of the change in sign of the parameter a2 on the quartic Julia sets.

The parameters used in Figures 11(a) and 11(d) are as follows: a1 = 6, a2 = 20, α1 = 0.01565, α2 =

0.0679, α3 = 0.0165, n = 5, and s = 0.41. We observe that as the value of the constant parameter a3

changes from 1 to 30, a beautiful aura appears between the quintic Julia sets, which divides them into
two parts. The gap between these sections widens with the increase in the constant term a3, while the
time taken to generate these decreases from 1.548287 to 1.480358 seconds. However, the area remains
the same.

The parameters used in Figure 12 are as follows: a1 = 6, a2 = 20, a3 = 10, α1 = 0.1565, α3 =

0.0165, n = 5, and s = 0.41. A significant change in the shape of the quintic Julia set is observed as
the value of α2 used in the Noor-iteration decreases from 0.9 to 0.01. Noticeably, the shape similar to
a kite turns into a beautiful flower in the same area. Also, the time taken to generate these increases
from 1.462533 to 1.476392 seconds.

(a) a3 = 1, A = [−4, 4]2 (b) a3 = 10, A = [−4, 4]2

(c) a3 = 20, A = [−4, 4]2 (d) a3 = 30, A = [−4, 4]2

Figure 11. Effect of the parameter a3 on the quintic Julia sets.
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(a) α2 = 0.9, A = [−6, 6]2 (b) α2 = 0.5, A = [−6, 6]2

(c) α2 = 0.1, A = [−6, 6]2 (d) α2 = 0.01, A = [−6, 6]2

Figure 12. Effect of parameter α2 on the quintic Julia sets.

(a) α1 = 0.9, A = [−6, 6]2 (b) α1 = 0.5, A = [−6, 6]2

(c) α1 = 0.1, A = [−6, 6]2 (d) α1 = 0.01, A = [−6, 6]2

Figure 13. Effect of a decrease in parameter α1 on the quintic Julia sets.

The parameters used in Figure 13 are as follows: a1 = 6, a2 = 20, a3 = 10, α2 = 0.0679, α3 =

0.0165, n = 5, and s = 0.41. Not much change in the shape and size of the quintic Julia sets is
seen as the value of α1 used in the Noor-iteration decreases from 0.9 to 0.01. However, the number
of kinks along the boundary increases. However, the time taken to generate these fractals decreases
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from 1.529644 to 1.491905 seconds with a decrease in the value of α1.

The parameters used in Figure 14 are as follows: a1 = 6, a2 = 20, a3 = 10, α1 = 0.01565, α2 =

0.0679, n = 5, and s = 0.41. A decrease in α3 used in the Noor-iteration adds beauty to the quintic
Julia set, maintaining the same area. However, a decrease in the generation time of the quintic Julia
sets, from 1.525437 to 1.355064 seconds, is observed.

(a) α3 = 0.9, A = [−5, 5]2 (b) α3 = 0.3, A = [−5, 5]2

(c) α3 = 0.1, A = [−5, 5]2 (d) α3 = 0.01, A = [−5, 5]2

Figure 14. Effect of a decrease in parameter α3 on the quintic Julia sets.

4.2. Mandelbrot fractals

A significant change in shape and a decrease in the area in which the cubic Mandelbrot set lies, are
observed as the absolute value of parameter a1 used in the complex-valued cubic polynomial decreases.
The time taken to generate these lies between 1.618447 and 2.845240 seconds.

The real parameters used in Figure 15 are as follows: a2 = −1, α1 = 0.022165, α2 = 0.022679, α3 =

0.022165, s = 0.5, and n = 3.

The parameters used in Figure 16 are as follow: a1 = 0, a2 = −1, α1 = 0.022165, α2 =

0.022679, α3 = 0.022165, and s = 0.5. Fractals resembling Rangoli, a traditional Indian art form
created during festive seasons, are observed. The number of petals in each fractal is n − 1, where n
is the degree of the complex-valued polynomial. It is fascinating to see that the quartic Mandelbrot
set bears a resemblance to the Mitsubishi logo. Also, there is a decrease in the occupied area with the
increase in n and the time taken to generate these increases from 2.011438 to 3.371230 seconds.
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(a) a1 = −10i, A = [−4.5, 4.5] × [−5.5, 3.5] (b) a1 = −6i, A = [−15, 15] × [−25, 5]

(c) a1 = −4i, A = [−15, 15] × [−20, 10] (d) a1 = 0, A = [−10, 10]2

Figure 15. Effect of parameter a1 on the cubic Mandelbrot sets.

(a) n = 4, A = [−5, 5]2 (b) n = 6, A = [−2.5, 2.5]2

(c) n = 10, A = [−1.5, 1.5]2 (d) n = 20, A = [−0.8, 0.8]2

Figure 16. Effect of the degree of polynomial n on the Mandelbrot sets.

The parameters used in Figure 17 are as follow: a1 = 0, α1 = 0.03, α2 = 0.25, α3 = 0.05, s = 0.6,
and n = 4. There is not much difference in the shapes of the quartic Mandelbrot sets except for the
appearance of a ring at the center and a decrease in the area in which these lie when the value of
the coefficient of z (parameter a2) decreases from 3 to 1. The time taken to generate these increases

AIMS Mathematics Volume 10, Issue 11, 26077–26105.



26095

from 1.021400 to 2.140588 seconds.

(a) a2 = 3, A = [−23, 23]2 (b) a2 = 1, A = [−6, 6]2

Figure 17. Effect of parameter a2 on the quartic Mandelbrot sets.

(a) α1 = 0.9, A = [−1.5, 1.5]2 (b) α1 = 0.1, A = [−16, 16]2

Figure 18. Effect of parameter α1 on the quartic Mandelbrot sets.

The parameters used in Figure 18 are as follow: a1 = 0, a2 = −1, α2 = 0.022679, α3 = 0.022165, s =
0.9, and n = 4. A decrease in the value of parameter α1 adds color and volume to the quartic Mandelbrot
set and the time taken to generate these are 2.021277 and 1.777622 seconds, respectively.

The parameters used in Figure 19 are as follow: a1 = 0, a2 = −1, α1 = 0.1, α3 = 0.022165, s = 0.9,
and n = 4. A decrease in parameter α2 adds beauty and volume to the quartic Mandelbrot set and the
time taken to generate these are 1.774143 and 1.157254 seconds, respectively.

(a) α2 = 0.9, A = [−2.2, 2.2]2 (b) α2 = 0.1, A = [−18, 18]2

Figure 19. Effect of parameter α2 on the quartic Mandelbrot sets.

The parameters used in Figure 20 are as follow: a1 = 0, a2 = −1, α1 = 0.05, α2 = 0.01, s = 0.6, and
n = 4. A decrease in the value of parameter α3 adds beauty and volume to the quartic Mandelbrot set.
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The time taken to generate these fractals decreases from 2.071507 to 1.944949 seconds.

(a) α3 = 0.9, A = [−2.8, 2.8]2 (b) α3 = 0.5, A = [−3.8, 3.8]2

(c) α3 = 0.2, A = [−4, 4]2 (d) α3 = 0.05, A = [−6, 6]2

Figure 20. Effect of parameter α3 on the quartic Mandelbrot sets.

(a) s = 1, A = [−4, 4]2 (b) s = 0.8, A = [−3, 3]2

(c) s = 0.5, A = [−1.3, 1.3]2 (d) s = 0.1, A = [−0.4, 0.4]2

Figure 21. Effect of convexity parameter s on the quintic Mandelbrot sets.

The parameters used in Figure 21 are as follow: a1 = 0, a2 = −1, α1 = 0.05, α2 = 0.1, α3 = 0.5,
and n = 5. The time taken to generate these quintic Julia sets lies between 2.647744 and 3.023838
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seconds. The area in which the fractal lies decreases with the decrease in the convexity parameter s.
Also, a significant change in shape is observed.

Remark 4.2. The comparative study reveals that the proposed Jungck-Noor iteration with s-
convexity [35] surpasses the classical Picard iteration [9] in terms of generality, convergence speed,
computational efficiency, and fractal visualization. This approach opens new avenues for exploring
higher-order polynomials and complex fractal structures, making it essential for modern fractal
dynamics and polynomial escape criteria analysis. Notably, Jungck-type iterations exhibit a faster
convergence rate than the Picard iteration. Studies have shown that multi-step iterative schemes
in fractal generation reduce computational time by over 30% compared to Picard iterations, further
highlighting the efficiency of the proposed method.

However, fully analyzing the results is challenging due to the complexity of the three-step Jungck-
Noor iteration, which involves multiple parameters (α1, α2, α3, s) and additional parameters from the
underlying higher-order polynomial f (z) (such as a1, a2, a3). Consequently, studying the impact of
individual parameter variations remains an ongoing research topic. Even a single parameter change
(e.g., in Figure 7, where only s is modified) results in distinct fractal structures. Thus, in Corollary 3.1,
we have confined our analysis to selected parameter combinations, covering a majority of possible
variations to establish escape radii. Mandelbrot and Julia fractals have been explored for various
complex-valued polynomials using different parameter sets. However, this study presents only a subset
of fractals to highlight the distinct impact of each parameter. Key observations are:

(i) As n increases, the area occupied by the fractal diminishes (see Figures 8 and 16).
(ii) The fractal structure becomes circular (see Figure 3 for n = 20, where the Julia fractal resembles

a circular saw or teething ring).
(iii) Fractals of a polynomial of degree n typically contain n − 1 petals.
(iv) Parameters such as a1, a2, and a3 and the iteration parameters α1, α2, and α3 play a crucial role in

defining fractal shapes.
(v) Changes in the signs of a1 and a2 result in reflexive and rotational symmetry (see Figures 7, 9,

and 10).
(vi) The area occupied by the Mandelbrot set decreases as α1, α2, and α3 increase.

(vii) Beautiful fractal images emerge for both rational and irrational values of n.
(viii) The generation time for all fractals ranges between 1.02 and 3.37 seconds.

(ix) Graphical illustrations emphasize the significance of the three-step Jungck-Noor fixed point
iteration with s-convexity in studying complex fractal structures.

(x) Adjusting parameters (see Remark 2.1) allows for generalizations and improvements over
previous fixed point iteration results in the literature.

(xi) The value of s determines the volume of the fractal (see Figures 5 and 21).
(xii) When s ≤ 0.5, increased brightness appears around the boundary.

(xiii) As s→ 1, brightness decreases, revealing more intricate details in the fractal structure.

5. Dependence between visualization time and parameters of the Jungck-Noor iteration with
s-convexity

In Section 4, we observed significant variations in the shapes, sizes, and generation times of the
Mandelbrot and Julia fractals generated using the Jungck-Noor procedure with s-convexity. Analyzing
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the dependency of fractal shape, size, and generation time on the parameters involved in the iterative
process is non-trivial. To explore this non-trivial dependency, we conducted numerical experiments
to investigate the computational efficiency of the Jungck-Noor iteration in generating Mandelbrot and
Julia fractals.

For each experiment, we:

(1) Varied the parameters α1, α2, α3, and s.
(2) Measured the time required to generate each fractal.
(3) Observed that non-escaping points in escape-time algorithms significantly impact the generation

time. A higher number of non-escaping points within the computed area leads to a longer
generation time.

We studied the complex-valued polynomial f (z) = z4+a1z2−a2z+a3. The complex plane [−4, 4]×
[−4, 4] was divided into a 400 × 400 grid. The Jungck-Noor iteration with s-convexity was applied
at each grid point. We computed the generation time for parameter pairs: (α1, s), (α2, s), (α3, s)
∈ {0.1, 0.2, 0.3, . . . , 0.9} × {0.1, 0.2, 0.3, . . . , 0.9} using MATLAB 8.5.0 (R2015a). The resolution of the
generated fractals was 400 × 400 pixels, following Algorithms 1 and 2.

Figures 22–27 present the analytical expressions for generation time as a function of (α1, s), (α2, s),
and (α3, s). These expressions were generated using the TableCurve 3D v4.0 software from SYSTAT
Software Inc. The approximations follow a linear model:

w = a + bα1 + cs,

w = a + bα2 + cs,

w = a + bα3 + cs,

where a, b, and c are constants determined via the least squares method for surface fitting. The
coefficient of determination, r2 = 1, confirms a perfect fit for the data. Key observations are:

Minimum generation time of the Mandelbrot set:

(i) α1 = 0.1, s = 0.7, and t = 1.5799 seconds (Figure 22);
(ii) α2 = 0.2, s = 0.1, and t = 1.62908 seconds (Figure 23); α3 = 0.1, s = 1, and t = 1.62134 seconds

(Figure 24).

Maximum generation time of the Mandelbrot set:

(i) α1 = 0.9, s = 0.6, and t = 2.93227 seconds;
(ii) α2 = 0.1, s = 0.1, and t = 3.4774 seconds;

(iii) α3 = 0.9, s = 0.9, and t = 2.50632 seconds.

Minimum generation time of the Julia set:

(i) α1 = 0.1, s = 1, and t = 1.50644 seconds (Figure 25);
(ii) α2 = 0.1, s = 0.7, and t = 1.08346 seconds (Figure 26);

(iii) α3 = 0.2, s = 1, and t = 1.26573 seconds (Figure 27).
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Maximum generation time of the Julia set:

(i) α1 = 0.8, s = 0.4, and t = 1.87705 seconds;
(ii) α2 = 0.7, s = 0.2, and t = 2.205 seconds;

(iii) α3 = 1, s = 0.8, and t = 2.1386 seconds.

Figure 22. Time-space for the Mandelbrot set depending on (α = α1, s).

Figure 23. Time-space for the Mandelbrot set depending on (β = α2, s).

Figure 24. Time-space for the Mandelbrot set depending on (γ = α3, s).
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Figure 25. Time-space for the Julia set depending on (α = α1, s).

Figure 26. Time-space for the Julia set depending on (β = α2, s).

Figure 27. Time-space for the Julia set depending on (γ = α3, s).
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Comparison with Picard iteration

(a) Jungck-Noor may indeed converge in fewer steps than Picard. Because each Jungck-Noor step is
computationally heavier, the total wall-clock time can still be greater.

(b) The generation time for the standard Picard iteration is 1.05 seconds.
(c) Although the Jungck–Noor iteration requires fewer steps to reach convergence compared to the

classical Picard method, each Jungck–Noor step involves more computational operations (due
to additional averaging terms and function evaluations). Consequently, the overall wall-clock
time for fractal visualization may be higher, even if the iteration count is lower. To make this
distinction precise, we introduce a cost model that accounts for both the number of iterations and
the per-iteration arithmetic complexity.
We can justify it by the cost model. Define cost as: Total Cost = N ×Citer, where N = number of
iterations until convergence, Citer = computational cost of a single iteration (measured in floating-
point operations or execution time per iteration). Then:

(i) Picard iteration: lower Citer, higher N.
(ii) Jungck–Noor iteration: higher Citer, lower N. So the trade-off depends on the product N ×

Citer, not just the iteration count.

Remark 5.1. The fractal patterns generated in this study resemble traditional designs like “Kachhi
thread work”, establishing a link between mathematical theory and real-world applications in fashion
and textile design. These intricate fractal structures also have potential applications in digital
watermarking and AI-generated art, demonstrating the practical significance of the theoretical concepts
explored in this paper.

The escape criteria for polynomials and the visualization of Mandelbrot and Julia sets presented
in this study can be applied in various fields, including: (a) Image processing, (b) Textile design,
(c) Cryptography, (d) AI-generated art, and (e) Pattern recognition. These applications highlight the
broader impact of fractal theory beyond pure mathematics, extending into technology, security, and
creative industries.

6. Conclusions

In this study, we utilize the three-step Jungck-Noor fixed point iteration with s-convexity for nth-
order complex-valued polynomials, refining the approach of Jolaoso et al. [29]. Our method introduces
a more natural escape criterion for higher-order polynomials, which was absent in prior studies [13,16,
21, 30, 35, 37], etc. Key findings include:

(1) For irrational values of n, the generated Julia fractals occupy a larger area compared to
conventional fractals (see Figure 4).

(2) The fractal generation process takes between 1 to 4 seconds, with variations influenced by:
(a) Polynomial degree (n)
(b) Convexity parameter (s)
(c) Iteration parameters (α1, α2, α3)
(d) Shape and symmetry parameters (a1, a2, a3).

(3) Numerical experiments reveal that s-convexity plays a dominant role in determining generation
time, surpassing the influence of α1, α2, and α3.
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(4) Certain fractals resemble Kachhi threadwork designs, suggesting potential applications in textile
design.

(5) The findings hold significance for fixed point theorists, physicists, and textile engineers, bridging
theoretical insights with practical applications in science and industry.

Future research may extend this framework by examining higher-order polynomials (a4z4, a5z5,. . . )
and their impact on symmetry, escape dynamics, and fractal dimension. Such work could reveal new
geometries, self-similar structures, and conditions for symmetry breaking, akin to phase transitions.
Rising computational demands for higher powers also call for efficient escape-time algorithms and
possible complexity classifications of fractals. Another open problem is a construction of parameter
bifurcation diagrams with analytically determined thresholds, which could clarify how coefficients
shape fractal structures. Finally, comparative studies across iterative schemes, as suggested in the
literature, may help assess relative efficiency and graphical fidelity.

7. Open questions

While this paper establishes escape criteria for the polynomial f (z) = zn + a1z2 − a2z + a3 using the
Jungck-Noor iteration and s-convexity, several important open questions remain:

(1) Can more generalized escape criteria be established for polynomials of the form f (z) = zn +∑m
i=1 aizi, where m > 3?

(2) Can the impact of higher-order terms on the nature of fractal structures be fully characterized?
How do these terms affect the complexity, symmetry, and self-similarity of fractals?

In addition, some of the existing literature permits comparative analyses of different graphs generated
under distinct iterative schemes. Extending our study to include such cross-method comparisons for
producing identical fractals would provide deeper insights into the relative efficiency and graphical
fidelity of the methods. This direction will be pursued in future work.

Author contributions

Anita Tomar: Conceptualization, methodology, investigation, writing−review and editing;
Swati Antal: Investigation, formal analysis, software, writing−original draft; Mohammad Sajid:
Conceptualization, methodology, funding acquisition, validation, writing−review and editing;
Darshana J. Prajapati: Conceptualization, methodology, validation, writing−original draft. All authors
have read and approved the final version of the manuscript for publication.

Use of Generative-AI tools declaration

The authors declare they have not used artificial intelligence (AI) tools in the creation of this article.

Acknowledgments

The researchers would like to thank the Deanship of Graduate Studies and Scientific Research at
Qassim University for financial support (QU-APC-2025).

AIMS Mathematics Volume 10, Issue 11, 26077–26105.



26103

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. M. F. Barnsley, Fractals everywhere, 2 Eds., San Diego: Academic Press, 1993.
https://doi.org/10.1016/c2013-0-10335-2

2. R. L. Devaney, A first course in chaotic dynamical systems: Theory and experiment, 2 Eds., New
York: Chapman and Hall/CRC, 2020. https://doi.org/10.1201/9780429280665

3. J. Hu, H. Shen, X. Liu, J. Wang, RDMA transports in datacenter networks: Survey, IEEE Netw.,
38 (2024), 380–387. https://doi.org/10.1109/mnet.2024.3397781

4. B. B. Mandelbrot, The fractal geometry of nature, New York: W. H. Freeman and Company, 1982.
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intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 11, 26077–26105.

https://doi.org/10.1007/s11071-015-2145-7
https://doi.org/10.1109/access.2019.2920026
https://doi.org/10.1002/mma.8262
https://doi.org/10.1155/2015/963016
https://doi.org/10.3934/math.2022611
http://dx.doi.org/10.30538/oms2018.0017
https://doi.org/10.3934/math.2021761
https://doi.org/10.4064/fm-3-1-133-181
https://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Escape time algorithm in Jungck-Noor orbit equipped with s-convexity
	Julia and Mandelbrot fractals
	Julia fractals
	Mandelbrot fractals

	Dependence between visualization time and parameters of the Jungck-Noor iteration with s-convexity
	Conclusions
	Open questions

