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Abstract: In this study, we examined the impact of stochastic factors on the dynamics of nonlinear
wave propagation by developing a damped modified Korteweg-de Vries (mKdV) equation
incorporating multiplicative noise, mathematically characterized by a Wiener process. Standard
deterministic models, although proficient in idealized contexts, frequently fail to accurately depict
the complex behaviors elicited by the stochastic fluctuations intrinsic to physical systems. To
mitigate this limitation, we utilized a hybrid analytical-numerical approach, employing the modified
simple equation method to obtain a spectrum of precise soliton and solitary wave solutions. We ran
complementary numerical simulations to find out how different levels of noise affect the time
evolution and structural stability of these waveforms. The results showed that solitons keep their
structure intact when there is not much noise. Nevertheless, as the noise level grows, the amplitude
modulation and potential destabilization become more noticeable. Graphs like density maps and
three-dimensional surface plots can be used to see how random changes make waves less predictable.
These results demonstrated how crucial it is for nonlinear wave models to include random parts. Future
research on complex noise profiles, multi-variable systems, and real-world validation approaches will
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benefit from this. A stochastic damped mKdV framework, which incorporates multiplicative noise
with traditional deterministic or additive-noise analysis, is presented in this article. This paints a fuller
picture of the way in which randomness evolves in response to actual system states.

Keywords: solitary solution; exact solution; stochastic differential equations; damped mKdV
equation.
Mathematics Subject Classification: 34A34, 34C15, 34C25, 35L65, 37N30

1. Introduction

Numerous physical phenomena, particularly in the fields of fluid dynamics, plasma physics, and
optical communications, have been greatly enriched by investigations of solitons and solitary waves
in nonlinear systems. A strong theoretical groundwork for soliton theory has been laid by the
substantial contributions of Ablowitz and Clarkson [1], Hasegawa and Kodama [2], Lakshmanan and
Rajasekar [3], and Wazwaz and Hirota [4,5]. Moreover nonlinear evolution equations characterizing
the behavior of solitary waves are shown to be integrable in this paper.

A substantial amount of interest has been shown in the production and propagation of solitons in
plasma settings, particularly in dusty plasmas. The dynamics of these systems are determined by the
complex interactions that occur between nonlinear, dispersive, and stochastic factors. Among the
most significant elements that have an impact on the behavior of waves, ion distribution profiles,
dust grain charge fluctuation, and relativistic corrections are among the most essential aspects [6-9].
However, deterministic frameworks usually fail to effectively capture the stochastic properties that
are inherent to experimental and natural systems, despite the fact that they have been shown to be
effective in idealized circumstances. There is a significant possibility that random fluctuations, which
are typical in both laboratory and astrophysical plasmas, can have a significant impact on the
development and stability of solitonic structures. This makes purely deterministic models less
reliable. The mKdV equation is one of the most important models used in this context. It is a
powerful way to describe how nonlinear waves move through dispersive media. In dusty plasmas,
this method is commonly used to differentiate dust-acoustic waves from dust-ion-acoustic waves.
Researchers such as Asgari et al. [6], Baluku and Helberg [7], and Kalita and Kalita [8] have studied
how relativistic dynamics, dust grain charging mechanisms, non-thermal particle distributions, and
other factors affect these waves' characteristics. Researchers built on these results by looking at how
temperature changes and complex ion populations play a role [10-12].

Solitons are essential for the transport of energy and information in dispersive media; however,
realistic environments introduce dissipation and stochastic fluctuations that significantly alter their
dynamics. In the domains of optical fiber and plasma, multiplicative white noise, as represented by a
Wiener process, affects amplitude, width, and coherence, potentially resulting in broadening,
splitting, and degradation [13—20]. Analogous phenomena are evident in stochastic generalizations of
integrable models, such as the Gerdjikov-Ivanov, perturbed Triki-Biswas, Schamel, and fractional
Fokas—Lenells equations, wherein noise influences the existence, stability, and interaction properties
of solitary waves [14,15,17,19]. Complementary analyses of noisy optical concatenation models
delineate regimes of robust versus fragile propagation [13,16], while studies of KdV-type and
fractional Fokas—Lenells formulations link multiplicative noise to waveform deformation and
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transitions to incoherent states [18,19]; at a broader dynamical-systems level, advances in
symmetry-based reductions for transmission-line models and in attractor/basin geometry reveal how
noise and dissipation reconfigure phase-space structure with implications for synchronization and
control [20,21]. Inspired by this body of work, we develop and examine a stochastic damped mKdV
framework with multiplicative forcing, elucidate its mechanistic differentiation from additive noise,
and explore the interplay between randomness and damping in regulating soliton formation, stability,
and persistence. By using both analytical methods (like perturbative/collective-coordinate reductions
and conservation-law diagnostics adapted to stochastic settings) and high-fidelity numerical
simulations, we measure changes in amplitude, width/shape, and coherence caused by noise. We also
map parameter regimes that separate robust, metastable, and degraded behavior, and we check
continuity with deterministic theory by recovering classical damped-mKdV dynamics in the
zero-noise limit [17—19]. The framework improves the classical mKdV model by taking into account
recent developments in Schamel, KdV, and fractional Fokas-Lenells models. It also makes optical
communication and plasma wave applications more physically accurate. It also talks about predictive
and uncertainty-aware strategies in nonlinear wave theory [16,20]. This novel development not only
contributes to our comprehension of nonlinear dynamics, but it also paves the way for the
investigation of related topics in areas that were previously unexplored. Increasing our capacity to
forecast the behavior of a wide variety of physical systems under complex conditions can be
accomplished by incorporating these insights into models that are already in existence. In this
research, we examine the behavior of solitons in noisy environments by use of analytical and
numerical methods. Our purpose of this investigation is to find out how the mKdV equation is
impacted by multiplicative white noise. Our undertaking is based on this thorough research.
Researching the effects of noise on wave characteristics (amplitude, frequency, and shape) as well as
random perturbations on system dynamics and stability (e.g., soliton particles) is our primary objective.
Numerical simulations and a modified simple equation technique are employed to comprehend the
behavior of solitons in the presence of stochastic events. In light of these results, the theoretical models
are better equipped to handle noise and other disruptions in the actual world. Stochastic models are
necessary for studying the effects of random perturbations on wave dynamics. When the noise-free
damped mKdV equation and other conventional deterministic models fail to provide a sufficient
description, this becomes even more crucial. By introducing random variables, we can study many
different things, such as how noise affects the stability of solitons and how to generate random solitary
waves. The mKdV equation specifies solitons, and we study their behavior in relation to stochastic
pressures. This lends credence to the previous discoveries. Coupling analytical methods with
numerical experiments, particularly concentrating on the modified simple equation method, allows
one to study the noise influence on the soliton system stability and properties. Our purpose of this
assessment is to identify the impact of noise on these variables.

In real-world systems, where perfect noise-free conditions are rare, adding random factors to the
damped mKdV equation makes it more useful by including the natural presence of noise and
randomness. The Wiener process, commonly known as Brownian motion, is a basic stochastic model
with continuous, random paths that start from the zero point and have increments that are independent
and identically distributed. One of the major things that makes the Wiener process unique is that it is
continuous, which means that there are no sudden jumps or breaks. However, its paths are very erratic,
and there are no clear tangents at any given time (see Figure 1). The Wiener process is an important
tool for modeling random events because it has important features like independent increments,
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continuous paths, and normally distributed variations. It is used in many fields, such as physics,
engineering, and economics.

Figure 1. Illustration of the Wiener process trajectories for smooth real-valued random
functions over the interval (-10, 10) with varying values of the parameter c.

We employ a systematic workflow to examine the behavior of nonlinear wave solutions
subjected to stochastic influences, with a particular emphasis on the stochastic damped mKdV
equation. The study commences with the development of an innovative stochastic model that
integrates nonlinear cubic terms, dispersion, damping, and multiplicative space-time white noise in
the Itd6 framework. Then, a wave transformation is used, and the expectation is taken to turn the
SPDE into a deterministic nonlinear ordinary differential equation. The modified simple equation
method, which is used in a stochastic context, can be used to analytically solve this simplified
equation. This gives general forms of soliton and solitary wave solutions. These solutions are divided
into four groups based on their shapes: kink-shaped, trigonometric, exponential, and geometric. Each
group shows a different behavior when there is no noise. To study how noise affects things,
numerical simulations are done at different levels of noise, creating 3D plots, heat maps, and density
plots that show how soliton structures change shape and modulate. The solutions are subsequently
analyzed within the framework of physical systems, including plasma waves and optical fibers,
emphasizing the distinctions between deterministic and stochastic regimes. All mathematical
derivations undergo stringent verification, and simulation results are cross-validated for coherence.
We end the study by listing the most important results and suggesting what should happen next.

1.1. Problem statement and relevance

The damped mKdV equation is very important for modeling nonlinear dispersive systems where
energy loss is important, like plasmas, shallow water waves, and nonlinear optical media.
Conventional analyses frequently emphasize deterministic, noise-free conditions, neglecting the
inherent randomness introduced by environmental fluctuations, thermal effects, or external forces in
actual physical systems. These random factors can significantly change how stable and long-lasting
soliton solutions are, which makes purely deterministic models less reliable. To make more realistic
descriptions of how solitary waves behave in real life, it is necessary to include both damping and
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stochastic effects.
1.2. Research objectives

We seek to enhance the damped mKdV framework by incorporating multiplicative stochastic
terms to investigate the influence of noise on solitary and soliton dynamics. The goals are to: (i)
create a model for the stochastic damped mKdV equation that balances nonlinearity, dispersion,
dissipation, and randomness; (ii) use the modified simple equation method to find analytical soliton
solutions; (iii) run numerical simulations to see how different noise levels affect wave amplitude,
shape, and stability; and (iv) classify and explain solution types in the fields of plasma physics and
nonlinear optics. In this way, we connect deterministic theory with real-world noisy environments,
giving us information that is useful for communication systems, wave stability, and energy transport.

1.3. Advancement in the field, novelty, and research gap justification

In this study we enhance the examination of nonlinear wave dynamics by extending the damped
mKdV equation to include stochastic effects, thereby offering a more accurate representation of
physical systems affected by random fluctuations. The research underscores the influence of
stochastic perturbations on soliton stability, amplitude, and structure by integrating damping,
dispersion, nonlinearity, and multiplicative noise into a cohesive framework-phenomena frequently
neglected in deterministic models.

Our innovation consists in applying the modified simple equation method to obtain analytical
solutions for the stochastic damped mKdV equation, a methodological approach seldom explored in
current literature. Moreover, the integration of analytical derivations and numerical simulations
offers a dual perspective, augmenting both theoretical understanding and computational verification.
We explicitly address multiplicative stochastic perturbations, unlike conventional approaches that
treat solitons under noise-free or purely additive-noise conditions. This better captures
state-dependent randomness in real-world environments.

Many researches have looked at deterministic mKdV and damped mKdV equations, but not
many have looked at how damping and randomness work together to affect soliton solutions. Current
stochastic models predominantly emphasize additive noise or entirely disregard dissipation, resulting
in a deficiency in comprehending the interaction between dissipative forces and multiplicative noise
in influencing soliton dynamics. This research fills that gap by creating a stochastic damped mKdV
framework, categorizing solution types, and testing robustness under noise, which results in a model
that is more complete and relevant to physics.

We create a stochastic damped mKdV framework with multiplicative noise that captures
state-dependent randomness in real-world environments, in contrast to traditional analyses that focus
on deterministic or additive-noise systems. We further adapt the modified simple equation method to
the stochastic setting (a methodological step rarely attempted before), enabling us to derive analytical
solutions that are then verified by direct numerical simulations. This dual analytical-numerical
approach illustrates the impact of stochastic perturbations on soliton stability, amplitude, and
structure, effectively connecting deterministic theory with actual noisy physical systems. This study
enhances our understanding of soliton dynamics under uncertain conditions and provides innovative
insights for practical applications in fields such as fluid dynamics and nonlinear optics. In the future,
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researchers may concentrate on expanding this framework to encompass more intricate systems,
potentially yielding innovative insights into the behavior of solitons within chaotic environments.
Researchers may discover patterns and behaviors that contradict current theories by investigating
these intricate interactions, facilitating the development of groundbreaking technologies that utilize
soliton characteristics. Furthermore, figuring out how these changes affect soliton interactions could
help make communication systems and energy transfer methods better.

1.4. Workflow visualization

The workflow of this study commences with the formulation of the damped mKdV equation,
integrating multiplicative noise and establishing the requisite parameters, domain, and boundary
conditions. We use a wave transformation and an expectation operator to turn the stochastic PDE into
a nonlinear ODE. Then, we use the modified simple equation method to find explicit soliton forms.
The solutions that come out are grouped into four families: Trigonometric, kink, exponential, and
geometric. In addition to the analytical results, numerical simulations are done using appropriate
discretization schemes. These simulations show how different noise levels and parameters affect the
amplitude, shape, and stability of solitons. The results are shown in 3D plots and density maps,
checked against the deterministic limit, and tested for sensitivity. Finally, the results are interpreted
in light of their physical ramifications, offering both theoretical understanding and practical
significance for nonlinear wave systems subjected to damping and stochastic effects.

This paper is structured as follows. In Section 2, we derive and theorize the stochastic damped
mKdV equation, including a thorough mathematical analysis of its most important parts. Section 3
centers on the formulation of soliton and solitary wave solutions, utilizing the modified simple
equation method as the principal analytical instrument. In Section 4, numerical simulations are
conducted to demonstrate the dynamic behavior of wave structures affected by stochastic
perturbations. Last in, Section 5, we give a summary of the major results and talk about possible
paths for future research.

2. Mathematical analysis

In this section, we present the governing stochastic damped mKdV equation into explanation as
follows:

dQ =—(40%Q, +BQ,,, +CQ)dt +cQdW , (1)

here, Q(x,t) is a real-valued function of x and ¢, the coefficients 4, B, C denote the dispersive,
dispersion, and damped coefficients, respectively, O represents the noise intensity, W (¢) denotes
the white noise, and oQdW indicates multiplicative noise in the Itd sense.

This equation captures the core interactions between nonlinearity, dispersion, damping, and
randomness. Such interactions are vital in realistic modeling, especially in plasma physics, nonlinear
optics, and hydrodynamic systems, where random environmental fluctuations can significantly
influence wave dynamics. The damping term simulates the loss of energy, like resistivity in plasma
or viscosity in fluids. The stochastic term models random disturbances that can come from a number
of things, such as changes in temperature, outside forces, or errors in measurements. This
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combination causes waves to behave in interesting and complicated ways, especially when looking at
solitons and solitary waves, which are important for many nonlinear wave applications. We examine
the evolution of solitary wave structures under the influence of deterministic dynamics and stochastic
noise through analytical transformations and numerical simulations. These insights are especially
important for designing stable communication channels, figuring out how energy moves through
plasmas, and predicting how waves will act in noisy places. In the following subsection, we analyze
the governing equation using the wave transformation technique.

2.1. Wave transformation of the stochastic damped mKdV equation

The wave equation for stochastic damped mKdV equation (1) is given by considering the
following wave transformation:

O(x, 1) =q(x,1)el”""""), @)
where the functions ¢ (x,7) are deterministic. We have, spatial derivatives (the exponential depends
on ¢ only):

0.=q.¢" 0,=q.¢", O, =q,e" 0=cW(@)-ct/2 (32)
It6 time increment:
0, =e’q, +Q (UdW +%2—%2j. (3b)

The second term arises from formally differentiating the exponential factor: The contribution o dW
comes from the stochastic increment of the Wiener process, while the deterministic drift contains two
opposing parts, namely ¢°/2 from the It6 correction and -6°/2 from the explicit -6°#/2 in the exponent;
these two drift terms cancel exactly, so that only the stochastic contribution o d¥ remains. By inserting
Egs (2) and (3) into Eq (1), we have

q, +Aq2qx62[crw(t)—o—2t/2] +B q... +Cq =0. 4)
Taking the expectation to both sides on Eq (4) we have:

q,+Aq*q.e ' E@ Y +Bq_ +Cq=0. 5)
Since W (t) is a Gaussian process, E(e”"") =e"?, So, Eq (5) turns into

q, +Aq2qx +Bq_ . +Cq=0. (6)

This is used to clearly show the major features of solitary wave structures, which makes it easier
to find different solitons that are important to plasma physics. These waveforms are governed by
partial differential equations with spatial and temporal variables denoted by x and ¢, respectively. To

AIMS Mathematics Volume 10, Issue 11, 25907-25938.



25914

convert Eq (6) into a nonlinear ordinary differential equation (NLODE), the following wave
transformation is introduced:

q(x,1)=q(s), c=kx +ot, (7)

here @ represented the wave velocity and & denote the wave number, putting Eq (7) into Eq (6)
gives us the following NLODE:

wg'+Akq’q'+Bk’q"+Cq=0, ':j—é, (®)

This study presents several novel contributions to the analysis of nonlinear wave equations
influenced by stochastic effects, with a particular emphasis on the stochastic damped mKdV equation.
We create a new SPDE model that includes nonlinear cubic terms, dispersive and damping effects,
and multiplicative space-time white noise in the It0 sense. This makes the model better at
representing real-world physical systems like plasmas and optical media that are affected by changes
in the environment. A unique methodology is employed that integrates wave transformation with
expectation analysis, simplifying the SPDE to a nonlinear ODE, which facilitates the extraction of
physically significant wave structures. We also adapt the modified simple equation method, which is
usually used for deterministic systems, to the stochastic framework. This enables the researchers to
find explicit soliton and solitary wave solutions of the reduced equation, which is a significant
methodological gap in the current literature. We use 3D plots, heat maps, and density visualizations
to look at how changing the noise intensity affects the amplitude, shape, and stability of soliton
structures in great detail through parametric analysis and numerical simulations. The outcomes
indicate the existence of specific soliton categories, encompassing kink-type, trigonometric,
geometric, and exponential forms, each exhibiting distinct sensitivities to stochastic modulation.
Finally, the research connects theoretical advancements and practical implementation by providing
insights pertinent to domains such as plasma physics, nonlinear optics, and communication systems,
where the interaction among nonlinearity, dispersion, damping, and stochasticity is essential.

3. Soliton and solitary solutions of the deterministic damped mKdV equation

To derive solitary solutions, we employ the modified simple equation technique. By equating

orders of ¢" with ¢ ? q ', we have N+3=2N+1 so we have N=1, and we apply the modified simple

equation technique. The solution is then expressed in a series form so Eq (8) have the general
solution in the formula

1E)=2aR &+ Db R @), ©

s=—1

where d; ,bs are later determined constants, and R (&) satisfies the ODE
R'(€)=py+pR(E)+p.R*(E)+pR* (). (10)
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For N=1, Eq (8) has the following solution form:

q(&)=a,

R(é) ()

Replacing Eq (11) with the assistance of auxiliary ODE (10) into (8), gathering all coefficients
of RKE)R (&) (k=0,1,j=0,1,2,3,...,n) and equating by zero, we have an algebraic system. Solving this
system with the assistance of software Maple or Mathematica, distinct classes of 4 ,bs,k, and @
are computed depending on p’s, and by replacing this into Eq (9) various classes of explicit
solutions to Eq (1) are derived, as outlined below.

Class 1: When p; = 0, we obtain

3B 6B 1
Lo ag=-pk[ o a=0, b]=pok,/7, w=5(p§—4p]p2)3k3- (12)

Since 4 <0, putting the values of Eq (12) in Eq (11), then we get the following soliton

solution for Eq (6) in trigonometric form as:

3 [6B 2
q,(x,t)=—pk ﬂ_pok 7 2 = 2 ’ (13)
pl_\/4p0p2_pl tan(\/4p0p2_p1 (§+§0)/2)

E=kx +(p; —4pp,)Bk’t /2, 4py0, > Py -
3 3
Im: a0=\/3(2/’02ik YO _0, 4 =—pk %, pl=_kl\/2(2/’o/;§5;€k to)

(14)

3
D =%JW (\/250 +2,00,02Bk3\/5—(2,00,028163 +a))).

Since 4 <0, putting the values of Eq (14) in Eq (11), then we get the following soliton
solution for Eq (6) in trigonometric form as:

qz(x,z)=\/3(2p°pf;€k3+w)—k@(m— [4p,p, — p? tan( [4p,p, - p? (.§+§0)/2)), (15)

E=kx+ar, 4000, > p; -

9

3(2p0p23k +w) b, =0, a=-phk 08 :l 2(2p,p,Bk’ + @)
N AT Tk Bk

(16)

2 Bk’ +w
D= kJ pop;k (V20 +2p,0,Bk N2 -2 pp,Bk + @),

Since 4 <0, putting the values of Eq (16) in Eq (11), then we get the following soliton
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solution for Eq (6) in trigonometric form as:

q5(x 1) = \/3(2’)”’3?3 o) g \/?(pl ~\4pops =PI tan(»\/4pop2 -p (§+§o)/2))» a7

E=kx+ar, 4p05 > P -
3B 6B 1
IV: a,=—pk EYR b,=0, a =-pk 0 a)=§(,012 —4p,0,)Bk">. (18)

Since 4 <0, putting the values of Eq (18) in Eq (11), then we get the following soliton
solution for Eq (6) in trigonometric form as:

q4(x )= _plk\/g—k\/g(pl —\/4100,02 _P12 tan(\/4,00/92 _,012 (5"‘50)/2)), (19)

E=kx +(p —4p,p,)Bk’t /2, 4p,p, > Py

3B 6B 6B 1
__plk\/ﬂ’ @ =—poky[= s b= —pik = @= (A7 +8p0p) Bk (20)

Since 4 <0, putting the values of Eq (20) in Eq (11), then we get the following soliton

solution for Eq (6) in trigonometric form as:

qs(x,t)=—p, \/g_ \/g 4pup> = Py tan(\’4p0p2—p12 (f"'é:o)/z))

6B P>

= pok \|— ) (21)
4 P =\ 40P -p tan(,\/4p0p2 -p (§+§0)/2)
E=kx +(p} +8p,p,)Bk’t /2, 4pop, > py-

Class 2: When p, = p; =0, we obtain

/33 /63 |
I: (loz—p]k ﬂ, bl=0, Cllz—pzk 7, 6!)25 lsz3 (22)

Since 4 <0, putting the values of Eq (22) in Eq (11), then we get the following soliton
solution for Eq (6) in exponential form as:

’3B pzepl(§+§o)+l 3 1 ) 3
qﬁ(x t) pl Y {m , .{j—kx +EplBk t. p1>0. (23)
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3B peﬂl(§+§o)_l 1
q7(x,t)=p1k\/§[m . S=kx 4o piBkt. p<O0. 24)

3B f6B 1
II: Clozplk g, b1=0, alzpzk 7, a)=5p123k3 (25)

Since 4 <0, putting the values of Eq (25) in Eq (11), then we get the following soliton
solution for Eq (6) in exponential form as:

B 3B pzep1(§+'§o)+1 1 3 3
qg(x,t)=—pk Z(W , &=kx +E'DlBk t. p>0. (26)
3B P eP1(§+§o) -1 1
X,t)=— k,’— = |, =k x +—p’Bk’t. <0. 27
qy(x.t) P 4 (pzepl(§+-§o)+1 4 2:01 P (27)

Class 3: When PO, =p0;= 0, we obtain

68
I: a=0, a=0, b =p0k‘/7, w=-2p,p,Bk". (28)

Since 4 <0, putting the values of Eq (28) in Eq (11), then we get the following soliton
solution for Eq (6) in trigonometric form as:

6 3
gs(x 1) :k\/j?(\/popz COt(\/popz (§+§0)))’ S=kx =2p,p,Bkt, pyp,>0. (29)

/63

qo(x,1)=—k 7(\/—%/02 coth(\/—popz(ﬁfo))), E=kx =2p,p,Bk’t, p,p,<0. (30)
/63 ,

Im: a,=0, b =0, a=—pk VR w=-2p,p,Bk". 31

Since 4 <0, putting the values of Eq (31) in Eq (11), then we get the following soliton
solution for Eq (6) in trigonometric form as:

q,0(x,t) =k g( PoP> tan(’\fpopz (§+§0)))> =k x-2p,p,Bk t, Popy > 0. (32)

g, (x,t)=—k \/6142(\/_/00:02 tanh(\/_popz (ég"'go)))a §=kx —2p,p,Bk t, PP, <0. (33)
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B B
m: aq,=0, b :—pok,/%, a, :—pzk,/%, w=4p,p,Bk". (34)

Since 4 <0, putting the values of Eq (34) in Eq (11), then we get the following soliton

solution for Eq (6) in trigonometric form as:

q,,(x,1)==2k \/6142(\/:00:02 CSC(2\/p0p2 (‘:"‘fo)))a ¢ =k x +4p,p,Bk t, Pop>>0. (35)

/63
qi3(x,t) =2k VR (\/_popz CSCh(ZV—pOpZ (98""):0)))’ ¢=kx +4p,p,Bk t, Popy <0.(36)

B
IV:  q,=0, b, :pok,/%g, a, :pzk,/%, w=4p,p,Bk". (37)

Since 4 <0, putting the values of Eq (34) in Eq (11), then we get the following soliton

solution for Eq (6) in trigonometric form as:

q.(x,1)=2k \/6143(\/:00:02 CSC(2\/:00:02 (§+§o)))> =k x +4p,p,Bk t, Pop > 0. (38)

,63
q,5(x,t)==2k Ve (\/_popz CSCh(2\ll—p0p2 &+ é:o)))a S=kx +4p,p,Bk t, Pop <0.(39)

We have checked all of the equations in this study for mathematical correctness and internal
consistency. At every step, the derivations (from the original stochastic damped mKdV equation to the
wave transformation, expectation operations, and reduction to nonlinear ordinary differential
equations) have been carefully checked. The use of the modified simple equation method and the
explicit solution forms that come from it have been checked using symbolic computation and algebraic
simplification. Any differences found during the derivation process were fixed to ensure that the
analytical results fit with the stochastic framework that governs them. This thorough verification backs
the accuracy of the analytical and numerical results shown in this work. Our approach offers a more
thorough and physically plausible framework than current methods in the literature that address
deterministic or simplified stochastic wave equations.

Conventional analyses of the mKdV equation frequently overlook damping and stochastic effects,
concentrating instead on integrable systems that can be resolved using methods like the inverse
scattering transform or Hirota's technique. These methods are very useful, but they work only in
perfect, noise-free situations. Some recent stochastic models have included additive noise, but they do
not always show the amplitude-dependent changes that happen in real systems. We, on the other hand,
use multiplicative white noise in the Itd sense, which is a better way to show how environmental
randomness affects wave amplitude. We want to give a more accurate picture of how waves behave in
uncertain conditions by using this method. This study may yield novel insights into the propagation
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and interaction of waves across diverse media, thereby advancing our comprehension of intricate
dynamical systems.

This study also presents a novel deterministic reduction method to the stochastic PDE literature:
Wave transformation with expectation analysis. It lets you look at how nonlinear waves act in a way
that is easy to understand. The most important new idea is that the modified simple equation method
can now be used in a stochastic context. This method has only been used with deterministic equations
in the past. The classification of soliton and solitary wave solutions subjected to stochastic influence
(bolstered by a comprehensive parametric analysis and numerical simulations) enhances the
comprehension of wave stability and dynamics in the presence of noise. As a result, we not only
improve the theoretical framework for stochastic nonlinear equations, but it also fill a methodological
gap by using deterministic solution methods in real-world stochastic situations. This new way of
looking at things gives us new ideas about how complex systems behave when they are affected by
random changes. Researchers can make more reliable predictive tools that take into account
uncertainty in real-world situations by bridging the gap between deterministic and stochastic models.
These advancements could result in substantial enhancements across multiple disciplines, including
finance, engineering, and environmental science, where comprehending the interaction between
deterministic and stochastic components is essential. Consequently, the outcomes of this research may
enable practitioners to make more informed decisions grounded in enhanced models that more
accurately represent the intricacies of their specific fields.

3.1. Verification in comparison to current techniques

The dependability of the suggested analytical and numerical framework for the stochastic
damped mKdV equation can be validated through comparison with established deterministic and
stochastic methodologies in the literature. As the noise intensity approaches zero, the obtained
solutions converge to those of the classical damped mKdV equation, which are well-established. This
reduction is an initial consistency verification. Furthermore, the analytical soliton profiles obtained
from the modified simple equation method can be juxtaposed with solutions generated by alternative
techniques, such as the inverse scattering transform or the tanh-coth expansion method, when suitable,
to validate their structural integrity and coherence. These comparisons not only make the analytical
solutions more believable, but they also give us hints about how strong different mathematical
methods are when studying nonlinear wave equations. This method could also lead to new discoveries
about how solitons behave in different situations, which would add to our overall understanding of the
dynamics at play.

In terms of numbers, simulations can be compared to current deterministic soliton propagation
schemes to ensure that the current method reproduces known waveforms and dynamics when there are
no random perturbations. When using stochastic forcing, it is possible to check for stability and
convergence by comparing the results with those of well-known stochastic numerical integrators, like
the Euler-Maruyama or Milstein methods. The proposed framework gains credibility by being in line
with classical deterministic outcomes and established stochastic simulation methods. This shows how
innovative it is in capturing the combined effects of damping and multiplicative noise on soliton
dynamics. This alignment confirms the framework's strength and makes it possible to study more
complex systems where noise is important. Researchers are still working on these models, and they
could be useful in many areas, such as fluid dynamics and financial modeling. They could help us
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understand how stability and randomness work together.
3.2. Limitations of the methods

Our integrated analytical-numerical framework provides a thorough comprehension of
stochastic soliton dynamics; however, it is essential to recognize certain methodological constraints.
The revised simple equation method provides an effective analytical instrument for obtaining
closed-form soliton and solitary wave solutions. This method, on the other hand, depends on
deterministic reductions of the stochastic damped mKdV equation through wave transformations and
expectation operations. Consequently, it reflects the system's average behavior instead of the
complete range of stochastic variations. As a result, some temporary or localized random effects,
especially those caused by high-intensity or non-Gaussian noise, may not be fully captured in the
analytical solutions. This limitation indicates the necessity for supplementary numerical methods
capable of encompassing the entire dynamics of the system. Researchers can gain a deeper
understanding of the underlying phenomena by combining analytical and numerical methods. This
will lead to better predictions and a better understanding of how complex wave systems behave.

To address this limitation, numerical simulations are utilized to directly model the stochastic
partial differential equation through stochastic integration methods, including the Euler—-Maruyama
scheme. These simulations confirm the analytical findings and provide insights into the temporal
evolution, amplitude modulation, and possible destabilization of soliton structures under different
noise levels. The dual-method approach guarantees mathematical feasibility and physical authenticity:
The analytical solutions provide accurate soliton configurations, while the numerical experiments
validate their resilience and stability in stochastic contexts. This all-encompassing framework
improves our understanding of how solitons behave and opens new avenues for research on complex
systems that are affected by random changes. We can better predict how solitons will act in the real
world, like in optical fibers and fluid dynamics, by combining theoretical and computational points
of view.

Although these two things work well together, there are still some issues that need to be
addressed. This analysis is limited to one-dimensional formulations defined by multiplicative white
noise. Conversely, higher-dimensional extensions may exhibit fundamentally different behaviors,
such as noise-induced pattern formation or wave collapse, requiring more advanced numerical and
analytical techniques. These complexities may yield novel insights into the comprehension of
dynamical systems and their reactions to stochastic perturbations. Subsequent investigations ought to
concentrate on examining these higher-dimensional contexts to facilitate a more profound
understanding of their fundamental mechanisms. This study could show how noise affects different
dimensions, which could lead to new uses in, for example, physics, biology, and engineering.
Researchers can better predict and control how these complex systems behave by combining
advanced computational methods and theoretical frameworks. Empirical investigations in plasma
systems, optical fibers, or fluid channels would be instrumental in validating the theoretical
predictions delineated herein. Researchers ought to examine alternative stochastic processes, such as
colored, Lévy, or non-Markovian noise, to assess the universality of the proposed methodology. This
investigation may provide significant insights into the resilience of the methodology under diverse
conditions and applications. Additionally, looking at these processes side by side could help us find
any rules that govern how they act in complicated systems. These studies may reveal novel insights
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into the dynamics of intricate systems. Researchers will gain a more profound comprehension of the
fundamental mechanisms driving these phenomena by broadening the spectrum of analyzed
stochastic processes. To sum up, the combination of analytical and numerical methods makes it
easier to study stochastic nonlinear wave systems in a balanced and reliable way. However, more
work needs to be done to make it more useful, test its predictions in the lab, and improve its ability to
capture the full complexity of real-world stochastic phenomena. This endeavor will augment our
comprehension of these systems and facilitate novel applications across diverse domains, including
physics and engineering. By accepting a wider variety of stochastic processes, researchers can find
new dynamics and interactions that are not fully understood yet.

4. Simulation results of the behavior of wave patterns

In this section, we examine how random noise (specifically white noise) affects the solitary and
soliton solutions of the stochastic damped mKdV Eq (1). The main focus of the analysis is on how
random changes affect the system's dynamic behavior, especially when compared to its deterministic
counterpart. This comparison is crucial for figuring out how the model changes over time and stays
stable over the long term. Different types of graphs illustrate the system's behavior under varying
levels of noise (o) to highlight these effects. The results of the simulation present us with useful
information about how stochastic modulation affects the behavior of waves. As the noise level rises,
the solitary and soliton structures start to show significant changes in amplitude, which makes them
look different from their deterministic profiles. These solutions keep their general shape at lower noise
levels, but as ¢ grows, their structural modulation becomes more pronounced. Heat maps that show the
link between noise level and the Wiener process make this trend obvious. Higher noise levels cause
more noticeable changes. Furthermore, density plots of how amplitude changes over time and space
show that higher noise levels cause waves to behave in strange ways, which shows how stochasticity
can make things less stable. These results show how important it is to include stochastic effects in
nonlinear wave models if you want to accurately predict how a system will behave in real-world, noisy
situations. Moreover, the results suggest that the soliton and solitary stay fairly stable when there is not
much noise, keeping their shape and other features. However, as the noise level rises, the soliton's
modulation becomes stronger, causing it to deviate significantly from the deterministic solution. We
expect this kind of change from nonlinear systems, where even small changes can have a big effect on
how the system works over time. The Wiener process records these random changes, and the soliton's
time-dependent modulation shows how the noise affects it. These changes become more obvious as the
noise level (o) goes up, which shows that the soliton's stability has changed. The time evolution of the
soliton shows that when there is more noise, the soliton's amplitude changes more, which could cause
it to break down. The choice of parameters, like those related to the system's characteristics, is also
vital for determining the solution and its sensitivity to noise. Changing these parameters can make the
soliton and solitary more stable when there is noise, which shows how complicated the relationship is
between solitons (solitary) and noise.

The findings underscore the essential influence of noise intensity on the behavior and stability of
solitary and soliton wave structures. This dynamic interaction highlights the imperative for ongoing
research into the long-term stability of these waveforms amidst diverse stochastic conditions and the
examination of alternative stochastic processes. The graphs in this study provide more information
about how levels of noise affect the model's dynamic evolution. Furthermore, comprehending these
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interactions may facilitate the development of sophisticated applications in domains such as
telecommunications and materials science, where meticulous regulation of wave behavior is crucial.
Future studies may concentrate on creating predictive models that integrate these stochastic factors to
improve the dependability of soliton-based technologies.

The system behaves in a purely deterministic way when the noise intensity is set to 6=0. As seen
in Figure 2, the corresponding solitary solution is a flat, periodic trigonometric structure that is
described by Eq (13). Figure 3 shows a non-deterministic, non-flat solitary solution when the noise
level rises to 6=0.1. This shows that stochastic modulation is starting to happen. Figure 4 shows that
raising o to 0.5 makes the non-flat solitary solution even more pronounced. The parameters are po=1.5;
p1=1.5; p>=1.5; k=0.3; B=0.01;, A=1; and £y=2. This change shows how sensitive the system is to
noise, which means that even small changes can cause big changes in behavior. As the parameters
continue to change, the solitary solution's complexity might uncover new dynamics that necessitate a
more thorough examination of the underlying mechanisms involved.

05
6
0.4
1 1
4 03
K 02 0
1 2
01
. A -1
g, > g e 0 -
€ 041 2 -
2 02 -
= -3
03 K
84 4
—~ 04 4
10 5
- 0 6 05
5 0 5
X

0
« 5-5 t

& & L& b o N » o

o

&
h A b A L o 4N v & o
5

(a) (b) (©)

Figure 2. Periodic trigonometric behavior given by Eq (13), (2a) is the 3D plotting, (2b) is
the heat map, (2¢) is the density plot with 6=0; po=1.5; p1=1.5; p>=1.5; k=0.3; B=0.01;

A=1; and &=2.
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Figure 3. Stochastic periodic trigonometric behavior, (3a) is the 3D plotting, (3b) is the
heat map, (3¢) is the density plot with 6=0.1; po=1.5, p;=1.5; p2=1.5; k=0.3; B=0.01; A=1;
and &=2.
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Figure 4. Stochastic periodic trigonometric behavior, (4a) is the 3D plotting, (4b) is the
heat map, (4c¢) is the density plot with 6=0.5; po=1.5, p1=1.5; p2=1.5; k=0.3; B=0.01; A=1;
and &=2.

In the same way, Figure 5 shows the deterministic solitary solution for 6=0, which is the same as
the flat kink-shaped profile shown in Eq (15). Figure 6 shows that adding weak noise (6=0.1) makes
the solitary structure slightly deformed and non-deterministic. Figure 7 shows that adding stronger
stochastic forcing (6=0.5) makes the configuration clearly kink-shaped and not flat. This case uses the
following values: po=1.5; ©=0.5; p>=1.5; k=0.3; B=0.06;, A=10; and &=-0.02. These results indicate
that the stability of the kink-shaped profile is influenced by the noise level, underscoring the nuanced
interplay between deterministic and stochastic elements in the system's dynamics. More research on
these parameters might help us understand how solitary structures act under different conditions.
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Figure 5. Kink-shaped type behavior given by Eq (15), (5a) is the 3D plotting, (5b) is the
heat map, (5¢) is the density plot with 6=0; po=1.5; ©=0.5; p>=1.5; k=0.3; B=0.06, A=10;
and &=-0.02.
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Figure 6. Stochastic kink-shaped type behavior given by Eq (15), (6a) is the 3D plotting,
(6b) is the heat map, (6¢) is the density plot with 6=0.1; pp=1.5; 0=0.5; p>=1.5; k=0.3;

B=0.06; A=10; and £=-0.02.
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Figure 7. Stochastic kink-shaped type behavior given by Eq (15), (7a) is the 3D plotting,
(7b) is the heat map, (7c) is the density plot with 6=0.5; po=1.5; ©=0.5; p>=1.5; k=0.3;
B=0.06; A=10, and &=-0.02.

A comparable trend is evident in the geometric function-type solutions. Figure 8 shows the
deterministic solitary solution for 6=0. This is a flat waveform that can be described by Eq (19). Figure 9
shows that adding moderate noise (6=0.1) creates a non-deterministic, non-flat solitary pattern.
Figure 10 shows that adding high noise (6=0.5) creates a more irregular geometric function-shaped
solution. The values for this situation are po=0.5; p;=1.5; p>=1.5; k=0.3; B=0.06;, A=10; and &=-2.
The findings demonstrate that an augmentation in stochastic intensity modifies both the amplitude and
the morphology of soliton and solitary formations over time. This illustrates that noise significantly
affects the duration, shape modifications, and stability of nonlinear waveforms in stochastic contexts.
The diversity in solitary-wave solutions illustrates the considerable influence of stochastic forces on
system dynamics.
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Figure 8. Geometric function shaped type behavior given by Eq (19), (8a) is the 3D
plotting, (8b) is the heat map, (8c) is the density plot with 6=0; p9=0.5; p;=1.5; p>=1.5;

k=0.3; B=0.06; A=10, and &=-2.
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Figure 9. Stochastic geometric function shaped type behavior given by Eq (19), (9a) is the
3D plotting, (9b) is the heat map, (9¢c) is the density plot with 6=0.1; po=0.5; pi=1.5;

p2=1.5; k=0.3; B=0.06;, A=10; and &=-2.
1
30 09 y 30
25 08 2 25
20 or 20
06 i 1
B =05 - 3
1 04 0 2 10
5 03 4 L 5
0 02 = o
v 01 o 3
] 5 s ) 5

(a) (b) (©)

&

Figure 10. Stochastic geometric function shaped type behavior given by Eq (19), (10a) is
the 3D plotting, (10b) is the heat map, (10c) is the density plot with 6=0.5; p9p=0.5, p;=1.5;
p2=1.5; k=0.3; B=0.06, A=10; and &=-2.
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Deviations from the deterministic baseline, imperceptible at lower noise levels, become
increasingly apparent as noise levels escalate, revealing nonlinear interactions. The interplay between
stochastic disturbances and the properties of long-term wave evolution, including dispersion,
nonlinearity, and damping, requires comprehensive examination in light of this behavior. In the future
researchers should concentrate on employing uncertainty quantification and inference tools to
accurately assess these implications. Calculating response statistics like amplitude, width, energy, and
positional means and variances, along with stochastic stability metrics like Lyapunov exponents and
coherence measures, represents several intriguing possibilities. Methods like generalized polynomial
chaos, Fokker-Planck, or moment-closure analyses can also be used to investigate transition
probabilities. Statistical methods that work together, like ensemble and particle filters for data
assimilation, Gaussian-process surrogate modeling, hierarchical Bayesian calibration of ¢ and other
parameters, and efficient sensitivity assessments, are made possible. Environmental scientists,
engineers, and economists will all gain from enhanced decision-making due to the refined predictive
frameworks that more effectively manage the intrinsic uncertainty in real systems. These methods can
yield more robust designs and risk-aware tactics for managing complex systems under uncertainty by
explicitly integrating stochastic factors in modeling and control.

The following figures show how stochastic perturbations affect the behavior and shape of solitary
wave solutions when the noise level changes. Figure 11 shows the deterministic solitary solution for
0=0, which gives the flat solitary waveform described by Eq (21). This waveform has a profile that
looks like a periodic geometric function. Figure 12 shows a non-deterministic, non-flat solitary
solution as the stochastic intensity rises to 6=0.1. This shows that stochastic modulation is starting.
Figure 13 shows a clearly non-flat periodic geometric function-type solution for a stronger noise level
of 6=0.5. The chosen parameters are po=0.5; p;=1.05; p>=1.5; k=0.3; B=0.006;, A=10; and £=-0.2.
This change implies a more profound relationship between the noise and the fundamental dynamics of
the system, resulting in more complex and diverse solution landscapes. As the stochasticity increases,
the likelihood of chaotic behavior may arise, necessitating a more comprehensive examination of the
stability and attributes of these solutions.
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Figure 11. Periodic shaped type behavior given by Eq (21), (11a) is the 3D plotting, (11b)
is the heat map, (11c) is the density plot with 6=0; po=0.5; p;=1.05; p>=1.5; k=0.3;
B=0.006; A=10; and &y=-0.2.
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Figure 12. Stochastic periodic shaped type behavior given by Eq (21), (12a) is the 3D
plotting, (12b) is the heat map, (12c) is the density plot with 6=0.1; po=0.5; p;=1.05;
p2=1.5; k=0.3; B=0.006; A=10; and &y=-0.2.
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Figure 13. Stochastic periodic shaped type behavior given by Eq (21), (13a) is the 3D
plotting, (13b) is the heat map, (13c) is the density plot with 6=0.5; pp=0.5; p;=1.05;
p2=1.5; k=0.3; B=0.006; A=10, and &=-0.2.

Figure 14 shows the deterministic solitary solution for 6=0, which is the flat solitary profile
described by Eq (23) and shows exponential-type behavior. Figure 15 illustrates a non-flat solitary
waveform upon the introduction of a weak stochastic perturbation (6=0.1). As seen in Figure 16,
raising ¢ to 0.5 results in a non-deterministic, non-flat exponential-type solitary solution with the
parameters p;=1.5; p2=0.9; k=0.06; B=0.06;, A=10 and &y=-0.02. These plots clearly show how
complicated the dynamics are behind the single solution as the parameter ¢ changes. The pictures
show how small changes in ¢ can affect how the system works, which shows how important it is to
choose the right parameters when making theoretical models.

Figure 17 also shows the deterministic solitary solution for =0, which is given by Eq (24) and
makes a flat kink-shaped waveform. The addition of randomness with 6=0.1 (Figure 18) makes the
solitary structure not flat. The higher noise level of 6=0.5 (Figure 19) makes the configuration more
pronounced, with the parameters p;=-1.5, p>=0.1; k=6, B=0.06, A=10, and &=0. Figure 20 shows the
three-dimensional backward plots that go with this. They show the behavior of the exponential
function defined by Eq (25). Plot (20a) is for 6=0, plot (20b) is for 6=0.1, and plot (20c) is for 6=0.5,
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with the same parameter choices. Figure 21 shows the backward three-dimensional plots that go with
Eq (26), which shows the kink-type behavior. Plot (21a) shows 6=0, plot (21b) shows 6=0.1, and plot
(21c) shows 6=0.5. The parameter values are the same as those used in Figure 17. These plots show
how the system changes over time as it moves through different states of 6. They also show how the
defined parameters affect the kink-type behavior in a complex way. This picture gives us important
information about the underlying mechanisms that cause the observed events.

Last, Figure 22 shows the deterministic solitary solution for 6=0, which gives us the flat solitary
waveform described by Eq (38). This waveform has a geometric function-type profile. Figure 23
shows a non-flat solitary solution when the noise level is raised to 6=0.1. Figure 24 shows a non-flat
periodic geometric function-type waveform when the noise level is raised to 6=0.5. We chose the
following values for this case: po=0.1; p>=0.01; k=1.1; B=0.2; A=0.1; and £y=-0.1. These results
show that solitary waveforms are very sensitive to changes in noise intensity. This means that even
small changes in the parameters can have a big effect on the waveform's properties. Further research
into how these parameters interact may show that these systems work more complexly.

Every single one of these plots collectively illustrates the degree to which the stochastic intensity
(o) influences the manner in which structures change in single solutions. As the value of m increases,
the solutions undergo a transformation from deterministic, smooth, and flat shapes to increasingly
complex patterns that are not flat. It is clear from this graph that the system is extremely susceptible to
arbitrary alterations. Considering these changes, it is difficult to provide an explanation for how
deterministic and non-deterministic processes interact with one another. They suggest that a closer
examination of the parameter space could reveal more intriguing patterns. In the future, scientists may
try to figure out how to measure these changes, figure out how stable they are, and find out what role
they play in real-life systems where random effects are important for moving waves and energy
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Figure 14. Exponential function behavior given by Eq (23), (14a) is the 3D plotting, (14b)
is the heat map, (14c¢) is the density plot with 6=0; p;=1.5; p2=0.9; k=0.06, B=0.06; A=10;
and &=-0.02.
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Figure 15. Stochastic exponential function behavior given by Eq (23), (15a) is the 3D
plotting, (15b) is the heat map, (15c) is the density plot with 6=0.1; p;=1.5; p>=0.9;
k=0.06;, B=0.06;, A=10; and &=-0.02.
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Figure 16. Stochastic exponential function behavior given by Eq (23), (16a) is the 3D
plotting, (16b) is the heat map, (16c) is the density plot with 6=0.5; p;=1.5; p>=0.9;
k=0.06, B=0.06, A=10; and &=-0.02.
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Figure 17. Kink-shaped type behavior given by Eq (24), (17a) is the 3D plotting, (17b) is

the heat map, (17¢) is the density plot with 6=0; p;=-1.5, p>=0.1,; k=6, B=0.06; A=10, and
Eo=0.
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Figure 18. Stochastic kink-shaped type behavior given by Eq (24), (18a) is the 3D plotting,
(18Db) is the heat map, (18c¢) is the density plot with 6=0.1; p;=-1.5; p>=0.1; k=6, B=0.06;
A=10; and &=0.
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Figure 19. Stochastic kink-shaped type behavior given by Eq (24), (19a) is the 3D plotting,
(19b) is the heat map, (19¢) is the density plot with 6=0.5; p;=-1.5; p2=0.1; k=6, B=0.06,

A=10, and &=0.
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Figure 20. Backward 3D plotting exponential function behavior given by Eq (25), (20a)
when =0, (20b) when 6=0.1, (20c) when 6=0.5 with p;=1.5; p>=0.9; k=0.06;, B=0.06;
A=10; and &=-0.02.
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Figure 21. Backward 3D plotting kink-shaped type behavior given by Eq (26), (21a) when
0=0, (21b) when 6=0.1, (21c) when 6=0.5 with p;=-1.5; p>=0.1; k=6; B=0.06;, A=10, and
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Figure 22. Geometric function shaped type behavior given by Eq (38), (22a) is the 3D
plotting, (22b) is the heat map, (22c) is the density plot with 6=0; pp=0.1, p>=0.01; k=1.1;
B=0.2; A=0.1; and &=-0.1.
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Figure 23. Stochastic geometric function shaped type behavior given by Eq (38), (23a) is
the 3D plotting, (23b) is the heat map, (23c¢) is the density plot with 6=0.1; p9=0.1; p>=0.01;
k=1.1; B=0.2; A=0.1; and &=-0.1.
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Figure 24. Stochastic geometric function shaped type behavior given by Eq (38), (24a) is
the 3D plotting, (24b) is the heat map, (24c) is the density plot with 6=0.5; p9=0.1; p>=0.01;
k=1.1; B=0.2; A=0.1; and &=-0.1.

The solutions obtained in this study correspond to solitary and soliton waveforms that emerge in
physical systems described by the stochastic damped mKdV equation, which encapsulates the
equilibrium among nonlinearity, dispersion, damping, and stochastic disturbances. In terms of physics,
these solutions are like localized wave packets or traveling waves that keep their shape over time and
space but can be changed by random changes in the environment. In a deterministic environment
(when the noise intensity 6=0), the soliton and solitary solutions exhibit varying forms (trigonometric,
kink-shaped, exponential, or geometric) influenced by the interaction of dispersion and nonlinearity.
Many physical systems, like nonlinear ion-acoustic waves in plasma, surface waves in shallow water,
or optical pulses in nonlinear fibers, have these kinds of structures. Each type of solution corresponds
to a different physical regime. For example, kink-type solutions show how two stable states can change
(like shocks or domain walls), while trigonometric and exponential solutions show how localized
pulses can be periodic or quickly fade away. When stochasticity is added (¢>0), the system acts like
random changes that happen in real life, like thermal noise, turbulence, or electromagnetic
disturbances. This model uses multiplicative white noise, which means that the random effects change
based on the wave's amplitude. This technique causes the system's behavior to depend on its state.
Such behavior causes changes in the amplitude, phase, and structure of the original wave profiles. The
stochastic solutions show how energy spreads out and is moved around when there is noise, which is
important for predicting wave instability, pattern change, or wave packet breakdown. Simulations
show that as noise increases louder, solitons and solitary waves become less regular, with changes in
height, width, and speed. However, they keep some of their localized nature at moderate noise levels.
Similar changes occur in plasma turbulence, randomly disturbed shallow water flows, and optical
systems with amplifier noise. An examination of these solutions from a scientific perspective sheds
light on the dynamics of energy transfer, signal integrity, and wave stability within complex physical
systems. This research also demonstrates the development of nonlinear wave structures that are
influenced by dissipative forces and random disturbances.

4.1. Simulation results

We simulate the stochastic damped mKdV
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dQ =-(40°Q, +BQ,,, +CQ)dt +cQdW , (40)

on a domain x e[0,L]. The deterministic part is treated using the modified simple equation method,
while the stochastic forcing is advanced with the Euler—Maruyama scheme in the It6 sense with
AW,~N(0,4t). The linear dispersive—damping operator is handled exactly through an
integrating-factor approach, and the nonlinear term —AQ°Q; is evaluated in physical space with
3/2-rule dealiasing. Time-stepping uses Af chosen by stability tests; the grid uses N equispaced points
with Ax=L/N. Initial conditions are taken as a localized pulse (or a superposition of pulses), and
periodic boundary conditions are imposed. For each noise intensity o, we perform M independent
realizations to compute ensemble-averaged fields and visualize the results via three-dimensional
surfaces, spatiotemporal density maps, and heat plots. Convergence is assessed by halving A¢ and
doubling N, as well as by confirming that the 6—0 limit reproduces the deterministic damped mKdV
soliton.

In these present simulations, the temporal discretization parameter Az was determined on the
basis of stability analysis and numerical testing. The stochastic forcing enters through the
transformation

Ox 1) =p(x,t)e™ 02, (41)

where W(t) denotes a Wiener process. For the Euler-Maruyama discretization of the associated
stochastic term, mean-square stability of the linear test problem

dX =X, dt +uX dw , (42)
requires
[T+ AL [+ ulF At <], (43)

which, in this multiplicative-noise setting, constrains A¢<<7/o°. For the nonlinear convective term,
stability is governed by a CFL-type condition,

At <C L, C<l. (44)
max | Q|

Since the dispersive—damping operator is integrated exactly, it imposes no further restriction. Thus, the
admissible time step is given by

(45)

Azmﬂ[ CAx 1 ]

max | Q| o’
In practice, an initial trial value of Af is reduced until computed solutions remain bounded for the

simulation interval without artificial growth. Convergence is confirmed by halving Az and ensuring
that ensemble-averaged quantities exhibit no significant variation. The final choice of A¢ therefore
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represents the largest value consistent with both the analytical stability conditions and empirical
convergence tests, ensuring numerical reliability and efficiency.
If we define the stochastic multiplier

M (t)=e”” 07172, (46)
Then Q=y M. Since W(t) ~N(0,t). Over one step At with AW, ~N(0,At),

M, =M, eoWeonn, 47)
Thus,

E[M},|M,]1=M}e”™ =M (1+0°At +O(At?)). (48)
Therefore, per step, the second moment of Q is multiplied by exp(c°Af). If the numerical update for p
has mean-square amplification factor G(Af) (from the deterministic/nonlinear discretization), the
overall mean-square amplification for Q is

AA) = G(AN)[Fe™, (49)
Mean-square stability requires A(Af)<l. For small At,
|G(A) [ (1+ At +O(At?)) <1=> oAt <1-|G(0)[. (50)

Since the integrating-factor treats the linear part exactly (so |G(0)|=1) and the residual nonlinear step is
near-neutral for sufficiently small A¢, the dominant constraint is

oAt <<1&< At <<L2. (51)
(o2

The exponential factor M amplifies the second moment by exp(c°Af) at each step, and to prevent
uncontrolled mean-square growth (and thus maintain stability of the ensemble statistics), the time step
At must be chosen such that ¢°At remains small; this leads to the practical stability restriction
At <min(C Ax /max|Q]|, 1/0'2), which combines the stochastic constraint with the CFL-type

condition imposed by the nonlinear convective term, while convergence is subsequently verified
empirically by halving Az and confirming invariance of ensemble-averaged quantities.

4.2. Physical interpretation

The results show how damping and random perturbations work together to change the behavior of
solitary waves. Without noise, the damped mKdV solitons keep their classical shape, but their
amplitude slowly decreases because of dissipative effects. When stochastic forcing is added, the
soliton structure becomes sensitive to the level of noise. Low levels of multiplicative noise mostly
cause small changes around the deterministic profile, while higher levels of noise can cause the soliton
core to lose amplitude, spread out, or change shape. In systems like plasma waves, optical fibers, and
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shallow water dynamics, where random changes in the environment interact with built-in dissipation
to determine wave stability and energy transport, these behaviors have physical meaning. Therefore,
the study emphasizes the fragile equilibrium among nonlinearity, dispersion, damping, and
randomness in influencing the long-term dynamics of nonlinear wave phenomena. Understanding
these interactions is critical to forecasting the behavior of waves in various applications, such as
telecommunications and environmental modeling.

The results underscore the practical importance of formulating strategies to stabilize and
regulate solitary waves in the presence of stochastic influences, in addition to providing theoretical
insights. Progress in this area can help make communication systems more reliable, make better
predictions about how the environment works, and lead to more technological breakthroughs. For
instance, better management of soliton dynamics could make data transmission more efficient, and
better stochastic modeling could make predictions about changes in the ocean and climate more
accurate. It is necessary for the fields of physics, engineering, and computer science to collaborate in
order to address the issues that are brought about by noise-driven wave phenomena. In a range of
domains, such as weather forecasting and the harvesting of renewable energy, researchers can
develop complicated models that make use of nonlinear wave phenomena. This is made possible by
the combining of approaches from different fields. This all-encompassing strategy has the potential
to provide solutions to significant global problems that are not only long-lasting but also scalable,
and it has the potential to assist us in increasing our understanding of theory.

5. Conclusions

In this study, we formulated and examined a stochastic damped mKdV equation featuring
multiplicative noise, characterized by a Wiener process, to explore the effects of stochastic
perturbations on nonlinear wave propagation. By integrating the modified simple equation method
with supplementary numerical simulations, we successfully identified numerous analytical soliton and
solitary wave solutions and examined their responses to varying noise levels. The results showed that
noise can change the stability and dynamics of soliton solutions in a big way. This research paves the
way for additional exploration into the ramifications of stochastic effects in diverse physical systems
where these equations are relevant.

It has been demonstrated through these discoveries that soliton structures are stable and continue
to maintain their configuration despite the presence of weak stochastic influences. When the noise
level increases, however, solitons exhibit amplitude modulation in a clear and obvious manner and, in
some instances, become less stable. The complex interplay between dispersion, damping, and
randomness is demonstrated by numerical simulations, which also confirm these predictions. Two
ways to show how multiplicative noise reduces coherence in waveforms' temporal behavior are density
maps and three-dimensional surface plots. Plasmas, optical cables, and shallow sea waves are only a
few examples of real-world physical systems whose behaviors cannot be accurately predicted using
deterministic methods. Deterministic techniques cannot accurately represent the behaviors exhibited
by these systems. The objective of this research is to develop a model that effectively addresses
state-dependent unpredictability, thereby bridging a gap in the current body of knowledge. In this
study, we demonstrate substantial procedural modifications through the deployment of a modified
simple equations method inside a stochastic context. This technique enhances the understanding of
how systems adapt to their environments.
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This study not only contributes to a better understanding of the theoretical framework, but it also
sheds light on the practical consequences that noise has on the dynamics of soliton systems.
Understanding how random changes affect the stability and amplitude of solitons can help improve the
design of plasma devices, wave-based communication systems, and optical transmission channels.
The integration of environmental changes facilitates the creation of predictive models that are
fundamentally more reliable and robust, suitable for engineering and experimental applications.
Furthermore, the changes could have a huge impact on how many various technologies are made and
work in the future, which would make systems more reliable and useful in the end. Potential new uses
for solitons in fields like materials science and telecommunications are being revealed as we learn
more about their context-dependent behavior.

5.1. Suggestions for future work

Additional research into higher-dimensional model extensions, experimental validation, and the
incorporation of various noise processes, such as colored noise and Lévy noise, could improve this
paradigm. Machine learning can enhance data-driven modeling of stochastic nonlinear systems by
predicting system performance and estimating parameters. Making predictions could be one way to
achieve this. This study lays the groundwork for the integration of deterministic and stochastic
perspectives in soliton theory, enhancing our understanding of the equilibrium between order and
chaos in nonlinear wave dynamics and fostering further developments in both theory and practice.

In the future, researchers could build on this study by looking at other stochastic processes, like
Lévy noise or colored noise, to see how they affect soliton dynamics in their own way. Another
promising avenue is to employ probabilistic and stability-theoretic approaches to investigate the
long-term stability and potential decay or persistence of solitons subjected to continuous stochastic
influence. There is also the possibility that the creation of stochastic models in higher dimensions, such
as two or three dimensions, can make it simpler to explain spatial behaviors that are more complicated.
Control and optimization techniques, such as adaptive tuning and feedback loops, are both potential
methods that could be applied in order to achieve the goal of stabilizing solitons. This is the option of
inspecting the utilization of either of these techniques. In addition, the use of machine learning could
be of assistance in the identification of patterns, the forecasting of the reaction of a system, and the
development of data-driven modeling in situations that are generated at random.

There is a possibility that the numerical and theoretical results could be improved by using
physical system validation studies that contain optical fibers, shallow water waves, or plasma settings.
Based on the comparison of these random effects with other nonlinear stochastic models, such as the
KdV, sine-Gordon, or nonlinear Schrodinger equations, it is possible to notice the usefulness of these
random effects in the field of wave dynamics. For the purpose of performing this comparative research,
it is possible that the fundamental mechanics of complex systems will be better understood, and that
new insight into the dynamics of these systems will be disclosed. We may uncover novel applications
for these linkages in a variety of fields, such as telecommunications and fluid dynamics, as a result of
our research. These kinds of interdisciplinary approaches could help create stronger predictive models,
which would make technologies that depend on wave dynamics work better and more reliably.
Moreover, the incorporation of these findings with experimental data will guarantee that theoretical
progress is anchored in practical reality, which will improve awareness of both the phenomena and
their applications.
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